101
|
Yaddanapudi K, Stamp BF, Subrahmanyam PB, Smolenkov A, Waigel SJ, Gosain R, Egger ME, Martin RC, Buscaglia R, Maecker HT, McMasters KM, Chesney JA. Single-Cell Immune Mapping of Melanoma Sentinel Lymph Nodes Reveals an Actionable Immunotolerant Microenvironment. Clin Cancer Res 2022; 28:2069-2081. [PMID: 35046061 PMCID: PMC9840851 DOI: 10.1158/1078-0432.ccr-21-0664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/16/2021] [Accepted: 01/14/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Improving our understanding of the immunologic response to cancer cells within the sentinel lymph nodes (SLN) of primary tumors is expected to identify new approaches to stimulate clinically meaningful cancer immunity. EXPERIMENTAL DESIGN We used mass cytometry by time-of-flight (CyTOF), flow cytometry, and T-cell receptor immunosequencing to conduct simultaneous single-cell analyses of immune cells in the SLNs of patients with melanoma. RESULTS We found increased effector-memory αβ T cells, TCR clonality, and γδ T cells selectively in the melanoma-bearing SLNs relative to non-melanoma-bearing SLNs, consistent with possible activation of an antitumor immune response. However, we also observed a markedly immunotolerant environment in the melanoma-bearing SLNs indicated by reduced and impaired NK cells and increased levels of CD8+CD57+PD-1+ cells, which are known to display low melanoma killing capabilities. Other changes observed in melanoma-bearing SLNs when compared with non-melanoma-bearing SLNs include (i) reduced CD8+CD69+ T cell/T regulatory cell ratio, (ii) high PD-1 expression on CD4+ and CD8+ T cells, and (iii) high CTLA-4 expression on γδ T cells. CONCLUSIONS Our data suggest that these immunologic changes compromise antimelanoma immunity and contribute to a high relapse rate. We propose the development of clinical trials to test the neo-adjuvant administration of anti-PD-1 antibodies prior to SLN resection in patients with stage III melanoma. See related commentary by Lund, p. 1996.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA,Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - Bryce F. Stamp
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
| | - Priyanka B. Subrahmanyam
- Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, USA
| | - Andrei Smolenkov
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Sabine J. Waigel
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rahul Gosain
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Michael E. Egger
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA
| | - Robert C.G. Martin
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Robert Buscaglia
- Department of Mathematics and Statistics, Northern Arizona University, Arizona, USA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, USA
| | - Kelly M. McMasters
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA,Correspondence to: Jason A. Chesney, MD, PhD, Kelly M. McMasters, MD, PhD, University of Louisville, Clinical and Translational Research Building, Louisville, KY 40202, ,
| | - Jason A. Chesney
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA,Correspondence to: Jason A. Chesney, MD, PhD, Kelly M. McMasters, MD, PhD, University of Louisville, Clinical and Translational Research Building, Louisville, KY 40202, ,
| |
Collapse
|
102
|
Sugimura R, Chao Y. Deciphering Innate Immune Cell-Tumor Microenvironment Crosstalk at a Single-Cell Level. Front Cell Dev Biol 2022; 10:803947. [PMID: 35646915 PMCID: PMC9140036 DOI: 10.3389/fcell.2022.803947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment encompasses various innate immune cells which regulate tumor progression. Exploiting innate immune cells is a new frontier of cancer immunotherapy. However, the classical surface markers for cell-type classification cannot always well-conclude the phenotype, which will further hinge our understanding. The innate immune cells include dendritic cells, monocytes/macrophages, natural killer cells, and innate lymphoid cells. They play important roles in tumor growth and survival, in some cases promoting cancer, in other cases negating cancer. The precise characterization of innate immune cells at the single-cell level will boost the potential of cancer immunotherapy. With the development of single-cell RNA sequencing technology, the transcriptome of each cell in the tumor microenvironment can be dissected at a single-cell level, which paves a way for a better understanding of the cell type and its functions. Here, we summarize the subtypes and functions of innate immune cells in the tumor microenvironment based on recent literature on single-cell technology. We provide updates on recent achievements and prospects for how to exploit novel functions of tumor-associated innate immune cells and target them for cancer immunotherapy.
Collapse
|
103
|
Olingy C, Alimadadi A, Araujo DJ, Barry D, Gutierrez NA, Werbin MH, Arriola E, Patel SP, Ottensmeier CH, Dinh HQ, Hedrick CC. CD33 Expression on Peripheral Blood Monocytes Predicts Efficacy of Anti-PD-1 Immunotherapy Against Non-Small Cell Lung Cancer. Front Immunol 2022; 13:842653. [PMID: 35493454 PMCID: PMC9046782 DOI: 10.3389/fimmu.2022.842653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related deaths globally. Immune checkpoint blockade (ICB) has transformed cancer medicine, with anti-programmed cell death protein 1 (anti-PD-1) therapy now well-utilized for treating NSCLC. Still, not all patients with NSCLC respond positively to anti-PD-1 therapy, and some patients acquire resistance to treatment. There remains an urgent need to find markers predictive of anti-PD-1 responsiveness. To this end, we performed mass cytometry on peripheral blood mononuclear cells from 26 patients with NSCLC during anti-PD-1 treatment. Patients who responded to anti-PD-1 ICB displayed significantly higher levels of antigen-presenting myeloid cells, including CD9+ nonclassical monocytes, and CD33hi classical monocytes. Using matched pre-post treatment samples, we found that the baseline pre-treatment frequencies of CD33hi monocytes predicted patient responsiveness to anti-PD-1 therapy. Moreover, some of these classical and nonclassical monocyte subsets were associated with reduced immunosuppression by T regulatory (CD4+FOXP3+CD25+) cells in the same patients. Our use of machine learning corroborated the association of specific monocyte markers with responsiveness to ICB. Our work provides a high-dimensional profile of monocytes in NSCLC and links CD33 expression on monocytes with anti-PD-1 effectiveness in patients with NSCLC.
Collapse
Affiliation(s)
- Claire Olingy
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Ahmad Alimadadi
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Daniel J. Araujo
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - David Barry
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Norma A. Gutierrez
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Max Hardy Werbin
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Edurne Arriola
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Medical Oncology Department, Hospital del Mar-Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Barcelona, Spain
| | - Sandip Pravin Patel
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Christian H. Ottensmeier
- Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Catherine C. Hedrick
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, United States
- *Correspondence: Catherine C. Hedrick,
| |
Collapse
|
104
|
Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X, Zhang Z. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell 2022; 40:424-437.e5. [PMID: 35303421 DOI: 10.1016/j.ccell.2022.02.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/11/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is connected to immunotherapy responses, but it remains unclear how cancer cells and host tissues differentially influence the immune composition within TME. Here, we performed single-cell analyses for autologous samples from liver metastasized colorectal cancer to disentangle factors shaping TME. By aligning CD45+ cells across different tissues, we classified exhausted CD8+ T cells (Texs) and activated regulatory T cells as M-type, whose phenotypes were associated with the malignancy, while natural killer and mucosal-associated invariant T cells were defined as N-type, whose phenotypes were associated with the niche. T cell receptor sharing between Texs in primary and metastatic tumors implicated the presence of common peripheral non-exhausted precursors. For myeloid cells, a subset of dendritic cells (DC3s) and SPP1+ macrophages were M-type, and the latter were predominant in liver metastasis, indicating its pro-metastasis role. Our analyses bridge immune phenotypes of primary and metastatic tumors, thereby helping to understand the tumor-specific contexture and identify the pro-metastasis components.
Collapse
Affiliation(s)
- Yedan Liu
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qiming Zhang
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China
| | - Ranran Gao
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kezhuo Yu
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xueda Hu
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China; Ninth School of Clinical Medicine, Peking University, Beijing 10038, China.
| | - Xianwen Ren
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Zemin Zhang
- BIOPIC, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
105
|
Identification and Validation of Immune Cells and Hub Genes in Gastric Cancer Microenvironment. DISEASE MARKERS 2022; 2022:8639323. [PMID: 35422890 PMCID: PMC9005323 DOI: 10.1155/2022/8639323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 12/30/2022]
Abstract
Gastric cancer (GC) is the most common malignant tumor in the digestive system, traditional radiotherapy and chemotherapy are not effective for some patients. The research progress of immunotherapy seems to provide a new way for treatment. However, it is still urgent to predict immunotherapy biomarkers and determine novel therapeutic targets. In this study, the gene expression profiles and clinical data of 407 stomach adenocarcinoma (STAD) patients were downloaded from The Cancer Genome Atlas (TCGA) portal, and the abundance ratio of immune cells in each sample was obtained via the “Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)” algorithm. Five immune cells were obtained as a result of abundance comparison, and 295 immune-related genes were obtained through differential gene analysis. Enrichment, protein interaction, and module analysis were performed on these genes. We identified five immune cells associated with infiltration and 20 hub genes, of which five genes were correlated with overall survival. Finally, we used Real-time PCR (RT-PCR) to detect the expression differences of the five hub genes in 18 pairs of GC and adjacent tissues. This research not only provides cellular and gene targets for immunotherapy of GC but also provides new ideas for researchers to explore immunotherapy for various tumors.
