101
|
Polyubiquitin and ubiquitin-like signals share common recognition sites on proteasomal subunit Rpn1. J Biol Chem 2021; 296:100450. [PMID: 33617881 PMCID: PMC8008175 DOI: 10.1016/j.jbc.2021.100450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Proteasome-mediated substrate degradation is an essential process that relies on the coordinated actions of ubiquitin (Ub), shuttle proteins containing Ub-like (UBL) domains, and the proteasome. Proteinaceous substrates are tagged with polyUb and shuttle proteins, and these signals are then recognized by the proteasome, which subsequently degrades the substrate. To date, three proteasomal receptors have been identified, as well as multiple shuttle proteins and numerous types of polyUb chains that signal for degradation. While the components of this pathway are well-known, our understanding of their interplay is unclear—especially in the context of Rpn1, the largest proteasomal subunit. Here, using nuclear magnetic resonance (NMR) spectroscopy in combination with competition assays, we show that Rpn1 associates with UBL-containing proteins and polyUb chains, while exhibiting a preference for shuttle protein Rad23. Rpn1 appears to contain multiple Ub/UBL-binding sites, theoretically as many as one for each of its hallmark proteasome/cyclosome repeats. Remarkably, we also find that binding sites on Rpn1 can be shared among Ub and UBL species, while proteasomal receptors Rpn1 and Rpn10 can compete with each other for binding of shuttle protein Dsk2. Taken together, our results rule out the possibility of exclusive recognition sites on Rpn1 for individual Ub/UBL signals and further emphasize the complexity of the redundancy-laden proteasomal degradation pathway.
Collapse
|
102
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
103
|
Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis 2021; 12:120. [PMID: 33483467 PMCID: PMC7822931 DOI: 10.1038/s41419-020-03361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitylation and deubiquitylation play a pivotal role in protein homeostasis (proteostasis). Proteostasis shapes the proteome landscape in the human brain and its impairment is linked to neurodevelopmental and neurodegenerative disorders. Here we discuss the emerging roles of deubiquitylating enzymes in neuronal function and survival. We provide an updated perspective on the genetics, physiology, structure, and function of deubiquitylases in neuronal health and disease. ![]()
Collapse
|
104
|
Krämer L, Groh C, Herrmann JM. The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett 2020; 595:1223-1238. [PMID: 33249599 DOI: 10.1002/1873-3468.14010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 01/06/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and subsequently translocated as unfolded polypeptides into mitochondria. Cytosolic chaperones maintain precursor proteins in an import-competent state. This post-translational import reaction is under surveillance of the cytosolic ubiquitin-proteasome system, which carries out several distinguishable activities. On the one hand, the proteasome degrades nonproductive protein precursors from the cytosol and nucleus, import intermediates that are stuck in mitochondrial translocases, and misfolded or damaged proteins from the outer membrane and the intermembrane space. These surveillance activities of the proteasome are essential for mitochondrial functionality, as well as cellular fitness and survival. On the other hand, the proteasome competes with mitochondria for nonimported cytosolic precursor proteins, which can compromise mitochondrial biogenesis. In order to balance the positive and negative effects of the cytosolic protein quality control system on mitochondria, mitochondrial import efficiency directly regulates the capacity of the proteasome via transcription factor Rpn4 in yeast and nuclear respiratory factor (Nrf) 1 and 2 in animal cells. In this review, we provide a thorough overview of how the proteasome regulates mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lena Krämer
- Cell Biology, University of Kaiserslautern, Germany
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, Germany
| | | |
Collapse
|
105
|
Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski MP, Easton A, Gygi SP, Kurz T, Monteiro MJ, Brown EJ, Finley D. Global proteomics of Ubqln2-based murine models of ALS. J Biol Chem 2020; 296:100153. [PMID: 33277362 PMCID: PMC7873701 DOI: 10.1074/jbc.ra120.015960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2.
Collapse
Affiliation(s)
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marissa Ashton
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Dominguez
- Department of Neuroscience, Genentech Inc, South San Francisco, California, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, South San Francisco, California, USA
| | - Hai Ngu
- Department of Pathology, Genentech Inc, South San Francisco, California, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Easton
- Department of Neuroscience, Genentech Inc, South San Francisco, California, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thimo Kurz
- Henry Wellcome Lab of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Eric J Brown
- Department of Immunology and Infectious Diseases, Genentech Inc, South San Francisco, California, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
106
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
107
|
Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Mol Cell 2020; 80:796-809.e9. [PMID: 33156996 PMCID: PMC7718437 DOI: 10.1016/j.molcel.2020.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/13/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sean O Crowe
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather A Bisbee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Robert G Guenette
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
108
|
Chen X, Dorris Z, Shi D, Huang RK, Khant H, Fox T, de Val N, Williams D, Zhang P, Walters KJ. Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Structure 2020; 28:1206-1217.e4. [PMID: 32783951 PMCID: PMC7642156 DOI: 10.1016/j.str.2020.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
The 26S proteasome is specialized for regulated protein degradation and formed by a dynamic regulatory particle (RP) that caps a hollow cylindrical core particle (CP) where substrates are proteolyzed. Its diverse substrates unify as proteasome targets by ubiquitination. We used cryogenic electron microscopy (cryo-EM) to study how human 26S proteasome interacts with M1-linked hexaubiquitin (M1-Ub6) unanchored to a substrate and E3 ubiquitin ligase E6AP/UBE3A. Proteasome structures are available with model substrates extending through the RP ATPase ring and substrate-conjugated K63-linked ubiquitin chains present at inhibited deubiquitinating enzyme hRpn11 and the nearby ATPase hRpt4/hRpt5 coiled coil. In this study, we find M1-Ub6 at the hRpn11 site despite the absence of conjugated substrate, indicating that ubiquitin binding at this location does not require substrate interaction with the RP. Moreover, unanchored M1-Ub6 binds to this hRpn11 site of the proteasome with the CP gating residues in both the closed and opened conformational states.
