101
|
Kole C, Brommer B, Nakaya N, Sengupta M, Bonet-Ponce L, Zhao T, Wang C, Li W, He Z, Tomarev S. Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32084268 PMCID: PMC7326601 DOI: 10.1167/iovs.61.2.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the possible role of activating transcription factor 3 (ATF3) in retinal ganglion cell (RGC) neuroprotection and optic nerve regeneration after optic nerve crush (ONC). Methods Overexpression of proteins of interest (ATF3, phosphatase and tensin homolog [PTEN], placental alkaline phosphatase, green fluorescent protein) in the retina was achieved by intravitreal injections of recombinant adenovirus-associated viruses (rAAVs) expressing corresponding proteins. The number of RGCs and αRGCs was evaluated by immunostaining retinal sections and whole-mount retinas with antibodies against RNA binding protein with multiple splicing (RBPMS) and osteopontin, respectively. Axonal regeneration was assessed via fluorophore-coupled cholera toxin subunit B labeling. RGC function was evaluated by recording positive scotopic threshold response. Results The level of ATF3 is preferentially elevated in osteopontin+/RBPMS+ αRGCs following ONC. Overexpression of ATF3 by intravitreal injection of rAAV 2 weeks before ONC promoted RBPMS+ RGC survival and preserved RGC function as assessed by positive scotopic threshold response recordings 2 weeks after ONC. However, overexpression of ATF3 and simultaneous downregulation of PTEN, a negative regulator of the mTOR pathway, combined with ONC, only moderately promoted short distance RGC axon regeneration (200 μm from the lesion site) but did not provide additional RGC neuroprotection compared with PTEN downregulation alone. Conclusions These results reveal a neuroprotective effect of ATF3 in the retina following injury and identify ATF3 as a promising agent for potential treatments of optic neuropathies.
Collapse
|
102
|
Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020; 181:590-603.e16. [PMID: 32272060 DOI: 10.1016/j.cell.2020.03.024] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.
Collapse
|
103
|
Liu HH, Jan YN. Mechanisms of neurite repair. Curr Opin Neurobiol 2020; 63:53-58. [PMID: 32278210 DOI: 10.1016/j.conb.2020.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Upon receiving injury signals, neurons can activate various pathways to reduce harm, initiate neuroprotection, and repair damaged neurite without cell death. Here, we review recent progresses in the study of neurite repair focusing on neuronal cell-autonomous mechanisms, including new findings on ion channels that serve as key regulators to initiate neurite repair and intrinsic signaling pathways and transcriptional and post-transcriptional factors that facilitate neurite repair. We also touch upon reports on how dendrites may be affected upon axotomy and how the regeneration potential in injured neurites might be maximized.
Collapse
Affiliation(s)
- Han-Hsuan Liu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
104
|
Fligor CM, Huang KC, Lavekar SS, VanderWall KB, Meyer JS. Differentiation of retinal organoids from human pluripotent stem cells. Methods Cell Biol 2020; 159:279-302. [PMID: 32586447 DOI: 10.1016/bs.mcb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) possess the remarkable ability to differentiate into any cell type of the body, including those of the retina. Through the differentiation of these cells as retinal organoids, it is now possible to model the spatial and temporal development of the human retina using hPSCs, in which retinal progenitor cells produce the entire repertoire of retinal cells, first differentiating into retinal ganglion cells and ending with mature photoreceptors, bipolar cells, and Müller glia. Importantly, retinal organoids self-assemble into laminated structures that recapitulate the layering of the human retina with a retinal ganglion cell layer lining the inner layer and a distinctly separate photoreceptor layer occupying the outer layers. This organoid technology has provided access to human tissue for developmental and disease modeling, as well as translational applications such as high throughput drug screening and cell replacement therapies. However, the differentiation of retinal organoids does require some expertise and multiple strategies produce inconsistent results. Here, we describe in detail a well-established and relatively simple method for the generation of retinal organoids.
