101
|
Pulferer HS, Ásgeirsdóttir B, Mondini V, Sburlea AI, Müller-Putz GR. Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant. J Neural Eng 2022; 19. [PMID: 35443233 DOI: 10.1088/1741-2552/ac689f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In people with a cervical spinal cord injury (SCI) or degenerative diseases leading to limited motor function, restoration of upper limb movement has been a goal of the brain-computer interface (BCI) field for decades. Recently, research from our group investigated non-invasive and real-time decoding of continuous movement in able-bodied participants from low-frequency brain signals during a target-tracking task. To advance our setup towards motor-impaired end users, we consequently chose a new paradigm based on attempted movement. APPROACH Here, we present the results of two studies. During the first study, data of ten able-bodied participants completing a target-tracking/shape-tracing task on-screen were investigated in terms of improvements in decoding performance due to user training. In a second study, a spinal cord injured participant underwent the same tasks. To investigate the merit of employing attempted movement in end users with SCI, data of the spinal cord injured participant were recorded twice; once within an observation only condition, and once while simultaneously attempting movement. MAIN RESULTS We observed mean correlation well above chance level for continuous motor decoding based on attempted movement in able-bodied participants. No global improvement over three sessions, both in sensor and source space, could be observed across all participants and movement parameters. In the participant with SCI, decoding performance well above chance was found. SIGNIFICANCE No presence of a learning effect in continuous attempted movement decoding in able-bodied participants could be observed. In contrast, non-significantly varying decoding patterns may promote the use of source space decoding in terms of generalized decoders utilizing transfer learning. Furthermore, above-chance correlations for attempted movement decoding ranging between those of observation only and executed movement were seen in one spinal cord injured participant, suggesting attempted movement decoding as a possible link between feasibility studies in able-bodied and actual applications in motor impaired end users.
Collapse
Affiliation(s)
| | | | - Valeria Mondini
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, Graz, 8010, AUSTRIA
| | - Andreea Ioana Sburlea
- Institute of Neural Engineering, Technische Universitat Graz, Stremayrgasse 16/IV, 8010 Graz, Austria, Graz, 8010, AUSTRIA
| | | |
Collapse
|
102
|
Hu M, Zhang J, Liu Y, Zheng X, Li X, Li X, Yang H. Highly Conformal Polymers for Ambulatory Electrophysiological Sensing. Macromol Rapid Commun 2022; 43:e2200047. [PMID: 35419904 DOI: 10.1002/marc.202200047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 11/08/2022]
Abstract
Stable ambulatory electrophysiological sensing is widely utilized for smart e-healthcare monitoring, clinical diagnosis of cardiovascular diseases, treatment of neurological diseases, and intelligent human-machine interaction. As the favorable signal interaction platform of electrophysiological sensing, the conformal property of on-skin electrodes is an extremely crucial factor that can affect the stability of long-term ambulatory electrophysiological sensing. From the perspective of materials, to realize conformal contact between electrodes and skin for stable sensing, highly conformal polymers are strongly demanding and attracting ever-growing attention. In this review, we focused on the recent progress of highly conformal polymers for ambulatory electrophysiological sensing, including their synthetic methods, conformal property, and potential applications. Specifically, three main types of highly conformal polymers for stable long-term electrophysiological signals monitoring were proposed, including nature silk fibroin based conformal polymers, marine mussels bio-inspired conformal polymers, and other conformal polymers such as zwitterionic polymers and polyacrylamide. Furthermore, the future challenges and opportunities of preparing highly conformal polymers for on-skin electrodes were also highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingshuang Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xinran Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Xiangxiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| | - Ximing Li
- Chest hospital, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, China
| |
Collapse
|
103
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
104
|
Srisrisawang N, Müller-Putz GR. Applying Dimensionality Reduction Techniques in Source-Space Electroencephalography via Template and Magnetic Resonance Imaging-Derived Head Models to Continuously Decode Hand Trajectories. Front Hum Neurosci 2022; 16:830221. [PMID: 35399364 PMCID: PMC8988304 DOI: 10.3389/fnhum.2022.830221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies showed evidence supporting the possibility of hand trajectory decoding from low-frequency electroencephalography (EEG). However, the decoding in the source space via source localization is scarcely investigated. In this study, we tried to tackle the problem of collinearity due to the higher number of signals in the source space by two folds: first, we selected signals in predefined regions of interest (ROIs); second, we applied dimensionality reduction techniques to each ROI. The dimensionality reduction techniques were computing the mean (Mean), principal component analysis (PCA), and locality preserving projections (LPP). We also investigated the effect of decoding between utilizing a template head model and a subject-specific head model during the source localization. The results indicated that applying source-space decoding with PCA yielded slightly higher correlations and signal-to-noise (SNR) ratios than the sensor-space approach. We also observed slightly higher correlations and SNRs when applying the subject-specific head model than the template head model. However, the statistical tests revealed no significant differences between the source-space and sensor-space approaches and no significant differences between subject-specific and template head models. The decoder with Mean and PCA utilizes information mainly from precuneus and cuneus to decode the velocity kinematics similarly in the subject-specific and template head models.
Collapse
Affiliation(s)
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
- *Correspondence: Gernot R. Müller-Putz,
| |
Collapse
|
105
|
Pan K, Li L, Zhang L, Li S, Yang Z, Guo Y. A Noninvasive BCI System for 2D Cursor Control Using a Spectral-Temporal Long Short-Term Memory Network. Front Comput Neurosci 2022; 16:799019. [PMID: 35399917 PMCID: PMC8984968 DOI: 10.3389/fncom.2022.799019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 01/16/2023] Open
Abstract
Two-dimensional cursor control is an important and challenging problem in the field of electroencephalography (EEG)-based brain computer interfaces (BCIs) applications. However, most BCIs based on categorical outputs are incapable of generating accurate and smooth control trajectories. In this article, a novel EEG decoding framework based on a spectral-temporal long short-term memory (stLSTM) network is proposed to generate control signals in the horizontal and vertical directions for accurate cursor control. Precisely, the spectral information is used to decode the subject's motor imagery intention, and the error-related P300 information is used to detect a deviation in the movement trajectory. The concatenated spectral and temporal features are fed into the stLSTM network and mapped to the velocities in vertical and horizontal directions of the 2D cursor under the velocity-constrained (VC) strategy, which enables the decoding network to fit the velocity in the imaginary direction and simultaneously suppress the velocity in the non-imaginary direction. This proposed framework was validated on a public real BCI control dataset. Results show that compared with the state-of-the-art method, the RMSE of the proposed method in the non-imaginary directions on the testing sets of 2D control tasks is reduced by an average of 63.45%. Besides, the visualization of the actual trajectories distribution of the cursor also demonstrates that the decoupling of velocity is capable of yielding accurate cursor control in complex path tracking tasks and significantly improves the control accuracy.
Collapse
|
106
|
Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces. Neural Netw 2022; 151:111-120. [DOI: 10.1016/j.neunet.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
|
107
|
Corsi MC, Chevallier S, Fallani FDV, Yger F. Functional connectivity ensemble method to enhance BCI performance (FUCONE). IEEE Trans Biomed Eng 2022; 69:2826-2838. [PMID: 35226599 DOI: 10.1109/tbme.2022.3154885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Relying on the idea that functional connectivity provides important insights on the underlying dynamic of neuronal interactions, we propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to improve the classification of mental states, such as motor imagery. METHODS A Riemannian classifier is trained for each estimator and an ensemble classifier combines the decisions in each feature space. A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline among those tested, called FUCONE, is evaluated on different conditions and datasets. RESULTS Using a meta-analysis to aggregate results across datasets, FUCONE performed significantly better than all state-of-the-art methods. CONCLUSION The performance gain is mostly imputable to the improved diversity of the feature spaces, increasing the robustness of the ensemble classifier with respect to the inter- and intra-subject variability. SIGNIFICANCE Our results offer new insights into the need to consider functional connectivity-based methods to improve the BCI performance.