Collapse
|
106
|
Nalio Ramos R, Missolo-Koussou Y, Gerber-Ferder Y, Bromley CP, Bugatti M, Núñez NG, Tosello Boari J, Richer W, Menger L, Denizeau J, Sedlik C, Caudana P, Kotsias F, Niborski LL, Viel S, Bohec M, Lameiras S, Baulande S, Lesage L, Nicolas A, Meseure D, Vincent-Salomon A, Reyal F, Dutertre CA, Ginhoux F, Vimeux L, Donnadieu E, Buttard B, Galon J, Zelenay S, Vermi W, Guermonprez P, Piaggio E, Helft J. Tissue-resident FOLR2 + macrophages associate with CD8 + T cell infiltration in human breast cancer. Cell 2022; 185:1189-1207.e25. [PMID: 35325594 DOI: 10.1016/j.cell.2022.02.021] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/08/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Macrophage infiltration is a hallmark of solid cancers, and overall macrophage infiltration correlates with lower patient survival and resistance to therapy. Tumor-associated macrophages, however, are phenotypically and functionally heterogeneous. Specific subsets of tumor-associated macrophage might be endowed with distinct roles on cancer progression and antitumor immunity. Here, we identify a discrete population of FOLR2+ tissue-resident macrophages in healthy mammary gland and breast cancer primary tumors. FOLR2+ macrophages localize in perivascular areas in the tumor stroma, where they interact with CD8+ T cells. FOLR2+ macrophages efficiently prime effector CD8+ T cells ex vivo. The density of FOLR2+ macrophages in tumors positively correlates with better patient survival. This study highlights specific roles for tumor-associated macrophage subsets and paves the way for subset-targeted therapeutic interventions in macrophages-based cancer therapies.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Yoann Missolo-Koussou
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Yohan Gerber-Ferder
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Christian P Bromley
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Nicolas Gonzalo Núñez
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Jimena Tosello Boari
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Wilfrid Richer
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Laurie Menger
- PSL University, Institut Curie Research Center, INSERM U932, 75005 Paris, France
| | - Jordan Denizeau
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Christine Sedlik
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Pamela Caudana
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Fiorella Kotsias
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Leticia L Niborski
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Sophie Viel
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Mylène Bohec
- PSL University, Institut Curie Research Center, Institut Curie Genomics of Excellence Platform, 75005 Paris, France
| | - Sonia Lameiras
- PSL University, Institut Curie Research Center, Institut Curie Genomics of Excellence Platform, 75005 Paris, France
| | - Sylvain Baulande
- PSL University, Institut Curie Research Center, Institut Curie Genomics of Excellence Platform, 75005 Paris, France
| | - Laëtitia Lesage
- PSL University, Institut Curie Hospital, Department of Pathology, 75005 Paris, France
| | - André Nicolas
- PSL University, Institut Curie Hospital, Department of Pathology, 75005 Paris, France
| | - Didier Meseure
- PSL University, Institut Curie Hospital, Department of Pathology, 75005 Paris, France
| | - Anne Vincent-Salomon
- PSL University, Institut Curie Hospital, Department of Pathology, 75005 Paris, France
| | - Fabien Reyal
- PSL University, Institut Curie Hospital, Department of Surgery, 75005 Paris, France
| | | | - Florent Ginhoux
- Université Paris-Saclay, Institut Gustave Roussy, INSERM U1015, Villejuif, France; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Lene Vimeux
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Emmanuel Donnadieu
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Bénédicte Buttard
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, Laboratory of Integrative Cancer Immunology, Paris, France
| | - Jérôme Galon
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, Laboratory of Integrative Cancer Immunology, Paris, France
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - William Vermi
- PSL University, Institut Curie Research Center, INSERM U932, 75005 Paris, France; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pierre Guermonprez
- Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Paris, France
| | - Eliane Piaggio
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France
| | - Julie Helft
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Translational Immunotherapy Team, 75005 Paris, France.
| |
Collapse
|
107
|
Chen Y, Guo Y, Li S, Xu J, Wang X, Ning W, Ma L, Qu Y, Zhang M, Zhang H. Identification of N6-Methyladenosine-Related lncRNAs as a Prognostic Signature in Glioma. Front Oncol 2022; 12:789283. [PMID: 35311131 PMCID: PMC8927984 DOI: 10.3389/fonc.2022.789283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A) modification is the most abundant modification in long noncoding RNAs (lncRNAs). Current studies have shown that the abnormal expression of m6A-related genes is closely associated with the tumorigenesis and progression of glioma. However, the role of m6A-related lncRNAs in glioma development is still unclear. Herein, we screened 566 m6A-related lncRNAs in glioma from The Cancer Genome Atlas (TCGA) database. The expression pattern of these lncRNAs could cluster samples into two groups, in which various classical tumor-related functions and the tumor immune microenvironment were significantly different. Subsequently, a nine-factor m6A-related lncRNA prognostic signature (MLPS) was constructed by using a LASSO regression analysis in the training set and was validated in the test set and independent datasets. The AUC values of the MLPS were 0.881, 0.918 and 0.887 for 1-, 3- and 5-year survival in the training set, respectively, and 0.856, 0.916 and 0.909 for 1-, 3-, and 5-year survival in the test set, respectively. Stratification analyses of the MLPS illustrated its prognostic performance in gliomas with different characteristics. Correlation analyses showed that the infiltrations of monocytes and tumor-associated macrophages (TAMs) were significantly relevant to the risk score in the MLPS. Moreover, we detected the expression of four MLPS factors with defined sequences in glioma and normal cells by using RT-PCR. Afterwards, we investigated the functions of LNCTAM34A (one of the MLPS factors) in glioma cells, which have rarely been reported. Via in vitro experiments, LNCTAM34A was demonstrated to promote the proliferation, migration and epithelial-mesenchymal transition (EMT) of glioma cells. Overall, our study revealed the critical role of m6A-related lncRNAs in glioma and elucidated that LNCTAM34A could promote glioma proliferation, migration and EMT.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiang Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
108
|
Abstract
Natural killer (NK) cells are innate immune cells that are critical to the body's antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.
Collapse
Affiliation(s)
- Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, and
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew J. Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
109
|
Li R, Mukherjee MB, Lin J. Coordinated Regulation of Myeloid-Derived Suppressor Cells by Cytokines and Chemokines. Cancers (Basel) 2022; 14:cancers14051236. [PMID: 35267547 PMCID: PMC8909268 DOI: 10.3390/cancers14051236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In this review, we summarize the effects of various cytokines and chemokines as a network to regulate the expansion, recruitment, and immunosuppressive functions of myeloid-derived suppressor cells in cancer metastasis. Abstract Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that impair immune cell functions and promote tumor progression. Mounting evidence indicates that cytokines and chemokines in the tumor microenvironment alter MDSCs. Various cytokines and chemokines are involved in MDSC production, their infiltration into tumors, and their exertion of suppressive functions. Here, we consider those cytokines, chemokines, and MDSCs as an intricately connected, complex system and we focus on how tumors manipulate the MDSCs through various cytokines and chemokines. We also discuss treatment capitalizing on cytokines/chemokine signaling aimed at combating the potent immunosuppressive activities of MDSCs to improve disease outcomes.
Collapse
Affiliation(s)
| | | | - Jun Lin
- Correspondence: ; Tel.: +1-631-444-2975
| |
Collapse
|
110
|
Ko MW, Kaur K, Safaei T, Chen W, Sutanto C, Wong P, Jewett A. Defective Patient NK Function Is Reversed by AJ2 Probiotic Bacteria or Addition of Allogeneic Healthy Monocytes. Cells 2022; 11:cells11040697. [PMID: 35203349 PMCID: PMC8870139 DOI: 10.3390/cells11040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, we present the role of autologous and allogeneic monocytes from healthy individuals and those of the cancer patients, with a number of distinct cancers, in activating the function of natural killer (NK) cells, in particular, in induction of IFN-γ secretion by the NK cells and the functional capability of secreted IFN-γ in driving differentiation of the tumor cells. In addition, we compared the roles of CD16 signaling as well as sonicated probiotic bacteria AJ2 (sAJ2)-mediated induction and function of IFN-γ-mediated differentiation in tumor cells. We found that monocytes from cancer patients had lower capability to induce functional IFN-γ secretion by the autologous CD16 mAb-treated NK cells in comparison to those from healthy individuals. In addition, when patient monocytes were cultured with NK cells from healthy individuals, they had lower capability to induce functional IFN-γ secretion by the NK cells when compared to those from autologous monocyte/NK cultures from healthy individuals. Activation by sAJ2 or addition of monocytes from healthy individuals to patient NK cells increased the secretion of functional IFN-γ by the NK cells and elevated its functional capability to differentiate tumors. Monocytes from cancer patients were found to express lower CD16 receptors, providing a potential mechanism for their lack of ability to trigger secretion of functional IFN-γ. In addition to in vitro studies, we also conducted in vivo studies in which cancer patients were given oral supplementation of AJ2 and the function of NK cells were studied. Oral ingestion of AJ2 improved the secretion of IFN-γ by patient derived NK cells and resulted in the better functioning of NK cells in cancer patients. Thus, our studies indicate that for successful NK cell immunotherapy, not only the defect in NK cells but also those in monocytes should be corrected. In this regard, AJ2 probiotic bacteria may serve to provide a potential adjunct treatment strategy.
Collapse
Affiliation(s)
- Meng-Wei Ko
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
| | - Kawaljit Kaur
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
| | - Tahmineh Safaei
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
| | - Wuyang Chen
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
| | - Christine Sutanto
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
| | - Paul Wong
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
| | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA; (M.-W.K.); (K.K.); (T.S.); (W.C.); (C.S.); (P.W.)