Collapse
Affiliation(s)
- Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zachary Dorris
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Frederick High School, Frederick, MD 21702, USA
| | - Dan Shi
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rick K Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Htet Khant
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD 21701, USA
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, AZ 85287, USA
| | - Ping Zhang
- Kinase Complexes Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
109
|
Wang D, Ma H, Zhao Y, Zhao J. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases. J Cell Physiol 2020; 236:3396-3405. [PMID: 33135160 DOI: 10.1002/jcp.30124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Ubiquitin-specific protease 14 (USP14) is a ubiquitin-specific protease that is associated with the proteasome and plays important roles in cellular functions, viral infection, inflammatory responses, neurodegenerative diseases, and tumorigenesis. USP14 appears to have a dual function in regulating intracellular proteolytic degradation. USP14 impedes degradation of ubiquitinated proteins by removing ubiquitin chains from its substrates, while it could promote protein degradation via increasing proteasome activation. Increasing evidence has shown that USP14 is also involved in the regulation of autophagy. Thus, USP14 might act as a key regulator in two major intracellular proteolytic pathways: the ubiquitin-proteasome system (UPS) and autophagy. The important roles of USP14 in multiple diseases have encouraged the development of clinically viable USP14 antagonists. This review summarizes the current state of knowledge about the regulation of USP14 expression, activity, and its functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
110
|
Christiano R, Arlt H, Kabatnik S, Mejhert N, Lai ZW, Farese RV, Walther TC. A Systematic Protein Turnover Map for Decoding Protein Degradation. Cell Rep 2020; 33:108378. [PMID: 33176155 DOI: 10.1016/j.celrep.2020.108378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/01/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023] Open
Abstract
Protein degradation is mediated by an expansive and complex network of protein modification and degradation enzymes. Matching degradation enzymes with their targets and determining globally which proteins are degraded by the proteasome or lysosome/vacuole have been a major challenge. Furthermore, an integrated view of protein degradation for cellular pathways has been lacking. Here, we present an analytical platform that combines systematic gene deletions with quantitative measures of protein turnover to deconvolve protein degradation pathways for Saccharomyces cerevisiae. The resulting turnover map (T-MAP) reveals target candidates of nearly all E2 and E3 ubiquitin ligases and identifies the primary degradation routes for most proteins. We further mined this T-MAP to identify new substrates of ER-associated degradation (ERAD) involved in sterol biosynthesis and to uncover regulatory nodes for sphingolipid biosynthesis. The T-MAP approach should be broadly applicable to the study of other cellular processes, including mammalian systems.
Collapse
Affiliation(s)
- Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Henning Arlt
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonja Kabatnik
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02124, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Huang L, Zhang Y, Zheng J, Ni N, Qin Q, Huang X, Huang Y. Grouper ubiquitin-specific protease 14 promotes iridovirus replication through negatively regulating interferon response. FISH & SHELLFISH IMMUNOLOGY 2020; 105:253-262. [PMID: 32697961 DOI: 10.1016/j.fsi.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitin-specific protease 14 (USP14), one of the USP family members which belong to deubiquitinating enzymes (DUBs), plays a key role in maintaining cellular protein homeostasis by trimming ubiquitin chains from their substrates. However, the roles of USP14 in response to virus infection still remains largely unknown. In the current study, a USP14 homolog from orange spotted grouper (EcUSP14) was cloned and its roles in innate immune response were investigated. EcUSP14 was composed of 1479 base pairs encoding a 492-amino acid (aa) polypeptide. Sequence analysis indicated that EcUSP14 shared 96.14% and 81.30% identity to USP14 of bicolor damselfish (Stegastes partitus) and humans (homo sapiens), respectively. EcUSP14 contains conserved ubiquitin-like (UBL) domain (aa 3-76) and peptidase-C19A domain (aa 106-481). In response to Singapore grouper iridovirus (SGIV) infection in vitro, EcUSP14 was significantly up-regulated. Subcellular localization showed that EcUSP14 was predominantly localized in the cytoplasm of grouper spleen (GS) cells and mostly co-localized with the viral assembly sites after SGIV infection. The ectopic expression of EcUSP14 significantly promoted the replication of SGIV, as demonstrated by the accelerated progression of severity of cytopathic effect (CPE), the increased viral gene transcription and viral protein synthesis during infection. Consistently, treatment with IU1, a USP14 specific inhibitor, significantly inhibited the replication of SGIV, suggesting that USP14 function as a pro-viral factor during SGIV replication. Further analysis showed that EcUSP14 overexpression decreased the promoter activities of interferon (IFN)-1, IFN-3, IFN-stimulated response element (ISRE), and nuclear factor of kappa B (NF-κB). Furthermore, the ectopic expression of EcUSP14 decreased the activities of IFN-1 promoter evoked by TANK-binding kinase (TBK)-1 and melanoma differentiation-associated protein (MDA)-5, but not stimulator of interferon genes (STING). Thus, we speculated that EcUSP14 facilitated virus replication by negatively regulating the IFN response. Taken together, our results firstly demonstrated that fish USP14 functioned as a pro-viral factor by negatively regulating interferon response against virus infection.
Collapse
Affiliation(s)
- Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Na Ni
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
112
|
Bragança CE, Kraut DA. Mode of targeting to the proteasome determines GFP fate. J Biol Chem 2020; 295:15892-15901. [PMID: 32913119 DOI: 10.1074/jbc.ra120.015235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin-proteasome system is the canonical pathway for protein degradation in eukaryotic cells. GFP is frequently used as a reporter in proteasomal degradation assays. However, there are multiple variants of GFP in use, and these variants have different intrinsic stabilities. Further, there are multiple means by which substrates are targeted to the proteasome, and these differences could also affect the proteasome's ability to unfold and degrade substrates. Herein we investigate how the fate of GFP variants of differing intrinsic stabilities is determined by the mode of targeting to the proteasome. We compared two targeting systems: linear Ub4 degrons and the UBL domain from yeast Rad23, both of which are commonly used in degradation experiments. Surprisingly, the UBL degron allows for degradation of the most stable sGFP-containing substrates, whereas the Ub4 degron does not. Destabilizing the GFP by circular permutation allows degradation with either targeting signal, indicating that domain stability and mode of targeting combine to determine substrate fate. Difficult-to-unfold substrates are released and re-engaged multiple times, with removal of the degradation initiation region providing an alternative clipping pathway that precludes unfolding and degradation; the UBL degron favors degradation of even difficult-to-unfold substrates, whereas the Ub4 degron favors clipping. Finally, we show that the ubiquitin receptor Rpn13 is primarily responsible for the enhanced ability of the proteasome to degrade stable UBL-tagged substrates. Our results indicate that the choice of targeting method and reporter protein are critical to the design of protein degradation experiments.