Collapse
Affiliation(s)
- Clarisse M Fligor
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kang-Chieh Huang
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Sailee S Lavekar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kirstin B VanderWall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jason S Meyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
105
|
Medori M, Spelzini G, Scicolone G. Molecular complexity of visual mapping: a challenge for regenerating therapy. Neural Regen Res 2020; 15:382-389. [PMID: 31571645 PMCID: PMC6921353 DOI: 10.4103/1673-5374.266044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating the cellular and molecular mechanisms involved in the development of topographically ordered connections in the central nervous system constitutes an important issue in neurobiology because these connections are the base of the central nervous system normal function. The dominant model to study the development of topographic maps is the projection from the retinal ganglion cells to the optic tectum/colliculus. The expression pattern of Eph/ephrin system in opposing gradients both in the retina and the tectum, labels the local addresses on the target and gives specific sensitivities to growth cones according to their topographic origin in the retina. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. However, several lines of evidence have shown that the mapping can adjust to experimentally modified targets with flexibility, demonstrating the robustness of the guidance process. Here we discuss the complex ways the Ephs and ephrins interact allowing to understand how the retinotectal mapping is a precise but also a flexible process.
Collapse
Affiliation(s)
- Mara Medori
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gonzalo Spelzini
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Scicolone
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN); Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
106
|
Kuai L, Peng J, Jiang Y, Zheng Z, Zhou X. Apolipoprotein E-Mimetic Peptide COG1410 Enhances Retinal Ganglion Cell Survival by Attenuating Inflammation and Apoptosis Following TONI. Front Neurosci 2019; 13:980. [PMID: 31607842 PMCID: PMC6755331 DOI: 10.3389/fnins.2019.00980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Vision loss after traumatic optic nerve injury (TONI) is considered irreversible because of the retrograde loss of retinal ganglion cells (RGCs), which undergo inflammation and apoptosis. Previous studies have shown that COG1410, a mimic peptide derived from the apolipoprotein E (apoE) receptor binding region, shows neuroprotective activity in acute brain injury. However, the detailed role and mechanisms of COG1410 in RGC survival and vision restoration after TONI are poorly understood. The current study aimed to investigate the effects of COG1410 on inflammation and apoptosis in a mouse model of TONI. The results showed that TONI-induced visual impairment was accompanied by optic nerve inflammation, apoptosis, edema, and RGC apoptosis. COG1410 significantly prevented the decrease in visual from ever occurring, attenuated inflammation and apoptosis, and reduced optic nerve edema and RGC apoptosis compared with vehicle treatment. These data identify protective roles of COG1410 in the inflammatory and apoptotic processes of TONI, as well as strategies for its treatment.
Collapse
Affiliation(s)
- Li Kuai
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician Expert Workstation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
107
|
Das M, Tang X, Mohapatra SS, Mohapatra S. Vision impairment after traumatic brain injury: present knowledge and future directions. Rev Neurosci 2019; 30:305-315. [PMID: 30226209 DOI: 10.1515/revneuro-2018-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity in the USA as well as in the world. As a result of TBI, the visual system is also affected often causing complete or partial visual loss, which in turn affects the quality of life. It may also lead to ocular motor dysfunction, defective accommodation, and impaired visual perception. As a part of the therapeutic strategy, early rehabilitative optometric intervention is important. Orthoptic therapy, medication, stem cell therapy, motor and attention trainings are the available treatment options. Gene therapy is one of the most promising emerging strategies. Use of state-of-the-art nanomedicine approaches to deliver drug(s) and/or gene(s) might enhance the therapeutic efficacy of the present and future modalities. More research is needed in these fields to improve the outcome of this debilitating condition. This review focuses on different visual pathologies caused by TBI, advances in pre-clinical and clinical research, and available treatment options.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Administration Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Xiaolan Tang
- James A. Haley Veterans Administration Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Administration Hospital, Tampa, FL 33612, USA.,Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Administration Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
108
|
Komáromy AM, Bras D, Esson DW, Fellman RL, Grozdanic SD, Kagemann L, Miller PE, Moroi SE, Plummer CE, Sapienza JS, Storey ES, Teixeira LB, Toris CB, Webb TR. The future of canine glaucoma therapy. Vet Ophthalmol 2019; 22:726-740. [PMID: 31106969 PMCID: PMC6744300 DOI: 10.1111/vop.12678] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO-VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP-lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.
