101
|
Johnson HE, Toettcher JE. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo. Dev Cell 2019; 48:361-370.e3. [PMID: 30753836 DOI: 10.1016/j.devcel.2019.01.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.
Collapse
Affiliation(s)
- Heath E Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
102
|
Pan H, Pan J, Song S, Ji L, Lv H, Yang Z. EXOSC5 as a Novel Prognostic Marker Promotes Proliferation of Colorectal Cancer via Activating the ERK and AKT Pathways. Front Oncol 2019; 9:643. [PMID: 31380280 PMCID: PMC6659499 DOI: 10.3389/fonc.2019.00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Background and Objective: Exosome component 5 (EXOSC5) is a novel cancer-related gene that is aberrantly expressed in various malignances. However, the molecular mechanism and biological role of EXOSC5 have not been explored in colorectal cancer (CRC). In this study, we investigated the functions and mechanisms by which EXOSC5 promotes the progression of CRC. Methods: EXOSC5 expressions in CRC cell lines and paired CRC and adjacent normal tissues were measured via quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC). In vitro experiments including colony formation, Cell Counting Kit-8 (CCK-8), and flow cytometry and in vivo tumorigenesis assay were performed to explore the effects of EXOSC5 on growth of CRC. The impacts of EXOSC5 on ERK and Akt signaling pathways were measured by Western blot. Results: The mRNA and protein expression levels of EXOSC5 were up-regulated in CRC as compared to adjacent normal tissues. IHC analysis indicated that high EXOSC5 level was positively associated with poor prognosis. EXOSC5 overexpression facilitated the growth of CRC cells, while EXOSC5 knockdown led to decreased proliferation, G1/S phase transition arrest. The oncogenic functions of EXOSC5 were associated with activation of the ERK and Akt pathways in CRC. Conclusion: EXOSC5 is overexpressed in CRC and promotes CRC growth partly through activation of ERK and Akt signaling pathways. Accordingly, EXOSC5 may be a novel oncogene, and acts as a therapeutic target, or prognostic factor for CRC.
Collapse
Affiliation(s)
- Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gastrointestinal Surgery, Beijing Hospital, Beijing, China
| | - Jingxin Pan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shibo Song
- Department of Gastrointestinal Surgery, Beijing Hospital, Beijing, China
| | - Lei Ji
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Lv
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhangru Yang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
103
|
Bugaj LJ, Lim WA. High-throughput multicolor optogenetics in microwell plates. Nat Protoc 2019; 14:2205-2228. [PMID: 31235951 DOI: 10.1038/s41596-019-0178-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
Optogenetic probes can be powerful tools for dissecting complexity in cell biology, but there is a lack of instrumentation to exploit their potential for automated, high-information-content experiments. This protocol describes the construction and use of the optoPlate-96, a platform for high-throughput three-color optogenetics experiments that allows simultaneous manipulation of common red- and blue-light-sensitive optogenetic probes. The optoPlate-96 enables illumination of individual wells in 96-well microwell plates or in groups of wells in 384-well plates. Its design ensures that there will be no cross-illumination between microwells in 96-well plates, and an active cooling system minimizes sample heating during light-intensive experiments. This protocol details the steps to assemble, test, and use the optoPlate-96. The device can be fully assembled without specialized equipment beyond a 3D printer and a laser cutter, starting from open-source design files and commercially available components. We then describe how to perform a typical optogenetics experiment using the optoPlate-96 to stimulate adherent mammalian cells. Although optoPlate-96 experiments are compatible with any plate-based readout, we describe analysis using quantitative single-cell immunofluorescence. This workflow thus allows complex optogenetics experiments (independent control of stimulation colors, intensity, dynamics, and time points) with high-dimensional outputs at single-cell resolution. Starting from 3D-printed and laser-cut components, assembly and testing of the optoPlate-96 can be accomplished in 3-4 h, at a cost of ~$600. A full optoPlate-96 experiment with immunofluorescence analysis can be performed within ~24 h, but this estimate is variable depending on the cell type and experimental parameters.