Collapse
Affiliation(s)
| | - Daniel Adam Kraut
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, USA.
| |
Collapse
|
113
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
114
|
Impact of Losing hRpn13 Pru or UCHL5 on Proteasome Clearance of Ubiquitinated Proteins and RA190 Cytotoxicity. Mol Cell Biol 2020; 40:MCB.00122-20. [PMID: 32631902 DOI: 10.1128/mcb.00122-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023] Open
Abstract
hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. trRpn13 cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10). Previous studies indicated that the loss of full-length hRpn13 causes a corresponding reduction of UCHL5. We find UCHL5 levels unaltered in trRpn13 cells, but hRpn11 is elevated in ΔhRpn13 and trRpn13 cells, perhaps from cell stress. Despite the ∼90 DUBs in human cells, including two others in addition to UCHL5 at the proteasome, we found deletion of UCHL5 from HCT116 cells to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL5 activity cannot be fully assumed by other DUBs. We also report anticancer molecule RA190, which binds covalently to hRpn13 and UCHL5, to require hRpn13 Pru and not UCHL5 for cytotoxicity.
Collapse
|
115
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
116
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
117
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
118
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
119
|
Abstract
In this issue of Structure, Lu et al. (2020) describe an NMR-based study showing the proteasome ubiquitin receptor hRpn13 bound to an extended conformation of K48-diubiquitin that is different from previously described structures of K48-diubiquitin. Observed dynamic binding properties suggest an ability of substrates to hop between proteasome ubiquitin receptors.
Collapse
Affiliation(s)
- Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
120
|
A novel polyubiquitin chain linkage formed by viral Ubiquitin is resistant to host deubiquitinating enzymes. Biochem J 2020; 477:2193-2219. [PMID: 32478812 DOI: 10.1042/bcj20200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
The Baculoviridae family of viruses encode a viral Ubiquitin (vUb) gene. Though the vUb is homologous to the host eukaryotic Ubiquitin (Ub), its preservation in the viral genome indicates unique functions that are not compensated by the host Ub. We report the structural, biophysical, and biochemical properties of the vUb from Autographa californica multiple nucleo-polyhedrosis virus (AcMNPV). The packing of central helix α1 to the beta-sheet β1-β5 is different between vUb and Ub. Consequently, its stability is lower compared with Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin-binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54), and the deubiquitinating enzymes are ineffective against the K54-linked polyubiquitin chains. We propose that the modification of host/viral proteins with the K54-linked chains is an effective way selected by the virus to protect the vUb signal from host DeUbiquitinases.
Collapse
|
121
|
Tsuchiya H, Endo A, Saeki Y. Multi-Step Ubiquitin Decoding Mechanism for Proteasomal Degradation. Pharmaceuticals (Basel) 2020; 13:ph13060128. [PMID: 32585960 PMCID: PMC7344625 DOI: 10.3390/ph13060128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The 26S proteasome is a 2.5-MDa protease complex responsible for the selective and ATP-dependent degradation of ubiquitylated proteins in eukaryotic cells. Proteasome-mediated protein degradation accounts for ~70% of all cellular proteolysis under basal conditions, and thereby any dysfunction can lead to drastic changes in cell homeostasis. A major function of ubiquitylation is to target proteins for proteasomal degradation. Accompanied by deciphering the structural diversity of ubiquitin chains with eight linkages and chain lengths, the ubiquitin code for proteasomal degradation has been expanding beyond the best-characterized Lys48-linked ubiquitin chains. Whereas polyubiquitylated proteins can be directly recognized by the proteasome, in several cases, these proteins need to be extracted or segregated by the conserved ATPases associated with diverse cellular activities (AAA)-family ATPase p97/valosin-containing protein (VCP) complex and escorted to the proteasome by ubiquitin-like (UBL)–ubiquitin associated (UBA) proteins; these are called substrate-shuttling factors. Furthermore, proteasomes are highly mobile and are appropriately spatiotemporally regulated in response to different cellular environments and stresses. In this review, we highlight an emerging key link between p97, shuttling factors, and proteasome for efficient proteasomal degradation. We also present evidence that proteasome-containing nuclear foci form by liquid–liquid phase separation under acute hyperosmotic stress.