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-206-3970; Fax: +1-301-794-7109
| |
Collapse
|
111
|
Russo E, Laffranchi M, Tomaipitinca L, Del Prete A, Santoni A, Sozzani S, Bernardini G. NK Cell Anti-Tumor Surveillance in a Myeloid Cell-Shaped Environment. Front Immunol 2022; 12:787116. [PMID: 34975880 PMCID: PMC8718597 DOI: 10.3389/fimmu.2021.787116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
NK cells are innate lymphoid cells endowed with cytotoxic capacity that play key roles in the immune surveillance of tumors. Increasing evidence indicates that NK cell anti-tumor response is shaped by bidirectional interactions with myeloid cell subsets such as dendritic cells (DCs) and macrophages. DC-NK cell crosstalk in the tumor microenvironment (TME) strongly impacts on the overall NK cell anti-tumor response as DCs can affect NK cell survival and optimal activation while, in turn, NK cells can stimulate DCs survival, maturation and tumor infiltration through the release of soluble factors. Similarly, macrophages can either shape NK cell differentiation and function by expressing activating receptor ligands and/or cytokines, or they can contribute to the establishment of an immune-suppressive microenvironment through the expression and secretion of molecules that ultimately lead to NK cell inhibition. Consequently, the exploitation of NK cell interaction with DCs or macrophages in the tumor context may result in an improvement of efficacy of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Luana Tomaipitinca
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pozzilli, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pozzilli, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
112
|
Liu D, Hu Z, Jiang J, Zhang J, Hu C, Huang J, Wei Q. Five hypoxia and immunity related genes as potential biomarkers for the prognosis of osteosarcoma. Sci Rep 2022; 12:1617. [PMID: 35102149 PMCID: PMC8804019 DOI: 10.1038/s41598-022-05103-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma accounts for a frequently occurring cancer of the primary skeletal system. In osteosarcoma cells, a hypoxic microenvironment is commonly observed that drives tumor growth, progression, and heterogeneity. Hypoxia and tumor-infiltrating immune cells might be closely related to the prognosis of osteosarcoma. In this study, we aimed to determine the biomarkers and therapeutic targets related to hypoxia and immunity through bioinformatics methods to improve the clinical prognosis of patients. We downloaded the gene expression data of osteosarcoma samples and normal samples in the UCSC Xena database and GTEx database, respectively, and downloaded the validation dataset (GSE21257) in the GEO database. Subsequently, we performed GO enrichment analysis and KEGG pathway enrichment analysis on the data of the extracted osteosarcoma hypoxia-related genes. Through univariate COX regression analysis, lasso regression analysis, multivariate COX regression analysis, etc., we established a predictive model for the prognosis of osteosarcoma. Five genes, including ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A, were found by screening. In particular, we analyzed the immune cell composition of each gene based on the five genes through the CIBERSORT algorithm and verified each gene at the cell and tissue level. Our findings are valuable for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Dachang Liu
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Ziwei Hu
- Guangxi Medical University, Nanning, 530021, China
| | - Jie Jiang
- Department of Spine and Osteopathic Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Junlei Zhang
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chunlong Hu
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jian Huang
- Guangxi Medical University, Nanning, 530021, China
| | - Qingjun Wei
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
113
|
Wang R, Bao W, Pal M, Liu Y, Yazdanbakhsh K, Zhong H. Intermediate monocytes induced by IFN-γ inhibit cancer metastasis by promoting NK cell activation through FOXO1 and interleukin-27. J Immunother Cancer 2022; 10:jitc-2021-003539. [PMID: 35091454 PMCID: PMC8804695 DOI: 10.1136/jitc-2021-003539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Background Circulating monocytes are functionally heterogeneous and can be divided into classical (CMo), intermediate (IMo), and non-CMo/patrolling monocyte (PMo) subsets. CMo can differentiate into PMo through IMo. PMos have been shown to inhibit cancer metastasis but the role of IMo is unclear. To date, no strategy has been developed to inhibit cancer metastasis through enhancing PMo/IMo differentiation. Methods We screened multiple inflammatory cytokines/chemokines activity of modulating PMo/IMo associated cell markers expression using human monocyte in vitro culture system. We tested our candidate cytokine activity in vivo using multiple mice models. We identified critical key factors and cytokines for our candidate cytokine activity by using gene-knockout mice and neutralization antibodies. Results We identified IFN-γ as a candidate inflammatory cytokine in the regulation of human IMo/PMo marker expression. Our in vivo data demonstrated that IMo expansion was induced by short-term (3 days) IFN-γ treatment through increasing CMo-IMo differentiation and blocking IMo-PMo differentiation. The IMo induced by IFN-γ (IFN-IMo), but not IFN-γ activated CMo (IFN-CMo), inhibited cancer metastasis by 90%. Surprizing, the effect of IFN-γ is greater in PMo deficiency mice, indicating the effect of IFN-IMo is not mediated through further differentiation into PMo. We also found that IFN-IMos induced by short-term IFN-γ treatment robustly boosted NK cell expansion for threefold and promoted NK differentiation and function through IL-27 and CXCL9. Furthermore, we identified that FOXO1, a key molecule controlling cellular energy metabolism, mediated the effect of IFN-γ induced IL-27 expression, and that NR4A1, a key molecule controlling PMo differentiation and inhibiting cancer metastasis, inhibited the pro-NK cell and anti-metastasis activity of IFN-IMo by suppressing CXCL9 expression. Conclusions We have discovered the antimetastasis and pro-NK cell activity of IFN-IMo, identified FOXO1 as a key molecule for IFN-γ driven monocyte differentiation and function, and found NR4A1 as an inhibitory molecule for IFN-IMo activity. Our study has not only shown novel mechanisms for a classical antitumor cytokine but also provided potential target for developing superior monocytic cell therapy against cancer metastasis.
Collapse
Affiliation(s)
- Rikang Wang
- Laboratory of Immune Regulation, New York Blood Center, New York, New York, USA
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Weili Bao
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Mouli Pal
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Yunfeng Liu
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, New York, New York, USA
| | - Hui Zhong
- Laboratory of Immune Regulation, New York Blood Center, New York, New York, USA
| |
Collapse
|
114
|
Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics. iScience 2022; 25:103555. [PMID: 34988399 PMCID: PMC8693412 DOI: 10.1016/j.isci.2021.103555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Monocytes continuously adapt their shapes for proper circulation and elicitation of effective immune responses. Although these functions depend on the cell mechanical properties, the mechanical behavior of monocytes is still poorly understood and accurate physiologically relevant data on basic mechanical properties are lacking almost entirely. By combining several complementary single-cell force spectroscopy techniques, we report that the mechanical properties of human monocyte are strain-rate dependent, and that chemokines can induce alterations in viscoelastic behavior. In addition, our findings indicate that human monocytes are heterogeneous mechanically and this heterogeneity is regulated by chemokine CCL2. The technology presented here can be readily used to reveal mechanical complexity of the blood cell population in disease conditions, where viscoelastic properties may serve as physical biomarkers for disease progression and response to therapy. Mechanical properties of monocytes are affected by temperature changes Mechanical properties of monocytes are strain-rate dependent CCL2 affects both the viscous and elastic properties of monocytes CCL2 potentially modulates monocytes mechanically to transit to a primed state
Collapse
|
115
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
116
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
117
|
Barvalia M, Harder KW. An End-to-End Workflow for Interrogating Tumor-Infiltrating Myeloid Cells Using Mass Cytometry. Methods Mol Biol 2022; 2508:147-168. [PMID: 35737239 DOI: 10.1007/978-1-0716-2376-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myeloid cells are a highly heterogeneous group of innate immune cells which include a diverse collection of cell types and cell states. Distinct subsets can impact tumor progression differently, with conventional type 1 DCs important in protective anti-tumor immune responses, while immunosuppressive tumor-associated macrophages and myeloid-derived suppressive cells (MDSCs) play tumor-promoting roles. Deep phenotyping of myeloid cells using single-cell technologies such as mass cytometry provides the unprecedented opportunity to comprehensively characterize the underlying heterogeneity of myeloid cells. Here we provide a detailed end-to-end workflow including both experimental and computational protocols enabling deep phenotyping of tumor-infiltrating myeloid cells using mass cytometry. A protocol that facilitates interrogation of phosphoproteins in circulating and tumor-infiltrating myeloid cells has been provided together with detailed scripts for Phenograph analysis of tumor-infiltrating myeloid cells.
Collapse
Affiliation(s)
- Maunish Barvalia
- Life Science Institute, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth W Harder
- Life Science Institute, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
118
|
Role of NR4A family members in myeloid cells and leukemia. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:23-36. [PMID: 35496823 PMCID: PMC9040138 DOI: 10.1016/j.crimmu.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia. NR4A1-3 have important roles in the different cells of the myeloid compartment. These orphan receptors homeostasis, differentiation, and activation. NR4A family is important in suppressing the development of myeloid leukemias. NR4As have been linked to several diseases and could be pharmacological targets.
