101
|
Ha JW. Characteristic image patterns of single anisotropic plasmonic nanoparticles embedded in a gel matrix. NANOSCALE 2015; 7:13159-13163. [PMID: 26186263 DOI: 10.1039/c5nr03847b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present characteristic doughnut-shaped image patterns of gold nanorods embedded in a thin layer of a gel matrix observed under a dark-field microscope. The characteristic scattering field distributions allow us to estimate the spatial orientation of single gold nanorods. The measured scattering patterns are further verified by a simulation study.
Collapse
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
102
|
Ray PC, Fan Z, Crouch RA, Sinha SS, Pramanik A. Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chem Soc Rev 2015; 43:6370-404. [PMID: 24902784 DOI: 10.1039/c3cs60476d] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the last few decades, Förster resonance energy transfer (FRET) based spectroscopy rulers have served as a key tool for the understanding of chemical and biochemical processes, even at the single molecule level. Since the FRET process originates from dipole-dipole interactions, the length scale of a FRET ruler is limited to a maximum of 10 nm. Recently, scientists have reported a nanomaterial based long-range optical ruler, where one can overcome the FRET optical ruler distance dependence limit, and which can be very useful for monitoring biological processes that occur across a greater distance than the 10 nm scale. Advancement of nanoscopic long range optical rulers in the last ten years indicate that, in addition to their long-range capability, their brightness, long lifetime, lack of blinking, and chemical stability make nanoparticle based rulers a good choice for long range optical probes. The current review discusses the basic concepts and unique light-focusing properties of plasmonic nanoparticles which are useful in the development of long range one dimensional to three dimensional optical rulers. In addition, to provide the readers with an overview of the exciting opportunities within this field, this review discusses the applications of long range rulers for monitoring biological and chemical processes. At the end, we conclude by speculating on the role of long range optical rulers in future scientific research and discuss possible problems, outlooks and future needs in the use of optical rulers for technological applications.
Collapse
Affiliation(s)
- Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA.
| | | | | | | | | |
Collapse
|
103
|
Osad'ko IS. Dependence of FRET efficiency on distance in single donor-acceptor pairs. J Chem Phys 2015; 142:125102. [PMID: 25833609 DOI: 10.1063/1.4915279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Possibility to create single donor-acceptor (D-A) pairs by attaching dye molecules to various sites of DNA strands with control of the inter-dye distance R enables one to measure average Förster resonance energy transfer (FRET) efficiency E as a function of R. Triplet states of the dyes influence the dependence E(R) considerably. Two types of FRET efficiency are considered: E = EA and E = ED. The efficiency EA(R) = JA(R)/[JA(R) + JD(R)] depends on the donor and the acceptor average intensities JD(R) and JA(R) measured in D- and A-fluorescence, whereas the efficiency ED(R) = 1 - JD(R)/JD(∞) depends only on the intensity of D-fluorescence, so-called the donor quenching method. The shape of the functions ED (R) and EA (R) depends strongly on whether the dyes have blinking fluorescence. FRET efficiencies ED (R) and EA (R) undergo the influence of many experimental factors and therefore, differ considerably from pure FRET efficiencies ED (s) (R) and EA (s) (R). Pure FRET efficiencies ED,A (s) (R) are calculated with the help of rate equations for D-A pairs, whose molecules have triplet states. It is shown how the calculated efficiencies ED,A (s) (R) can be compared to FRET efficiencies measured with the help of the intensities ID,A(R) corrected by cross talk and background light.
Collapse
Affiliation(s)
- I S Osad'ko
- Institute for Spectroscopy, RAS, 142190 Moscow, Russia
| |
Collapse
|
104
|
Guo X, Jin X, Lv X, Pu Y, Bai F. Real-Time Visualization of Perylene Nanoclusters in Water and Their Partitioning to Graphene Surface and Macrophage Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7926-7933. [PMID: 26055420 DOI: 10.1021/acs.est.5b01880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrophobic organic chemicals (HOCs) are of special ecotoxicological concern because they can be directly incorporated and bioconcentrated in living organisms. However, the effects of self-clustering of HOCs on their environmental behavior and toxicology have not yet received enough attention. With the use of a recently developed technique, single-molecule fluorescence microscopy, the motion and distribution of perylene nanoclusters (PNCs) formed in water at very low concentration (1 μM) were visualized with high temporal and spatial resolution. The liquid-solid interface process of PNCs adsorbing onto graphene was also recorded. Instead of the traditional view of HOC adsorption as a single molecule, our study revealed the characteristic of irreversible adsorption of perylene onto the carbonaceous surface in the form of nanoclusters, exhibiting random sequential "car-parking" events. More interestingly, the transport of PNCs across the cell membrane was also captured in real time, demonstrating that they entered macrophage cells by endocytosis. Supplementing the well-recognized routine of passive diffusion through a membrane lipid bilayer, the uptake of HOCs in the form of nanoclusters by endocytosis is proposed to be an additional but important mechanism for their uptake into living cells. The distribution of HOCs in environmental systems in the form of nanoclusters, exemplified by PNCs in this study, may have significant implications for understanding their environmental fate and potential toxicological effects.