Collapse
|
122
|
Engen JR, Komives EA. Complementarity of Hydrogen/Deuterium Exchange Mass Spectrometry and Cryo-Electron Microscopy. Trends Biochem Sci 2020; 45:906-918. [PMID: 32487353 DOI: 10.1016/j.tibs.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022]
Abstract
Methodological improvements in both single particle cryo-electron microscopy (cryo-EM) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) mean that the two methods are being more frequently used together to tackle complex problems in structural biology. There are many benefits to this combination, including for the analysis of low-resolution density, for structural validation, in the analysis of individual proteins versus the same proteins in large complexes, studies of allostery, protein quality control during cryo-EM construct optimization, and in the study of protein movements/dynamics during function. As will be highlighted in this review, through careful considerations of potential sample and conformational heterogeneity, many joint studies have recently been demonstrated, and many future studies using this combination are anticipated.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
123
|
Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Biomolecules 2020; 10:E796. [PMID: 32455657 PMCID: PMC7278180 DOI: 10.3390/biom10050796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a large (~2.5 MDa) protein complex consisting of at least 33 different subunits and many other components, which form the ubiquitin proteasomal system (UPS), an ATP-dependent protein degradation system in the cell. UPS serves as an essential component of the cellular protein surveillance machinery, and its dysfunction leads to cancer, neurodegenerative and immunological disorders. Importantly, the functions and regulations of proteins are governed by the combination of ordered regions, intrinsically disordered protein regions (IDPRs) and molecular recognition features (MoRFs). The structure-function relationships of UPS components have not been identified completely; therefore, in this study, we have carried out the functional intrinsic disorder and MoRF analysis for potential neurodegenerative disease and anti-cancer targets of this pathway. Our report represents the presence of significant intrinsic disorder and disorder-based binding regions in several UPS proteins, such as extraproteasomal polyubiquitin receptors (UBQLN1 and UBQLN2), proteasome-associated polyubiquitin receptors (ADRM1 and PSMD4), deubiquitinating enzymes (DUBs) (ATXN3 and USP14), and ubiquitinating enzymes (E2 (UBE2R2) and E3 (STUB1) enzyme). We believe this study will have implications for the conformation-specific roles of different regions of these proteins. This will lead to a better understanding of the molecular basis of UPS-associated diseases.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Shivani K. Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Cientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| |
Collapse
|
124
|
Quinet G, Gonzalez-Santamarta M, Louche C, Rodriguez MS. Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy. Molecules 2020; 25:E2352. [PMID: 32443527 PMCID: PMC7288101 DOI: 10.3390/molecules25102352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Protein degradation is tightly regulated inside cells because of its utmost importance for protein homeostasis (proteostasis). The two major intracellular proteolytic pathways are the ubiquitin-proteasome and the autophagy-lysosome systems which ensure the fate of proteins when modified by various members of the ubiquitin family. These pathways are tightly interconnected by receptors and cofactors that recognize distinct chain architectures to connect with either the proteasome or autophagy under distinct physiologic and pathologic situations. The degradation of proteasome by autophagy, known as proteaphagy, plays an important role in this crosstalk since it favours the activity of autophagy in the absence of fully active proteasomes. Recently described in several biological models, proteaphagy appears to help the cell to survive when proteostasis is broken by the absence of nutrients or the excess of proteins accumulated under various stress conditions. Emerging evidence indicates that proteaphagy could be permanently activated in some types of cancer or when chemoresistance is observed in patients.
Collapse
Affiliation(s)
| | | | | | - Manuel S. Rodriguez
- ITAV-CNRS USR 3505 IPBS-UPS, 1 Place Pierre Potier, 31106 Toulouse, France; (G.Q.); (M.G.-S.); (C.L.)
| |
Collapse
|
125
|
AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Biomolecules 2020; 10:biom10040629. [PMID: 32325699 PMCID: PMC7226402 DOI: 10.3390/biom10040629] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate mechanical work that unfolds a substrate protein inside the central axial channel of ATPase ring for degradation. Three-dimensional visualizations of several AAA+ ATPase complexes in the act of substrate processing for protein degradation have been resolved at the atomic level thanks to recent technical advances in cryogenic electron microscopy (cryo-EM). Here, we summarize the resulting advances in structural and biochemical studies of AAA+ proteases in the process of proteolysis reactions, with an emphasis on cryo-EM structural analyses of the 26S proteasome, Cdc48/p97 and FtsH-like mitochondrial proteases. These studies reveal three highly conserved patterns in the structure–function relationship of AAA+ ATPase hexamers that were observed in the human 26S proteasome, thus suggesting common dynamic models of mechanochemical coupling during force generation and substrate translocation.
Collapse
|
126
|
Mat Nanyan NSB, Watanabe D, Sugimoto Y, Takagi H. Effect of the deubiquitination enzyme gene UBP6 on the stress-responsive transcription factor Msn2-mediated control of the amino acid permease Gnp1 in yeast. J Biosci Bioeng 2020; 129:423-427. [DOI: 10.1016/j.jbiosc.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/08/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
|
127
|
Abstract
Many proteins in the cell are tagged with a polyubiquitin chain, which serves as a recognition signal for degradation by the proteasome. Some tagged substrates bind directly to the proteasome, but others are delivered through shuttling factors. Yeast Ddi1 and its homologs in other eukaryotic cells have protein domains typical of shuttling factors, but they also contain a predicted protease domain that is related to those in retroviral proteases. This paper shows that Ddi1 is a ubiquitin-dependent protease, which cleaves substrate proteins only when they are tagged with long ubiquitin chains. Ddi1 is the only known endoprotease besides the proteasome that cleaves polyubiquitinated substrates. Ddi1 might prevent the excessive accumulation of polyubiquitinated proteins in cells. The Saccharomyces cerevisiae protein Ddi1 and its homologs in higher eukaryotes have been proposed to serve as shuttling factors that deliver ubiquitinated substrates to the proteasome. Although Ddi1 contains both ubiquitin-interacting UBA and proteasome-interacting UBL domains, the UBL domain is atypical, as it binds ubiquitin. Furthermore, unlike other shuttling factors, Ddi1 and its homologs contain a conserved helical domain (helical domain of Ddi1, HDD) and a retroviral-like protease (RVP) domain. The RVP domain is probably responsible for cleavage of the precursor of the transcription factor Nrf1 in higher eukaryotes, which results in the up-regulation of proteasomal subunit genes. However, enzymatic activity of the RVP domain has not yet been demonstrated, and the function of Ddi1 remains poorly understood. Here, we show that Ddi1 is a ubiquitin-dependent protease, which cleaves substrate proteins only when they are tagged with long ubiquitin chains (longer than about eight ubiquitins). The RVP domain is inactive in isolation, in contrast to its retroviral counterpart. Proteolytic activity of Ddi1 requires the HDD domain and is stimulated by the UBL domain, which mediates high-affinity interaction with the polyubiquitin chain. Compromising the activity of Ddi1 in yeast cells results in the accumulation of polyubiquitinated proteins. Aside from the proteasome, Ddi1 is the only known endoprotease that acts on polyubiquitinated substrates. Ddi1 and its homologs likely cleave polyubiquitinated substrates under conditions where proteasome function is compromised.