Collapse
|
108
|
Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking. MATHEMATICS 2022. [DOI: 10.3390/math10040618] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The controlling of robotic arms based on brain–computer interface (BCI) can revolutionize the quality of life and living conditions for individuals with physical disabilities. Invasive electroencephalography (EEG)-based BCI has been able to control multiple degrees of freedom (DOFs) robotic arms in three dimensions. However, it is still hard to control a multi-DOF robotic arm to reach and grasp the desired target accurately in complex three-dimensional (3D) space by a noninvasive system mainly due to the limitation of EEG decoding performance. In this study, we propose a noninvasive EEG-based BCI for a robotic arm control system that enables users to complete multitarget reach and grasp tasks and avoid obstacles by hybrid control. The results obtained from seven subjects demonstrated that motor imagery (MI) training could modulate brain rhythms, and six of them completed the online tasks using the hybrid-control-based robotic arm system. The proposed system shows effective performance due to the combination of MI-based EEG, computer vision, gaze detection, and partially autonomous guidance, which drastically improve the accuracy of online tasks and reduce the brain burden caused by long-term mental activities.
Collapse
|
109
|
Li G, Jiang S, Meng J, Chai G, Wu Z, Fan Z, Hu J, Sheng X, Zhang D, Chen L, Zhu X. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings. Neuroimage 2022; 250:118969. [DOI: 10.1016/j.neuroimage.2022.118969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/03/2023] Open
|
110
|
Meng J, Wu Z, Li S, Zhu X. Effects of Gaze Fixation on the Performance of a Motor Imagery-Based Brain-Computer Interface. Front Hum Neurosci 2022; 15:773603. [PMID: 35140593 PMCID: PMC8818858 DOI: 10.3389/fnhum.2021.773603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Motor imagery-based brain-computer interfaces (BCIs) have been studied without controlling subjects’ gaze fixation position previously. The effect of gaze fixation and covert attention on the behavioral performance of BCI is still unknown. This study designed a gaze fixation controlled experiment. Subjects were required to conduct a secondary task of gaze fixation when performing the primary task of motor imagination. Subjects’ performance was analyzed according to the relationship between motor imagery target and the gaze fixation position, resulting in three BCI control conditions, i.e., congruent, incongruent, and center cross trials. A group of fourteen subjects was recruited. The average group performances of three different conditions did not show statistically significant differences in terms of BCI control accuracy, feedback duration, and trajectory length. Further analysis of gaze shift response time revealed a significantly shorter response time for congruent trials compared to incongruent trials. Meanwhile, the parietal occipital cortex also showed active neural activities for congruent and incongruent trials, and this was revealed by a contrast analysis of R-square values and lateralization index. However, the lateralization index computed from the parietal and occipital areas was not correlated with the BCI behavioral performance. Subjects’ BCI behavioral performance was not affected by the position of gaze fixation and covert attention. This indicated that motor imagery-based BCI could be used freely in robotic arm control without sacrificing performance.
Collapse
Affiliation(s)
- Jianjun Meng
- Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jianjun Meng,
| | - Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Songwei Li
- Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyang Zhu
- Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
111
|
|
112
|
Lorach H, Charvet G, Bloch J, Courtine G. Brain-spine interfaces to reverse paralysis. Natl Sci Rev 2022; 9:nwac009. [PMID: 36196116 PMCID: PMC9522392 DOI: 10.1093/nsr/nwac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Henri Lorach
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Guillaume Charvet
- CEA, LETI, CLINATEC, Univ. Grenoble Alpes, MINATEC Campus, Grenoble, France
| | - Jocelyne Bloch
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| |
Collapse
|
113
|
A Brain-Controlled Mahjong Game with Artificial Intelligence Augmentation. ARTIF INTELL 2022. [DOI: 10.1007/978-3-031-20503-3_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
114
|
Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Commun Biol 2021; 4:1406. [PMID: 34916587 PMCID: PMC8677775 DOI: 10.1038/s42003-021-02891-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user’s error expectation of the robot’s current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user’s preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user’s preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal. Teaching an assistive robotic manipulator to move objects in a cluttered table requires demonstrations from expert operators, but what if the experts are individuals with motor disabilities? Batzianoulis et al. propose a learning approach which combines robot autonomy and a brain-computer interfacing that decodes whether the generated trajectories meet the user’s criteria, and show how their system enables the robot to learn individual user’s preferred behaviors using less than five demonstrations that are not necessarily optimal.
Collapse
|
115
|
Ascari L, Marchenkova A, Bellotti A, Lai S, Moro L, Koshmak K, Mantoan A, Barsotti M, Brondi R, Avveduto G, Sechi D, Compagno A, Avanzini P, Ambeck-Madsen J, Vecchiato G. Validation of a Novel Wearable Multistream Data Acquisition and Analysis System for Ergonomic Studies. SENSORS (BASEL, SWITZERLAND) 2021; 21:8167. [PMID: 34960261 PMCID: PMC8707223 DOI: 10.3390/s21248167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022]
Abstract
Nowadays, the growing interest in gathering physiological data and human behavior in everyday life scenarios is paralleled by an increase in wireless devices recording brain and body signals. However, the technical issues that characterize these solutions often limit the full brain-related assessments in real-life scenarios. Here we introduce the Biohub platform, a hardware/software (HW/SW) integrated wearable system for multistream synchronized acquisitions. This system consists of off-the-shelf hardware and state-of-art open-source software components, which are highly integrated into a high-tech low-cost solution, complete, yet easy to use outside conventional labs. It flexibly cooperates with several devices, regardless of the manufacturer, and overcomes the possibly limited resources of recording devices. The Biohub was validated through the characterization of the quality of (i) multistream synchronization, (ii) in-lab electroencephalographic (EEG) recordings compared with a medical-grade high-density device, and (iii) a Brain-Computer-Interface (BCI) in a real driving condition. Results show that this system can reliably acquire multiple data streams with high time accuracy and record standard quality EEG signals, becoming a valid device to be used for advanced ergonomics studies such as driving, telerehabilitation, and occupational safety.
Collapse
Affiliation(s)
- Luca Ascari
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
- Camlin Italy s.r.l., 43123 Parma, Italy; (L.M.); (K.K.); (R.B.)
| | - Anna Marchenkova
- Institute of Neuroscience, National Research Council of Italy, 43125 Parma, Italy; (A.M.); (P.A.)
| | - Andrea Bellotti
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | - Stefano Lai
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | - Lucia Moro
- Camlin Italy s.r.l., 43123 Parma, Italy; (L.M.); (K.K.); (R.B.)
| | | | - Alice Mantoan
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | - Michele Barsotti
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | | | - Giovanni Avveduto
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | - Davide Sechi
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | - Alberto Compagno
- Henesis s.r.l., 43123 Parma, Italy; (A.B.); (S.L.); (A.M.); (M.B.); (G.A.); (D.S.); (A.C.)
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, 43125 Parma, Italy; (A.M.); (P.A.)
| | | | - Giovanni Vecchiato
- Institute of Neuroscience, National Research Council of Italy, 43125 Parma, Italy; (A.M.); (P.A.)
| |
Collapse
|
116
|
Li S, Duan J, Sun Y, Sheng X, Zhu X, Meng J. Exploring Fatigue Effects on Performance Variation of Intensive Brain-Computer Interface Practice. Front Neurosci 2021; 15:773790. [PMID: 34924942 PMCID: PMC8678598 DOI: 10.3389/fnins.2021.773790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) is an endogenous mental process and is commonly used as an electroencephalogram (EEG)-based brain-computer interface (BCI) strategy. Previous studies of P300 and MI-based (without online feedback) BCI have shown that mental states like fatigue can negatively affect participants' EEG signatures. However, exogenous stimuli cause visual fatigue, which might have a different mechanism than endogenous tasks do. Furthermore, subjects could adjust themselves if online feedback is provided. In this sense, it is still unclear how fatigue affects online MI-based BCI performance. With this question, 12 healthy subjects are recruited to investigate this issue, and an MI-based online BCI experiment is performed for four sessions on different days. The first session is for training, and the other three sessions differ in rest condition and duration-no rest, 16-min eyes-open rest, and 16-min eyes-closed rest-arranged in a pseudo-random order. Multidimensional fatigue inventory (MFI) and short stress state questionnaire (SSSQ) reveal that general fatigue, mental fatigue, and distress have increased, while engagement has decreased significantly within certain sessions. However, the BCI performances, including percent valid correct (PVC) and information transfer rate (ITR), show no significant change across 400 trials. The results suggest that although the repetitive MI task has affected subjects' mental states, their BCI performances and feature separability within a session are not affected by the task significantly. Further electrophysiological analysis reveals that the alpha-band power in the sensorimotor area has an increasing tendency, while event-related desynchronization (ERD) modulation level has a decreasing trend. During the rest time, no physiological difference has been found in the eyes-open rest condition; on the contrary, the alpha-band power increase and subsequent decrease appear in the eyes-closed rest condition. In summary, this experiment shows evidence that mental states can change dramatically in the intensive MI-BCI practice, but BCI performances could be maintained.