Collapse
Affiliation(s)
- Xuejun Guo
- †State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xin Jin
- †State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xiaofang Lv
- †State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yingying Pu
- ‡Biodynamic Optical Imaging Center, School of Life Science, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Fan Bai
- ‡Biodynamic Optical Imaging Center, School of Life Science, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
105
|
Pan H, Xia Y, Qin M, Cao Y, Wang W. A simple procedure to improve the surface passivation for single molecule fluorescence studies. Phys Biol 2015; 12:045006. [DOI: 10.1088/1478-3975/12/4/045006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
106
|
Kim SE, Lee IB, Hyeon C, Hong SC. Deciphering Kinetic Information from Single-Molecule FRET Data That Show Slow Transitions. J Phys Chem B 2015; 119:6974-8. [DOI: 10.1021/acs.jpcb.5b03991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sung Eun Kim
- Department
of Physics, Korea University, Seoul 136-713, Republic of Korea
| | - Il-Buem Lee
- Department
of Physics, Korea University, Seoul 136-713, Republic of Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
| | - Seok-Cheol Hong
- Department
of Physics, Korea University, Seoul 136-713, Republic of Korea
- Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
| |
Collapse
|
107
|
Abstract
A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive "detection" based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.
Collapse
Affiliation(s)
- Golan Bel
- Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Frank L H Brown
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
108
|
Gao F, Kight AD, Henderson R, Jayanthi S, Patel P, Murchison M, Sharma P, Goforth RL, Kumar TKS, Henry RL, Heyes CD. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates. J Biol Chem 2015; 290:15462-15474. [PMID: 25918165 DOI: 10.1074/jbc.m114.624346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP.
Collapse
Affiliation(s)
- Feng Gao
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Alicia D Kight
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Rory Henderson
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Srinivas Jayanthi
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Parth Patel
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marissa Murchison
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
| | - Priyanka Sharma
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Robyn L Goforth
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | | | - Ralph L Henry
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701.
| | - Colin D Heyes
- Departments of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701.
| |
Collapse
|
109
|
Ha JW, Fang N. Defocused differential interference contrast microscopy imaging of single plasmonic anisotropic nanoparticles. Chem Commun (Camb) 2015; 50:5500-2. [PMID: 24722924 DOI: 10.1039/c4cc01567c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present the defocused differential interference contrast (DIC) imaging of gold nanorods. We found that the scattered light and the defocus aberration play an important role in the formation of orientation-dependent DIC image patterns of a gold nanorod. Interestingly, the scattered light from a gold nanorod aligned closer to the polarization directions enables us to directly resolve its spatial orientation under a defocused DIC microscope.
Collapse
Affiliation(s)
- Ji Won Ha
- Ames Laboratory, U.S. Department of Energy, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
110
|
Sinha SS, Paul DK, Kanchanapally R, Pramanik A, Chavva SR, Viraka Nellore BP, Jones SJ, Ray PC. Long-range two-photon scattering spectroscopy ruler for screening prostate cancer cells. Chem Sci 2015; 6:2411-2418. [PMID: 29308154 PMCID: PMC5646206 DOI: 10.1039/c4sc03843f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/02/2015] [Indexed: 12/14/2022] Open
Abstract
Optical rulers have served as a key tool for scientists from different disciplines to address a wide range of biological activity. Since the optical window of state of the art FRET rulers is limited to a 10 nm distance, developing long range optical rulers is very important to monitor real life biological processes. Driven by this need, the current manuscript reports for the first time the design of long-range two-photon scattering (TPS) spectroscopy rulers using gold nano-antenna separated by a bifunctional rigid double strand DNA molecule, which controls the spectroscopy ruler length. Reported data demonstrate that the TPS spectroscopy ruler's working window is a within a 25 nm distance, which is more than twice that of well recognized FRET optical ruler. A possible mechanism for the two-photon spectroscopy ruler's long range capability have been discussed using angle-resolved TPS measurement and FDTD simulations. Solution-phase experimental data demonstrated that a long-range TPS ruler using A9 aptamer can be used for the screening of prostate-specific membrane antigen (PSMA) (+) prostate cancer cells even at 5 cells per mL level. Reported result with PSMA (-) normal skin HaCaT cells indicate that TPS ruler based assay has the capability to enable distinction from non-targeted cell lines. Ultimately, the long range TPS ruler can be used towards better understanding of chemical and biological processes.
Collapse
Affiliation(s)
- Sudarson Sekhar Sinha
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , MS , USA .
| | - Dilip K Paul
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , MS , USA .
| | | | - Avijit Pramanik
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , MS , USA .
| | - Suhash Reddy Chavva
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , MS , USA .
| | | | - Stacy J Jones
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , MS , USA .
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry , Jackson State University , Jackson , MS , USA .
| |
Collapse
|
111
|
Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns. Proc Natl Acad Sci U S A 2015; 112:3403-8. [PMID: 25737541 DOI: 10.1073/pnas.1322759112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.
Collapse
|
112
|
Li F, Dong J, Hu X, Gong W, Li J, Shen J, Tian H, Wang J. A Covalent Approach for Site-Specific RNA Labeling in Mammalian Cells. Angew Chem Int Ed Engl 2015; 54:4597-602. [DOI: 10.1002/anie.201410433] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/08/2014] [Indexed: 11/10/2022]
|
113
|
Li F, Dong J, Hu X, Gong W, Li J, Shen J, Tian H, Wang J. A Covalent Approach for Site-Specific RNA Labeling in Mammalian Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
114
|
Colomb W, Sarkar SK. Extracting physics of life at the molecular level: A review of single-molecule data analyses. Phys Life Rev 2015; 13:107-37. [PMID: 25660417 DOI: 10.1016/j.plrev.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
115
|
Perez-Gonzalez DC, Penedo JC. Single-Molecule Strategies for DNA and RNA Diagnostics. RNA TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-17305-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
116
|
Ma L, Yang F, Zheng J. Application of fluorescence resonance energy transfer in protein studies. J Mol Struct 2014; 1077:87-100. [PMID: 25368432 DOI: 10.1016/j.molstruc.2013.12.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications.