Collapse
|
128
|
Willis SD, Hanley SE, Beishke T, Tati PD, Cooper KF. Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation. Mol Biol Cell 2020; 31:1015-1031. [PMID: 32160104 PMCID: PMC7346723 DOI: 10.1091/mbc.e19-11-0622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Environmental stress elicits well-orchestrated programs that either restore cellular homeostasis or induce cell death depending on the insult. Nutrient starvation triggers the autophagic pathway that requires the induction of several Autophagy (ATG) genes. Cyclin C-cyclin-dependent kinase (Cdk8) is a component of the RNA polymerase II Mediator complex that predominantly represses the transcription of stress-responsive genes in yeast. To relieve this repression following oxidative stress, cyclin C translocates to the mitochondria where it induces organelle fragmentation and promotes cell death prior to its destruction by the ubiquitin-proteasome system (UPS). Here we report that cyclin C-Cdk8, together with the Ume6-Rpd3 histone deacetylase complex, represses the essential autophagy gene ATG8. Similar to oxidative stress, cyclin C is destroyed by the UPS following nitrogen starvation. Removing this repression is important as deleting CNC1 allows enhanced cell growth under mild starvation. However, unlike oxidative stress, cyclin C is destroyed prior to its cytoplasmic translocation. This is important as targeting cyclin C to the mitochondria induces both mitochondrial fragmentation and cell death following nitrogen starvation. These results indicate that cyclin C destruction pathways are fine tuned depending on the stress and that its terminal subcellular address influences the decision between initiating cell death or cell survival pathways.
Collapse
Affiliation(s)
- Stephen D Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Sara E Hanley
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Thomas Beishke
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Prasanna D Tati
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
129
|
Lu X, Ebelle DL, Matsuo H, Walters KJ. An Extended Conformation for K48 Ubiquitin Chains Revealed by the hRpn2:Rpn13:K48-Diubiquitin Structure. Structure 2020; 28:495-506.e3. [PMID: 32160516 DOI: 10.1016/j.str.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Rpn13/Adrm1 is recruited to the proteasome by PSMD1/Rpn2, where it serves as a substrate receptor that binds preferentially to K48-linked ubiquitin chains, an established signal for protein proteolysis. Here, we use NMR to solve the structure of hRpn13 Pru:hRpn2 (940-953):K48-diubiquitin. Surprisingly, hRpn2-bound hRpn13 selects a dynamic, extended conformation of K48-diubiquitin that is unique from previously determined structures. NMR experiments on free K48-diubiquitin demonstrate the presence of the reported "closed" conformation observed by crystallography, but also this more extended state, in which the hRpn13-binding surface is exposed. This extended K48-diubiquitin conformation is defined by interactions between L73 from G76-linked (distal) ubiquitin and a Y59-centered surface of K48-linked (proximal) ubiquitin. Furthermore, hRpn13 exchanges between the two ubiquitins within 100 ms, although prefers the proximal ubiquitin due to interactions with the K48 linker region. Altogether, these data lead to a revised model of how ubiquitinated substrates interact with the proteasome.
Collapse
Affiliation(s)
- Xiuxiu Lu
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
130
|
Buel GR, Chen X, Chari R, O'Neill MJ, Ebelle DL, Jenkins C, Sridharan V, Tarasov SG, Tarasova NI, Andresson T, Walters KJ. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Nat Commun 2020; 11:1291. [PMID: 32157086 PMCID: PMC7064531 DOI: 10.1038/s41467-020-15073-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/15/2020] [Indexed: 12/16/2022] Open
Abstract
Regulated proteolysis by proteasomes involves ~800 enzymes for substrate modification with ubiquitin, including ~600 E3 ligases. We report here that E6AP/UBE3A is distinguished from other E3 ligases by having a 12 nM binding site at the proteasome contributed by substrate receptor hRpn10/PSMD4/S5a. Intrinsically disordered by itself, and previously uncharacterized, the E6AP-binding domain in hRpn10 locks into a well-defined helical structure to form an intermolecular 4-helix bundle with the E6AP AZUL, which is unique to this E3. We thus name the hRpn10 AZUL-binding domain RAZUL. We further find in human cells that loss of RAZUL by CRISPR-based gene editing leads to loss of E6AP at proteasomes. Moreover, proteasome-associated ubiquitin is reduced following E6AP knockdown or displacement from proteasomes, suggesting that E6AP ubiquitinates substrates at or for the proteasome. Altogether, our findings indicate E6AP to be a privileged E3 for the proteasome, with a dedicated, high affinity binding site contributed by hRpn10.
Collapse
Affiliation(s)
- Gwen R Buel
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Maura J O'Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Danielle L Ebelle
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Conor Jenkins
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vinidhra Sridharan
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Sergey G Tarasov
- Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Nadya I Tarasova
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
131
|
Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proc Natl Acad Sci U S A 2020; 117:4664-4674. [PMID: 32071216 DOI: 10.1073/pnas.1915534117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During protein degradation by the ubiquitin-proteasome pathway, latent 26S proteasomes in the cytosol must assume an active form. Proteasomes are activated when ubiquitylated substrates bind to them and interact with the proteasome-bound deubiquitylase Usp14/Ubp6. The resulting increase in the proteasome's degradative activity was recently shown to be mediated by Usp14's ubiquitin-like (Ubl) domain, which, by itself, can trigger proteasome activation. Many other proteins with diverse cellular functions also contain Ubl domains and can associate with 26S proteasomes. We therefore tested if various Ubl-containing proteins that have important roles in protein homeostasis or disease also activate 26S proteasomes. All seven Ubl-containing proteins tested-the shuttling factors Rad23A, Rad23B, and Ddi2; the deubiquitylase Usp7, the ubiquitin ligase Parkin, the cochaperone Bag6, and the protein phosphatase UBLCP1-stimulated peptide hydrolysis two- to fivefold. Rather than enhancing already active proteasomes, Rad23B and its Ubl domain activated previously latent 26S particles. Also, Ubl-containing proteins (if present with an unfolded protein) increased proteasomal adenosine 5'-triphosphate (ATP) hydrolysis, the step which commits substrates to degradation. Surprisingly, some of these proteins also could stimulate peptide hydrolysis even when their Ubl domains were deleted. However, their Ubl domains were required for the increased ATPase activity. Thus, upon binding to proteasomes, Ubl-containing proteins not only deliver substrates (e.g., the shuttling factors) or provide additional enzymatic activities (e.g., Parkin) to proteasomes, but also increase their capacity for proteolysis.