Collapse
Affiliation(s)
- Songwei Li
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Junyi Duan
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Meng
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
117
|
Emerging trends in BCI-robotics for motor control and rehabilitation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
118
|
Remsik AB, Gjini K, Williams L, van Kan PLE, Gloe S, Bjorklund E, Rivera CA, Romero S, Young BM, Nair VA, Caldera KE, Williams JC, Prabhakaran V. Ipsilesional Mu Rhythm Desynchronization Correlates With Improvements in Affected Hand Grip Strength and Functional Connectivity in Sensorimotor Cortices Following BCI-FES Intervention for Upper Extremity in Stroke Survivors. Front Hum Neurosci 2021; 15:725645. [PMID: 34776902 PMCID: PMC8581197 DOI: 10.3389/fnhum.2021.725645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke survivors, regardless of stroke severity and chronicity, and may induce and/or facilitate neuroplastic changes associated with motor rehabilitation. The present sub analyses of ongoing crossover-controlled trial NCT02098265 examine first whether, during movements of the affected hand compared to rest, ipsilesional Mu rhythm desynchronization of cerebral cortical sensorimotor areas [Brodmann’s areas (BA) 1-7] is localized and tracks with changes in grip force strength. Secondly, we test the hypothesis that BCI intervention results in changes in frequency-specific directional flow of information transmission (direct path functional connectivity) in BA 1-7 by measuring changes in isolated effective coherence (iCoh) between cerebral cortical sensorimotor areas thought to relate to electrophysiological signatures of motor actions and motor learning. A sample of 16 stroke survivors with right hemisphere lesions (left hand motor impairment), received a maximum of 18–30 h of BCI intervention. Electroencephalograms were recorded during intervention sessions while outcome measures of motor function and capacity were assessed at baseline and completion of intervention. Greater desynchronization of Mu rhythm, during movements of the impaired hand compared to rest, were primarily localized to ipsilesional sensorimotor cortices (BA 1-7). In addition, increased Mu desynchronization in the ipsilesional primary motor cortex, Post vs. Pre BCI intervention, correlated significantly with improvements in hand function as assessed by grip force measurements. Moreover, the results show a significant change in the direction of causal information flow, as measured by iCoh, toward the ipsilesional motor (BA 4) and ipsilesional premotor cortices (BA 6) during BCI intervention. Significant iCoh increases from ipsilesional BA 4 to ipsilesional BA 6 were observed in both Mu [8–12 Hz] and Beta [18–26 Hz] frequency ranges. In summary, the present results are indicative of improvements in motor capacity and behavior, and they are consistent with the view that BCI-FES intervention improves functional motor capacity of the ipsilesional hemisphere and the impaired hand.
Collapse
Affiliation(s)
- Alexander B Remsik
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Klevest Gjini
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Leroy Williams
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Center for Women's Health Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter L E van Kan
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shawna Gloe
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Erik Bjorklund
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Cameron A Rivera
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sophia Romero
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany M Young
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristin E Caldera
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
119
|
Ottenhoff MC, Goulis S, Wagner L, Tousseyn S, Colon A, Kubben P, Herff C. Continuously Decoding Grasping Movements using Stereotactic Depth Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6098-6101. [PMID: 34892508 DOI: 10.1109/embc46164.2021.9629639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain-Computer Interfaces (BCIs) that decode a patient's movement intention to control a prosthetic device could restore some independence to paralyzed patients. An important step on the road towards naturalistic prosthetic control is to decode movement continuously with low-latency. BCIs based on intracortical micro-arrays provide continuous control of robotic arms, but require a minor craniotomy. Surface recordings of neural activity using EEG have made great advances over the last years, but suffer from high noise levels and large intra-session variance. Here, we investigate the use of minimally invasive recordings using stereotactically implanted EEG (sEEG). These electrodes provide a sparse sampling across many brain regions. So far, promising decoding results have been presented using data measured from the subthalamic nucleus or trial-to-trial based methods using depth electrodes. In this work, we demonstrate that grasping movements can continuously be decoded using sEEG electrodes, as well. Beta and high-gamma activity was extracted from eight participants performing a grasping task. We demonstrate above chance level decoding of movement vs rest and left vs right, from both frequency bands with accuracies up to 0.94 AUC. The vastly different electrode locations between participants lead to large variability. In the future, we hope that sEEG recordings will provide additional information for the decoding process in neuroprostheses.
Collapse
|
120
|
Leeuwis N, Yoon S, Alimardani M. Functional Connectivity Analysis in Motor-Imagery Brain Computer Interfaces. Front Hum Neurosci 2021; 15:732946. [PMID: 34720907 PMCID: PMC8555469 DOI: 10.3389/fnhum.2021.732946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Motor Imagery BCI systems have a high rate of users that are not capable of modulating their brain activity accurately enough to communicate with the system. Several studies have identified psychological, cognitive, and neurophysiological measures that might explain this MI-BCI inefficiency. Traditional research had focused on mu suppression in the sensorimotor area in order to classify imagery, but this does not reflect the true dynamics that underlie motor imagery. Functional connectivity reflects the interaction between brain regions during the MI task and resting-state network and is a promising tool in improving MI-BCI classification. In this study, 54 novice MI-BCI users were split into two groups based on their accuracy and their functional connectivity was compared in three network scales (Global, Large and Local scale) during the resting-state, left vs. right-hand motor imagery task, and the transition between the two phases. Our comparison of High and Low BCI performers showed that in the alpha band, functional connectivity in the right hemisphere was increased in High compared to Low aptitude MI-BCI users during motor imagery. These findings contribute to the existing literature that indeed connectivity might be a valuable feature in MI-BCI classification and in solving the MI-BCI inefficiency problem.
Collapse
Affiliation(s)
- Nikki Leeuwis
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | | | | |
Collapse
|
121
|
Palumbo A, Gramigna V, Calabrese B, Ielpo N. Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:6285. [PMID: 34577493 PMCID: PMC8473300 DOI: 10.3390/s21186285] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the need for innovative aids, devices, and assistive technologies to enable people with severe disabilities to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with significant health challenges to improve their independence, facilitate participation in activities, thus enhancing overall well-being and preventing impairments. This systematic review provides state-of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to wheelchair control and movement. It presents a thorough examination of the different studies conducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and classification techniques used as well as on wheelchair components and performance evaluation. The results provided in this paper could highlight the limitations of current biomedical instrumentations applied to people with severe disabilities and bring focus to innovative research topics.
Collapse
Affiliation(s)
- Arrigo Palumbo
- Department of Medical and Surgical Sciences, “Magna Græcia” University, 88100 Catanzaro, Italy; (A.P.); (B.C.); (N.I.)
| | - Vera Gramigna
- Neuroscience Research Center, Magna Græcia University, 88100 Catanzaro, Italy
| | - Barbara Calabrese
- Department of Medical and Surgical Sciences, “Magna Græcia” University, 88100 Catanzaro, Italy; (A.P.); (B.C.); (N.I.)
| | - Nicola Ielpo
- Department of Medical and Surgical Sciences, “Magna Græcia” University, 88100 Catanzaro, Italy; (A.P.); (B.C.); (N.I.)
