101
|
Kubyshkin V, Davis R, Budisa N. Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Beilstein J Org Chem 2021; 17:439-460. [PMID: 33727970 PMCID: PMC7934785 DOI: 10.3762/bjoc.17.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the heterocyclic structure and distinct conformational profile, proline is unique in the repertoire of the 20 amino acids coded into proteins. Here, we summarize the biochemical work on the replacement of proline with (4R)- and (4S)-fluoroproline as well as 4,4-difluoroproline in proteins done mainly in the last two decades. We first recapitulate the complex position and biochemical fate of proline in the biochemistry of a cell, discuss the physicochemical properties of fluoroprolines, and overview the attempts to use these amino acids as proline replacements in studies of protein production and folding. Fluorinated proline replacements are able to elevate the protein expression speed and yields and improve the thermodynamic and kinetic folding profiles of individual proteins. In this context, fluoroprolines can be viewed as useful tools in the biotechnological toolbox. As a prospect, we envision that proteome-wide proline-to-fluoroproline substitutions could be possible. We suggest a hypothetical scenario for the use of laboratory evolutionary methods with fluoroprolines as a suitable vehicle to introduce fluorine into living cells. This approach may enable creation of synthetic cells endowed with artificial biodiversity, containing fluorine as a bioelement.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Rebecca Davis
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| |
Collapse
|
102
|
Hastings RL, Boeynaems S. Designer Condensates: A Toolkit for the Biomolecular Architect. J Mol Biol 2021; 433:166837. [PMID: 33539874 DOI: 10.1016/j.jmb.2021.166837] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell's instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.
Collapse
Affiliation(s)
- Renee L Hastings
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
103
|
Gamper H, Li H, Masuda I, Miklos Robkis D, Christian T, Conn AB, Blaha G, Petersson EJ, Gonzalez RL, Hou YM. Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA. Nat Commun 2021; 12:328. [PMID: 33436566 PMCID: PMC7803779 DOI: 10.1038/s41467-020-20373-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding. Genome recoding with quadruplet codons requires a +1-frameshift-suppressor tRNA able to insert an amino acid at quadruplet codons of interest. Here the authors identify the mechanisms resulting in +1 frameshifting and the steps of the elongation cycle in which it occurs.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Haixing Li
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - D Miklos Robkis
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam B Conn
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
104
|
Schneider N, Wieland FG, Kong D, Fischer AAM, Hörner M, Timmer J, Ye H, Weber W. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. SCIENCE ADVANCES 2021; 7:7/1/eabd3568. [PMID: 33523844 PMCID: PMC7775772 DOI: 10.1126/sciadv.abd3568] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 05/10/2023]
Abstract
Light-inducible gene switches represent a key strategy for the precise manipulation of cellular events in fundamental and applied research. However, the performance of widely used gene switches is limited due to low tissue penetrance and possible phototoxicity of the light stimulus. To overcome these limitations, we engineer optogenetic synthetic transcription factors to undergo liquid-liquid phase separation in close spatial proximity to promoters. Phase separation of constitutive and optogenetic synthetic transcription factors was achieved by incorporation of intrinsically disordered regions. Supported by a quantitative mathematical model, we demonstrate that engineered transcription factor droplets form at target promoters and increase gene expression up to fivefold. This increase in performance was observed in multiple mammalian cells lines as well as in mice following in situ transfection. The results of this work suggest that the introduction of intrinsically disordered domains is a simple yet effective means to boost synthetic transcription factor activity.
Collapse
Affiliation(s)
- Nils Schneider
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Franz-Georg Wieland
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Ernst-Zermelo-Str. 1, 79104 Freiburg, Germany
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Alexandra A M Fischer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Jens Timmer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| |
Collapse
|
105
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
106
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
107
|
Abstract
As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22901, USA; , , ,
| |
Collapse
|
108
|
Koehler C, Estrada Girona G, Reinkemeier CD, Lemke EA. Inducible Genetic Code Expansion in Eukaryotes. Chembiochem 2020; 21:3216-3219. [PMID: 32598534 PMCID: PMC7754456 DOI: 10.1002/cbic.202000338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Indexed: 11/07/2022]
Abstract
Genetic code expansion (GCE) is a versatile tool to site-specifically incorporate a noncanonical amino acid (ncAA) into a protein, for example, to perform fluorescent labeling inside living cells. To this end, an orthogonal aminoacyl-tRNA-synthetase/tRNA (RS/tRNA) pair is used to insert the ncAA in response to an amber stop codon in the protein of interest. One of the drawbacks of this system is that, in order to achieve maximum efficiency, high levels of the orthogonal tRNA are required, and this could interfere with host cell functionality. To minimize the adverse effects on the host, we have developed an inducible GCE system that enables us to switch on tRNA or RS expression when needed. In particular, we tested different promotors in the context of the T-REx or Tet-On systems to control expression of the desired orthogonal tRNA and/or RS. We discuss our result with respect to the control of GCE components as well as efficiency. We found that only the T-REx system enables simultaneous control of tRNA and RS expression.
