101
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
102
|
Nakamura T, Fujiwara K, Saitou M, Tsukiyama T. Non-human primates as a model for human development. Stem Cell Reports 2021; 16:1093-1103. [PMID: 33979596 PMCID: PMC8185448 DOI: 10.1016/j.stemcr.2021.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Human development has been studied for over a century, but the molecular mechanisms underlying human embryogenesis remain largely unknown due to technical difficulties and ethical issues. Accordingly, mice have been used as a model for mammalian development and studied extensively to infer human biology based on the conservation of fundamental processes between the two species. As research has progressed, however, species-specific differences in characteristics between rodents and primates have become apparent. Non-human primates (NHPs) have also been used for biomedical research, and are now attracting attention as a model for human development. Here, we summarize primate species from the evolutionary and genomic points of view. Then we review the current issues and progress in gene modification technology for NHPs. Finally, we discuss recent studies on the early embryogenesis of primates and future perspectives.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kohei Fujiwara
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
103
|
|
104
|
Tan T, Wu J, Si C, Dai S, Zhang Y, Sun N, Zhang E, Shao H, Si W, Yang P, Wang H, Chen Z, Zhu R, Kang Y, Hernandez-Benitez R, Martinez Martinez L, Nuñez Delicado E, Berggren WT, Schwarz M, Ai Z, Li T, Rodriguez Esteban C, Ji W, Niu Y, Izpisua Belmonte JC. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell 2021; 184:2020-2032.e14. [PMID: 33861963 DOI: 10.1016/j.cell.2021.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022]
Abstract
Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.
Collapse
Affiliation(s)
- Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Chenyang Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Youyue Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - E Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Honglian Shao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Pengpeng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenzhen Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | | | - Llanos Martinez Martinez
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, No 135 12, Guadalupe 30107, Spain
| | - Estrella Nuñez Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, No 135 12, Guadalupe 30107, Spain
| | - W Travis Berggren
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - May Schwarz
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zongyong Ai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | | | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | | |
Collapse
|
105
|
Hyun I, Bredenoord AL, Briscoe J, Klipstein S, Tan T. Human embryo research beyond the primitive streak. Science 2021; 371:998-1000. [PMID: 33674483 DOI: 10.1126/science.abf3751] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Insoo Hyun
- Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Annelien L Bredenoord
- Department of Medical Humanities, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - James Briscoe
- The Francis Crick Institute, London, UK.,Development, The Company of Biologists, Cambridge, UK
| | - Sigal Klipstein
- InVia Fertility Specialists, Hoffman Estates, IL, USA.,Department of Obstetrics and Gynecology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
106
|
Yu L, Wei Y, Duan J, Schmitz DA, Sakurai M, Wang L, Wang K, Zhao S, Hon GC, Wu J. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021; 591:620-626. [PMID: 33731924 DOI: 10.1038/s41586-021-03356-y] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1-7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8-14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures-which we term 'human blastoids'-resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects.
Collapse
Affiliation(s)
- Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute, Jiangmen, China
| | - Jialei Duan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
107
|
Hancock GV, Wamaitha SE, Peretz L, Clark AT. Mammalian primordial germ cell specification. Development 2021; 148:148/6/dev189217. [PMID: 33722957 DOI: 10.1242/dev.189217] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The peri-implantation window of mammalian development is the crucial window for primordial germ cell (PGC) specification. Whereas pre-implantation dynamics are relatively conserved between species, the implantation window marks a stage of developmental divergence between key model organisms, and thus potential variance in the cell and molecular mechanisms for PGC specification. In humans, PGC specification is very difficult to study in vivo To address this, the combined use of human and nonhuman primate embryos, and stem cell-based embryo models are essential for determining the origin of PGCs, as are comparative analyses to the equivalent stages of mouse development. Understanding the origin of PGCs in the peri-implantation embryo is crucial not only for accurate modeling of this essential process using stem cells, but also in determining the role of global epigenetic reprogramming upon which sex-specific differentiation into gametes relies.