Collapse
Affiliation(s)
- András M Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Dineli Bras
- Centro de Especialistas Veterinarios de Puerto Rico, San Juan, Puerto Rico
| | | | | | | | - Larry Kagemann
- U.S. Food and Drug Administration, Silver Spring, Maryland.,New York University School of Medicine, New York, New York.,Department of Ophthalmology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Paul E Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sayoko E Moroi
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Caryn E Plummer
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Eric S Storey
- South Atlanta Veterinary Emergency & Specialty, Fayetteville, Georgia
| | - Leandro B Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol B Toris
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terah R Webb
- MedVet Medical & Cancer Centers for Pets, Worthington, Ohio
| |
Collapse
|
109
|
Restoring retinal neurovascular health via substance P. Exp Cell Res 2019; 380:115-123. [PMID: 30995434 PMCID: PMC6548993 DOI: 10.1016/j.yexcr.2019.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Regulation of vascular permeability plays a major role in the pathophysiology of visually threatening conditions such as retinal vein occlusion and diabetic retinopathy. Principally, several factors such as vascular endothelial growth factor (VEGF), are up-regulated or induced in response to hypoxia thus adversely affecting the blood-retinal barrier (BRB), resulting in retinal edema and neovascularisation. Furthermore, current evidence supports a dysregulation of the inner retinal neural-vascular integrity as a critical factor driving retinal ganglion cell (RGC) death and visual loss. The principal objective of this study was to interrogate whether Substance P (SP), a constitutive neurotransmitter of amacrine and ganglion cells, may protect against N-methyl-d-aspartate (NMDA)-induced excitotoxic apoptosis of ganglion cells and VEGF-induced vessel leakage in the retina. Tight junctional protein expression and a Vascular Permeability Image Assay were used to determine vascular integrity in vitro. The protective effect of SP on RGC was established in ex vivo retinal explants and in vivo murine models. After NMDA administration, a reduction in TUNEL+ cells and a maintained number of Brn-3a+ cells were found, indicating an inhibition of RGC apoptosis mediated by SP. Additionally, SP maintained endothelial tight junctions and decreased VEGF-induced vascular permeability. In conclusion, administration of SP protects against NMDA apoptosis of RGC and VEGF-induced endothelial barrier breakdown.
Collapse
|
110
|
Varadarajan SG, Huberman AD. Assembly and repair of eye-to-brain connections. Curr Opin Neurobiol 2018; 53:198-209. [PMID: 30339988 DOI: 10.1016/j.conb.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Vision is the sense humans rely on most to navigate the world and survive. A tremendous amount of research has focused on understanding the neural circuits for vision and the developmental mechanisms that establish them. The eye-to-brain, or 'retinofugal' pathway remains a particularly important model in these contexts because it is essential for sight, its overt anatomical features relate to distinct functional attributes and those features develop in a tractable sequence. Much progress has been made in understanding the growth of retinal axons out of the eye, their selection of targets in the brain, the development of laminar and cell type-specific connectivity within those targets, and also dendritic connectivity within the retina itself. Moreover, because the retinofugal pathway is prone to degeneration in many common blinding diseases, understanding the cellular and molecular mechanisms that establish connectivity early in life stands to provide valuable insights into approaches that re-wire this pathway after damage or loss. Here we review recent progress in understanding the development of retinofugal pathways and how this information is important for improving visual circuit regeneration.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States; Department of Ophthalmology, Stanford University School of Medicine, Stanford, United States; BioX, Stanford University School of Medicine, Stanford, United States; Neurosciences Institute, Stanford University School of Medicine, Stanford, United States.