Collapse
Affiliation(s)
- Linlin Ma
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA ; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fan Yang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
117
|
Dickson A, Mustoe AM, Salmon L, Brooks CL. Efficient in silico exploration of RNA interhelical conformations using Euler angles and WExplore. Nucleic Acids Res 2014; 42:12126-37. [PMID: 25294827 PMCID: PMC4231733 DOI: 10.1093/nar/gku799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/04/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
HIV-1 TAR RNA is a two-helix bulge motif that plays a critical role in HIV viral replication and is an important drug target. However, efforts at designing TAR inhibitors have been challenged by its high degree of structural flexibility, which includes slow large-amplitude reorientations of its helices with respect to one another. Here, we use the recently introduced algorithm WExplore in combination with Euler angles to achieve unprecedented sampling of the TAR conformational ensemble. Our ensemble achieves similar agreement with experimental NMR data when compared with previous TAR computational studies, and is generated at a fraction of the computational cost. It clearly emerges from configuration space network analysis that the intermittent formation of the A22-U40 base pair acts as a reversible switch that enables sampling of interhelical conformations that would otherwise be topologically disallowed. We find that most previously determined ligand-bound structures are found in similar location in the network, and we use a sample-and-select approach to guide the construction of a set of novel conformations which can serve as the basis for future drug development efforts. Collectively, our findings demonstrate the utility of WExplore in combination with suitable order parameters as a method for exploring RNA conformational space.
Collapse
Affiliation(s)
- Alex Dickson
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109, USA
| | - Anthony M Mustoe
- Department of Biophysics, University of Michigan, 930 N University, Ann Arbor, MI 48109, USA
| | - Loïc Salmon
- Department of Biophysics, University of Michigan, 930 N University, Ann Arbor, MI 48109, USA
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI 48109, USA Department of Biophysics, University of Michigan, 930 N University, Ann Arbor, MI 48109, USA
| |
Collapse
|
118
|
DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. PLoS Biol 2014; 12:e1001981. [PMID: 25350280 PMCID: PMC4211656 DOI: 10.1371/journal.pbio.1001981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/18/2014] [Indexed: 01/11/2023] Open
Abstract
Single-molecule fluorescence experiments reveal how DEAD-box proteins unfold structured RNAs to promote conformational transitions and refolding to the native functional state. DEAD-box helicase proteins accelerate folding and rearrangements of highly structured RNAs and RNA–protein complexes (RNPs) in many essential cellular processes. Although DEAD-box proteins have been shown to use ATP to unwind short RNA helices, it is not known how they disrupt RNA tertiary structure. Here, we use single molecule fluorescence to show that the DEAD-box protein CYT-19 disrupts tertiary structure in a group I intron using a helix capture mechanism. CYT-19 binds to a helix within the structured RNA only after the helix spontaneously loses its tertiary contacts, and then CYT-19 uses ATP to unwind the helix, liberating the product strands. Ded1, a multifunctional yeast DEAD-box protein, gives analogous results with small but reproducible differences that may reflect its in vivo roles. The requirement for spontaneous dynamics likely targets DEAD-box proteins toward less stable RNA structures, which are likely to experience greater dynamic fluctuations, and provides a satisfying explanation for previous correlations between RNA stability and CYT-19 unfolding efficiency. Biologically, the ability to sense RNA stability probably biases DEAD-box proteins to act preferentially on less stable misfolded structures and thereby to promote native folding while minimizing spurious interactions with stable, natively folded RNAs. In addition, this straightforward mechanism for RNA remodeling does not require any specific structural environment of the helicase core and is likely to be relevant for DEAD-box proteins that promote RNA rearrangements of RNP complexes including the spliceosome and ribosome. In addition to carrying genetic information from DNA to protein, RNAs function in many essential cellular processes. This often requires the RNA to form a specific three-dimensional structure, and some functions require cycling between multiple structures. However, RNAs have a strong propensity to become trapped in nonfunctional, misfolded structures. Due to the intrinsic stability of local structure for RNA, these misfolded species can be long-lived and therefore accumulate. ATP-dependent RNA chaperone proteins called DEAD-box proteins are known to promote native RNA folding by disrupting misfolded structures. Although these proteins can unwind short RNA helices, the mechanism by which they act upon higher order tertiary contacts is unknown. Our current work shows that DEAD-box proteins capture transiently exposed RNA helices, preventing any tertiary contacts from reforming and potentially destabilizing the global RNA architecture. Helix unwinding by the DEAD-box protein then allows the product RNA strands to form new contacts. This helix capture mechanism for manipulation of RNA tertiary structure does not require a specific binding motif or structural environment and may be general for DEAD-box helicase proteins that act on structured RNAs.
Collapse
|
119
|
A general mechanism for competitor-induced dissociation of molecular complexes. Nat Commun 2014; 5:5207. [PMID: 25342513 PMCID: PMC4301414 DOI: 10.1038/ncomms6207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/09/2014] [Indexed: 11/08/2022] Open
Abstract
The kinetic stability of non-covalent macromolecular complexes controls many biological phenomena. Here we find that physical models of complex dissociation predict that competitor molecules will, in general, accelerate the breakdown of isolated bimolecular complexes by occluding rapid rebinding of the two binding partners. This prediction is largely independent of molecular details. We confirm the prediction with single-molecule fluorescence experiments on a well-characterized DNA strand dissociation reaction. Contrary to common assumptions, competitor-induced acceleration of dissociation can occur in biologically relevant competitor concentration ranges and does not necessarily imply ternary association of competitor with the bimolecular complex. Thus, occlusion of complex rebinding may play a significant role in a variety of biomolecular processes. The results also show that single-molecule colocalization experiments can accurately measure dissociation rates despite their limited spatiotemporal resolution.