Collapse
Affiliation(s)
- Christine Koehler
- BiocentreJohannes-Gutenberg University Mainz55128MainzGermany
- Institute of Molecular Biology gGmbH55128MainzGermany
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
- ARAXA Biosciences GmbHMeyerhofstraße 169117HeidelbergGermany
| | - Gemma Estrada Girona
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| | - Christopher D. Reinkemeier
- BiocentreJohannes-Gutenberg University Mainz55128MainzGermany
- Institute of Molecular Biology gGmbH55128MainzGermany
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| | - Edward A. Lemke
- BiocentreJohannes-Gutenberg University Mainz55128MainzGermany
- Institute of Molecular Biology gGmbH55128MainzGermany
- Structural and Computational Biology Unit and Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstraße 169117HeidelbergGermany
| |
Collapse
|
109
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
110
|
Abstract
Cellular liquid-liquid phase separation (LLPS) plays a key role in the dynamics and function of RNA-protein condensates like stress granules. In this issue of Cell, Yang et al., Guillén-Boixet et al., and Sanders et al. use a combination of experiment and modeling to provide an exciting mechanistic insight into the relationship between stress granules and LLPS, for example, in the context of protein disorder, switchable interactions, graph theory, and multiple interacting dense phases.
Collapse
|
111
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
112
|
Liu Q, He QT, Lyu X, Yang F, Zhu ZL, Xiao P, Yang Z, Zhang F, Yang ZY, Wang XY, Sun P, Wang QW, Qu CX, Gong Z, Lin JY, Xu Z, Song SL, Huang SM, Guo SC, Han MJ, Zhu KK, Chen X, Kahsai AW, Xiao KH, Kong W, Li FH, Ruan K, Li ZJ, Yu X, Niu XG, Jin CW, Wang J, Sun JP. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe. Nat Commun 2020; 11:4857. [PMID: 32978402 PMCID: PMC7519161 DOI: 10.1038/s41467-020-18433-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/12/2020] [Indexed: 01/11/2023] Open
Abstract
Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-β2 adrenergic receptor/β-arrestin-1(β-arr1) membrane protein signaling complex, using only 5 μM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of β-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Qing-Tao He
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaoxuan Lyu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Feng Zhang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Zhao-Ya Yang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiao-Yan Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Peng Sun
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 30 Xiaohongshan Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Qian-Wen Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 30 Xiaohongshan Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Chang-Xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zhen Xu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Shao-le Song
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Shen-Ming Huang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Sheng-Chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ming-Jie Han
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqi Road, Airport Economic Zone, Dongli District, Tianjin, 300308, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, 336 Nanxinzhuangxi Road, Shizhong District, Jinan, 250022, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Alem W Kahsai
- Duke University, School of Medicine, Durham, NC, 27705, USA
| | - Kun-Hong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Fa-Hui Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230027, China
| | - Zi-Jian Li
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Xiao-Gang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing, 100084, China
| | - Chang-Wen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing, 100084, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China.