Collapse
Affiliation(s)
- Grace V Hancock
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Sissy E Wamaitha
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Lior Peretz
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA .,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
108
|
Wei Y, Zhang C, Fan G, Meng L. Organoids as Novel Models for Embryo Implantation Study. Reprod Sci 2021; 28:1637-1643. [PMID: 33650092 DOI: 10.1007/s43032-021-00501-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
In the last decade, organoids have become emerging novel models for biomedical research. Organoids are small, self-organized three-dimensional (3D) tissue cultures derived from stem cells that mimic certain tissues or organs. In reproductive medicine, researchers have generated numerous organoids including blastoid (blastocyst organoid), endometrial organoid, and trophoblast organoid. These organdies provide useful models for studying the embryo implantation mechanism through observation of cell differentiation, gene expression, and epigenetic profiles at the implantation stage. As in vitro tissue models, organoids could be coupled with many other frontier technologies such as gene editing and genomic sequencing. However, the main drawback of organoids is that they do not fully mimic their counterparts in vivo tissues. Furthermore, there is a consensus of research ethics on organoids that may limit the types of studies that scientists perform with. Nevertheless, all discoveries and efforts surrounding organoids still greatly benefit therapy development for reproductive clinics.
Collapse
Affiliation(s)
- Yubao Wei
- Institute of Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Cuilian Zhang
- Institute of Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Li Meng
- Incinta Fertility Center, Los Angeles, CA, 90503, USA
| |
Collapse
|
109
|
Saitou M. Mammalian Germ Cell Development: From Mechanism to In Vitro Reconstitution. Stem Cell Reports 2021; 16:669-680. [PMID: 33577794 PMCID: PMC8072030 DOI: 10.1016/j.stemcr.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
The germ cell lineage gives rise to totipotency and perpetuates and diversifies genetic as well as epigenetic information. Specifically, germ cells undergo epigenetic reprogramming/programming, replicate genetic information with high fidelity, and create genetic diversity through meiotic recombination. Driven by advances in our understanding of the mechanisms underlying germ cell development and stem cell/reproductive technologies, research over the past 2 decades has culminated in the in vitro reconstitution of mammalian germ cell development: mouse pluripotent stem cells (PSCs) can now be induced into primordial germ cell-like cells (PGCLCs) and then differentiated into fully functional oocytes and spermatogonia, and human PSCs can be induced into PGCLCs and into early oocytes and prospermatogonia with epigenetic reprogramming. Here, I provide my perspective on the key investigations that have led to the in vitro reconstitution of mammalian germ cell development, which will be instrumental in exploring salient themes in germ cell biology and, with further refinements/extensions, in developing innovative medical applications.
Collapse
Affiliation(s)
- Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
110
|
McCully S. The time has come to extend the 14-day limit. JOURNAL OF MEDICAL ETHICS 2021; 47:medethics-2020-106406. [PMID: 33531360 DOI: 10.1136/medethics-2020-106406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 05/04/2023]
Abstract
For the past 40 years, the 14-day rule has governed and, by defining a clear boundary, enabled embryo research and the clinical benefits derived from this. It has been both a piece of legislation and a rule of good practice globally. However, methods now allow embryos to be cultured for more than 14 days, something difficult to imagine when the rule was established, and knowledge gained in the intervening years provides robust scientific rationale for why it is now essential to conduct research on later stage human embryos. In this paper, I argue that the current limit for embryo research in vitro should be extended to 28 days to permit research that will illuminate our beginnings as well as provide new therapeutic possibilities to reduce miscarriage and developmental abnormalities. It will also permit validation of potentially useful alternatives. Through consideration of current ethical arguments, I also conclude that there are no coherent or persuasive reasons to deny researchers, and through them humanity, the knowledge and the innovation that this will generate.