Collapse
|
120
|
Lee YK, Kim S, Nam JM. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles. Chemphyschem 2014; 16:77-84. [PMID: 25345401 DOI: 10.1002/cphc.201402529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/11/2022]
Abstract
Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles.
Collapse
Affiliation(s)
- Young Kwang Lee
- Department of Chemistry, Seoul National University, Seoul 151-747 (South Korea); Howard Hughes Medical Institute and Department of Chemistry, University of California, Berkeley, CA 94720 (USA)
| | | | | |
Collapse
|
121
|
Chen J, Poddar NK, Tauzin LJ, Cooper D, Kolomeisky AB, Landes CF. Single-molecule FRET studies of HIV TAR-DNA hairpin unfolding dynamics. J Phys Chem B 2014; 118:12130-9. [PMID: 25254491 PMCID: PMC4207534 DOI: 10.1021/jp507067p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We directly measure the dynamics of the HIV trans-activation response (TAR)-DNA hairpin with multiple loops using single-molecule Förster resonance energy transfer (smFRET) methods. Multiple FRET states are identified that correspond to intermediate melting states of the hairpin. The stability of each intermediate state is calculated from the smFRET data. The results indicate that hairpin unfolding obeys a "fraying and peeling" mechanism, and evidence for the collapse of the ends of the hairpin during folding is observed. These results suggest a possible biological function for hairpin loops serving as additional fraying centers to increase unfolding rates in otherwise stable systems. The experimental and analytical approaches developed in this article provide useful tools for studying the mechanism of multistate DNA hairpin dynamics and of other general systems with multiple parallel pathways of chemical reactions.
Collapse
Affiliation(s)
- Jixin Chen
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77251-1892, United States
| | | | | | | | | | | |
Collapse
|
122
|
Lu M, Lu HP. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy. J Phys Chem B 2014; 118:11943-55. [PMID: 25222115 PMCID: PMC4199541 DOI: 10.1021/jp5081498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Conformational motions of proteins
are highly dynamic and intrinsically
complex. To capture the temporal and spatial complexity of conformational
motions and further to understand their roles in protein functions,
an attempt is made to probe multidimensional conformational dynamics
of proteins besides the typical one-dimensional FRET coordinate or
the projected conformational motions on the one-dimensional FRET coordinate.
T4 lysozyme hinge-bending motions between two domains along α-helix
have been probed by single-molecule FRET. Nevertheless, the domain
motions of T4 lysozyme are rather complex involving multiple coupled
nuclear coordinates and most likely contain motions besides hinge-bending.
It is highly likely that the multiple dimensional protein conformational
motions beyond the typical enzymatic hinged-bending motions have profound
impact on overall enzymatic functions. In this report, we have developed
a single-molecule multiparameter photon stamping spectroscopy integrating
fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic
approach enables simultaneous observations of both FRET-related site-to-site
conformational dynamics and molecular rotational (or orientational)
motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have
further observed wide-distributed rotational flexibility along orientation
coordinates by recording fluorescence anisotropy and simultaneously
identified multiple intermediate conformational states along FRET
coordinate by monitoring time-dependent donor lifetime, presenting
a whole picture of multidimensional conformational dynamics in the
process of T4 lysozyme open-close hinge-bending enzymatic turnover
motions under enzymatic reaction conditions. By analyzing the autocorrelation
functions of both lifetime and anisotropy trajectories, we have also
observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional
conformational fluctuation dynamics, providing a fundamental understanding
of the enzymatic reaction turnover dynamics associated with overall
enzyme as well as the specific active-site conformational fluctuations
that are not identifiable and resolvable in the conventional ensemble-averaged
experiment.
Collapse
Affiliation(s)
- Maolin Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | | |
Collapse
|
123
|
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D. A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules 2014; 19:15824-65. [PMID: 25271426 PMCID: PMC6271140 DOI: 10.3390/molecules191015824] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/24/2023] Open
Abstract
Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.
Collapse
Affiliation(s)
- Alexander Gust
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Birka Lalkens
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, Braunschweig 38106, Germany.
| |
Collapse
|
124
|
Hartmann A, Krainer G, Schlierf M. Different fluorophore labeling strategies and designs affect millisecond kinetics of DNA hairpins. Molecules 2014; 19:13735-54. [PMID: 25255759 PMCID: PMC6271894 DOI: 10.3390/molecules190913735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Changes in molecular conformations are one of the major driving forces of complex biological processes. Many studies based on single-molecule techniques have shed light on conformational dynamics and contributed to a better understanding of living matter. In particular, single-molecule FRET experiments have revealed unprecedented information at various time scales varying from milliseconds to seconds. The choice and the attachment of fluorophores is a pivotal requirement for single-molecule FRET experiments. One particularly well-studied millisecond conformational change is the opening and closing of DNA hairpin structures. In this study, we addressed the influence of base- and terminal-labeled fluorophores as well as the fluorophore DNA interactions on the extracted kinetic information of the DNA hairpin. Gibbs free energies varied from ∆G0 = −3.6 kJ/mol to ∆G0 = −0.2 kJ/mol for the identical DNA hairpin modifying only the labeling scheme and design of the DNA sample. In general, the base-labeled DNA hairpin is significantly destabilized compared to the terminal-labeled DNA hairpin and fluorophore DNA interactions additionally stabilize the closed state of the DNA hairpin. Careful controls and variations of fluorophore attachment chemistry are essential for a mostly undisturbed measurement of the underlying energy landscape of biomolecules.