Collapse
|
132
|
Gupta I, Khan S. The recognition of proteasomal receptors by Plasmodium falciparum DSK2. Mol Biochem Parasitol 2020; 236:111266. [PMID: 32057831 DOI: 10.1016/j.molbiopara.2020.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/26/2022]
Abstract
One of the pathways by which proteins are targeted for degradation by the proteasome involve transport by shuttle proteins to proteasomal receptors. The malaria parasite Plasmodium falciparum has recently been found to possess a similar pathway, with the shuttle protein PfDsk2 being the major player. In this study, we have demonstrated how PfDsk2 and its recognition by proteasomal receptors differ from the mammalian system. Our crystal structure of unbound PfDsk2 UBL domain at 1.30 Å revealed an additional 310-helix compared to the human homolog, as well as a few significant differences in its putative binding interface with the proteasome receptors, PfRpn10 and PfRpn13. Moreover, the non-binding face of UBL showed a reversal of surface charge compared to HsDsk2 shuttle protein, instead resembling HOIL-like E3 ligase UBL domain. The affinity of the interaction with the proteasomal receptors remained similar to the human system, and dissociation constants of the same order of magnitude. On the other hand, we have found evidence of a novel interaction between PfRpn13DEUBAD with the PfDsk2UBL suggesting that PfDsk2 may work in cooperation with deubiquitinating enzymes for proofreading ubiquitinated substrates. Our study provides the first molecular look at shuttle proteins in Apicomplexan parasites and hints at how their interaction landscape might be broader than what we may expect.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India; Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121001, India
| | - Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
133
|
Chen X, Ji B, Hao X, Li X, Eisele F, Nyström T, Petranovic D. FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun 2020; 11:867. [PMID: 32054832 PMCID: PMC7018843 DOI: 10.1038/s41467-020-14525-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-β peptides (Aβ) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aβ42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aβ42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aβ42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Xiaowei Li
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| |
Collapse
|
134
|
The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun 2020; 11:477. [PMID: 31980598 PMCID: PMC6981147 DOI: 10.1038/s41467-019-13906-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2019] [Indexed: 01/28/2023] Open
Abstract
Proteins are targeted to the proteasome by the attachment of ubiquitin chains, which are markedly varied in structure. Three proteasome subunits–Rpn10, Rpn13, and Rpn1–can recognize ubiquitin chains. Here we report that proteins with single chains of K48-linked ubiquitin are targeted for degradation almost exclusively through binding to Rpn10. Rpn1 can act as a co-receptor with Rpn10 for K63 chains and for certain other chain types. Differences in targeting do not correlate with chain affinity to receptors. Surprisingly, in steady-state assays Rpn13 retarded degradation of various single-chain substrates. Substrates with multiple short ubiquitin chains can be presented for degradation by any of the known receptors, whereas those targeted to the proteasome through a ubiquitin-like domain are degraded most efficiently when bound by Rpn13 or Rpn1. Thus, the proteasome provides an unexpectedly versatile binding platform that can recognize substrates targeted for degradation by ubiquitin chains differing greatly in length and topology. Ubiquitylated proteins are degraded by the proteasome and the three proteasome subunits Rpn10, Rpn13 and Rpn1 recognize ubiquitin chains. Here the authors employ biochemical and kinetic assays and characterise the ubiquitin chain type specificities of these three ubiquitin receptors.
Collapse
|
135
|
Sui X, Li YM. Development of Ubiquitin Tools for Studies of Complex Ubiquitin Processing Protein Machines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191113161511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Ubiquitination is one of the most extensive post-translational modifications in
eukaryotes and is involved in various physiological processes such as protein degradation,
autophagy, protein interaction, and protein localization. The ubiquitin (Ub)-related protein
machines include Ub-activating enzymes (E1s), Ub-conjugating enzymes (E2s), Ub ligases
(E3s), deubiquitinating enzymes (DUBs), p97, and the proteasomes. In recent years,
the role of DUBs has been extensively studied and relatively well understood. On the
other hand, the functional mechanisms of the other more complex ubiquitin-processing
protein machines (e.g., E3, p97, and proteasomes) are still to be sufficiently well explored
due to their intricate nature. One of the hurdles facing the studies of these complex protein
machines is the challenge of developing tailor-designed structurally defined model substrates,
which unfortunately cannot be directly obtained using recombinant technology. Consequently, the acquisition
and synthesis of the ubiquitin tool molecules are essential for the elucidation of the functions and
structures of the complex ubiquitin-processing protein machines. This paper aims to highlight recent studies on
these protein machines based on the synthetic ubiquitin tool molecules.
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
136
|
Boughton AJ, Krueger S, Fushman D. Branching via K11 and K48 Bestows Ubiquitin Chains with a Unique Interdomain Interface and Enhanced Affinity for Proteasomal Subunit Rpn1. Structure 2020; 28:29-43.e6. [PMID: 31677892 PMCID: PMC6996796 DOI: 10.1016/j.str.2019.10.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023]
Abstract
Post-translational substrate modification with ubiquitin is essential for eukaryotic cellular signaling. Polymeric ubiquitin chains are assembled with specific architectures, which convey distinct signaling outcomes depending on the linkages involved. Recently, branched K11/K48-linked polyubiquitins were shown to enhance proteasomal degradation during mitosis. To better understand the underlying structural mechanisms, we determined the crystal and NMR structures of branched K11/K48-linked tri-ubiquitin and discovered a previously unobserved interdomain interface between the distal ubiquitins. Small-angle neutron scattering and site-directed mutagenesis corroborated the presence of this interface, which we hypothesized to be influential in the physiological role of branched K11/K48-linked chains. Yet, experiments probing polyubiquitin interactions-deubiquitination assays, binding to proteasomal shuttle hHR23A-showed negligible differences between branched K11/K48-linked tri-ubiquitin and related di-ubiquitins. However, significantly stronger binding affinity for branched K11/K48-linked tri-ubiquitin was observed with proteasomal subunit Rpn1, thereby suggesting a functional impact of this interdomain interface and pinpointing the mechanistic site of enhanced degradation.