Collapse
Affiliation(s)
- Sophia McCully
- Department of Global Health and Social Medicine, King's College London, London, UK
| |
Collapse
|
111
|
Fu J, Warmflash A, Lutolf MP. Stem-cell-based embryo models for fundamental research and translation. NATURE MATERIALS 2021; 20:132-144. [PMID: 33199861 PMCID: PMC7855549 DOI: 10.1038/s41563-020-00829-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/14/2020] [Indexed: 06/01/2023]
Abstract
Despite its importance, understanding the early phases of human development has been limited by availability of human samples. The recent emergence of stem-cell-derived embryo models, a new field aiming to use stem cells to construct in vitro models to recapitulate snapshots of the development of the mammalian conceptus, opens up exciting opportunities to promote fundamental understanding of human development and advance reproductive and regenerative medicine. This Review provides a summary of the current knowledge of early mammalian development, using mouse and human conceptuses as models, and emphasizes their similarities and critical differences. We then highlight existing embryo models that mimic different aspects of mouse and human development. We further discuss bioengineering tools used for controlling multicellular interactions and self-organization critical for the development of these models. We conclude with a discussion of the important next steps and exciting future opportunities of stem-cell-derived embryo models for fundamental discovery and translation.
Collapse
Affiliation(s)
- Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
112
|
Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ 2021; 63:104-115. [PMID: 33570781 PMCID: PMC8251740 DOI: 10.1111/dgd.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.
Collapse
Affiliation(s)
- Katsunori Semi
- Center for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | | |
Collapse
|
113
|
Ghimire S, Mantziou V, Moris N, Martinez Arias A. Human gastrulation: The embryo and its models. Dev Biol 2021; 474:100-108. [PMID: 33484705 DOI: 10.1016/j.ydbio.2021.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Technical and ethical limitations create a challenge to study early human development, especially following the first 3 weeks of development after fertilization, when the fundamental aspects of the body plan are established through the process called gastrulation. As a consequence, our current understanding of human development is mostly based on the anatomical and histological studies on Carnegie Collection of human embryos, which were carried out more than half a century ago. Due to the 14-day rule on human embryo research, there have been no experimental studies beyond the fourteenth day of human development. Mutagenesis studies on animal models, mostly in mouse, are often extrapolated to human embryos to understand the transcriptional regulation of human development. However, due to the existence of significant differences in their morphological and molecular features as well as the time scale of their development, it is obvious that complete knowledge of human development can be achieved only by studying the human embryo. These studies require a cellular framework. Here we summarize the cellular, molecular, and temporal aspects associated with human gastrulation and discuss how they relate to existing human PSCs based models of early development.
Collapse
Affiliation(s)
- Sabitri Ghimire
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | - Veronika Mantziou
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Naomi Moris
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | | |
Collapse
|
114
|
Zhang T, Guo S, Zhou H, Wu Z, Liu J, Qiu C, Deng G. Endometrial extracellular matrix rigidity and IFNτ ensure the establishment of early pregnancy through activation of YAP. Cell Prolif 2021; 54:e12976. [PMID: 33393124 PMCID: PMC7849163 DOI: 10.1111/cpr.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background In mammals, early pregnancy is a critical vulnerable period during which complications may arise, including pregnancy failure. Establishment of a maternal endometrial acceptance phenotype is a prerequisite for semiheterogeneous embryo implantation, comprising the rate‐limiting step of early pregnancy. Methods Confocal fluorescence, immunohistochemistry and western blot for nuclear and cytoplasmic protein were used to examine the activation of yes‐associated protein (YAP) in uterine tissue and primary endometrial cells. The target binding between miR16a and YAP was verified by dual‐luciferase reporter gene assay. The mouse pregnancy model and pseudopregnancy model were used to investigate the role of YAP in the maternal uterus during early pregnancy in vivo. Results We showed that YAP translocates into the nucleus in the endometrium of cattle and mice during early pregnancy. Mechanistically, YAP acts as a mediator of ECM rigidity and cell density, which requires the actomyosin cytoskeleton and is partially dependent on the Hippo pathway. Furthermore, we found that the soluble factor IFNτ, which is a ruminant pregnancy recognition factor, also induced activation of YAP by reducing the expression of miR‐16a. Conclusions This study revealed that activation of YAP is necessary for early pregnancy in bovines because it induced cell proliferation and established an immunosuppressive local environment that allowed conceptus implantation into the uterine epithelium.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Liu
- College of Animal Science, Tarim University, Alar, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
115
|
Jmel Boyer I, García Sánchez E. [The pre-gastrulation embryonic human development: future models and societal concerns]. Biol Aujourdhui 2020; 214:109-113. [PMID: 33357369 DOI: 10.1051/jbio/2020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/15/2022]
Abstract
Infertility, early miscarriages and congenital malformations are major public health issues that are frequent and poorly understood. Until now, what is known about early human development originates from two main sources: studies of human embryos and studies of model animals. Although some molecular mechanisms are conserved, there are specific human features. Thus, it is necessary to study model animals that are close to humans in the phylogenetic classification, which led to the use of pre-established primate cell lineages. Currently, the only human embryos available come from In Vitro Fertilization, which leads to important limitations: these embryos are relatively few and must be destroyed after 14 days. This has led researchers to develop new strategies. Several teams used Embryonic Stem Cells or Induced Pluripotent Stem Cells and their in vitro auto-organization properties to recreate "embryos" and thereby study their development. These new strategies allow a reduced use of human embryos but new questions arise about the legal status of these new research "models". In the future, it would be important to update the different legislations and recommendations of the International Society for Stem Cell Research as science progresses to avoid any failing drift. The respect of recommendations as well as the maintenance of discussions between specialists and the general public will allow a better understanding of early human development and the establishment of innovative strategies to target health challenges.