| |
Collapse
|
122
|
Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021; 10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/10/2021] [Indexed: 12/19/2022]
Abstract
A variety of electrophysiological signals (electrocardiography, electromyography, electroencephalography, etc.) are generated during the physiological activities of human bodies, which can be collected by electrodes and thus provide critical insights into health status or facilitate fundamental scientific research. The long-term stable and high-quality recording of electrophysiological signals is the premise for their further applications, leading to demands for flexible electrodes with similar mechanical modulus and minimized irritation to human bodies. This review summarizes the latest advances in flexible electrodes for the acquisition of various electrophysiological signals. First, the concept of electrophysiological signals and the characteristics of different subcategory signals are introduced. Second, the invasive and noninvasive methods are reviewed for electrophysiological signal recording with a highlight on the design of flexible electrodes, followed by a discussion on their material selection. Subsequently, the applications of the electrophysiological signal acquisition in pathological diagnosis and restoration of body functions are discussed, showing the advantages of flexible electrodes. Finally, the main challenges and opportunities in this field are discussed. It is believed that the further exploration of materials for flexible electrodes and the combination of multidisciplinary technologies will boost the applications of flexible electrodes for medical diagnosis and human-machine interface.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiaochuan Dai
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
123
|
Lashgari E, Ott J, Connelly A, Baldi P, Maoz U. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task. J Neural Eng 2021; 18. [PMID: 34352734 DOI: 10.1088/1741-2552/ac1ade] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
Objective.Motor-imagery (MI) classification base on electroencephalography (EEG) has been long studied in neuroscience and more recently widely used in healthcare applications such as mobile assistive robots and neurorehabilitation. In particular, EEG-based MI classification methods that rely on convolutional neural networks (CNNs) have achieved relatively high classification accuracy. However, naively training CNNs to classify raw EEG data from all channels, especially for high-density EEG, is computationally demanding and requires huge training sets. It often also introduces many irrelevant input features, making it difficult for the CNN to extract the informative ones. This problem is compounded by a dearth of training data, which is particularly acute for MI tasks, because these are cognitively demanding and thus fatigue inducing.Approach.To address these issues, we proposed an end-to-end CNN-based neural network with attentional mechanism together with different data augmentation (DA) techniques. We tested it on two benchmark MI datasets, brain-computer interface (BCI) competition IV 2a and 2b. In addition, we collected a new dataset, recorded using high-density EEG, and containing both MI and motor execution (ME) tasks, which we share with the community.Main results.Our proposed neural-network architecture outperformed all state-of-the-art methods that we found in the literature, with and without DA, reaching an average classification accuracy of 93.6% and 87.83% on BCI 2a and 2b, respectively. We also directly compare decoding of MI and ME tasks. Focusing on MI classification, we find optimal channel configurations and the best DA techniques as well as investigate combining data across participants and the role of transfer learning.Significance.Our proposed approach improves the classification accuracy for MI in the benchmark datasets. In addition, collecting our own dataset enables us to compare MI and ME and investigate various aspects of EEG decoding critical for neuroscience and BCI.
Collapse
Affiliation(s)
- Elnaz Lashgari
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, United States of America
| | - Jordan Ott
- Department of Computer Science, University of California, Irvine, CA, United States of America
| | - Akima Connelly
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, United States of America
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, CA, United States of America.,Center for Machine Learning and Intelligent Systems, University of California Irvine, Irvine, CA, United States of America.,Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, CA, United States of America
| | - Uri Maoz
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, United States of America.,Computational Neuroscience and Psychology, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, United States of America.,Fowler School of Engineering, Chapman University, Orange, CA, United States of America.,Anderson School of Management, University of California Los Angeles, Los Angeles, CA, United States of America.,Biology and Bioengineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
124
|
Bates M. A Step Closer to Mind Control for Everyday Life. IEEE Pulse 2021; 12:16-18. [PMID: 33606618 DOI: 10.1109/mpuls.2021.3052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain-computer interface (BCI) technology holds promise for providing functional support systems for people with neurological disorders and other disabilities. In experimental laboratory settings, BCIs have allowed patients to communicate with researchers and control external devices-all by simply imagining the actions of different body parts.
Collapse
|
125
|
Mohammadi M, Knoche H, Struijk LNSA. Continuous Tongue Robot Mapping for Paralyzed Individuals Improves the Functional Performance of Tongue-Based Robotic Assistance. IEEE Trans Biomed Eng 2021; 68:2552-2562. [PMID: 33513095 DOI: 10.1109/tbme.2021.3055250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Individuals with tetraplegia have a challenging life due to a lack of independence and autonomy. Assistive robots have the potential to assist with the activities of daily living and thus improve the quality of life. However, an efficient and reliable control interface for severely disabled individuals is still missing. An intraoral tongue-computer interface (ITCI) for people with tetraplegia has previously been introduced and tested for controlling a robotic manipulator in a study deploying discrete tongue robot mapping. To improve the efficiency of the interface, the current study proposed the use of virtual buttons based on the ITCI and evaluated them in combination with a joystick-like control implementation, enabling continuous control commands. Twelve able-bodied volunteers participated in a three-day experiment. They controlled an assistive robotic manipulator through the tongue to perform two tasks: Pouring water in a cup (PW) and picking up a roll of tape (PUT). Four different tongue-robot mapping methods were compared. The results showed that using continuous commands reduced the task completion time by 16% and the number of commands of the PUT test by 20% compared with discrete commands. The highest success rate for completing the tasks was 77.8% for the PUT test and 100% for the PW test, both achieved by the control methods with continuous commands. Thus, the study demonstrated that incorporating continuous commands can improve the performance of the ITCI system for controlling robotic manipulators.
Collapse
|
126
|
左 词, 毛 盈, 刘 倩, 王 行, 金 晶. [Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:417-424. [PMID: 34180186 PMCID: PMC9927774 DOI: 10.7507/1001-5515.202010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Indexed: 11/03/2022]
Abstract
The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance ( P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.
Collapse
Affiliation(s)
- 词立 左
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 盈 毛
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 倩倩 刘
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 行愚 王
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 晶 金
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
127
|
Stieger JR, Engel SA, Suma D, He B. Benefits of deep learning classification of continuous noninvasive brain-computer interface control. J Neural Eng 2021; 18. [PMID: 34038873 DOI: 10.1088/1741-2552/ac0584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
Objective. Noninvasive brain-computer interfaces (BCIs) assist paralyzed patients by providing access to the world without requiring surgical intervention. Prior work has suggested that EEG motor imagery based BCI can benefit from increased decoding accuracy through the application of deep learning methods, such as convolutional neural networks (CNNs).Approach. Here, we examine whether these improvements can generalize to practical scenarios such as continuous control tasks (as opposed to prior work reporting one classification per trial), whether valuable information remains latent outside of the motor cortex (as no prior work has compared full scalp coverage to motor only electrode montages), and the existing challenges to the practical implementation of deep-learning based continuous BCI control.Main results. We report that: (1) deep learning methods significantly increase offline performance compared to standard methods on an independent, large, and longitudinal online motor imagery BCI dataset with up to 4-classes and continuous 2D feedback; (2) our results suggest that a variety of neural biomarkers for BCI, including those outside the motor cortex, can be detected and used to improve performance through deep learning methods, and (3) tuning neural network output will be an important step in optimizing online BCI control, as we found the CNN models trained with full scalp EEG also significantly reduce the average trial length in a simulated online cursor control environment.Significance. This work demonstrates the benefits of CNNs classification during BCI control while providing evidence that electrode montage selection and the mapping of CNN output to device control will be important design choices in CNN based BCIs.
Collapse
Affiliation(s)
- James R Stieger
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America.,University of Minnesota, Minneapolis, MN, United States of America
| | - Stephen A Engel
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America.,University of Minnesota, Minneapolis, MN, United States of America
| | - Daniel Suma
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America
| | - Bin He
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
128
|
Lee M, Jeong JH, Kim YH, Lee SW. Decoding Finger Tapping With the Affected Hand in Chronic Stroke Patients During Motor Imagery and Execution. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1099-1109. [PMID: 34101595 DOI: 10.1109/tnsre.2021.3087506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In stroke rehabilitation, motor imagery based on a brain-computer interface is an extremely useful method to control an external device and utilize neurofeedback. Many studies have reported on the classification performance of motor imagery to decode individual fingers in stroke patients compared with healthy controls. However, classification performance for a given limb is still low because the differences between patients owing to brain reorganization after stroke are not considered. We used electroencephalography signals from eleven healthy controls and eleven stroke patients in this study. The subjects performed a finger tapping task during motor execution, and motor imagery was performed with the dominant and affected hands in the healthy controls and stroke patients, respectively. All fingers except for the thumb were classified using the proposed framework based on a voting module. The averaged four-class accuracies during motor execution and motor imagery were 53.16 ± 8.42% and 46.94 ± 5.99% for the healthy controls and 53.17 ± 14.09% and 66.00 ± 14.96% for the stroke patients, respectively. Importantly, the classification accuracies in the stroke patients were statistically higher than those in healthy controls during motor imagery. However, there was no significant difference between the accuracies of motor execution and motor imagery. These findings show the potential for high classification performance for a given limb during motor imagery in stroke patients. These results can also provide insights into controlling an external device on the basis of a brain-computer interface.