- College of Life Sciences and School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
113
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
114
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020; 4:615-634. [PMID: 39650726 PMCID: PMC7617017 DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 423] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Natural biomolecular systems have evolved to form a rich variety of supramolecular materials and machinery fundamental to cellular function. The assembly of these structures commonly involves interactions between specific molecular building blocks, a strategy that can also be replicated in an artificial setting to prepare functional materials. The self-assembly of synthetic biomimetic peptides thus allows the exploration of chemical and sequence space beyond that used routinely by biology. In this Review, we discuss recent conceptual and experimental advances in self-assembling artificial peptidic materials. In particular, we explore how naturally occurring structures and phenomena have inspired the development of functional biomimetic materials that we can harness for potential interactions with biological systems. As our fundamental understanding of peptide self-assembly evolves, increasingly sophisticated materials and applications emerge and lead to the development of a new set of building blocks and assembly principles relevant to materials science, molecular biology, nanotechnology and precision medicine.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Tuuli A Hakala
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gonçalo J L Bernardes
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
115
|
Fisher RS, Elbaum-Garfinkle S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat Commun 2020; 11:4628. [PMID: 32934220 PMCID: PMC7492283 DOI: 10.1038/s41467-020-18224-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid phase separation into two or more coexisting phases has emerged as a new paradigm for understanding subcellular organization, prebiotic life, and the origins of disease. The design principles underlying biomolecular phase separation have the potential to drive the development of novel liquid-based organelles and therapeutics, however, an understanding of how individual molecules contribute to emergent material properties, and approaches to directly manipulate phase dynamics are lacking. Here, using microrheology, we demonstrate that droplets of poly-arginine coassembled with mono/polynucleotides have approximately 100 fold greater viscosity than comparable lysine droplets, both of which can be finer tuned by polymer length. We find that these amino acid-level differences can drive the formation of coexisting immiscible phases with tunable formation kinetics and can be further exploited to trigger the controlled release of droplet components. Together, this work provides a novel mechanism for leveraging sequence-level components in order to regulate droplet dynamics and multiphase coexistence. The design principles underlying biomolecular phase separation of membrane-less organelles remain poorly understood. Using model homopolymers, Fisher et al. show that the formation kinetics of coexisting liquid phases can be tuned by exploiting differences between arginine and lysine residues.
Collapse
Affiliation(s)
- Rachel S Fisher
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA. .,Ph.D. Programs in Biochemistry and Biology at the Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
116
|
Hazra MK, Levy Y. Charge pattern affects the structure and dynamics of polyampholyte condensates. Phys Chem Chem Phys 2020; 22:19368-19375. [PMID: 32822449 DOI: 10.1039/d0cp02764b] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins with intrinsically disordered regions have a tendency to condensate via liquid-liquid phase separation both in vitro and in vivo. Such biomolecular coacervates play various significant roles in biologically important regulatory processes. The present work explores the structural and dynamic features of coacervates formed by model polyampholytes, being intrinsically disordered proteins, that differ in terms of their charged amino acid patterns. Differences in the distribution of charged amino acids along the polyampholyte sequence lead to distinctly different structural features in the dense phase and hence to different liquid properties. Increased charge clustering raises the critical temperature for phase separation and results in each polyampholyte experiencing a larger number of inter-chain contacts with neighboring proteins in the condensate. Consequently, polyampholytes with greater charge clustering adopt a much more extended conformation, having a radius of gyration up to twice that observed in the dilute bulk phase. Translational diffusion within the droplet is pronounced, being just 4-20 times slower than in the bulk, consistently with the high conformational entropy in the dense phase and high exchange rate of the network of intermolecular interactions in the condensate. Coupled to the faster diffusion, the condensate also adopts a more elongated shape and exhibits imperfect packing, which results in cavities. This study quantifies the fundamental microscopic properties of condensates including the effect of long-range electrostatic forces and particularly how they can be modulated by the charge pattern.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
117
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020; 59:20651-20658. [DOI: 10.1002/anie.202009387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
118
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
119
|
Ros E, Torres AG, Ribas de Pouplana L. Learning from Nature to Expand the Genetic Code. Trends Biotechnol 2020; 39:460-473. [PMID: 32896440 DOI: 10.1016/j.tibtech.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/14/2023]
Abstract
The genetic code is the manual that cells use to incorporate amino acids into proteins. It is possible to artificially expand this manual through cellular, molecular, and chemical manipulations to improve protein functionality. Strategies for in vivo genetic code expansion are under the same functional constraints as natural protein synthesis. Here, we review the approaches used to incorporate noncanonical amino acids (ncAAs) into designer proteins through the manipulation of the translation machinery and draw parallels between these methods and natural adaptations that improve translation in extant organisms. Following this logic, we propose new nature-inspired tactics to improve genetic code expansion (GCE) in synthetic organisms.