Collapse
Affiliation(s)
- Inès Jmel Boyer
- Master Génétique Moléculaire du Développement et des Cellules Souches, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Emmanuel García Sánchez
- Master Génétique Moléculaire du Développement et des Cellules Souches, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
116
|
Io S, Kondoh E, Chigusa Y, Kawasaki K, Mandai M, Yamada AS. New era of trophoblast research: integrating morphological and molecular approaches. Hum Reprod Update 2020; 26:611-633. [PMID: 32728695 DOI: 10.1093/humupd/dmaa020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many pregnancy complications are the result of dysfunction in the placenta. The pathogenic mechanisms of placenta-mediated pregnancy complications, however, are unclear. Abnormal placental development in these conditions begins in the first trimester, but no symptoms are observed during this period. To elucidate effective preventative treatments, understanding the differentiation and development of human placenta is crucial. This review elucidates the uniqueness of the human placenta in early development from the aspect of structural characteristics and molecular markers. We summarise the morphogenesis of human placenta based on human specimens and then compile molecular markers that have been clarified by immunostaining and RNA-sequencing data across species. Relevant studies were identified using the PubMed database and Google Scholar search engines up to March 2020. All articles were independently screened for eligibility by the authors based on titles and abstracts. In particular, the authors carefully examined literature on human placentation. This review integrates the development of human placentation from morphological approaches in comparison with other species and provides new insights into trophoblast molecular markers. The morphological features of human early placentation are described in Carnegie stages (CS), from CS3 (floating blastocyst) to CS9 (emerging point of tertiary villi). Molecular markers are described for each type of trophoblast involved in human placental development. We summarise the character of human trophoblast cell lines and explain how long-term culture system of human cytotrophoblast, both monolayer and spheroid, established in recent studies allows for the generation of human trophoblast cell lines. Due to differences in developmental features among species, it is desirable to understand early placentation in humans. In addition, reliable molecular markers that reflect normal human trophoblast are needed to advance trophoblast research. In the clinical setting, these markers can be valuable means for morphologically and functionally assessing placenta-mediated pregnancy complications and provide early prediction and management of these diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, Center for iPS Cell Research & Application, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Kawasaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - And Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
117
|
Zheng Y, Shao Y, Fu J. A microfluidics-based stem cell model of early post-implantation human development. Nat Protoc 2020; 16:309-326. [PMID: 33311712 DOI: 10.1038/s41596-020-00417-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Early post-implantation human embryonic development has been challenging to study due to both technical limitations and ethical restrictions. Proper modeling of the process is important for infertility and toxicology research. Here we provide details of the design and implementation of a microfluidic device that can be used to model human embryo development. The microfluidic human embryo model is established from human pluripotent stem cells (hPSCs), and the resulting structures exhibit molecular and cellular features resembling the progressive development of the early post-implantation human embryo. The compartmentalized configuration of the microfluidic device allows the formation of spherical hPSC clusters in prescribed locations in the device, enabling the two opposite regions of each hPSC cluster to be exposed to two different exogenous chemical environments. Under such asymmetrical chemical conditions, several early post-implantation human embryo developmental landmarks, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and gastrulating cells (or mesendoderm cells), can be robustly recapitulated using the microfluidic device. The microfluidic human embryo model is compatible with high-throughput studies, live imaging, immunofluorescence staining, fluorescent in situ hybridization, and single-cell sequencing. This protocol takes ~5 d to complete, including microfluidic device fabrication (2 d), cell seeding (1 d), and progressive development of the microfluidic model until gastrulation-like events occur (1-2 d).