| |
Collapse
|
111
|
Fligor CM, Langer KB, Sridhar A, Ren Y, Shields PK, Edler MC, Ohlemacher SK, Sluch VM, Zack DJ, Zhang C, Suter DM, Meyer JS. Three-Dimensional Retinal Organoids Facilitate the Investigation of Retinal Ganglion Cell Development, Organization and Neurite Outgrowth from Human Pluripotent Stem Cells. Sci Rep 2018; 8:14520. [PMID: 30266927 PMCID: PMC6162218 DOI: 10.1038/s41598-018-32871-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Retinal organoids are three-dimensional structures derived from human pluripotent stem cells (hPSCs) which recapitulate the spatial and temporal differentiation of the retina, serving as effective in vitro models of retinal development. However, a lack of emphasis has been placed upon the development and organization of retinal ganglion cells (RGCs) within retinal organoids. Thus, initial efforts were made to characterize RGC differentiation throughout early stages of organoid development, with a clearly defined RGC layer developing in a temporally-appropriate manner expressing a complement of RGC-associated markers. Beyond studies of RGC development, retinal organoids may also prove useful for cellular replacement in which extensive axonal outgrowth is necessary to reach post-synaptic targets. Organoid-derived RGCs could help to elucidate factors promoting axonal outgrowth, thereby identifying approaches to circumvent a formidable obstacle to RGC replacement. As such, additional efforts demonstrated significant enhancement of neurite outgrowth through modulation of both substrate composition and growth factor signaling. Additionally, organoid-derived RGCs exhibited diverse phenotypes, extending elaborate growth cones and expressing numerous guidance receptors. Collectively, these results establish retinal organoids as a valuable tool for studies of RGC development, and demonstrate the utility of organoid-derived RGCs as an effective platform to study factors influencing neurite outgrowth from organoid-derived RGCs.
Collapse
Affiliation(s)
- Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kirstin B Langer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Priya K Shields
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Michael C Edler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21287, USA
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
112
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
113
|
Hapak SM, Ghosh S, Rothlin CV. Axon Regeneration: Antagonistic Signaling Pairs in Neuronal Polarization. Trends Mol Med 2018; 24:615-629. [PMID: 29934283 DOI: 10.1016/j.molmed.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/29/2023]
Abstract
Genome-wide screens, proteomics, and candidate-based approaches have identified numerous genes associated with neuronal regeneration following central nervous system (CNS) injury. Despite significant progress, functional recovery remains a challenge, even in model systems. Neuronal function depends on segregation of axonal versus dendritic domains. A key to functional recovery may lie in recapitulating the developmental signals that instruct axon specification and growth in adult neurons post-injury. Theoretically, binary activator-inhibitor elements operating as a Turing-like system within neurons can specify axonal versus dendritic domains and promote axon growth. We review here various molecules implicated in axon specification that function as signaling pairs driving neuronal polarization and axon growth.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN 55455, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT 06511, USA; Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA; Equal contribution.
| | - Carla V Rothlin
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA; Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, USA; Equal contribution.
| |
Collapse
|
114
|
Beier C, Palanker D, Sher A. Stereotyped Synaptic Connectivity Is Restored during Circuit Repair in the Adult Mammalian Retina. Curr Biol 2018; 28:1818-1824.e2. [PMID: 29804805 PMCID: PMC6550309 DOI: 10.1016/j.cub.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 01/03/2023]
Abstract
Proper function of the central nervous system (CNS) depends on the specificity of synaptic connections between cells of various types. Cellular and molecular mechanisms responsible for the establishment and refinement of these connections during development are the subject of an active area of research [1-6]. However, it is unknown if the adult mammalian CNS can form new type-selective synapses following neural injury or disease. Here, we assess whether selective synaptic connections can be reestablished after circuit disruption in the adult mammalian retina. The stereotyped circuitry at the first synapse in the retina, as well as the relatively short distances new neurites must travel compared to other areas of the CNS, make the retina well suited to probing for synaptic specificity during circuit reassembly. Selective connections between short-wavelength sensitive cone photoreceptors (S-cones) and S-cone bipolar cells provides the foundation of the primordial blue-yellow vision, common to all mammals [7-18]. We take advantage of the ground squirrel retina, which has a one-to-one S-cone-to-S-cone-bipolar-cell connection, to test if this connectivity can be reestablished following local photoreceptor loss [8, 19]. We find that after in vivo selective photoreceptor ablation, deafferented S-cone bipolar cells expand their dendritic trees. The new dendrites randomly explore the proper synaptic layer, bypass medium-wavelength sensitive cone photoreceptors (M-cones), and selectively synapse with S-cones. However, non-connected dendrites are not pruned back to resemble unperturbed S-cone bipolar cells. We show, for the first time, that circuit repair in the adult mammalian retina can recreate stereotypic selective wiring.