Collapse
Affiliation(s)
- Andreas Hartmann
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany.
| | - Georg Krainer
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany.
| | - Michael Schlierf
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany.
| |
Collapse
|
125
|
Wang TY, Friedman LJ, Gelles J, Min W, Hoskins AA, Cornish VW. The covalent trimethoprim chemical tag facilitates single molecule imaging with organic fluorophores. Biophys J 2014; 106:272-8. [PMID: 24411259 DOI: 10.1016/j.bpj.2013.11.4488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/05/2013] [Accepted: 11/25/2013] [Indexed: 11/24/2022] Open
Abstract
Chemical tags can be used to selectively label proteins with fluorophores that have high photon outputs. By permitting straightforward single molecule (SM) detection and imaging with organic fluorophores, chemical tags have the potential to advance SM imaging as a routine experimental tool for studying biological mechanism. However, there has been little characterization of the photophysical consequences of using chemical tags with organic fluorophores. Here, we examine the effect the covalent trimethoprim chemical tag (A-TMP-tag) has on the SM imaging performance of the fluorophores, Atto655 and Alexa647, by evaluating the photophysical properties of these fluorophores and their A-TMP-tag conjugates. We measure SM photon flux, survival lifetime, and total photon output under conditions that mimic the live cell environment and demonstrate that the A-TMP-tag complements the advantageous SM imaging properties of Atto655 and Alexa647. We also measure the ensemble properties of quantum yield and photostability lifetime, revealing a correlation between SM and ensemble properties. Taken together, these findings establish a systematic method for evaluating the impact chemical tags have on fluorophores for SM imaging and demonstrate that the A-TMP-tag with Atto655 and Alexa647 are promising reagents for biological imaging.
Collapse
Affiliation(s)
- Tracy Y Wang
- Department of Chemistry, Columbia University, New York, New York
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|
126
|
Chatterjee S, Prajapati R, Bhattacharya A, Mukherjee TK. Microscopic evidence of "necklace and bead"-like morphology of polymer-surfactant complexes: a comparative study on poly(vinylpyrrolidone)-sodium dodecyl sulfate and poly(diallyldimethylammonium chloride)-sodium dodecyl sulfate systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9859-9865. [PMID: 25105837 DOI: 10.1021/la5022615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here, we report the microscopic evidence of "necklace and bead"-like morphology, which has long been the most widely accepted model for polymer-surfactant complexes. The lack of microscopic evidence of the initial complexation between surfactant and polymer has resulted in many contradictory reports in the literature. In this paper, we visualized these initial complexes formed between negatively charged surfactant sodium dodecyl sulfate (SDS) with neutral poly(vinylpyrrolidone) (PVP) and cationic poly(diallyldimethylammonium chloride) (PDADMAC) polymer through photoluminescence (PL) microscopy and atomic force microscopy (AFM) using silicon quantum dot (Si QD) as an external PL marker. It is observed that, for the PVP-SDS system, SDS molecules bind at the hydrophobic sites on the random-coiled PVP chain through their hydrocarbon tails, while for the PDADMAC-SDS system, SDS head groups are associated with the positively charged nitrogen centers of the polymer, where the polymer chain wraps around the surfactant head groups.
Collapse
Affiliation(s)
- Surajit Chatterjee
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore , M-Block, IET-DAVV Campus, Khandwa Road, Indore, Madhya Pradesh 452017, India
| | | | | | | |
Collapse
|
127
|
Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, Willson RC, Shih WC. Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. NANOSCALE 2014; 6:8521-6. [PMID: 24953169 DOI: 10.1039/c4nr01951b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present label-free, in situ monitoring of individual DNA hybridization in microfluidics. By immobilizing molecular sentinel probes on nanoporous gold disks, we demonstrate sensitivity approaching the single-molecule limit via surface-enhanced Raman scattering which provides robust signals without photobleaching for more than an hour. We further demonstrate that a target concentration as low as 20 pM can be detected within 10 min under diffusion-limited transport.
Collapse
Affiliation(s)
- Ji Qi
- Department of Electrical and Computer Engineering, USA.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr Opin Chem Biol 2014; 20:78-85. [DOI: 10.1016/j.cbpa.2014.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023]
|
129
|
Abstract
DNA base flipping is a fundamental theme in DNA biophysics. The dynamics for a B-DNA base to spontaneously flip out of the double helix has significant implications in various DNA-protein interactions but are still poorly understood. The spontaneous base-flipping rate obtained previously via the imino proton exchange assay is most likely the rate of base wobbling instead of flipping. Using the diffusion-decelerated fluorescence correlation spectroscopy together with molecular dynamics simulations, we show that a base of a single mismatched base pair (T-G, T-T, or T-C) in a double-stranded DNA can spontaneously flip out of the DNA duplex. The extrahelical lifetimes are on the order of 10 ms, whereas the intrahelical lifetimes range from 0.3 to 20 s depending on the stability of the base pairs. These findings provide detailed understanding on the dynamics of DNA base flipping and lay down foundation to fully understand how exactly the repair proteins search and locate the target mismatched base among a vast excess of matched DNA bases.