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
118
|
Xia W, Xie W. Rebooting the Epigenomes during Mammalian Early Embryogenesis. Stem Cell Reports 2020; 15:1158-1175. [PMID: 33035464 PMCID: PMC7724468 DOI: 10.1016/j.stemcr.2020.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Upon fertilization, terminally differentiated gametes are transformed to a totipotent zygote, which gives rise to an embryo. How parental epigenetic memories are inherited and reprogrammed to accommodate parental-to-zygotic transition remains a fundamental question in developmental biology, epigenetics, and stem cell biology. With the rapid advancement of ultra-sensitive or single-cell epigenome analysis methods, unusual principles of epigenetic reprogramming begin to be unveiled. Emerging data reveal that in many species, the parental epigenome undergoes dramatic reprogramming followed by subsequent re-establishment of the embryo epigenome, leading to epigenetic "rebooting." Here, we discuss recent progress in understanding epigenetic reprogramming and their functions during mammalian early development. We also highlight the conserved and species-specific principles underlying diverse regulation of the epigenome in early embryos during evolution.
Collapse
Affiliation(s)
- Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
119
|
Minn KT, Fu YC, He S, Dietmann S, George SC, Anastasio MA, Morris SA, Solnica-Krezel L. High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures. eLife 2020. [PMID: 33206048 DOI: 10.1101/2020.1101.1122.915777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.
Collapse
Affiliation(s)
- Kyaw Thu Minn
- Department of Biomedical Engineering, Washington University, St. Louis, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Yuheng C Fu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, United States
| | - Shenghua He
- Department of Computer Science & Engineering, Washington University, St. Louis, United States
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Division of Nephrology, Washington University School of Medicine, St. Louis, United States
- Institute for Informatics, Washington University School of Medicine, St. Louis, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, United States
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University, St. Louis, United States
- Department of Bioengineering, University of Illinois, Urbana-Champaign, United States
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
120
|
Minn KT, Fu YC, He S, Dietmann S, George SC, Anastasio MA, Morris SA, Solnica-Krezel L. High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures. eLife 2020; 9:e59445. [PMID: 33206048 PMCID: PMC7728446 DOI: 10.7554/elife.59445] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.
Collapse
Affiliation(s)
- Kyaw Thu Minn
- Department of Biomedical Engineering, Washington UniversitySt. LouisUnited States
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
| | - Yuheng C Fu
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Shenghua He
- Department of Computer Science & Engineering, Washington UniversitySt. LouisUnited States
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Division of Nephrology, Washington University School of MedicineSt. LouisUnited States
- Institute for Informatics, Washington University School of MedicineSt. LouisUnited States
| | - Steven C George
- Department of Biomedical Engineering, University of California, DavisDavisUnited States
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington UniversitySt. LouisUnited States
- Department of Bioengineering, University of IllinoisUrbana-ChampaignUnited States
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
121
|
Petkov S, Dressel R, Rodriguez-Polo I, Behr R. Controlling the Switch from Neurogenesis to Pluripotency during Marmoset Monkey Somatic Cell Reprogramming with Self-Replicating mRNAs and Small Molecules. Cells 2020; 9:cells9112422. [PMID: 33167468 PMCID: PMC7694496 DOI: 10.3390/cells9112422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of cell-based therapies; however, the safety and efficacy of potential iPSC-based treatments need to be verified in relevant animal disease models before their application in the clinic. Here, we report the derivation of iPSCs from common marmoset monkeys (Callithrix jacchus) using self-replicating mRNA vectors based on the Venezuelan equine encephalitis virus (VEE-mRNAs). By transfection of marmoset fibroblasts with VEE-mRNAs carrying the human OCT4, KLF4, SOX2, and c-MYC and culture in the presence of small molecule inhibitors CHIR99021 and SB431542, we first established intermediate primary colonies with neural progenitor-like properties. In the second reprogramming step, we converted these colonies into transgene-free pluripotent stem cells by further culturing them with customized marmoset iPSC medium in feeder-free conditions. Our experiments revealed a novel paradigm for flexible reprogramming of somatic cells, where primary colonies obtained by a single VEE-mRNA transfection can be directed either toward the neural lineage or further reprogrammed to pluripotency. These results (1) will further enhance the role of the common marmoset as animal disease model for preclinical testing of iPSC-based therapies and (2) establish an in vitro system to experimentally address developmental signal transduction pathways in primates.