Collapse
Affiliation(s)
- Andrew J Boughton
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Susan Krueger
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
137
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
138
|
Getting Close: Insight into the Structure and Function of K11/K48-Branched Ubiquitin Chains. Structure 2020; 28:1-3. [DOI: 10.1016/j.str.2019.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
139
|
Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Proc Natl Acad Sci U S A 2019; 117:328-336. [PMID: 31843888 DOI: 10.1073/pnas.1912531117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle. Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry, we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity, impairs cell proliferation, and causes oxidative stress as well as mitochondrial dysfunction. A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation, while its level is reversibly controlled by the proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-S361 phosphorylation is required for proper assembly of the 26S proteasome, and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2, 1 of the first steps of 19S base assembly. These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.
Collapse
|
140
|
Adegoke OAJ, Beatty BE, Kimball SR, Wing SS. Interactions of the super complexes: When mTORC1 meets the proteasome. Int J Biochem Cell Biol 2019; 117:105638. [PMID: 31678320 PMCID: PMC6910232 DOI: 10.1016/j.biocel.2019.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/30/2022]
Abstract
Homeostatic regulation of energy and metabolic status requires that anabolic and catabolic signaling pathways be precisely regulated and coordinated. Mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a mega protein complex that promotes energy-consuming anabolic processes of protein and nucleic acid synthesis as well lipogenesis in times of energy and nutrient abundance. However, it is best characterized as the regulator of steps leading to protein synthesis. The ubiquitin-proteasome proteolytic system (UPS) is a major intracellular proteolytic system whose activity is increased during periods of nutrient scarcity and in muscle wasting conditions such as cachexia. Recent studies have examined the impact of mTORC1 on levels and functions of the 26S proteasome, the mega protease complex of the UPS. Here we first briefly review current understanding of the regulation of mTORC1, the UPS, and the 26S proteasome complex. We then review evidence of the effect of each complex on the abundance and functions of the other. Given the fact that drugs that inhibit either complex are either in clinical trials or are approved for treatment of cancer, a muscle wasting condition, we identify studying the effect of combinatory mTORC1-proteasome inhibition on skeletal muscle mass and health as a critical area requiring investigation.
Collapse
Affiliation(s)
- Olasunkanmi A J Adegoke
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada.
| | - Brendan E Beatty
- School of Kinesiology and Health Science, and Muscle Health Research Centre, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Simon S Wing
- Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, the Montreal Diabetes Research Centre, Montréal, Quebec, H4A 3J1. Canada
| |
Collapse
|
141
|
Greene ER, Dong KC, Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Curr Opin Struct Biol 2019; 61:33-41. [PMID: 31783300 DOI: 10.1016/j.sbi.2019.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
The 26S proteasome is the essential compartmental protease in eukaryotic cells required for the ubiquitin-dependent clearance of damaged polypeptides and obsolete regulatory proteins. Recently, a combination of high-resolution structural, biochemical, and biophysical studies has provided crucial new insights into the mechanisms of this fascinating molecular machine. A multitude of new cryo-electron microscopy structures provided snapshots of the proteasome during ATP-hydrolysis-driven substrate translocation, and detailed biochemical studies revealed the timing of individual degradation steps, elucidating the mechanisms for substrate selection and the commitment to degradation through conformational transitions. It was uncovered how ubiquitin removal from substrates is mechanically coupled to degradation, and cryo-electron tomography studies gave a glimpse of active proteasomes inside the cell, their subcellular localization, and interactions with protein aggregates. Here, we summarize these advances in our mechanistic understanding of the proteasome, with a particular focus on how its structural features and conformational transitions enable the multi-step degradation process.
Collapse
Affiliation(s)
- Eric R Greene
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
142
|
Tan Y, Jin Y, Wu X, Ren Z. PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism. BMC Mol Biol 2019; 20:24. [PMID: 31703613 PMCID: PMC6842266 DOI: 10.1186/s12867-019-0141-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
Background Obesity and nonalcoholic steatohepatitis (NASH) are well-known risk factors of hepatocellular carcinoma (HCC). The lipid-rich environment enhances the proliferation and metastasis abilities of tumor cells. Previous studies showed the effect of the ubiquitin–proteasome system (UPS) on tumor cell proliferation. However, the underlying mechanism of UPS in regulating the proliferation of lipid-rich tumor cells is not totally clear. Results Here, we identify two proteasome 26S subunits, non-ATPase 1 and 2 (PSMD1 and PSMD2), which regulate HepG2 cells proliferation via modulating cellular lipid metabolism. Briefly, the knockdown of PSMD1 and/or PSMD2 decreases the formation of cellular lipid droplets, the provider of the energy and membrane components for tumor cell proliferation. Mechanically, PSMD1 and PSMD2 regulate the expression of genes related to de novo lipid synthesis via p38-JNK and AKT signaling. Moreover, the high expression of PSMD1 and PSMD2 is significantly correlated with poor prognosis of HCC. Conclusion We demonstrate that PSMD1 and PSMD2 promote the proliferation of HepG2 cells via facilitating cellular lipid droplet accumulation. This study provides a potential therapeutic strategy for the treatment of lipid-rich tumors.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Jin
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,Bio-Medical Center of Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
143
|
Cundiff MD, Hurley CM, Wong JD, Boscia JA, Bashyal A, Rosenberg J, Reichard EL, Nassif ND, Brodbelt JS, Kraut DA. Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Sci Rep 2019; 9:14506. [PMID: 31601863 PMCID: PMC6787058 DOI: 10.1038/s41598-019-50857-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/05/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is responsible for the bulk of protein degradation in eukaryotic cells, but the factors that cause different substrates to be unfolded and degraded to different extents are still poorly understood. We previously showed that polyubiquitinated substrates were degraded with greater processivity (with a higher tendency to be unfolded and degraded than released) than ubiquitin-independent substrates. Thus, even though ubiquitin chains are removed before unfolding and degradation occur, they affect the unfolding of a protein domain. How do ubiquitin chains activate the proteasome’s unfolding ability? We investigated the roles of the three intrinsic proteasomal ubiquitin receptors - Rpn1, Rpn10 and Rpn13 - in this activation. We find that these receptors are required for substrate-mediated activation of the proteasome’s unfolding ability. Rpn13 plays the largest role, but there is also partial redundancy between receptors. The architecture of substrate ubiquitination determines which receptors are needed for maximal unfolding ability, and, in some cases, simultaneous engagement of ubiquitin by multiple receptors may be required. Our results suggest physical models for how ubiquitin receptors communicate with the proteasomal motor proteins.