Collapse
|
119
|
Hernandez GE, Ma F, Martinez G, Firozabadi NB, Salvador J, Juang LJ, Leung J, Zhao P, López DA, Ardehali R, Beaudin AE, Kastrup CJ, Pellegrini M, Flick MJ, Iruela-Arispe ML. Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. NATURE CARDIOVASCULAR RESEARCH 2022; 1:67-84. [PMID: 35599984 PMCID: PMC9121812 DOI: 10.1038/s44161-021-00006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023]
Abstract
Leukocytes and endothelial cells frequently cooperate to resolve inflammatory events. In most cases, these interactions are transient in nature and triggered by immunological insults. Here, we report that in areas of disturbed blood flow, aortic endothelial cells permanently and intimately associate with a population of specialized macrophages that are recruited at birth from the closing ductus arteriosus and share the luminal surface with the endothelium becoming interwoven in the tunica intima. Anatomical changes that affect hemodynamics, like in patent ductus arteriosus, alter macrophage seeding to coincide with regions of disturbed flow. Aortic resident macrophages expand in situ via direct cell renewal. Induced-depletion of intimal macrophages led to thrombin-mediated endothelial cell contraction, progressive fibrin accumulation and formation of microthrombi that, once dislodged, caused blockade of vessels in several organs. Together the findings revealed that intravascular resident macrophages are essential to regulate thrombin activity and clear fibrin deposits in regions of disturbed blood flow.
Collapse
Affiliation(s)
- Gloria E. Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guadalupe Martinez
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nadia B. Firozabadi
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jocelynda Salvador
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lih Jiin Juang
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Jerry Leung
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Peng Zhao
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diego A. López
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Reza Ardehali
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Christian J. Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
120
|
Watanabe T. Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment. Cancers (Basel) 2021; 14:cancers14010141. [PMID: 35008305 PMCID: PMC8750340 DOI: 10.3390/cancers14010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
A dominant paradigm being developed in immunotherapy for hematologic malignancies is of adaptive immunotherapy that involves chimeric antigen receptor (CAR) T cells and bispecific T-cell engagers. CAR T-cell therapy has yielded results that surpass those of the existing salvage immunochemotherapy for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) after first-line immunochemotherapy, while offering a therapeutic option for patients with follicular lymphoma (FL) and mantle cell lymphoma (MCL). However, the role of the innate immune system has been shown to prolong CAR T-cell persistence. Cluster of differentiation (CD) 47-blocking antibodies, which are a promising therapeutic armamentarium for DLBCL, are novel innate immune checkpoint inhibitors that allow macrophages to phagocytose tumor cells. Intratumoral Toll-like receptor 9 agonist CpG oligodeoxynucleotide plays a pivotal role in FL, and vaccination may be required in MCL. Additionally, local stimulator of interferon gene agonists, which induce a systemic anti-lymphoma CD8+ T-cell response, and the costimulatory molecule 4-1BB/CD137 or OX40/CD134 agonistic antibodies represent attractive agents for dendritic cell activations, which subsequently, facilitates initiation of productive T-cell priming and NK cells. This review describes the exploitation of approaches that trigger innate immune activation for adaptive immune cells to operate maximally in the tumor microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu City 514-8507, Japan
| |
Collapse
|
121
|
Luo M, Huang Z, Yang X, Chen Y, Jiang J, Zhang L, Zhou L, Qin S, Jin P, Fu S, Peng L, Li B, Fang Y, Pu W, Gong Y, Liu Y, Ren Z, Liu QL, Wang C, Xiao F, He D, Zhang H, Li C, Xu H, Dai L, Peng Y, Zhou ZG, Huang C, Chen HN. PHLDB2 Mediates Cetuximab Resistance via Interacting With EGFR in Latent Metastasis of Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2021; 13:1223-1242. [PMID: 34952201 PMCID: PMC8881668 DOI: 10.1016/j.jcmgh.2021.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Latent metastasis of colorectal cancer (CRC) frequently develops months or years after primary surgery, followed by adjuvant therapies, and may progress rapidly even with targeted therapy administered, but the underlying mechanism remains unclear. Here, we aim to explore the molecular basis for the aggressive behavior of latent metastasis in CRC. METHODS Transcriptional profiling and pathway enrichment analysis of paired primary and metastatic tumor samples were performed. The underlying mechanisms of pleckstrin homology-like domain, family B, member 2 (PHLDB2) in CRC were investigated by RNA immunoprecipitation assay, immunohistochemistry, mass spectrometry analysis, and Duolink in situ proximity ligation assay (Sigma-Aldrich, Shanghai, China). The efficacy of targeting PHLDB2 in cetuximab treatment was elucidated in CRC cell lines and mouse models. RESULTS Based on the transcriptional profile of paired primary and metastatic tumor samples, we identified PHLDB2 as a potential regulator in latent liver metastasis. A detailed mechanistic study showed that chemotherapeutic agent-induced oxidative stress promotes methyltransferase-like 14 (METTL14)-mediated N6-methyladenosine modification of PHLDB2 messenger RNA, facilitating its protein expression. Up-regulated PHLDB2 stabilizes epidermal growth factor receptor (EGFR) and promotes its nuclear translocation, which in turn results in EGFR signaling activation and consequent cetuximab resistance. Moreover, Arg1163 (R1163) of PHLDB2 is crucial for interaction with EGFR, and the R1163A mutation abrogates its regulatory function in EGFR signaling. CONCLUSIONS PHLDB2 plays a crucial role in cetuximab resistance and is proposed to be a potential target for the treatment of CRC.
Collapse
Affiliation(s)
- Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xingyue Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuyue Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yongting Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenchen Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhixiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fangqiong Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Du He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zong-Gung Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China,Canhua Huang, PhD, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Rd, Chengdu, 610041, P.R. China. Tel: +86-13258370346; fax: +86-28-85164060.
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Correspondence Address correspondence to: Hai-Ning Chen, MD, PhD, Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China. Tel: +86-18980606468.
| |
Collapse
|
122
|
Le Gallou S, Lhomme F, Irish JM, Mingam A, Pangault C, Monvoisin C, Ferrant J, Azzaoui I, Rossille D, Bouabdallah K, Damaj G, Cartron G, Godmer P, Le Gouill S, Casasnovas RO, Molina TJ, Houot R, Lamy T, Tarte K, Fest T, Roussel M. Nonclassical Monocytes Are Prone to Migrate Into Tumor in Diffuse Large B-Cell Lymphoma. Front Immunol 2021; 12:755623. [PMID: 34975843 PMCID: PMC8716558 DOI: 10.3389/fimmu.2021.755623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Absolute count of circulating monocytes has been proposed as an independent prognostic factor in diffuse large B-cell lymphoma (DLBCL). However, monocyte nomenclature includes various subsets with pro-, anti-inflammatory, or suppressive functions, and their clinical relevance in DLBCL has been poorly explored. Herein, we broadly assessed circulating monocyte heterogeneity in 91 DLBCL patients. Classical- (cMO, CD14pos CD16neg) and intermediate- (iMO, CD14pos CD16pos) monocytes accumulated in DLBCL peripheral blood and exhibited an inflammatory phenotype. On the opposite, nonclassical monocytes (ncMOSlanpos, CD14low CD16pos Slanneg and ncMOSlanneg, CD14low CD16pos, Slanneg) were decreased in peripheral blood. Tumor-conditioned monocytes presented similarities with ncMO phenotype from DLBCL and were prone to migrate in response to CCL5 and CXCL12, and presented similarities with DLBCL-infiltrated myeloid cells, as defined by mass cytometry. Finally, we demonstrated the adverse value of an accumulation of nonclassical monocytes in 2 independent cohorts of DLBCL.
Collapse
Affiliation(s)
- Simon Le Gallou
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Faustine Lhomme
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anna Mingam
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
| | - Celine Pangault
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Celine Monvoisin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Juliette Ferrant
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Imane Azzaoui
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
| | - Delphine Rossille
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Krimo Bouabdallah
- Centre Hospitalier Universitaire de Bordeaux, Service d’Hématologie Clinique, Bordeaux, France
| | - Gandhi Damaj
- Centre Hospitalier Universitaire de Caen, Service d’Hématologie Clinique, Caen, France
| | - Guillaume Cartron
- Centre Hospitalier Universitaire de Montpellier, Service d’Hématologie Clinique, Montpellier, France
| | - Pascal Godmer
- Centre Hospitalier de Bretagne Atlantique, Unité d’Hématologie Clinique, Vannes, France
| | - Steven Le Gouill
- Centre Hospitalier Universitaire de Nantes, Service d’Hématologie Clinique, Institut National de la Sante et de la Recherche Medicale, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (INSERM CCRCINA) Nantes-Angers, NeXT Université de Nantes, Nantes, France
| | | | - Thierry Jo Molina
- Asistance Publique, Hopitaux de Paris (APHP), Necker, Service d’Anatomopathologie, Sorbonne Université, Paris, France
| | - Roch Houot
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Service d’Hématologie Clinique, Rennes, France
| | - Thierry Lamy
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Service d’Hématologie Clinique, Rennes, France
| | - Karin Tarte
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Thierry Fest
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Mikael Roussel
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
123
|
Kwiecień I, Rutkowska E, Raniszewska A, Rzepecki P, Domagała-Kulawik J. Modulation of the immune response by heterogeneous monocytes and dendritic cells in lung cancer. World J Clin Oncol 2021; 12:966-982. [PMID: 34909393 PMCID: PMC8641004 DOI: 10.5306/wjco.v12.i11.966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
Different subpopulations of monocytes and dendritic cells (DCs) may have a key impact on the modulation of the immune response in malignancy. In this review, we summarize the monocyte and DCs heterogeneity and their function in the context of modulating the immune response in cancer. Subgroups of monocytes may play opposing roles in cancer, depending on the tumour growth and progression as well as the type of cancer. Monocytes can have pro-tumour and anti-tumour functions and can also differentiate into monocyte-derived DCs (moDCs). MoDCs have a similar antigen presentation ability as classical DCs, including cross-priming, a process by which DCs activate CD8 T-cells by cross-presenting exogenous antigens. DCs play a critical role in generating anti-tumour CD8 T-cell immunity. DCs have plastic characteristics and show distinct phenotypes depending on their mature state and depending on the influence of the tumour microenvironment. MoDCs and other DC subsets have been attracting increased interest owing to their possible beneficial effects in cancer immunotherapy. This review also highlights key strategies deploying specific DC subpopulations in combination with other therapies to enhance the anti-tumour response and summarizes the latest ongoing and completed clinical trials using DCs in lung cancer.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Elżbieta Rutkowska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Agata Raniszewska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw 02-091, Poland
| |
Collapse
|
124
|
Antimetastatic defense by CD8 + T cells. Trends Cancer 2021; 8:145-157. [PMID: 34815204 DOI: 10.1016/j.trecan.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is an intricate process whereby tumor cells migrate from the primary tumor, survive in the circulation, seed distal organs, and proliferate to create metastatic foci. CD8+ T cells can detect and eliminate tumor cells. Research on CD8+ T cell-dependent antitumor immunity has classically focused on its role in the primary tumor. There is increasing evidence, however, that CD8+ T cells have unique antimetastatic functions in various steps of the metastatic cascade. Here, we review the mechanisms whereby CD8+ T cells control metastatic lesions. We discuss their role in each step of metastasis, metastatic dormancy, and metastatic clonal evolution as well as the consequent clinical repercussions.