Collapse
Affiliation(s)
- Stoyan Petkov
- Platform Degenerative Diseases, German Primate Center, GmbH, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, 37077 Göttingen, Germany;
- Correspondence: (S.P.); (R.B.); Tel.: +49-(0)551-3851-322 (S.P.); Tel.:+49-(0)551-3851-132 (R.B.)
| | - Ralf Dressel
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, 37077 Göttingen, Germany;
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Ignacio Rodriguez-Polo
- Platform Degenerative Diseases, German Primate Center, GmbH, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, 37077 Göttingen, Germany;
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, GmbH, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, 37077 Göttingen, Germany;
- Correspondence: (S.P.); (R.B.); Tel.: +49-(0)551-3851-322 (S.P.); Tel.:+49-(0)551-3851-132 (R.B.)
| |
Collapse
|
122
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
123
|
Origin and function of the yolk sac in primate embryogenesis. Nat Commun 2020; 11:3760. [PMID: 32724077 PMCID: PMC7387521 DOI: 10.1038/s41467-020-17575-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human embryogenesis is hallmarked by two phases of yolk sac development. The primate hypoblast gives rise to a transient primary yolk sac, which is rapidly superseded by a secondary yolk sac during gastrulation. Moreover, primate embryos form extraembryonic mesoderm prior to gastrulation, in contrast to mouse. The function of the primary yolk sac and the origin of extraembryonic mesoderm remain unclear. Here, we hypothesise that the hypoblast-derived primary yolk sac serves as a source for early extraembryonic mesoderm, which is supplemented with mesoderm from the gastrulating embryo. We discuss the intricate relationship between the yolk sac and the primate embryo and highlight the pivotal role of the yolk sac as a multifunctional hub for haematopoiesis, germ cell development and nutritional supply.
Collapse
|
124
|
Abstract
Gene regulatory networks and tissue morphogenetic events drive the emergence of shape and function: the pillars of embryo development. Although model systems offer a window into the molecular biology of cell fate and tissue shape, mechanistic studies of our own development have so far been technically and ethically challenging. However, recent technical developments provide the tools to describe, manipulate and mimic human embryos in a dish, thus opening a new avenue to exploring human development. Here, I discuss the evidence that supports a role for the crosstalk between cell fate and tissue shape during early human embryogenesis. This is a critical developmental period, when the body plan is laid out and many pregnancies fail. Dissecting the basic mechanisms that coordinate cell fate and tissue shape will generate an integrated understanding of early embryogenesis and new strategies for therapeutic intervention in early pregnancy loss.
Collapse
Affiliation(s)
- Marta N Shahbazi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
125
|
Abstract
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.
Collapse
|
126
|
Resto Irizarry AM, Nasr Esfahani S, Fu J. Bioengineered pluripotent stem cell models: new approaches to explore early human embryo development. Curr Opin Biotechnol 2020; 66:52-58. [PMID: 32673946 DOI: 10.1016/j.copbio.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Human development is a complex process in which environmental signals and factors encoded by the genome interact to engender cell fate changes and self-organization that drive the progressive formation of the human body. Herein, we discuss engineered biomimetic platforms with controllable environments that are being used to develop human pluripotent stem cell (hPSC)-based embryo models (or embryoids) that recapitulate a wide range of early human embryonic developmental events. Coupled with genome editing tools, single-cell analysis, and computational models, they can be used to parse the spatiotemporal dynamics that lead to differentiation, patterning, and growth in early human development. Furthermore, we discuss ongoing efforts in human extraembryonic lineage derivation and what can be learned from mouse embryoid models that have used both embryonic and extraembryonic stem cells. Finally, we discuss promising bioengineering tools for the generation of more controllable systems and the need for validation of findings from hPSC-based embryoid models.