Collapse
|
130
|
Keller BG, Kobitski A, Jäschke A, Nienhaus GU, Noé F. Complex RNA folding kinetics revealed by single-molecule FRET and hidden Markov models. J Am Chem Soc 2014; 136:4534-43. [PMID: 24568646 PMCID: PMC3977575 DOI: 10.1021/ja4098719] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
We
have developed a hidden Markov model and optimization procedure
for photon-based single-molecule FRET data, which takes into account
the trace-dependent background intensities. This analysis technique
reveals an unprecedented amount of detail in the folding kinetics
of the Diels–Alderase ribozyme. We find a multitude of extended
(low-FRET) and compact (high-FRET) states. Five states were consistently
and independently identified in two FRET constructs and at three Mg2+ concentrations. Structures generally tend to become more
compact upon addition of Mg2+. Some compact structures
are observed to significantly depend on Mg2+ concentration,
suggesting a tertiary fold stabilized by Mg2+ ions. One
compact structure was observed to be Mg2+-independent,
consistent with stabilization by tertiary Watson–Crick base
pairing found in the folded Diels–Alderase structure. A hierarchy
of time scales was discovered, including dynamics of 10 ms or faster,
likely due to tertiary structure fluctuations, and slow dynamics on
the seconds time scale, presumably associated with significant changes
in secondary structure. The folding pathways proceed through a series
of intermediate secondary structures. There exist both compact pathways
and more complex ones, which display tertiary unfolding, then secondary
refolding, and, subsequently, again tertiary refolding.
Collapse
Affiliation(s)
- Bettina G Keller
- Freie Universität Berlin , Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
131
|
Bhaskaran H, Taniguchi T, Suzuki T, Suzuki T, Perona JJ. Structural dynamics of a mitochondrial tRNA possessing weak thermodynamic stability. Biochemistry 2014; 53:1456-65. [PMID: 24520994 PMCID: PMC3985750 DOI: 10.1021/bi401449z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Folding
dynamics are ubiquitously involved in controlling the multivariate
functions of RNAs. While the high thermodynamic stabilities of some
RNAs favor purely native states at equilibrium, it is unclear whether
weakly stable RNAs exist in random, partially folded states or sample
well-defined, globally folded conformations. Using a folding assay
that precisely tracks the formation of native aminoacylable tRNA,
we show that the folding of a weakly stable human mitochondrial (hmt)
leucine tRNA is hierarchical with a distinct kinetic folding intermediate.
The stabilities of the native and intermediate conformers are separated
by only about 1.2 kcal/mol, and the species are readily interconvertible.
Comparison of folding dynamics between unmodified and fully modified
tRNAs reveals that post-transcriptional modifications produce a more
constrained native structure that does not sample intermediate conformations.
These structural dynamics may thus be crucial for recognition by some
modifying enzymes in vivo, especially those targeting
the globular core region, by allowing access to pretransition state
conformers. Reduced conformational sampling of the native, modified
tRNAs could then permit improved performance in downstream processes
of translation. More generally, weak stabilities of small RNAs that
fold in the absence of chaperone proteins may facilitate conformational
switching that is central to biological function.
Collapse
Affiliation(s)
- Hari Bhaskaran
- Department of Chemistry, Portland State University , 1825 SW Broadway, Portland Oregon 97209, United States
| | | | | | | | | |
Collapse
|
132
|
Schlatterer JC, Martin JS, Laederach A, Brenowitz M. Mapping the kinetic barriers of a Large RNA molecule's folding landscape. PLoS One 2014; 9:e85041. [PMID: 24586236 PMCID: PMC3934814 DOI: 10.1371/journal.pone.0085041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022] Open
Abstract
The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic) that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH) footprinting kinetics progress curves collected at eight temperature from 21.5 °C to 51 °C to characterize the thermodynamic nature of folding intermediate formation for the Mg(2+)-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast) transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes.
Collapse
Affiliation(s)
- Jörg C. Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Joshua S. Martin
- National Evolutionary Synthesis Center, Durham, North Carolina, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
133
|
Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC. Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 2014; 43:1044-56. [PMID: 24177677 PMCID: PMC3946787 DOI: 10.1039/c3cs60237k] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence provides a mechanism for achieving contrast in biological imaging that enables investigations of molecular structure, dynamics, and function at high spatial and temporal resolution. Small-molecule organic fluorophores have proven essential for such efforts and are widely used in advanced applications such as single-molecule and super-resolution microscopy. Yet, organic fluorophores, like all fluorescent species, exhibit instabilities in their emission characteristics, including blinking and photobleaching that limit their utility and performance. Here, we review the photophysics and photochemistry of organic fluorophores as they pertain to mitigating such instabilities, with a specific focus on the development of stabilized fluorophores through derivatization. Self-healing organic fluorophores, wherein the triplet state is intramolecularly quenched by a covalently attached protective agent, exhibit markedly improved photostabilities. We discuss the potential for further enhancements towards the goal of developing "ultra-stable" fluorophores spanning the visible spectrum and how such fluorophores are likely to impact the future of single-molecule research.