Collapse
Affiliation(s)
- Corinne Beier
- Department of Electrical Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
115
|
Abstract
Restoring vision to the blind by retinal repair has been a dream of medicine for centuries, and the first successful procedures have recently been performed. Although we are still far from the restoration of high-resolution vision, step-by-step developments are overcoming crucial bottlenecks in therapy development and have enabled the restoration of some visual function in patients with specific blindness-causing diseases. Here, we discuss the current state of vision restoration and the problems related to retinal repair. We describe new model systems and translational technologies, as well as the clinical conditions in which new methods may help to combat blindness.
Collapse
|
116
|
|
117
|
Longterm Reversal of Severe Visual Loss by Mitochondrial Gene Transfer in a Mouse Model of Leber Hereditary Optic Neuropathy. Sci Rep 2018; 8:5587. [PMID: 29615737 PMCID: PMC5882860 DOI: 10.1038/s41598-018-23836-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/22/2018] [Indexed: 11/28/2022] Open
Abstract
In many human disorders mitochondrial dysfunction is central to degeneration of retinal ganglion cells. As these cells do not regenerate, vision is irreversibly lost. Here we show reversal of visual dysfunction by a mitochondrially targeted adeno associated virus in transgenic mice harboring a G11778A mutation in the ND4 subunit of complex I persists longterm and it is associated with reduced loss of RGCs and their axons, improved oxidative phosphorylation, persistence of transferred ND4 DNA and transcription of ND4 mRNA.
Collapse
|
118
|
Carelli V, La Morgia C, Ross-Cisneros FN, Sadun AA. Optic neuropathies: the tip of the neurodegeneration iceberg. Hum Mol Genet 2018; 26:R139-R150. [PMID: 28977448 PMCID: PMC5886475 DOI: 10.1093/hmg/ddx273] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023] Open
Abstract
The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure.
Collapse
Affiliation(s)
- Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA 90033, USA.,Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
119
|
Seabrook TA, Dhande OS, Ishiko N, Wooley VP, Nguyen PL, Huberman AD. Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly. Cell Rep 2017; 21:3049-3064. [PMID: 29241535 PMCID: PMC6333306 DOI: 10.1016/j.celrep.2017.11.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
The use of sensory information to drive specific behaviors relies on circuits spanning long distances that wire up through a range of axon-target recognition events. Mechanisms assembling poly-synaptic circuits and the extent to which parallel pathways can "cross-wire" to compensate for loss of one another remain unclear and are crucial to our understanding of brain development and models of regeneration. In the visual system, specific retinal ganglion cells (RGCs) project to designated midbrain targets connected to downstream circuits driving visuomotor reflexes. Here, we deleted RGCs connecting to pupillary light reflex (PLR) midbrain targets and discovered that axon-target matching is tightly regulated. RGC axons of the eye-reflex pathway avoided vacated PLR targets. Moreover, downstream PLR circuitry is maintained; hindbrain and peripheral components retained their proper connectivity and function. These findings point to a model in which poly-synaptic circuit development reflects independent, highly stringent wiring of each parallel pathway and downstream station.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Onkar S Dhande
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nao Ishiko
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victoria P Wooley
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Phong L Nguyen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94303, USA; Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
120
|
Ban N, Siegfried CJ, Apte RS. Monitoring Neurodegeneration in Glaucoma: Therapeutic Implications. Trends Mol Med 2017; 24:7-17. [PMID: 29233479 DOI: 10.1016/j.molmed.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/22/2023]
Abstract
Glaucoma is one of the leading causes of blindness globally, and is characterized by loss of retinal ganglion cells (RGCs). Because vision loss in glaucoma is not reversible, therapeutic interventions early in disease are highly desirable. However, owing to the current limitations in evaluating glaucomatous neurodegeneration, it is challenging to monitor the disease severity and progression objectively, and to design rational therapeutic strategies accordingly. Therefore, there is a clear need to identify quantifiable molecular biomarkers of glaucomatous neurodegeneration. As such, in our opinion, molecular biomarker(s) that specifically reflect stress or death of RGCs, and which correlate with disease severity, progression, and response to therapy, are highly desirable.
Collapse
Affiliation(s)
- Norimitsu Ban
- Department of Ophthalmology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Carla J Siegfried
- Department of Ophthalmology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|