Collapse
Affiliation(s)
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
127
|
Ma H, Wang H, Zheng P, Li L. Comments on 'In vitro culture of cynomolgus monkey embryos beyond early gastrulation'. J Mol Cell Biol 2020; 12:400-402. [PMID: 31863115 PMCID: PMC7288744 DOI: 10.1093/jmcb/mjz108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Huaixiao Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Primate Research Center, Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
128
|
Carter AM. The role of mammalian foetal membranes in early embryogenesis: Lessons from marsupials. J Morphol 2020; 282:940-952. [PMID: 32374455 DOI: 10.1002/jmor.21140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Across mammals, early embryonic development is supported by uterine secretions taken up through the yolk sac and other foetal membranes (histotrophic nutrition). The marsupial conceptus is enclosed in a shell coat for the first two-thirds of gestation and nutrients pass to the embryo through the shell and the avascular bilaminar yolk sac. At around the time of shell rupture, part of the yolk sac is trilaminar and supplied with blood vessels. It attaches to the uterus and forms a choriovitelline placenta. Rapid growth of the embryo ensues, still supported by histotrophe as well as exchange of oxygen and nutrients between maternal and foetal blood vessels (haemotrophic nutrition). Few marsupials have a chorioallantoic placenta and the highly altricial newborn is delivered after a short gestation. Eutherian embryos pass through a similar sequence before there is a fully functional chorioallantoic placenta. In most orders, there is transient yolk sac placentation, but even before this, nutrients are transferred through an avascular yolk sac. Yolk sac placentation does not occur in rodents or catarrhine primates. Early embryonic development in the mouse is nonetheless dependent on histotrophic nutrition. In the first trimester of human pregnancy, uterine glands open to the intervillous space and secretion products are taken up by the trophoblast. Transfer of nutrients to the early human embryo also involves the yolk sac, which floats free in the exocoelom. Marsupials can therefore inform us about the role of foetal membranes and histotrophic nutrition in early embryogenesis, knowledge that can translate to eutherians.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
129
|
Peng G, Cui G, Ke J, Jing N. Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development. Annu Rev Genomics Hum Genet 2020; 21:163-181. [PMID: 32339035 DOI: 10.1146/annurev-genom-120219-083220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Embryonic development and stem cell differentiation provide a paradigm to understand the molecular regulation of coordinated cell fate determination and the architecture of tissue patterning. Emerging technologies such as single-cell RNA sequencing and spatial transcriptomics are opening new avenues to dissect cell organization, the divergence of morphological and molecular properties, and lineage allocation. Rapid advances in experimental and computational tools have enabled researchers to make many discoveries and revisit old hypotheses. In this review, we describe the use of single-cell RNA sequencing in studies of molecular trajectories and gene regulation networks for stem cell lineages, while highlighting the integratedexperimental and computational analysis of single-cell and spatial transcriptomes in the molecular annotation of tissue lineages and development during postimplantation gastrulation.
Collapse
Affiliation(s)
- Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; .,Center for Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guizhong Cui
- Center for Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Jincan Ke
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China;
| | - Naihe Jing
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; .,Center for Cell Lineage and Atlas, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
130
|
|
131
|
Synthetic human embryology: towards a quantitative future. Curr Opin Genet Dev 2020; 63:30-35. [PMID: 32172182 DOI: 10.1016/j.gde.2020.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Study of early human embryo development is essential for advancing reproductive and regenerative medicine. Traditional human embryological studies rely on embryonic tissue specimens, which are difficult to acquire due to technical challenges and ethical restrictions. The availability of human stem cells with developmental potentials comparable to pre-implantation and peri-implantation human embryonic and extraembryonic cells, together with properly engineered in vitro culture environments, allow for the first time researchers to generate self-organized multicellular structures in vitro that mimic the structural and molecular features of their in vivo counterparts. The development of these stem cell-based, synthetic human embryo models offers a paradigm-shifting experimental system for quantitative measurements and perturbations of multicellular development, critical for advancing human embryology and reproductive and regenerative medicine without using intact human embryos.