Collapse
Affiliation(s)
- Qinsi Zheng
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
134
|
|
135
|
Zhang H, Guo P. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 2014; 67:169-76. [PMID: 24440482 DOI: 10.1016/j.ymeth.2014.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 11/25/2022] Open
Abstract
Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
136
|
Liu F, Putnam AA, Jankowsky E. DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA. Biochemistry 2014; 53:423-33. [PMID: 24367975 DOI: 10.1021/bi401540q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DEAD-box RNA helicases bind and remodel RNA and RNA-protein complexes in an ATP-dependent fashion. Several lines of evidence suggest that DEAD-box RNA helicases can also form stable, persistent complexes with RNA in a process referred to as RNA clamping. The molecular basis of RNA clamping is not well understood. Here we show that the yeast DEAD-box helicase Ded1p forms exceptionally long-lived complexes with RNA and the nonhydrolyzable ATP ground-state analogue ADP-BeFx or the nonhydrolyzable ATP transition state analogue ADP-AlFx. The complexes have lifetimes of several hours, and neither nucleotide nor Mg(2+) is released during this period. Mutation of arginine 489, which stabilizes the transition state, prevents formation of long-lived complexes with the ATP transition state analogue, but not with the ground state analogue. We also show that two other yeast DEAD-box helicases, Mss116p and Sub2p, form comparably long-lived complexes with RNA and ADP-BeFx. Like Ded1p, Mss116p forms long-lived complexes with ADP-AlFx, but Sub2p does not. These data suggest that the ATP transition state might vary for distinct DEAD-box helicases, or that the transition state triggers differing RNA binding properties in these proteins. In the ATP ground state, however, all tested DEAD-box helicases establish a persistent grip on RNA, revealing an inherent capacity of the enzymes to function as potent, ATP-dependent RNA clamps.
Collapse
Affiliation(s)
- Fei Liu
- College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu, 210095, China
| | | | | |
Collapse
|
137
|
Abstract
Single-molecule fluorescence studies of nucleic acids are revolutionizing our understanding of fundamental cellular processes related to DNA and RNA processing mechanisms. Detailed molecular insights into DNA repair, replication, transcription, and RNA folding and function are continuously being uncovered by using the full repertoire of single-molecule fluorescence techniques. The fundamental reason behind the stunning growth in the application of single-molecule techniques to study nucleic acid structure and dynamics is the unmatched ability of single-molecule fluorescence, and mostly single-molecule FRET, to resolve heterogeneous static and dynamic populations and identify transient and low-populated states without the need for sample synchronization. New advances in DNA and RNA synthesis, post-synthetic dye-labeling methods, immobilization and passivation strategies, improved dye photophysics, and standardized analysis methods have enabled the implementation of single-molecule techniques beyond specialized laboratories. In this chapter, we introduce the practical aspects of applying single-molecule techniques to investigate nucleic acid structure, dynamics, and function.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Scotland, UK
| | | | | | | |
Collapse
|
138
|
Abstract
For structured RNAs that possess catalytic activity, this activity provides a powerful probe for measuring the progress of folding and the effects of RNA chaperone proteins on the folding rate. The crux of this approach is that only the natively folded RNA is able to perform the catalytic reaction. This method can provide a quantitative measure of the fraction of native RNA over time, and it can readily distinguish the native state from all misfolded conformations. Here we describe an activity-based method measuring native folding of ribozymes derived from self-splicing group I introns, and we show how the assay can be used to monitor acceleration of native folding by DEAD-box RNA helicase proteins that function as general RNA chaperones. By measuring the amount of substrate that is converted to product in a rapid first turnover, we describe how to determine the fraction of the ribozyme population that is present in the native state. Further, we describe how to perform a two-stage or discontinuous assay in which folding proceeds in stage one and then solution conditions are changed in stage two to permit catalytic activity and block further folding. This protocol allows folding to be followed under a broad range of solution conditions, including those that do not support catalytic activity, and facilitates studies of chaperone proteins.
Collapse
Affiliation(s)
- Brant Gracia
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
139
|
Abstract
Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
Collapse
|
140
|
Zhao Y, Chen D, Yue H, Spiering M, Zhao C, Benkovic SJ, Huang TJ. Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions. NANO LETTERS 2014; 14:1952-60. [PMID: 24628474 PMCID: PMC4183369 DOI: 10.1021/nl404802f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ability of zero-mode waveguides (ZMWs) to guide light energy into subwavelength-diameter cylindrical nanoapertures has been exploited for single-molecule fluorescence studies of biomolecules at micromolar concentrations, the typical dissociation constants for biomolecular interactions. Although epi-fluorescence microscopy is now adopted for ZMW-based imaging as an alternative to the commercialized ZMW imaging platform, its suitability and performance awaits rigorous examination. Here, we present conical lens-based dark-field fluorescence microscopy in combination with a ZMW/microfluidic chip for single-molecule fluorescence imaging. We demonstrate that compared to epi-illumination, the dark-field configuration displayed diminished background and noise and enhanced signal-to-noise ratios. This signal-to-noise ratio for imaging using the dark-field setup remains essentially unperturbed by the presence of background fluorescent molecules at micromolar concentration. Our design allowed single-molecule FRET studies that revealed weak DNA-protein and protein-protein interactions found with T4 replisomal proteins.
Collapse
Affiliation(s)
- Yanhui Zhao
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Danqi Chen
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongjun Yue
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michelle
M. Spiering
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenglong Zhao
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stephen J. Benkovic
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- E-mail: (S.L.B.)
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- E-mail: (T.J.H.)
| |
Collapse
|
141
|
|
142
|
Sultana T, Takagi H, Morimatsu M, Teramoto H, Li CB, Sako Y, Komatsuzaki T. Non-Markovian properties and multiscale hidden Markovian network buried in single molecule time series. J Chem Phys 2013; 139:245101. [DOI: 10.1063/1.4848719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
143
|
König SLB, Hadzic M, Fiorini E, Börner R, Kowerko D, Blanckenhorn WU, Sigel RKO. BOBA FRET: bootstrap-based analysis of single-molecule FRET data. PLoS One 2013; 8:e84157. [PMID: 24386343 PMCID: PMC3873958 DOI: 10.1371/journal.pone.0084157] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/12/2013] [Indexed: 01/18/2023] Open
Abstract
Time-binned single-molecule Förster resonance energy transfer (smFRET) experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR) in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations) from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc.) are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3'EBS1*/IBS1*) is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET), as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/.