Collapse
|
129
|
Gao X, Wang Y, Chen X, Gao S. Interface, interaction, and intelligence in generalized brain-computer interfaces. Trends Cogn Sci 2021; 25:671-684. [PMID: 34116918 DOI: 10.1016/j.tics.2021.04.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/07/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
A brain-computer interface (BCI) establishes a direct communication channel between a brain and an external device. With recent advances in neurotechnology and artificial intelligence (AI), the brain signals in BCI communication have been advanced from sensation and perception to higher-level cognition activities. While the field of BCI has grown rapidly in the past decades, the core technologies and innovative ideas behind seemingly unrelated BCI systems have never been summarized from an evolutionary point of view. Here, we review various BCI paradigms and present an evolutionary model of generalized BCI technology which comprises three stages: interface, interaction, and intelligence (I3). We also highlight challenges, opportunities, and future perspectives in the development of new BCI technology.
Collapse
Affiliation(s)
- Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yijun Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shangkai Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
130
|
Sun Q, Chen M, Zhang L, Li C, Kang W. Similarity-constrained task-related component analysis for enhancing SSVEP detection. J Neural Eng 2021; 18. [PMID: 33946051 DOI: 10.1088/1741-2552/abfdfa] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Objective. Task-related component analysis (TRCA) is a representative subject-specific training algorithm in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces. Task-related components (TRCs), extracted by the TRCA-based spatial filtering from electroencephalogram (EEG) signals through maximizing the reproducibility across trials, may contain some task-related inherent noise that is still trial-reproducible.Approach. To address this problem, this study proposed a similarity-constrained TRCA (scTRCA) algorithm to remove the task-related noise and extract TRCs maximally correlated with SSVEPs for enhancing SSVEP detection. Similarity constraints, which were created by introducing covariance matrices between EEG training data and an artificial SSVEP template, were added to the objective function of TRCA. Therefore, a better spatial filter was obtained by maximizing not only the reproducibility across trials but also the similarity between TRCs and SSVEPs. The proposed scTRCA was compared with TRCA, multi-stimulus TRCA, and sine-cosine reference signal based on two public datasets.Main results. The performance of TRCA in target identification of SSVEPs is improved by introducing similarity constraints. The proposed scTRCA significantly outperformed the other three methods, and the improvement was more significant especially with insufficient training data.Significance. The proposed scTRCA algorithm is promising for enhancing SSVEP detection considering its better performance and robustness against insufficient calibration.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Minyou Chen
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Changsheng Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenfa Kang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
131
|
Yu K, Liu C, Niu X, He B. Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-Related Cortical Activity in Humans. IEEE Trans Biomed Eng 2021; 68:1923-1931. [PMID: 33055021 PMCID: PMC8046844 DOI: 10.1109/tbme.2020.3030892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is an emerging non-invasive brain stimulation tool for safely and reversibly modulating brain circuits. The effectiveness of tFUS on human brain has been demonstrated, but how tFUS influences the human voluntary motor processing in the brain remains unclear. METHODS We apply low-intensity tFUS to modulate the movement-related cortical potential (MRCP) originating from human subjects practicing a voluntary foot tapping task. 64-channel electroencephalograph (EEG) is recorded concurrently and further used to reconstruct the brain source activity specifically at the primary leg motor cortical area using the electrophysiological source imaging (ESI). RESULTS The ESI illustrates the ultrasound modulated MRCP source dynamics with high spatiotemporal resolutions. The MRCP source is imaged and its source profile is further evaluated for assessing the tFUS neuromodulatory effects on the voluntary MRCP. Moreover, the effect of ultrasound pulse repetition frequency (UPRF) is further assessed in modulating the MRCP. The ESI results show that tFUS significantly increases the MRCP source profile amplitude (MSPA) comparing to a sham ultrasound condition, and further, a high UPRF enhances the MSPA more than a low UPRF does. CONCLUSION The present results demonstrate the neuromodulatory effects of the low-intensity tFUS on enhancing the human voluntary movement-related cortical activities evidenced through the ESI. SIGNIFICANCE This work provides the first evidence of tFUS enhancing the human endogenous motor cortical activities through excitatory modulation.
Collapse
Affiliation(s)
- Kai Yu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Xiaodan Niu
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Bin He
- Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
132
|
Edelman BJ, Macé E. Functional ultrasound brain imaging: Bridging networks, neurons, and behavior. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
133
|
Dewiputri WI, Schweizer R, Auer T. Brain Networks Underlying Strategy Execution and Feedback Processing in an Efficient Functional Magnetic Resonance Imaging Neurofeedback Training Performed in a Parallel or a Serial Paradigm. Front Hum Neurosci 2021; 15:645048. [PMID: 34113243 PMCID: PMC8185020 DOI: 10.3389/fnhum.2021.645048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Neurofeedback (NF) is a complex learning scenario, as the task consists of trying out mental strategies while processing a feedback signal that signifies activation in the brain area to be self-regulated and acts as a potential reward signal. In an attempt to dissect these subcomponents, we obtained whole-brain networks associated with efficient self-regulation in two paradigms: parallel, where the task was performed concurrently, combining feedback with strategy execution; and serial, where the task was performed consecutively, separating feedback processing from strategy execution. Twenty participants attempted to control their anterior midcingulate cortex (aMCC) using functional magnetic resonance imaging (fMRI) NF in 18 sessions over 2 weeks, using cognitive and emotional mental strategies. We analyzed whole-brain fMRI activations in the NF training runs with the largest aMCC activation for the serial and parallel paradigms. The equal length of the strategy execution and the feedback processing periods in the serial paradigm allows a description of the two task subcomponents with equal power. The resulting activation maps were spatially correlated with functionally annotated intrinsic connectivity brain maps (BMs). Brain activation in the parallel condition correlates with the basal ganglia (BG) network, the cingulo-opercular network (CON), and the frontoparietal control network (FPCN); brain activation in the serial strategy execution condition with the default mode network (DMN), the FPCN, and the visual processing network; while brain activation in the serial feedback processing condition predominantly with the CON, the DMN, and the FPCN. Additional comparisons indicate that BG activation is characteristic to the parallel paradigm, while supramarginal gyrus (SMG) and superior temporal gyrus (STG) activations are characteristic to the serial paradigm. The multifaceted view of the subcomponents allows describing the cognitive processes associated with strategy execution and feedback processing independently in the serial feedback task and as combined processes in the multitasking scenario of the conventional parallel feedback task.
Collapse
Affiliation(s)
- Wan Ilma Dewiputri
- International Max Planck Research School for Neurosciences, Georg-August-University, Göttingen, Göttingen, Germany
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Göttingen, Germany.,Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Tibor Auer
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
134
|
Fedotchev A, Parin S, Polevaya S, Zemlianaia A. Human Body Rhythms in the Development of Non-Invasive Methods of Closed-Loop Adaptive Neurostimulation. J Pers Med 2021; 11:437. [PMID: 34065196 PMCID: PMC8161182 DOI: 10.3390/jpm11050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
The creation and improvement of non-invasive closed-loop brain stimulation technologies represent an exciting and rapidly expanding field of neuroscience. To identify the appropriate way to close the feedback loop in adaptive neurostimulation procedures, it was previously proposed to use on-line automatic sensory stimulation with the parameters modulated by the patient's own rhythmical processes, such as respiratory rate, heart rate, and electroencephalogram (EEG) rhythms. The current paper aims to analyze several recent studies demonstrating further development in this line of research. The advantages of using automatic closed-loop feedback from human endogenous rhythms in non-invasive adaptive neurostimulation procedures have been demonstrated for relaxation assistance, for the correction of stress-induced functional disturbances, for anxiety management, and for the cognitive rehabilitation of an individual. Several distinctive features of the approach are noted to delineate its further development.