Collapse
|
132
|
Hadjantonakis AK, Siggia ED, Simunovic M. In vitro modeling of early mammalian embryogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:134-143. [PMID: 32440574 DOI: 10.1016/j.cobme.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic embryology endeavors to use stem cells to recapitulate the first steps of mammalian development that define the body axes and first stages of fate assignment. Well-engineered synthetic systems provide an unparalleled assay to disentangle and quantify the contributions of individual tissues as well as the molecular components driving embryogenesis. Experiments using a mixture of mouse embryonic and extra-embryonic stem cell lines show a surprising degree of self-organization akin to certain milestones in the development of intact mouse embryos. To further advance the field and extend the mouse results to human, it is crucial to develop a better control of the assembly process as well as to establish a deeper understanding of the developmental state and potency of cells used in experiments at each step of the process. We review recent advances in the derivation of embryonic and extraembryonic stem cells, and we highlight recent efforts in reconstructing the structural and signaling aspects of embryogenesis in three-dimensional tissue cultures.
Collapse
Affiliation(s)
- Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,Department of Chemical Engineering, Columbia Univerisity, 116 and Broadway, New York, NY 10025
| |
Collapse
|
133
|
Ehnes DD, Hussein AM, Ware CB, Mathieu J, Ruohola-Baker H. Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape. Exp Cell Res 2020; 389:111913. [PMID: 32084392 DOI: 10.1016/j.yexcr.2020.111913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Since epigenetic modifications are a key driver for cellular differentiation, the regulation of these modifications is tightly controlled. Interestingly, recent studies have revealed metabolic regulation for epigenetic modifications in pluripotent cells. As metabolic differences are prominent between naive (pre-implantation) and primed (post-implantation) pluripotent cells, the epigenetic changes regulated by metabolites has become an interesting topic of analysis. In this review we discuss how combinatorial metabolic activities drive the developmental progression through early pluripotent stages.
Collapse
Affiliation(s)
- D D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - A M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - C B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - J Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA.
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
134
|
Neupane J, Wong FCK, Surani MA. The unfolding body plan of primate embryos in culture. Cell Res 2020; 30:103-104. [PMID: 31913357 DOI: 10.1038/s41422-019-0269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jitesh Neupane
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK.,Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Frederick C K Wong
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK.,Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK. .,Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
135
|
De Los Angeles A. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation. Exp Cell Res 2019; 387:111747. [PMID: 31778671 DOI: 10.1016/j.yexcr.2019.111747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
Pluripotency refers to the potential of single cells to form all cells and tissues of an organism. The observation that pluripotent stem cells can chimerize the embryos of evolutionarily distant species, albeit at very low efficiencies, could with further modifications, facilitate the production of human-animal interspecies chimeras. The generation of human-animal interspecies chimeras, if achieved, will enable practitioners to recapitulate pathologic human tissue formation in vivo and produce patient-specific organs inside livestock species. However, little is known about the nature of chimera-competent cellular states in primates. Here, I discuss recent advances in our understanding of the pluripotency continuum in humans and non-human primates (NHPs). Although undefined differences between humans and NHPs still justify the utility of studying human cells, the complementary use of NHP PS cells could also allow one to conduct pilot studies testing interspecies chimera generation strategies with reduced ethical concerns associated with human interspecies neurological chimerism. However, the availability of standardized, high-quality and validated NHP PS cell lines covering the spectrum of primate pluripotent states is lacking. Therefore, a clearer understanding of the primate pluripotency continuum will facilitate the complementary use of both human and NHP PS cells for testing interspecies organogenesis strategies, with the hope of one day enabling human organ generation inside livestock species.
Collapse
|
136
|
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
137
|
|