Collapse
Affiliation(s)
- Sebastian L. B. König
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
- * E-mail: (RKOS); (SLBK)
| | - Mélodie Hadzic
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| | - Erica Fiorini
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| | - Richard Börner
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| | - Danny Kowerko
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| | - Wolf U. Blanckenhorn
- Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Roland K. O. Sigel
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
- * E-mail: (RKOS); (SLBK)
| |
Collapse
|
144
|
Xia T, Yuan J, Fang X. Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study. J Phys Chem B 2013; 117:14994-5003. [PMID: 24245799 DOI: 10.1021/jp4099667] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acid aptamers are single-stranded RNA or DNA molecules that bind to their targets with high specificity and affinity. Although their biomedical applications have been booming, it is still debatable whether an aptamer recognizes its target through "induced fit" or "conformational selection", a central question in molecular recognition. To address this question, an ATP-binding DNA aptamer was selected as a model system and the conformational properties of this aptamer with and without the presence of ATP were investigated by single-pair Förster resonance energy transfer (spFRET) spectroscopy. The single-molecule results indicate that the aptamer can fold into a double-stranded-like structure, similar to the ligand-bound conformation, even without the presence of ATP. The folded structure is thermally stable at high salt concentrations and becomes rather dynamic at low salt concentrations. Although in the latter condition, the aptamer prefers unfolded structures, it can occasionally migrate to the folded conformation for a short time before being unfolded again. The binding of ATP to the aptamer stabilizes the folded structure, which populates the ligand-bound state of the aptamer, thus shifting the conformational equilibrium. Collectively, our data support that the ATP-binding DNA aptamer recognizes ATP ligand through "conformational selection".
Collapse
Affiliation(s)
- Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | |
Collapse
|
145
|
White JD, Hsu JH, Wang CF, Chen YC, Hsiang JC, Su SC, Sun WY, Fann WS. Single Molecule Fluorescence Spectroscopy. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200200101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
146
|
Wang J, Qiu L, Wang C, Zhang Y, Li J, Xia J, Jiang P. Probing antigen-antibody interaction using fluorescence coupled capillary electrophoresis. Int J Mol Sci 2013; 14:19146-54. [PMID: 24048250 PMCID: PMC3794825 DOI: 10.3390/ijms140919146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/16/2022] Open
Abstract
In this report, the use of fluorescence detection coupled capillary electrophoresis (CE-FL) allowed us to fully characterize the antigen-antibody interaction. CE-FL allowed separation of unbound quantum dots (QDs) and ligand bound QDs and also revealed an ordered assembly of biomolecules on QDs. Further, we observed FRET from QDs donor to DyLight acceptor, which were covalently conjugated with human IgG and goat anti-human IgG, respectively. The immunocomplex was formed and the mutual affinity of the antigen and antibody brought QDs and DyLight close enough to allow FRET to occur. This novel CE-based technique can be easily extended to other FRET systems based on QDs and may have potential application in the detection of antibodies.
Collapse
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; E-Mails: (J.W.); (L.Q.); (C.W.); (Y.Z.); (J.L.)
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; E-Mails: (J.W.); (L.Q.); (C.W.); (Y.Z.); (J.L.)
| | - Cheli Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; E-Mails: (J.W.); (L.Q.); (C.W.); (Y.Z.); (J.L.)
| | - Yue Zhang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; E-Mails: (J.W.); (L.Q.); (C.W.); (Y.Z.); (J.L.)
| | - Jingyan Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; E-Mails: (J.W.); (L.Q.); (C.W.); (Y.Z.); (J.L.)
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong
- Authors to whom correspondence should be addressed; E-Mails: (J.X.); (P.J.); Tel.:+852-3943-6165 (J.X.); +86-519-8633-4597 (P.J.); Fax: +852-2603-5057 (J.X.); +86-519-8633-4598 (P.J.)
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; E-Mails: (J.W.); (L.Q.); (C.W.); (Y.Z.); (J.L.)
- Authors to whom correspondence should be addressed; E-Mails: (J.X.); (P.J.); Tel.:+852-3943-6165 (J.X.); +86-519-8633-4597 (P.J.); Fax: +852-2603-5057 (J.X.); +86-519-8633-4598 (P.J.)
| |
Collapse
|
147
|
Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, Lyubchenko Y, Guo P, Chi YI. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA (NEW YORK, N.Y.) 2013; 19:1226-37. [PMID: 23884902 PMCID: PMC3753930 DOI: 10.1261/rna.037077.112] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/06/2013] [Indexed: 05/22/2023]
Abstract
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg²⁺. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - James A. Endrizzi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Yi Shu
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire (IBMC-ARN-CNRS) Cristallogenèse & Biologie Structurale, F-67084 Strasbourg, France
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
- Corresponding authorsE-mail E-mail
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
148
|
Kima J, Kimb H. Bayesian Multiple Change-Point Estimation for Single Quantum Dot Luminescence Intensity Data. KOREAN JOURNAL OF APPLIED STATISTICS 2013. [DOI: 10.5351/kjas.2013.26.4.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
149
|
Li B, Hu J, Wang Y, Wu S, Huang Y, Li M. Real time observation of the photocleavage of single DNA molecules. Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03325653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
150
|
Abstract
Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.
Collapse
|