Collapse
Affiliation(s)
- Alexander Fedotchev
- Institute of Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, 142290 Moscow Region, Russia
| | - Sergey Parin
- Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (S.P.); (S.P.)
| | - Sofia Polevaya
- Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia; (S.P.); (S.P.)
| | - Anna Zemlianaia
- Moscow Research Institute of Psychiatry, Branch of the Serbsky’ National Medical Research Center of Psychiatry and Narcology, Russian Ministry of Health, 3 Poteshnaya St., 107076 Moscow, Russia;
| |
Collapse
|
135
|
Olsen S, Zhang J, Liang KF, Lam M, Riaz U, Kao JC. An artificial intelligence that increases simulated brain-computer interface performance. J Neural Eng 2021; 18. [PMID: 33978599 DOI: 10.1088/1741-2552/abfaaa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Objective.Brain-computer interfaces (BCIs) translate neural activity into control signals for assistive devices in order to help people with motor disabilities communicate effectively. In this work, we introduce a new BCI architecture that improves control of a BCI computer cursor to type on a virtual keyboard.Approach.Our BCI architecture incorporates an external artificial intelligence (AI) that beneficially augments the movement trajectories of the BCI. This AI-BCI leverages past user actions, at both long (100 s of seconds ago) and short (100 s of milliseconds ago) timescales, to modify the BCI's trajectories.Main results.We tested our AI-BCI in a closed-loop BCI simulator with nine human subjects performing a typing task. We demonstrate that our AI-BCI achieves: (1) categorically higher information communication rates, (2) quicker ballistic movements between targets, (3) improved precision control to 'dial in' on targets, and (4) more efficient movement trajectories. We further show that our AI-BCI increases performance across a wide control quality spectrum from poor to proficient control.Significance.This AI-BCI architecture, by increasing BCI performance across all key metrics evaluated, may increase the clinical viability of BCI systems.
Collapse
Affiliation(s)
- Sebastian Olsen
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90024, United States of America
| | - Jianwei Zhang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90024, United States of America
| | - Ken-Fu Liang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90024, United States of America
| | - Michelle Lam
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90024, United States of America
| | - Usama Riaz
- Department of Computer Science, University of California, Los Angeles, CA 90024, United States of America
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90024, United States of America.,Neurosciences Program, University of California, Los Angeles, CA 90024, United States of America
| |
Collapse
|
136
|
Gu Y, Hua L. A Novel Smart Motor Imagery Intention Human-Computer Interaction Model Using Extreme Learning Machine and EEG Signals. Front Neurosci 2021; 15:685119. [PMID: 34025347 PMCID: PMC8134549 DOI: 10.3389/fnins.2021.685119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022] Open
Abstract
The brain is the central nervous system that governs human activities. However, in modern society, more and more diseases threaten the health of the brain and nerves and spinal cord, making the human brain unable to conduct normal information interaction with the outside world. The rehabilitation training of the brain-computer interface can promote the nerve repair of the sensorimotor cortex in patients with brain diseases. Therefore, the research of brain-computer interface for motor imaging is of great significance for patients with brain diseases to restore motor function. Due to the characteristics of non-stationary, nonlinear, and individual differences of EEG signals, there are still many difficulties in the analysis and classification of EEG signals at this stage. In this study, the Extreme Learning Machine (ELM) model was used to classify motor-imaging EEG signals, identify the user’s intention, and control external devices. Considering that single-modal features cannot represent the core information, this study uses a fusion feature that combines temporal and spatial features as the final feature data. The fusion features are input to the trained ELM classifier, and the final classification result is obtained. Two sets of BCI competition data in the BCI competition public database are used to verify the validity of the model. The experimental results show that the ELM model has achieved a classification accuracy of 0.7832 in the classification task of Data Sets IIb, which is higher than other comparison algorithms, and shows universal applicability among different subjects. In addition, the average recognition rate of this model in the Data Sets IIIa classification task reaches 0.8347, which has obvious advantages compared with the comparative classification algorithm. The classification effect is smaller than the classification effect obtained by the champion algorithm of the same project, which has certain reference value.
Collapse
Affiliation(s)
- Yi Gu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Lei Hua
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| |
Collapse
|
137
|
Cao L, Li G, Xu Y, Zhang H, Shu X, Zhang D. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy. J Neural Eng 2021; 18. [PMID: 33862607 DOI: 10.1088/1741-2552/abf8cb] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/16/2021] [Indexed: 01/20/2023]
Abstract
Objective.The electroencephalography (EEG)-based brain-computer interfaces (BCIs) have been used in the control of robotic arms. The performance of non-invasive BCIs may not be satisfactory due to the poor quality of EEG signals, so the shared control strategies were tried as an alternative solution. However, most of the existing shared control methods set the arbitration rules manually, which highly depended on the specific tasks and developer's experience. In this study, we proposed a novel shared control model that automatically optimized the control commands in a dynamical way based on the context in real-time control. Besides, we employed the hybrid BCI to better allocate commands with multiple functions. The system allowed non-invasive BCI users to manipulate a robotic arm moving in a three-dimensional (3D) space and complete a pick-place task of multiple objects.Approach.Taking the scene information obtained by computer vision as a knowledge base, a machine agent was designed to infer the user's intention and generate automatic commands. Based on the inference confidence and user's characteristic, the proposed shared control model fused the machine autonomy and human intention dynamically for robotic arm motion optimization during the online control. In addition, we introduced a hybrid BCI scheme that applied steady-state visual evoked potentials and motor imagery to the divided primary and secondary BCI interfaces to better allocate the BCI resources (e.g. decoding computing power, screen occupation) and realize the multi-dimensional control of the robotic arm.Main results.Eleven subjects participated in the online experiments of picking and placing five objects that scattered at different positions in a 3D workspace. The results showed that most of the subjects could control the robotic arm to complete accurate and robust picking task with an average success rate of approximately 85% under the shared control strategy, while the average success rate of placing task controlled by pure BCI was 50% approximately.Significance.In this paper, we proposed a novel shared controller for motion automatic optimization, together with a hybrid BCI control scheme that allocated paradigms according to the importance of commands to realize multi-dimensional and effective control of a robotic arm. Our study indicated that the shared control strategy with hybrid BCI could greatly improve the performance of the brain-actuated robotic arm system.
Collapse
Affiliation(s)
- Linfeng Cao
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guangye Li
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yang Xu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Heng Zhang
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaokang Shu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
138
|
Adding Tactile Feedback and Changing ISI to Improve BCI Systems' Robustness: An Error-Related Potential Study. Brain Topogr 2021; 34:467-477. [PMID: 33909193 DOI: 10.1007/s10548-021-00840-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Nowadays, the brain-computer interface (BCI) systems attract much more attention than before, yet they have not found their ways into our lives since their accuracy is not satisfying. Error Related Potential (ErRP) is a potential that occurs in human brain signals when an unintended event happens, against ones' will and thoughts. An example is the occurrence of an error in BCI systems. Investigation of the ErRP could enable researchers to increase the accuracy of BCI systems by detecting instances of inaccuracy in the system. In this research the effects of two parameters on the ErRP are studied: (1) The Motor Imagery Time, also known as Inter-Stimulus Interval (ISI) and (2) different types of feedback (Visual and Tactile). The statistical analysis of the ErRP characteristics showed that feedback type meaningfully affects the ErRP in a cue-paced BCI system and it will affect the time of occurrence of this potential. To validate the proposed idea, different feature extraction, and classification techniques were used for the classification of the BCI system responses. It was shown that by proper selection of the parameters and features, the accuracy of the system could be improved. Tactile feedback together with higher ISI could increase the accuracy of finding erroneous trials up to 90%. The proposed method's accuracy was significantly higher (p-value < 0.05) compared to other methods of feature extraction.
Collapse
|
139
|
Leeuwis N, Paas A, Alimardani M. Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces. Front Hum Neurosci 2021; 15:634748. [PMID: 33889080 PMCID: PMC8055841 DOI: 10.3389/fnhum.2021.634748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-computer interfaces (BCIs) are communication bridges between a human brain and external world, enabling humans to interact with their environment without muscle intervention. Their functionality, therefore, depends on both the BCI system and the cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users' mental imagination of body movements. However, not all users have the ability to sufficiently modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy or inefficiency. The underlying mechanism of this phenomenon and the cause of such difference among users is yet not fully understood. In this study, we investigated the impact of several cognitive and psychological measures on MI-BCI performance. Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery task. In addition to their BCI classification error rate and demographics, psychological measures including personality factors, affinity for technology, and motivation during the experiment, as well as cognitive measures including visuospatial memory and spatial ability and Vividness of Visual Imagery were collected. Factors that were found to have a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the personality factors of orderliness and autonomy. These findings shed light on individual traits that lead to difficulty in BCI operation and hence can help with early prediction of inefficiency among users to optimize training for them.