Collapse
Affiliation(s)
- Enric Ros
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08028, Spain
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08028, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08028, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, 08010, Spain.
| |
Collapse
|
120
|
Heidenreich M, Georgeson JM, Locatelli E, Rovigatti L, Nandi SK, Steinberg A, Nadav Y, Shimoni E, Safran SA, Doye JPK, Levy ED. Designer protein assemblies with tunable phase diagrams in living cells. Nat Chem Biol 2020; 16:939-945. [PMID: 32661377 DOI: 10.1038/s41589-020-0576-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Protein self-organization is a hallmark of biological systems. Although the physicochemical principles governing protein-protein interactions have long been known, the principles by which such nanoscale interactions generate diverse phenotypes of mesoscale assemblies, including phase-separated compartments, remain challenging to characterize. To illuminate such principles, we create a system of two proteins designed to interact and form mesh-like assemblies. We devise a new strategy to map high-resolution phase diagrams in living cells, which provide self-assembly signatures of this system. The structural modularity of the two protein components allows straightforward modification of their molecular properties, enabling us to characterize how interaction affinity impacts the phase diagram and material state of the assemblies in vivo. The phase diagrams and their dependence on interaction affinity were captured by theory and simulations, including out-of-equilibrium effects seen in growing cells. Finally, we find that cotranslational protein binding suffices to recruit a messenger RNA to the designed micron-scale structures.
Collapse
Affiliation(s)
- Meta Heidenreich
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph M Georgeson
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Lorenzo Rovigatti
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Physics, Sapienza Università di Roma, Rome, Italy.
| | - Saroj Kumar Nandi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Avital Steinberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Nadav
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
121
|
Staufer O, Schröter M, Platzman I, Spatz JP. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906424. [PMID: 32078238 DOI: 10.1002/smll.201906424] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine.
Collapse
Affiliation(s)
- Oskar Staufer
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Martin Schröter
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Joachim P Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
- Max Planck School Matter to Life, Jahnstraße 29, D-69120, Heidelberg, Germany
| |
Collapse
|
122
|
Formation and functionalization of membraneless compartments in Escherichia coli. Nat Chem Biol 2020; 16:1143-1148. [DOI: 10.1038/s41589-020-0579-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
|
123
|
|
124
|
|
125
|
Abstract
The traditional view of protein aggregation as being strictly disease-related has been challenged by many examples of cellular aggregates that regulate beneficial biological functions. When coupled with the emerging view that many regulatory proteins undergo phase separation to form dynamic cellular compartments, it has become clear that supramolecular assembly plays wide-ranging and critical roles in cellular regulation. This presents opportunities to develop new tools to probe and illuminate this biology, and to harness the unique properties of these self-assembling systems for synthetic biology for the purposeful manipulation of biological function.
Collapse
Affiliation(s)
- Giulio Chiesa
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Szilvia Kiriakov
- Biological Design Center, Boston University, Boston, MA, 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
126
|
3' UTRs Regulate Protein Functions by Providing a Nurturing Niche during Protein Synthesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:95-104. [PMID: 31900325 DOI: 10.1101/sqb.2019.84.039206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Messenger RNAs (mRNAs) are the templates for protein synthesis as the coding region is translated into the amino acid sequence. mRNAs also contain 3' untranslated regions (3' UTRs) that harbor additional elements for the regulation of protein function. If the amino acid sequence of a protein is necessary and sufficient for its function, we call it 3' UTR-independent. In contrast, functions that are accomplished by protein complexes whose formation requires the presence of a specific 3' UTR are 3' UTR-dependent protein functions. We showed that 3' UTRs can regulate protein activity without affecting protein abundance, and alternative 3' UTRs can diversify protein functions. We currently think that the regulation of protein function by 3' UTRs is facilitated by the local environment at the site of protein synthesis, which we call the nurturing niche for nascent proteins. This niche is composed of the mRNA and the bound proteins that consist of RNA-binding proteins and recruited proteins. It enables the formation of specific protein complexes, as was shown for TIS granules, a recently discovered cytoplasmic membraneless organelle. This finding suggests that changing the niche for nascent proteins will alter protein activity and function, implying that cytoplasmic membraneless organelles can regulate protein function in a manner that is independent of protein abundance.