Collapse
Affiliation(s)
- Mary D Cundiff
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.,Department of Biological Sciences, Carnegie Mellon University, Mellon Institute of Industrial Research, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Christina M Hurley
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Jeremy D Wong
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Joseph A Boscia
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jake Rosenberg
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Eden L Reichard
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.,Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA, 18015, USA
| | - Nicholas D Nassif
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.,Bronx-Lebanon Hospital Center, 1650 Grand Concourse, Bronx, NY, 10457, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Daniel A Kraut
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
144
|
Galves M, Rathi R, Prag G, Ashkenazi A. Ubiquitin Signaling and Degradation of Aggregate-Prone Proteins. Trends Biochem Sci 2019; 44:872-884. [DOI: 10.1016/j.tibs.2019.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
|
145
|
Abstract
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.
Collapse
|
146
|
Coll-Martínez B, Crosas B. How the 26S Proteasome Degrades Ubiquitinated Proteins in the Cell. Biomolecules 2019; 9:biom9090395. [PMID: 31443414 PMCID: PMC6770211 DOI: 10.3390/biom9090395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023] Open
Abstract
The 26S proteasome is the central element of proteostasis regulation in eukaryotic cells, it is required for the degradation of protein factors in multiple cellular pathways and it plays a fundamental role in cell stability. The main aspects of proteasome mediated protein degradation have been highly (but not totally) described during three decades of intense cellular, molecular, structural and chemical biology research and tool development. Contributions accumulated within this time lapse allow researchers today to go beyond classical partial views of the pathway, and start generating almost complete views of how the proteasome acts inside the cell. These views have been recently reinforced by cryo-electron microscopy and mechanistic works that provide from landscapes of proteasomal populations distributed in distinct intracellular contexts, to detailed shots of each step of the process of degradation of a given substrate, of the factors that regulate it, and precise measurements of the speed of degradation. Here, we present an updated digest of the most recent developments that significantly contribute in our understanding of how the 26S proteasome degrades hundreds of ubiquitinated substrates in multiple intracellular environments.
Collapse
Affiliation(s)
- Bernat Coll-Martínez
- Department of Cell Biology, Institute of Molecular Biology of Barcelona (IBMB), Consejo Superior de investigaciones Científicas (CSIC), Baldiri i Reixac 4-10, 08028 Barcelona, Spain
- Institut Químic de Sarrià (IQS), School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Bernat Crosas
- Department of Cell Biology, Institute of Molecular Biology of Barcelona (IBMB), Consejo Superior de investigaciones Científicas (CSIC), Baldiri i Reixac 4-10, 08028 Barcelona, Spain.
| |
Collapse
|
147
|
Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Front Mol Biosci 2019; 6:48. [PMID: 31380390 PMCID: PMC6646590 DOI: 10.3389/fmolb.2019.00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Intracellular protein synthesis, folding, and degradation are tightly controlled processes to ensure proper protein homeostasis. The proteasome is responsible for the degradation of the majority of intracellular proteins, which are often targeted for degradation via polyubiquitination. However, the degradation rate of proteins is also affected by the capacity of proteasomes to recognize and degrade these substrate proteins. This capacity is regulated by a variety of proteasome modulations including (1) changes in complex composition, (2) post-translational modifications, and (3) altered transcription of proteasomal subunits and activators. Various diseases are linked to proteasome modulation and altered proteasome function. A better understanding of these modulations may offer new perspectives for therapeutic intervention. Here we present an overview of these three proteasome modulating mechanisms to give better insight into the diversity of proteasomes.
Collapse
Affiliation(s)
- Suzan Kors
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
148
|
Muli CS, Tian W, Trader DJ. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Chembiochem 2019; 20:1739-1753. [PMID: 30740849 PMCID: PMC6765334 DOI: 10.1002/cbic.201900017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Cells need to synthesize and degrade proteins consistently. Maintaining a balanced level of protein in the cell requires a carefully controlled system and significant energy. Degradation of unwanted or damaged proteins into smaller peptide units can be accomplished by the proteasome. The proteasome is composed of two main subunits. The first is the core particle (20S CP), and within this core particle are three types of threonine proteases. The second is the regulatory complex (19S RP), which has a myriad of activities including recognizing proteins marked for degradation and shuttling the protein into the 20S CP to be degraded. Small-molecule inhibitors of the 20S CP have been developed and are exceptional treatments for multiple myeloma (MM). 20S CP inhibitors disrupt the protein balance, leading to cellular stress and eventually to cell death. Unfortunately, the 20S CP inhibitors currently available have dose-limiting off-target effects and resistance can be acquired rapidly. Herein, we discuss small molecules that have been discovered to interact with the 19S RP subunit or with a protein closely associated with 19S RP activity. These molecules still elicit their toxicity by preventing the proteasome from degrading proteins, but do so through different mechanisms of action.
Collapse
Affiliation(s)
- Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
149
|
Haakonsen DL, Rape M. Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends Cell Biol 2019; 29:704-716. [PMID: 31300189 DOI: 10.1016/j.tcb.2019.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Ubiquitin chains of distinct topologies control the stability, interactions, or localization of many proteins in eukaryotic cells, and thus play an essential role in cellular information transfer. It has recently been found that ubiquitin chains can be combined to produce branched conjugates that are characterized by the presence of at least two linkages within the same polymer. Akin to their homotypic counterparts, branched chains elicit a wide array of biological outputs, further expanding the versatility, specificity, and efficiency of ubiquitin-dependent signaling. This review discusses emerging understanding of the synthesis and function of branched ubiquitin chains.
Collapse
Affiliation(s)
- Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
150
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|