Collapse
|
125
|
Lutz CT, Livas L, Presnell SR, Sexton M, Wang P. Gender Differences in Urothelial Bladder Cancer: Effects of Natural Killer Lymphocyte Immunity. J Clin Med 2021; 10:5163. [PMID: 34768683 PMCID: PMC8584838 DOI: 10.3390/jcm10215163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Men are more likely to develop cancer than women. In fact, male predominance is one of the most consistent cancer epidemiology findings. Additionally, men have a poorer prognosis and an increased risk of secondary malignancies compared to women. These differences have been investigated in order to better understand cancer and to better treat both men and women. In this review, we discuss factors that may cause this gender difference, focusing on urothelial bladder cancer (UBC) pathogenesis. We consider physiological factors that may cause higher male cancer rates, including differences in X chromosome gene expression. We discuss how androgens may promote bladder cancer development directly by stimulating bladder urothelium and indirectly by suppressing immunity. We are particularly interested in the role of natural killer (NK) cells in anti-cancer immunity.
Collapse
Affiliation(s)
- Charles T. Lutz
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| | - Lydia Livas
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Steven R. Presnell
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Morgan Sexton
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA; (L.L.); (S.R.P.); (M.S.)
| | - Peng Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
126
|
Ghoroghi S, Mary B, Asokan N, Goetz JG, Hyenne V. Tumor extracellular vesicles drive metastasis (it's a long way from home). FASEB Bioadv 2021; 3:930-943. [PMID: 34761175 PMCID: PMC8565230 DOI: 10.1096/fba.2021-00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among a plethora of functions, extracellular vesicles released by primary tumors spread in the organism and reach distant organs where they can induce the formation of a premetastatic niche. This constitutes a favorable microenvironment for circulating tumor cells which facilitates their seeding and colonization. In this review, we describe the journey of extracellular vesicles (EVs) from the primary tumor to the future metastatic organ, with a focus on the mechanisms used by EVs to target organs with a specific tropism (i.e., organotropism). We then highlight important tumor EV cargos in the context of premetastatic niche formation and summarize their known effects on extracellular matrix remodeling, angiogenesis, vessel permeabilization, resident cell activation, recruitment of foreign cells, and ultimately the formation of a pro-inflammatory and immuno-tolerant microenvironment. Finally, we discuss current experimental limitations and remaining opened questions in light of metastatic diagnosis and potential therapies targeting PMN formation.
Collapse
Affiliation(s)
- Shima Ghoroghi
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Benjamin Mary
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Nandini Asokan
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Jacky G Goetz
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Vincent Hyenne
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
- CNRS SNC5055 Strasbourg France
| |
Collapse
|
127
|
Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E, Cogdill AP, Bosio CM, Wargo JA, Lee MP, Goldszmid RS. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 2021; 184:5338-5356.e21. [PMID: 34624222 PMCID: PMC8650838 DOI: 10.1016/j.cell.2021.09.019] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.
Collapse
Affiliation(s)
- Khiem C Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Romina E Araya
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - April Huang
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Leidos Biomedical Research, Bethesda, MD 20892, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Kelly Government Solutions, Bethesda, MD 20892, USA
| | - Martina Di Modica
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Richard R Rodrigues
- Leidos Biomedical Research, Bethesda, MD 20892, USA; Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amélie Lopès
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sarah B Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Romina S Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
128
|
Moreno-Cañadas R, Luque-Martín L, Arroyo AG. Intravascular Crawling of Patrolling Monocytes: A Lèvy-Like Motility for Unique Search Functions? Front Immunol 2021; 12:730835. [PMID: 34603307 PMCID: PMC8485030 DOI: 10.3389/fimmu.2021.730835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.
Collapse
Affiliation(s)
- Rocío Moreno-Cañadas
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Laura Luque-Martín
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Alicia G Arroyo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
129
|
Arif AA, Huang YH, Freeman SA, Atif J, Dean P, Lai JCY, Blanchet MR, Wiegand KC, McNagny KM, Underhill TM, Gold MR, Johnson P, Roskelley CD. Inflammation-Induced Metastatic Colonization of the Lung Is Facilitated by Hepatocyte Growth Factor-Secreting Monocyte-Derived Macrophages. Mol Cancer Res 2021; 19:2096-2109. [PMID: 34556524 DOI: 10.1158/1541-7786.mcr-21-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
A rate-limiting step for circulating tumor cells to colonize distant organ sites is their ability to locate a microenvironmental niche that supports their survival and growth. This can be achieved by features intrinsic to the tumor cells and/or by the conditioning of a "premetastatic" niche. To determine if pulmonary inflammation promotes the latter, we initiated models for inflammatory asthma, hypersensitivity pneumonitis, or bleomycin-induced sterile inflammation before introducing tumor cells with low metastatic potential into the circulation. All types of inflammation increased the end-stage metastatic burden of the lungs 14 days after tumor cell inoculation without overtly affecting tumor extravasation. Instead, the number and size of early micrometastatic lesions found within the interstitial tissues 96 hours after tumor cell inoculation were increased in the inflamed lungs, coincident with increased tumor cell survival and the presence of nearby inflammation-induced monocyte-derived macrophages (MoDM; CD11b+CD11c+). Remarkably, the adoptive transfer of these MoDM was sufficient to increase lung metastasis in the absence of inflammation. These inflammation-induced MoDM secrete a number of growth factors and cytokines, one of which is hepatocyte growth factor (HGF), that augmented tumor cell survival under conditions of stress in vitro. Importantly, blocking HGF signaling with the cMET inhibitor capmatinib abolished inflammation-induced early micrometastatic lesion formation in vivo. These findings indicate that inflammation-induced MoDM and HGF in particular increase the efficiency of early metastatic colonization in the lung by locally preconditioning the microenvironment. IMPLICATIONS: Inflammation preconditions the distant site microenvironment to increase the metastatic potential of tumor cells that arrive there.