Collapse
Affiliation(s)
- Nikki Leeuwis
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | | | | |
Collapse
|
140
|
Stieger JR, Engel SA, He B. Continuous sensorimotor rhythm based brain computer interface learning in a large population. Sci Data 2021; 8:98. [PMID: 33795705 PMCID: PMC8016873 DOI: 10.1038/s41597-021-00883-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
Brain computer interfaces (BCIs) are valuable tools that expand the nature of communication through bypassing traditional neuromuscular pathways. The non-invasive, intuitive, and continuous nature of sensorimotor rhythm (SMR) based BCIs enables individuals to control computers, robotic arms, wheel-chairs, and even drones by decoding motor imagination from electroencephalography (EEG). Large and uniform datasets are needed to design, evaluate, and improve the BCI algorithms. In this work, we release a large and longitudinal dataset collected during a study that examined how individuals learn to control SMR-BCIs. The dataset contains over 600 hours of EEG recordings collected during online and continuous BCI control from 62 healthy adults, (mostly) right hand dominant participants, across (up to) 11 training sessions per participant. The data record consists of 598 recording sessions, and over 250,000 trials of 4 different motor-imagery-based BCI tasks. The current dataset presents one of the largest and most complex SMR-BCI datasets publicly available to date and should be useful for the development of improved algorithms for BCI control.
Collapse
Affiliation(s)
- James R Stieger
- Carnegie Mellon University, Pittsburgh, PA, USA
- University of Minnesota, Minneapolis, MN, USA
| | | | - Bin He
- Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
141
|
Li M, He D, Li C, Qi S. Brain-Computer Interface Speller Based on Steady-State Visual Evoked Potential: A Review Focusing on the Stimulus Paradigm and Performance. Brain Sci 2021; 11:450. [PMID: 33916189 PMCID: PMC8065759 DOI: 10.3390/brainsci11040450] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
The steady-state visual evoked potential (SSVEP), measured by the electroencephalograph (EEG), has high rates of information transfer and signal-to-noise ratio, and has been used to construct brain-computer interface (BCI) spellers. In BCI spellers, the targets of alphanumeric characters are assigned different visual stimuli and the fixation of each target generates a unique SSVEP. Matching the SSVEP to the stimulus allows users to select target letters and numbers. Many BCI spellers that harness the SSVEP have been proposed over the past two decades. Various paradigms of visual stimuli, including the procedure of target selection, layout of targets, stimulus encoding, and the combination with other triggering methods are used and considered to influence on the BCI speller performance significantly. This paper reviews these stimulus paradigms and analyzes factors influencing their performance. The fundamentals of BCI spellers are first briefly described. SSVEP-based BCI spellers, where only the SSVEP is used, are classified by stimulus paradigms and described in chronological order. Furthermore, hybrid spellers that involve the use of the SSVEP are presented in parallel. Factors influencing the performance and visual fatigue of BCI spellers are provided. Finally, prevailing challenges and prospective research directions are discussed to promote the development of BCI spellers.
Collapse
Affiliation(s)
- Minglun Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (M.L.); (D.H.); (C.L.)
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (M.L.); (D.H.); (C.L.)
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (M.L.); (D.H.); (C.L.)
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (M.L.); (D.H.); (C.L.)
- Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110169, China
| |
Collapse
|
142
|
Bennett JD, John SE, Grayden DB, Burkitt AN. A neurophysiological approach to spatial filter selection for adaptive brain–computer interfaces. J Neural Eng 2021; 18. [DOI: 10.1088/1741-2552/abd51f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The common spatial patterns (CSP) algorithm is an effective method to extract discriminatory features from electroencephalography (EEG) to be used by a brain–computer interface (BCI). However, informed selection of CSP filters typically requires oversight from a BCI expert to accept or reject filters based on the neurophysiological plausibility of their activation patterns. Our goal was to identify, analyze and automatically classify prototypical CSP patterns to enhance the prediction of motor imagery states in a BCI. Approach. A data-driven approach that used four publicly available EEG datasets was adopted. Cluster analysis revealed recurring, visually similar CSP patterns and a convolutional neural network was developed to distinguish between established CSP pattern classes. Furthermore, adaptive spatial filtering schemes that utilize the categorization of CSP patterns were proposed and evaluated. Main results. Classes of common neurophysiologically probable and improbable CSP patterns were established. Analysis of the relationship between these categories of CSP patterns and classification performance revealed discarding neurophysiologically improbable filters can decrease decoder performance. Further analysis revealed that the spatial orientation of EEG modulations can evolve over time, and that the features extracted from the original CSP filters can become inseparable. Importantly, it was shown through a novel adaptive CSP technique that adaptation in response to these emerging patterns can restore feature separability. Significance. These findings highlight the importance of considering and reporting on spatial filter activation patterns in both online and offline studies. They also emphasize to researchers in the field the importance of spatial filter adaptation in BCI decoder design, particularly for online studies with a focus on training users to develop stable and suitable brain patterns.
Collapse
|
143
|
Jiang H, Stieger J, Kreitzer MJ, Engel S, He B. Frontolimbic alpha activity tracks intentional rest BCI control improvement through mindfulness meditation. Sci Rep 2021; 11:6818. [PMID: 33767254 PMCID: PMC7994299 DOI: 10.1038/s41598-021-86215-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
Brain-computer interfaces (BCIs) are capable of translating human intentions into signals controlling an external device to assist patients with severe neuromuscular disorders. Prior work has demonstrated that participants with mindfulness meditation experience evince improved BCI performance, but the underlying neural mechanisms remain unclear. Here, we conducted a large-scale longitudinal intervention study by training participants in mindfulness-based stress reduction (MBSR; a standardized mind-body awareness training intervention), and investigated whether and how short-term MBSR affected sensorimotor rhythm (SMR)-based BCI performance. We hypothesize that MBSR training improves BCI performance by reducing mind wandering and enhancing self-awareness during the intentional rest BCI control, which would mainly be reflected by modulations of default-mode network and limbic network activity. We found that MBSR training significantly improved BCI performance compared to controls and these behavioral enhancements were accompanied by increased frontolimbic alpha activity (9-15 Hz) and decreased alpha connectivity among limbic network, frontoparietal network, and default-mode network. Furthermore, the modulations of frontolimbic alpha activity were positively correlated with the duration of meditation experience and the extent of BCI performance improvement. Overall, these data suggest that mindfulness allows participant to reach a state where they can modulate frontolimbic alpha power and improve BCI performance for SMR-based BCI control.
Collapse
Affiliation(s)
- Haiteng Jiang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - James Stieger
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- University of Minnesota, Minneapolis, MN, USA
| | | | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
144
|
Abstract
The prospect and potentiality of interfacing minds with machines has long captured human imagination. Recent advances in biomedical engineering, computer science, and neuroscience are making brain–computer interfaces a reality, paving the way to restoring and potentially augmenting human physical and mental capabilities. Applications of brain–computer interfaces are being explored in applications as diverse as security, lie detection, alertness monitoring, gaming, education, art, and human cognition augmentation. The present tutorial aims to survey the principal features and challenges of brain–computer interfaces (such as reliable acquisition of brain signals, filtering and processing of the acquired brainwaves, ethical and legal issues related to brain–computer interface (BCI), data privacy, and performance assessment) with special emphasis to biomedical engineering and automation engineering applications. The content of this paper is aimed at students, researchers, and practitioners to glimpse the multifaceted world of brain–computer interfacing.