Collapse
|
127
|
Bracha D, Walls MT, Brangwynne CP. Probing and engineering liquid-phase organelles. Nat Biotechnol 2019; 37:1435-1445. [DOI: 10.1038/s41587-019-0341-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023]
|
128
|
Kubyshkin V, Budisa N. Anticipating alien cells with alternative genetic codes: away from the alanine world! Curr Opin Biotechnol 2019; 60:242-249. [DOI: 10.1016/j.copbio.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
|
129
|
McSwiggen DT, Mir M, Darzacq X, Tjian R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 2019; 33:1619-1634. [PMID: 31594803 PMCID: PMC6942051 DOI: 10.1101/gad.331520.119] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The idea that liquid-liquid phase separation (LLPS) may be a general mechanism by which molecules in the complex cellular milieu may self-organize has generated much excitement and fervor in the cell biology community. While this concept is not new, its rise to preeminence has resulted in renewed interest in the mechanisms that shape and drive diverse cellular self-assembly processes from gene expression to cell division to stress responses. In vitro biochemical data have been instrumental in deriving some of the fundamental principles and molecular grammar by which biological molecules may phase separate, and the molecular basis of these interactions. Definitive evidence is lacking as to whether the same principles apply in the physiological environment inside living cells. In this Perspective, we analyze the evidence supporting phase separation in vivo across multiple cellular processes. We find that the evidence for in vivo LLPS is often phenomenological and inadequate to discriminate between phase separation and other possible mechanisms. Moreover, the causal relationship and functional consequences of LLPS in vivo are even more elusive. We underscore the importance of performing quantitative measurements on proteins in their endogenous state and physiological abundance, as well as make recommendations for experiments that may yield more conclusive results.
Collapse
Affiliation(s)
- David T McSwiggen
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- California Institute of Regenerative Medicine Center of Excellence, University of California Berkeley, California 94720, USA
| | - Mustafa Mir
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- California Institute of Regenerative Medicine Center of Excellence, University of California Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California Berkeley, California 94720, USA
| |
Collapse
|
130
|
Nguyen DT, Jeon BJ, Abraham GR, Saleh OA. Length-Dependence and Spatial Structure of DNA Partitioning into a DNA Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14849-14854. [PMID: 31638820 DOI: 10.1021/acs.langmuir.9b02098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cells can spatially and temporally control biochemistry using liquid-liquid phase separation to form membrane-less organelles. Synthetic biomolecular liquids offer a means to study the mechanisms of this process, as well as offering a route to the creation of functional biomimetic materials. With these goals in mind, we here examine the partitioning of long double-stranded DNA linkers into a liquid composed of small DNA particles ("nanostars") whose phase separation is driven by base pairing. We find that linker partitioning is length-dependent because of a confinement penalty of inserting long strands within the liquid's characteristic mesh size. We quantify this entropic-confinement effect using a simple partitioning theory and show that its magnitude is consistent with classic Odijk pictures of confined worm-like chains. Linker partitioning can also lead to inhomogeneous structures: long linkers excluded from the liquid interior tend to preferentially accumulate on the surface of liquid droplets (i.e., acting as surfactants), while linkers forced at high concentrations into the liquid undergo a secondary phase separation, forming metastable droplet-in-droplet structures. Altogether, our work demonstrates the ability to rationally engineer the composition and structure of a model biomolecular liquid.
Collapse
|
131
|
Protein Chemistry Looking Ahead: 8 th Chemical Protein Synthesis Meeting 16-19 June 2019, Berlin, Germany. Cell Chem Biol 2019; 26:1349-1354. [PMID: 31626782 DOI: 10.1016/j.chembiol.2019.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022]
Abstract
The 8th Chemical Protein Synthesis meeting took place in Berlin in June 2019, covering broad topics in protein chemistry, ranging from synthetic methodology to applications in medicine and biomaterials. The meeting was also the culmination of the Priority Program SPP1623 on "Chemoselective Reactions for the Synthesis and Application of Functional Proteins" funded by the German Science Foundation (DFG) from 2012 to 2018. We present highlights from presentations at the forefront of the field, grouped into broad themes that illustrate how the field of protein chemistry is looking ahead to new discoveries and applications.
Collapse
|
132
|
Van Fossen EM, Bednar RM, Mehl RA. Engineering Spatial Orthogonality into Protein Translation. Biochemistry 2019; 58:3325-3327. [PMID: 31343161 DOI: 10.1021/acs.biochem.9b00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elise M Van Fossen
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Ag Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Riley M Bednar
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Ag Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Ag Life Sciences Building , Corvallis , Oregon 97331-7305 , United States
| |
Collapse
|
133
|
|
134
|
Lin GM, Warden-Rothman R, Voigt CA. Retrosynthetic design of metabolic pathways to chemicals not found in nature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|