Collapse
Affiliation(s)
- Arif A Arif
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Spencer A Freeman
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jawairia Atif
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline C Y Lai
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Kimberly C Wiegand
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
130
|
Jeong J, Kim DK, Park JH, Park DJ, Lee HJ, Yang HK, Kong SH, Jung K. Tumor-Infiltrating Neutrophils and Non-Classical Monocytes May Be Potential Therapeutic Targets for HER2 negative Gastric Cancer. Immune Netw 2021; 21:e31. [PMID: 34522444 PMCID: PMC8410991 DOI: 10.4110/in.2021.21.e31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cause of cancer-related death globally. The classification of advanced GC (AGC) according to molecular features has recently led to effective personalized cancer therapy for some patients. Specifically, AGC patients whose tumor cells express high levels of human epidermal growth factor receptor 2 (HER2) can now benefit from trastuzumab, a humanized monoclonal Ab that targets HER2. However, patients with HER2negative AGC receive limited clinical benefit from this treatment. To identify potential immune therapeutic targets in HER2negative AGC, we obtained 40 fresh AGC specimens immediately after surgical resections and subjected the CD45+ immune cells in the tumor microenvironment to multi-channel/multi-panel flow cytometry analysis. Here, we report that HER2 negativity associated with reduced overall survival (OS) and greater tumor infiltration with neutrophils and non-classical monocytes. The potential pro-tumoral activities of these cell types were confirmed by the fact that high expression of neutrophil or non-classical monocyte signature genes in the gastrointestinal tumors in The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases associated with worse OS on Kaplan-Meir plots relative to tumors with low expression of these signature genes. Moreover, advanced stage disease in the AGCs of our patients associated with greater tumor frequencies of neutrophils and non-classical monocytes than early stage disease. Thus, our study suggests that these 2 myeloid populations may serve as novel therapeutic targets for HER2negative AGC.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Duk Ki Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji-Hyeon Park
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
131
|
Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021; 74:157-169. [PMID: 34467634 DOI: 10.1002/iub.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are key cells in regulating tumor development, metastasis, immune responses, inflammation, and chemoresistance. In response to TME stimulation, circulating monocytes are recruited and differentiated as TAMs. Most TAMs are defined as alternatively activated (M2) phenotype to create immunosuppressive TME and support tumor progression. In contrast, classically activated (M1) TAMs can produce pro-inflammatory cytokines and enhance immune responses against tumor development. Autophagy is a conserved catabolic process to control cellular homeostasis and biological function. Emerging evidence reveals crucial contribution of autophagy in modulating TAM plasticity and functional polarization in TME. In this review, we introduce the current understanding of autophagy-regulated TAM function in development of cancer. We focus on how autophagy modulates antigen presentation, LC3-associated phagocytosis, cytokine secretion, inflammasome regulation, recruitment, differentiation, and polarization of TAMs and suggest strategies for potential therapeutics by targeting autophagy in TAMs. We expect this review can provide a new notion of future cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chin Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Peng Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
132
|
Zhang Z, Wang Z, Huang Y. Comprehensive Analyses of the Infiltrating Immune Cell Landscape and Its Clinical Significance in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:4695-4704. [PMID: 34447264 PMCID: PMC8384430 DOI: 10.2147/ijgm.s326535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Immunotherapy has gradually played a significant role in treating cancer over the past 10 years. Meanwhile, significant connections have been found between infiltrating immune cells and prognosis, as well as the development of immunotherapy in hepatocellular carcinoma (HCC). Thus, analyses of the immune cell landscape are urgently needed for the future development of immunotherapy in HCC. Methods Expression data of HCC and normal liver tissue were searched and downloaded from The Cancer Genome Atlas. The fraction of various immune cells was estimated by CIBERSORT, which is a computational analysis tool. Comparisons of the fractions of 22 types of immune cells were performed between HCC and normal tissues, as well as survival analyses and clinical significance. xCell was used to validate the results. Results The fractions of 12 types of immune cells, including follicular helper T (Tfh) cells, monocytes, M0, and M2 macrophages, were significantly different between tissues. In survival analyses, higher fractions of Tfh cells (P=0.037), M0 (P=0.001), and M2 macrophages (P=0.045) were associated with a poorer prognosis, and monocytes with a better prognosis (P=0.040). Furthermore, a higher fraction of M0 macrophages (P=0.001), lower fraction of monocytes (P=0.031), and M2 macrophages (P=0.018) were found as risk factors of a poorer histological grade of HCC. Only M0 macrophages showed a significant association with the clinical stage of HCC. Meanwhile, xCell showed monocytes and M2 macrophages significantly reduced in tumor tissues, which validated the results. Conclusion Tfh cells, monocytes, M0 and M2 macrophages may play an indicator role in carcinogenesis, progression, and clinical outcomes of HCC. Our research can serve as a reference contributing to future immunotherapy strategies of HCC.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
133
|
Zhang Y, Zeng F, Zeng M, Han X, Cai L, Zhang J, Weng J, Gao Y. Identification and Characterization of Alcohol-related Hepatocellular Carcinoma Prognostic Subtypes based on an Integrative N6-methyladenosine methylation Model. Int J Biol Sci 2021; 17:3554-3572. [PMID: 34512165 PMCID: PMC8416726 DOI: 10.7150/ijbs.62168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Alcohol consumption increases the risk of hepatocellular carcinoma (HCC), and associated with a high mortality rate and poor prognosis. N6-methyladenosine (m6A) methylations play key roles in tumorigenesis and progression. However, our current knowledge about m6A in alcohol-related HCC (A-HCC) remains elucidated. Herein, the authors construct an integrative m6A model based on A-HCC subtyping and mechanism exploration workflow. Methods: Based on the m6A expressions of A-HCC and in vivo experiment, different prognosis risk A-HCC subtypes are identified. Meanwhile, multiple interdependent indicators of prognosis including patient survival rate, clinical pathological prognosis and immunotherapy sensitivity. Results: The m6A model includes LRPPRC, YTHDF2, KIAA14219, and RBM15B, classified A-HCC patients into high/low-risk subtypes. The high-risk subtype compared to the low-risk subtype showed phenotypic malignancy, poor prognosis, immunosuppression, and activation of tumorigenesis and proliferation-related pathways, including the E2F target, DNA repair, and mTORC1 signalling pathways. The expression of Immunosuppressive cytokines DNMT1/EZH2 was up-regulated in A-HCC patients, and teniposide may be a potential therapeutic drug for A-HCC. Conclusion: Our model redefined A-HCC prognosis risk, identified potential m6As linking tumour progress and immune regulations and selected possible therapy target, thus promoting understanding and clinical applications about A-HCC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiajun Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
134
|
Huggins DN, LaRue RS, Wang Y, Knutson TP, Xu Y, Williams JW, Schwertfeger KL. Characterizing macrophage diversity in metastasis-bearing lungs reveals a lipid-associated macrophage subset. Cancer Res 2021; 81:5284-5295. [PMID: 34389631 DOI: 10.1158/0008-5472.can-21-0101] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
While macrophages are among the most abundant immune cell type found within primary and metastatic mammary tumors, how their complexity and heterogeneity change with metastatic progression remains unknown. Here, macrophages were isolated from the lungs of mice bearing orthotopic mammary tumors for single-cell RNA sequencing. Seven distinct macrophage clusters were identified, including populations exhibiting enhanced differential expression of genes related to antigen presentation (H2-Aa, Cd74), cell cycle (Stmn1, Cdk1), and interferon signaling (Isg15, Ifitm3). Interestingly, one cluster demonstrated a profile concordant with lipid-associated macrophages (Lgals3, Trem2). Compared to non-tumor-bearing controls, the number of these cells per gram of tissue was significantly increased in lungs from tumor-bearing mice, with the vast majority co-staining positively with the alveolar macrophage marker Siglec-F. Enrichment of genes implicated in pathways related to lipid metabolism as well extracellular matrix remodeling and immunosuppression was observed. Additionally, these cells displayed reduced capacity for phagocytosis. Collectively, these findings highlight the diversity of macrophages present within metastatic lesions and characterize a lipid-associated macrophage subset previously unidentified in lung metastases.
Collapse
Affiliation(s)
- Danielle N Huggins
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Rebecca S LaRue
- Genetics, Cell Biology and Development, University of Minnesota
| | - Ying Wang
- Masonic Cancer Center, University of Minnesota
| | | | | | | | | |
Collapse
|
135
|
Dou A, Fang J. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel) 2021; 13:3772. [PMID: 34359674 PMCID: PMC8345207 DOI: 10.3390/cancers13153772] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies highlight a critical role of myeloid cells in cancer biology and therapy. The myeloid cells constitute the major components of tumor microenvironment (TME). The most studied tumor-associated myeloid cells (TAMCs) include monocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs), cancer-related circulating neutrophils, tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). These heterogenous myeloid cells perform pro-tumor or anti-tumor function, exerting complex and even opposing effects on all stages of tumor development, such as malignant clonal evolution, growth, survival, invasiveness, dissemination and metastasis of tumor cells. TAMCs also reshape TME and tumor vasculature to favor tumor development. The main function of these myeloid cells is to modulate the behavior of lymphocytes, forming immunostimulatory or immunosuppressive TME cues. In addition, TAMCs play a critical role in modulating the response to cancer therapy. Targeting TAMCs is vigorously tested as monotherapy or in combination with chemotherapy or immunotherapy. This review briefly introduces the TAMC subpopulations and their function in tumor cells, TME, angiogenesis, immunomodulation, and cancer therapy.
Collapse
Affiliation(s)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA;
| |
Collapse
|
136
|
Immunomodulation: An immune regulatory mechanism in carcinoma therapeutics. Int Immunopharmacol 2021; 99:107984. [PMID: 34303999 DOI: 10.1016/j.intimp.2021.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 01/01/2023]
Abstract
Cancer has been generally related to the possession of numerous mutations which interrupt important signaling pathways. Nevertheless, deregulated immunological signaling is considered as one of the key factors associated with the development and progression of cancer. The signaling pathways operate as modular network with different components interacting in a switch-like fashion with two proteins interplaying between each other leading to direct or indirect inhibition or stimulation of down-stream factors. Genetic, epigenetic, and transcriptomic alterations maintain the pathological conduit of different signaling pathways via affecting diverse mechanisms including cell destiny. At present, immunotherapy is one of the best therapies opted for cancer treatment. The cancer immunotherapy strategy includes harnessing the specificity and killing mechanisms of the immunological system to target and eradicate malignant cells. Targeted therapies utilizing several little molecules including Galunisertib, Astragaloside-IV, Melatonin, and Jervine capable of regulating key signaling pathways can effectively help in the management of different carcinomas.