Collapse
Affiliation(s)
- Lukasz J Bugaj
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA. .,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
104
|
Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int J Mol Sci 2019; 20:ijms20102505. [PMID: 31117237 PMCID: PMC6566596 DOI: 10.3390/ijms20102505] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
105
|
Jeknić S, Kudo T, Covert MW. Techniques for Studying Decoding of Single Cell Dynamics. Front Immunol 2019; 10:755. [PMID: 31031756 PMCID: PMC6470274 DOI: 10.3389/fimmu.2019.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cells must be able to interpret signals they encounter and reliably generate an appropriate response. It has long been known that the dynamics of transcription factor and kinase activation can play a crucial role in selecting an individual cell's response. The study of cellular dynamics has expanded dramatically in the last few years, with dynamics being discovered in novel pathways, new insights being revealed about the importance of dynamics, and technological improvements increasing the throughput and capabilities of single cell measurements. In this review, we highlight the important developments in this field, with a focus on the methods used to make new discoveries. We also include a discussion on improvements in methods for engineering and measuring single cell dynamics and responses. Finally, we will briefly highlight some of the many challenges and avenues of research that are still open.
Collapse
Affiliation(s)
- Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States
| | - Takamasa Kudo
- Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
106
|
Divergent Dynamics and Functions of ERK MAP Kinase Signaling in Development, Homeostasis and Cancer: Lessons from Fluorescent Bioimaging. Cancers (Basel) 2019; 11:cancers11040513. [PMID: 30974867 PMCID: PMC6520755 DOI: 10.3390/cancers11040513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) signaling pathway regulates a variety of biological processes including cell proliferation, survival, and differentiation. Since ERK activation promotes proliferation of many types of cells, its deregulated/constitutive activation is among general mechanisms for cancer. Recent advances in bioimaging techniques have enabled to visualize ERK activity in real-time at the single-cell level. Emerging evidence from such approaches suggests unexpectedly complex spatiotemporal dynamics of ERK activity in living cells and animals and their crucial roles in determining cellular responses. In this review, we discuss how ERK activity dynamics are regulated and how they affect biological processes including cell fate decisions, cell migration, embryonic development, tissue homeostasis, and tumorigenesis.
Collapse
|
107
|
Affiliation(s)
- Trever G. Bivona
- Department of Medicine, Cellular and Molecular Pharmacology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
108
|
Optically inducible membrane recruitment and signaling systems. Curr Opin Struct Biol 2019; 57:84-92. [PMID: 30884362 DOI: 10.1016/j.sbi.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/12/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
Collapse
|
109
|
Scott TD, Sweeney K, McClean MN. Biological signal generators: integrating synthetic biology tools and in silico control. ACTA ACUST UNITED AC 2019; 14:58-65. [PMID: 31673669 DOI: 10.1016/j.coisb.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological networks sense extracellular stimuli and generate appropriate outputs within the cell that determine cellular response. Biological signal generators are becoming an important tool for understanding how information is transmitted in these networks and controlling network behavior. Signal generators produce well-defined, dynamic, intracellular signals of important network components, such as kinase activity or the concentration of a specific transcription factor. Synthetic biology tools coupled with in silico control have enabled the construction of these sophisticated biological signal generators. Here we review recent advances in biological signal generator construction and their use in systems biology studies. Challenges for constructing signal generators for a wider range of biological networks and generalizing their use are discussed.
Collapse
Affiliation(s)
- Taylor D Scott
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| | - Kieran Sweeney
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, Wisconsin 53706 USA
| |
Collapse
|
110
|
Ravindran PT, Wilson MZ. Lighting Up Cancer Dynamics. Trends Cancer 2018; 4:657-659. [PMID: 30292348 DOI: 10.1016/j.trecan.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
Abstract
Live-cell microscopy has revealed that signaling pathways carry elaborate time-varying activities. Yet, the connection between these dynamics and cellular disease has remained elusive. Recent work leverages cellular optogenetics to analyze the Ras-to-Erk transfer function in cancer cells. These analyses reveal how changes to the filtering properties of a pathway lead to the misperception of extracellular events. Overall, these studies suggest that mutations do not simply hyperactivate pathways but rather can also change their transmission properties in more subtle ways.
Collapse
Affiliation(s)
- Pavithran T Ravindran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Maxwell Z Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
111
|
|