Collapse
|
137
|
Wei J, Fang DL, Huang CK, Hua SL, Lu XS. Screening a novel signature and predicting the immune landscape of metastatic osteosarcoma in children via immune-related lncRNAs. Transl Pediatr 2021; 10:1851-1866. [PMID: 34430433 PMCID: PMC8349967 DOI: 10.21037/tp-21-226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The immune microenvironment plays an essential role in osteosarcoma (OSs); however, differences in immune-related long non-coding ribonucleic acids (irlncRNAs) in children with localized OSs and metastatic OSs have not yet been investigated. METHODS The clinical data and the transcriptome of OSs were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, and the immune-related genes were derived from the imported dataset. The correlations between immune-related genes and lncRNAs were examined. Next, the differential expressions of the irlncRNA pairs (IRLPs) in localized OSs and distant metastatic OSs were analyzed, and a prognostic model was constructed based on the significant differentially expressed IRLPs. We also analyzed the association between the IRLPs' signature risk score and the infiltration of the immune cells. Finally, we investigated the correlation between risk score and drug resistance. RESULTS Thirty upregulated and 22 downregulated lncRNAs were identified in the localized and metastatic OSs samples. Univariate and multivariate cox regression analyses were undertaken to select 6 lncRNA pairs to establish the prognostic signature, the model was valuable in predicting OSs prognosis. Further, the expression of the finally selected irlncRNAs indicated that VPS9D1-AS1 (P=0.031), AP003086.2 (P=0.041), AL031847.1 (P=0.008), AL020997.3 (P=0.020), AC011444.1 (P=0.025), and AC006449.2 (P=0.003) were significantly upregulated in metastasis patients, but USP27X-AS1 (P=0.046), AL008721.2 (P=0.005), AC002091.1 (P=0.033), and AL118558.4 (P=0.049) were significantly overexpressed in localized patients. The overexpression of AC002091.1 (P=0.038) and AL118558.4 (P=0.004) resulted in better overall survival, but the upregulation of AC011444.1 (P=0.045), AL031847.1 (P=0.020), VPS9D1-AS1 (P=0.039), and AC006449.2 (0.006) led to a poor outcome. Differences in immune cell infiltration indicated that metastatic patients and localized have significant difference of 4 (CD4) T cells (P=0.006), monocytes (P=0.029), activated mast cells (P=0.018), and neutrophils (P=0.026), and a high abundance of activated dendritic cells (P=0.010) and activated mast cells (P=0.049) resulted in poor prognosis. Patients in the high-risk-score group were resistant to axitinib, but sensitive to dasatinib, bortezomib, and cisplatin. CONCLUSIONS In the present study, IRLPs were used to construct a novel and practical model for predicting the prognosis of localized and metastatic OSs in children.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| | - Da-Lang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Cheng Kua Huang
- Department of Traumatology, Baise People's Hospital, Baise, China
| | - Shu-Liang Hua
- Department of Traumatology, Baise People's Hospital, Baise, China
| | - Xiao-Sheng Lu
- Department of Traumatology, Baise People's Hospital, Baise, China
| |
Collapse
|
138
|
Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers (Basel) 2021; 13:cancers13133225. [PMID: 34203391 PMCID: PMC8267947 DOI: 10.3390/cancers13133225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are circulating innate lymphocytes endowed with antitumoral functions. NK cells are the innate counterpart of effector T cells and among the first cells responding to infections and tumors. In this review, the immune circuits regulating the NK cell antitumoral functions and the possible strategies to shape natural killing in cancer will be discussed. Abstract Natural killer (NK) cells are innate lymphoid cells playing an important role in anti-cancer immunity. NK cells are efficient in controlling the spreading of metastasis but are not very powerful in fighting against primary tumors. The NK cell capability to infiltrate and persist in the tumor microenvironment and to exert their antitumoral functions is often limited by tumor escape mechanisms. These tumor-mediated strategies not only induce NK cell tolerance but also interfere with the NK cell-dependent immune networking. This review will provide an overview of the tumor escape mechanisms impacting NK cells, identify the immune circuits regulating the NK cell-dependent antitumor immunity and revise the emerging therapeutic approaches to unleash NK cells in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
139
|
Cui C, Zhang Y, Liu G, Zhang S, Zhang J, Wang X. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:266-291. [PMID: 36046433 PMCID: PMC9400724 DOI: 10.37349/etat.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
Metastasis is still the primary cause of cancer-related mortality. However, the underlying mechanisms of cancer metastasis are not yet fully understood. Currently, the epithelial-mesenchymal transition, metabolic remodeling, cancer cell intercommunication and the tumor microenvironment including diverse stromal cells, are reported to affect the metastatic process of cancer cells. Calcium ions (Ca2+) are ubiquitous second messengers that manipulate cancer metastasis by affecting signaling pathways. Diverse transporter/pump/channel-mediated Ca2+ currents form Ca2+ oscillations that can be decoded by Ca2+-binding proteins, which are promising prognostic biomarkers and therapeutic targets of cancer metastasis. This paper presents a review of the advances in research on the mechanisms underlying cancer metastasis and the roles of Ca2+-related signals in these events.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shuhong Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
140
|
Shibuya T, Kamiyama A, Sawada H, Kikuchi K, Maruyama M, Sawado R, Ikeda N, Asano K, Kurotaki D, Tamura T, Yoneda A, Imada K, Satoh T, Akira S, Tanaka M, Yotsumoto S. Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor. Front Immunol 2021; 12:663115. [PMID: 34163472 PMCID: PMC8215602 DOI: 10.3389/fimmu.2021.663115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Systemic and local inflammation associated with therapeutic intervention of primary tumor occasionally promotes metastatic recurrence in mouse and human. However, it remains unclear what types of immune cells are involved in this process. Here, we found that the tissue-repair-promoting Ym1+Ly6Chi monocyte subset expanded as a result of systemic and local inflammation induced by intravenous injection of lipopolysaccharide or resection of primary tumor and promoted lung metastasis originating from circulating tumor cells (CTCs). Deletion of this subset suppressed metastasis induced by the inflammation. Furthermore, transfer of Ym1+Ly6Chi monocytes into naïve mice promoted lung metastasis in the mice. Ym1+Ly6Chi monocytes highly expressed matrix metalloproteinase-9 (MMP-9) and CXCR4. MMP-9 inhibitor and CXCR4 antagonist decreased Ym1+Ly6Chi-monocyte-promoted lung metastasis. These findings indicate that Ym1+Ly6Chi monocytes are therapeutic target cells for metastasis originating from CTCs associated with systemic and local inflammation. In addition, these findings provide a novel predictive cellular biomarker for metastatic recurrence after intervention for primary tumor.
Collapse
Affiliation(s)
- Takumi Shibuya
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Asami Kamiyama
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hirotaka Sawada
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kenta Kikuchi
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mayu Maruyama
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Rie Sawado
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Naoki Ikeda
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kenichi Asano
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Keisuke Imada
- Center for Fundamental Laboratory Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Satoshi Yotsumoto
- Laboratory of Immune Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
141
|
Fan J, Li J, Han J, Zhang Y, Gu A, Song F, Duan J, Yin D, Wang L, Yi Y. Expression of leukocyte immunoglobulin-like receptor subfamily B expression on immune cells in hepatocellular carcinoma. Mol Immunol 2021; 136:82-97. [PMID: 34098344 DOI: 10.1016/j.molimm.2021.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a group of inhibitory receptors involved in innate immune mainly expressed on lymphoid and myelomonocytic cells. LILRB is proposed to serve as immune checkpoint like PD-1 and CTLA-4 for tumor treatment. We recently reported that the expression of LILRB2 in CD1c+ mDC from tumor tissue might suppress immune for HCC patients. However, the expression of all the LILRB family on other immune cells in peripheral blood and tumor microenvironment of HCC patients has not been systematically studied. METHODS The expression of LILRB family (LILRB1, LILRB2, LILRB3, LILRB4 and LILRB5) on immune cells, including granulocytes, NK cells, NKT cells, monocyte subsets, TAMs, B cells, γδ T cells, CD4+ T cells, CD8+ T cells and MDSC subsets, was analyzed by flow cytometry in the peripheral blood of 20 HCC patients and 20 healthy donors as well as in the tumor and tumor free tissues of 10 HCC patients. RESULTS LILRB1, LILRB2 and LILRB3 in granulocytes from peripheral blood were expressed increased in HCC patients compared with healthy donors. The expression of LILRB5 in NK cells and NKT cells from HCC blood were higher compared with healthy donors` blood. CD14+CD16+ monocyte subsets in blood of HCC patients expressed increased LILRB1 and LILRB4 than that in healthy donors. CD14+CD16- monocyte subsets in blood of HCC patients expressed increased LILRB3 than that in healthy donors. Compared to corresponding TFL, LILRB3, LILRB4 and LILRB5 were expressed enhanced in TAMs from HCC tumors. LILRB1 expressed on the B cells both in the blood and tumor had significantly increased compared with healthy donors or corresponding TFL. Different from peripheral blood, in the HCC microenvironment, CD4+ T cells expressed lower LILRB2, LILRB3 and LILRB4 than that from TFL and CD8+ T cells expressed decreased LILRB2. And γδ T cells expressed LILRB1 in HCC blood and microenvironment. Surprisingly, the percentage of LILRB1 expressed on MDSC from HCC peripheral blood and tumors was lower than that from healthy donors and corresponding TFL. CONCLUSIONS This is the first systemically examination of the LILRB family expression on a variety of immune cells from both peripheral blood and microenvironment in HCC patients. The specific increasing expression of LILRB on immune cells may regulate innate and adaptive immune and impact on HCC progression. Our findings justify further investigation of LILRB function in HCC.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Yufeng Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Yongxiang Yi
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China; Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| |
Collapse
|
142
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
143
|
Yang Z, Gimple RC, Zhou N, Zhao L, Gustafsson JÅ, Zhou S. Targeting Nuclear Receptors for Cancer Therapy: Premises, Promises, and Challenges. Trends Cancer 2021; 7:541-556. [PMID: 33341430 DOI: 10.1016/j.trecan.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Nuclear receptors are a family of transcription factors localized in cell nuclei, sensing specific ligands and fine-tuning a variety of cell physiological events. They have been intensively investigated in cancer biology. With their excellent properties of druggability and actionability, nuclear receptors have demonstrated much promise as novel therapeutic targets for different cancer types. Accumulating evidence has highlighted the essential roles of certain nuclear receptors in tumor immunology, suggesting the possibility for them to serve as cancer immunotherapeutic targets. Here, we summarize the roles of nuclear receptors in cancer biology and tumor immunology, and underscore the current advances of clinical trials for nuclear receptor-based cancer therapeutics.
Collapse
Affiliation(s)
- Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA.
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
144
|
Wei Q, He J, Wang S, Hua S, Qi Y, Li F, Ling D, Zhou M. Low-dose X-ray enhanced tumor accumulation of theranostic nanoparticles for high-performance bimodal imaging-guided photothermal therapy. J Nanobiotechnology 2021; 19:155. [PMID: 34039369 PMCID: PMC8152352 DOI: 10.1186/s12951-021-00875-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Theranostic nanoparticles (NPs) have achieved rapid development owing to their capacity for personalized multimodal diagnostic imaging and antitumor therapy. However, the efficient delivery and bulk accumulation of NPs in tumors are still the decisive factors in improving therapeutic effect. It is urgent to seek other methods to alters tumor microenvironment (like vascular permeability and density) for enhancing the efficiency of nanoparticles delivery and accumulation at the tumor site. METHODS Herein, we developed a Raman-tagged hollow gold nanoparticle (termed as HAuNP@DTTC) with surface-enhanced Raman scattering (SERS) property, which could be accumulated efficiently in tumor site with the pre-irradiation of low-dose (3 Gy) X-ray and then exerted highly antitumor effect in breast cancer model. RESULTS The tumor growth inhibition (TGI) of HAuNP@DTTC-induced photothermal therapy (PTT) was increased from 60% for PTT only to 97%, and the lethal distant metastasis of 4T1 breast cancer (such as lung and liver) were effectively inhibited under the X-ray-assisted PTT treatment. Moreover, with the strong absorbance induced by localized surface plasmon resonance in near-infrared (NIR) region, the signals of Raman/photoacoustic (PA) imaging in tumor was also significantly enhanced after the administration of HAuNP@DTTC, indicating it could be used as the Raman/PA imaging and photothermal agent simultaneously under 808 nm laser irradiation. CONCLUSIONS Our studied of the as-prepared HAuNP@DTTC integrated the Raman/PA imaging and PTT functions into the single platform, and showed the good prospects for clinical applications especially with the low-dose X-ray irradiation as an adjuvant, which will be a productive strategy for enhancing drug delivery and accumulation in tumor theranostics.
Collapse
Affiliation(s)
- Qiaolin Wei
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- Institute of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shuaifei Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyuan Hua
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
145
|
Greco M, Mazzei A, Suppressa S, Palumbo C, Verri T, Lobreglio G. Human Leukocyte Antigen-DR Isotype Expression in Monocytes and T Cells Interferon-Gamma Release Assay in Septic Patients and Correlation With Clinical Outcome. J Clin Med Res 2021; 13:293-303. [PMID: 34104281 PMCID: PMC8166289 DOI: 10.14740/jocmr4474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 01/26/2023] Open
Abstract
Background Sepsis is a life-threatening dysregulated host response to infection responsible of multiple organs dysfunction (Sepsis-3 International Consensus Definition), during which clinical outcome is a balance between inflammation and immune suppression. Monocytes and lymphocytes may play an important role in immune paralysis, and their impaired functional activity can decrease overall immune system efficiency. We evaluated sepsis-induced changes in monocytes human leukocyte antigen-DR isotype (HLA-DR) expression and T cell capacity of interferon (IFN)-γ production in relation with patient’s clinical outcome. Methods Analysis of HLA-DR expression on blood monocytes (mHLA-DR) was performed in 55 patients with high procalcitonin (hPCT, > 0.5 ng/mL,) and suspected/confirmed sepsis, and 20 controls. HLA-DR absolute quantification and IFN-γ release assay were monitored in 16 septic patients for 4 weeks following sepsis confirmation. Results Cytofluorimetric analysis revealed a significant decrease of mHLA-DR percentage in septic patients with adverse outcome compared to patients with better clinical outcome (88.4% vs. 98.6% with P < 0.05), in combination with a significant decrease of absolute number of HLA-DR molecules per monocyte (P < 0.05, starting at 1 week of follow-up). Lymphocytes stimulation with phytohemagglutinin (PHA), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) showed a severe declining of IFN-γ release related to fatal clinical outcome of patients. Conclusions This immunologic anergy of innate and adaptative immunity showed an early immune paralysis during sepsis which appears correlated with the impairment of clinical outcome.
Collapse
Affiliation(s)
- Marilena Greco
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Aurora Mazzei
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, Lecce, Italy
| | - Salvatore Suppressa
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Claudio Palumbo
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, Lecce, Italy
| | - Giambattista Lobreglio
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| |
Collapse
|
146
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
147
|
Zhang C, Li D, Yu R, Li C, Song Y, Chen X, Fan Y, Liu Y, Qu X. Immune Landscape of Gastric Carcinoma Tumor Microenvironment Identifies a Peritoneal Relapse Relevant Immune Signature. Front Immunol 2021; 12:651033. [PMID: 34054812 PMCID: PMC8155484 DOI: 10.3389/fimmu.2021.651033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) still represents the third leading cause of cancer-related death worldwide. Peritoneal relapse (PR) is the most frequent metastasis occurring among patients with advanced gastric cancer. Increasingly more evidence have clarified the tumor immune microenvironment (TIME) may predict survival and have clinical significance in GC. However, tumor-transcriptomics based immune signatures derived from immune profiling have not been established for predicting the peritoneal recurrence of the advanced GC. Methods In this study, we depict the immune landscape of GC by using transcriptome profiling and clinical characteristics retrieved from GSE62254 of Gene Expression Omnibus (GEO). Immune cell infiltration score was evaluated via single-sample gene set enrichment (ssGSEA) analysis algorithm. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to select the valuable immune cells and construct the final model for the prediction of PR. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to check the accuracy of PRIs. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to explore the molecular pathways associated with PRIs. Results A peritoneal recurrence related immune score (PRIs) with 10 immune cells was constructed. Compared to the low-PRIs group, the high-PRIs group had a greater risk. The upregulation of the focal adhesion signaling was observed in the high-PRIs subtype by GSEA and KEGG. Multivariate analysis found that both in the internal training cohort and the internal validation cohort, PRIs was a stable and independent predictor for PR. A nomogram that integrated clinicopathological features and PRIs to predict peritoneal relapse was constructed. Subgroup analysis indicated that the PRIs could obviously distinguish peritoneal recurrence in different molecular subtypes, pathological stages and Lauren subtypes, in which PRIs of Epithelial-Mesenchymal Transitions (EMT) subtype, III-IV stage and diffuse subtype are higher respectively. Conclusion Overall, we performed a comprehensive evaluation of the immune landscape of GC and constructed a predictive PR model based on the immune cell infiltration. The PRIs represents novel promising feature of predicting peritoneal recurrence of GC and sheds light on the improvement of the personalized management of GC patients after surgery.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ruoxi Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yujia Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xi Chen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
148
|
Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity 2021; 54:885-902. [PMID: 33979586 DOI: 10.1016/j.immuni.2021.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Tumor cells metastasize to distant organs through a complex series of events that are driven by tumor intrinsic and extrinsic factors. In particular, non-malignant stromal cells, including immune cells, modify tumor metastatic behavior. Of these cells, tumor-associated innate immune cells, particularly macrophages and neutrophils, suppress the cytotoxic activity of innate and adaptive killer cells and interact with tumor cells to promote their growth and malignancy. These findings in mouse cancer models suggest that targeting these sub-populations of immune cells holds therapeutic promise in treating metastatic disease. In this review, we describe the origin and role of the macrophages, neutrophils, and their progenitors in the metastatic cascade and suggest strategies that might enhance cancer therapy.
Collapse
Affiliation(s)
- Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
149
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
150
|
Li Z, Yu B, Qi F, Li F. KIF11 Serves as an Independent Prognostic Factor and Therapeutic Target for Patients With Lung Adenocarcinoma. Front Oncol 2021; 11:670218. [PMID: 33968780 PMCID: PMC8103954 DOI: 10.3389/fonc.2021.670218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is challenging in clinical practice due to the poor understanding of molecular mechanisms and limited therapeutic targets. Herein, the work aimed to use bioinformatics to identify a promising molecular target for LUAD therapy. Methods Differentially expressed genes (DEGs) from the Cancer Genome Atlas (TCGA) dataset were used for a weighted gene co-expression network analysis (WGCNA) to screen the hub gene. After a prognostic estimation with meta-analysis and COX regression analysis, we performed a function analysis on the corresponding gene. The ESTIMATE and CIBERSORT methods were adopted to analyze the association of the hub gene with the tumor microenvironment (TME). A cohort of functional assays was conducted to establish the functional roles of the hub gene in A549 and PC-9 cells. Results Our screen identified KIF11 as a prognostic factor, which indicated the poor overall survival and the worse progression-free survival in LUAD patients. Additionally, KIF11 was primarily involved in cell cycle, TME alteration and tumor-infiltrating immune cells proportions. KIF11 knockdown exerted inhibitory effects on cell proliferation, migration, and invasion. Results of the flow cytometry analysis revealed that KIF11 knockdown induced a G2/M phase arrest and improved apoptosis in LUAD cells. Conclusions KIF11 is essential for LUAD cell proliferation and metastasis, and it may serve as an independent prognostic factor as well as a promising therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bingxin Yu
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, China
| | - Fangyuan Qi
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|