Collapse
|
145
|
Yan W, Du C, Luo D, Wu Y, Duan N, Zheng X, Xu G. Enhancing detection of steady-state visual evoked potentials using channel ensemble method. J Neural Eng 2021; 18. [PMID: 33601356 DOI: 10.1088/1741-2552/abe7cf] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/18/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study proposed and evaluated a channel ensemble approach to enhance detection of steady-state visual evoked potentials (SSVEPs). APPROACH Collected multi-channel electroencephalogram (EEG) signals were classified into multiple groups of new analysis signals based on correlation analysis, and each group of analysis signals contained signals from a different number of electrode channels. These groups of analysis signals were used as the input of a training-free feature extraction model, and the obtained feature coefficients were converted into feature probability values using the softmax function. The ensemble value of multiple sets of feature probability values was determined and used as the final discrimination coefficient. MAIN RESULTS Compared with canonical correlation analysis (CCA), likelihood ratio test (LRT), and multivariate synchronization index (MSI) analysis methods using a standard approach, the recognition accuracies of the methods using a channel ensemble approach were improved by 5.05%, 3.87%, and 3.42%, and the information transfer rates (ITRs) were improved by 6.00%, 4.61%, and 3.71%, respectively. The channel ensemble method also obtained better recognition results than the standard algorithm on the public dataset. This study validated the efficiency of the proposed method to enhance the detection of SSVEPs, demonstrating its potential use in practical brain-computer interface (BCI) systems. SIGNIFICANCE A SSVEP-based BCI system using a channel ensemble method could achieve high ITR, indicating great potential of this design for various applications with improved control and interaction.
Collapse
Affiliation(s)
- Wenqiang Yan
- Xi'an Jiaotong University School of Mechanical Engineering, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| | - Chenghang Du
- Xi'an Jiaotong University, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| | - Dan Luo
- Xi'an Jiaotong University, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| | - Yongcheng Wu
- Xi'an Jiaotong University, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| | - Nan Duan
- Xi'an Jiaotong University, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| | - Xiaowei Zheng
- Xi'an Jiaotong University, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| | - Guanghua Xu
- Xi'an Jiaotong University School of Mechanical Engineering, XIANNING WEST ROAD, XI'AN, Shaanxi, 710049, CHINA
| |
Collapse
|
146
|
Luo J, Shi W, Lu N, Wang J, Chen H, Wang Y, Lu X, Wang X, Hei X. Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs. J Neural Eng 2021; 18. [PMID: 33540387 DOI: 10.1088/1741-2552/abe357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Motor imagery (MI) EEG signals vary greatly among subjects, so scholarly research on motor imagery-based brain-computer interfaces (BCIs) has mainly focused on single-subject systems or subject-dependent systems. However, the single-subject model is applicable only to the target subject, and the small sample number greatly limits the performance of the model. This paper aims to study a convolutional neural network to achieve an adaptable MI-BCI that is applicable to multiple subjects. APPROACH In this paper, a twin cascaded softmax convolutional neural network (TCSCNN) is proposed for multisubject MI-BCIs. The proposed TCSCNN is independent and can be applied to any single-subject MI classification CNN model. First, to reduce the influence of individual differences, subject recognition and MI recognition are accomplished simultaneously. A cascaded softmax structure consisting of two softmax layers, related to subject recognition and MI recognition, is subsequently applied. Second, to improve the MI classification precision, a twin network structure is proposed on the basis of ensemble learning. TCSCNN is built by combining a cascaded softmax structure and twin network structure. MAIN RESULTS Experiments were conducted on three popular CNN models (EEGNet and Shallow ConvNet and Deep ConvNet from EEGDecoding) and three public datasets (BCI Competition IV datasets 2a and 2b and the High-Gamma dataset) to verify the performance of the proposed TCSCNN. The results show that compared with the state-of-the-art CNN model, the proposed TCSCNN obviously improves the precision and convergence of multisubject MI recognition. SIGNIFICANCE This study provides a promising scheme for multisubject MI-BCI, reflecting the progress made in the development and application of MI-BCIs.
Collapse
Affiliation(s)
- Jing Luo
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering , Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| | - Weiwei Shi
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering , Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| | - Na Lu
- Systems Engineering Institute, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, Xi'an, 710049, CHINA
| | - Jie Wang
- State Key Laboratory for Manufacturing System Engineering, System Engineering Institute, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, Xi'an, Shaanxi, 710049, CHINA
| | - Hao Chen
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| | - Yaojie Wang
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering , Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| | - Xiaofeng Lu
- School of computer science, Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| | - Xiaofan Wang
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering , Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| | - Xinhong Hei
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering , Xi'an University of Technology, No. 5, Jinhua South Road, Xi'an, Shaanxi Province, Xi'an, Shaanxi, 710048, CHINA
| |
Collapse
|
147
|
Zhang R, Li F, Zhang T, Yao D, Xu P. Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Motor imagery brain–computer interfaces (MI‐BCIs) have great potential value in prosthetics control, neurorehabilitation, and gaming; however, currently, most such systems only operate in controlled laboratory environments. One of the most important obstacles is the MI‐BCI inefficiency phenomenon. The accuracy of MI‐BCI control varies significantly (from chance level to 100% accuracy) across subjects due to the not easily induced and unstable MI‐related EEG features. An MI‐BCI inefficient subject is defined as a subject who cannot achieve greater than 70% accuracy after sufficient training time, and multiple survey results indicate that inefficient subjects account for 10%–50% of the experimental population. The widespread use of MI‐BCI has been seriously limited due to these large percentages of inefficient subjects. In this review, we summarize recent findings of the cause of MI‐BCI inefficiency from resting‐state brain function, task‐related brain activity, brain structure, and psychological perspectives. These factors help understand the reasons for inter‐subject MI‐BCI control performance variability, and it can be concluded that the lower resting‐state sensorimotor rhythm (SMR) is the key factor in MI‐BCI inefficiency, which has been confirmed by multiple independent laboratories. We then propose to divide MI‐BCI inefficient subjects into three categories according to the resting‐state SMR and offline/online accuracy to apply more accurate approaches to solve the inefficiency problem. The potential solutions include developing transfer learning algorithms, new experimental paradigms, mindfulness meditation practice, novel training strategies, and identifying new motor imagery‐related EEG features. To date, few studies have focused on improving the control accuracy of MI‐BCI inefficient subjects; thus, we appeal to the BCI community to focus more on this research area. Only by reducing the percentage of inefficient subjects can we create the opportunity to expand the value and influence of MI‐BCI.
Collapse
Affiliation(s)
- Rui Zhang
- Henan Key Laboratory of Brain Science and Brain‐Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fali Li
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Tao Zhang
- Science of School, Xihua University, Chengdu 610039, Sichuan, China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain‐Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Peng Xu
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
148
|
Jiang X, Lopez E, Stieger JR, Greco CM, He B. Effects of Long-Term Meditation Practices on Sensorimotor Rhythm-Based Brain-Computer Interface Learning. Front Neurosci 2021; 14:584971. [PMID: 33551719 PMCID: PMC7858648 DOI: 10.3389/fnins.2020.584971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Sensorimotor rhythm (SMR)-based brain-computer interfaces (BCIs) provide an alternative pathway for users to perform motor control using motor imagery. Despite the non-invasiveness, ease of use, and low cost, this kind of BCI has limitations due to long training times and BCI inefficiency-that is, the SMR BCI control paradigm may not work well on a subpopulation of users. Meditation is a mental training method to improve mindfulness and awareness and is reported to have positive effects on one's mental state. Here, we investigated the behavioral and electrophysiological differences between experienced meditators and meditation naïve subjects in one-dimensional (1D) and two-dimensional (2D) cursor control tasks. We found numerical evidence that meditators outperformed control subjects in both tasks (1D and 2D), and there were fewer BCI inefficient subjects in the meditator group. Finally, we also explored the neurophysiological difference between the two groups and showed that the meditators had a higher resting SMR predictor, more stable resting mu rhythm, and a larger control signal contrast than controls during the task.
Collapse
Affiliation(s)
- Xiyuan Jiang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Emily Lopez
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - James R. Stieger
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Carol M. Greco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
149
|
Wu H, Yang G, Zhu K, Liu S, Guo W, Jiang Z, Li Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001938. [PMID: 33511003 PMCID: PMC7816724 DOI: 10.1002/advs.202001938] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/19/2020] [Indexed: 05/05/2023]
Abstract
On-skin electrodes function as an ideal platform for collecting high-quality electrophysiological (EP) signals due to their unique characteristics, such as stretchability, conformal interfaces with skin, biocompatibility, and wearable comfort. The past decade has witnessed great advancements in performance optimization and function extension of on-skin electrodes. With continuous development and great promise for practical applications, on-skin electrodes are playing an increasingly important role in EP monitoring and human-machine interfaces (HMI). In this review, the latest progress in the development of on-skin electrodes and their integrated system is summarized. Desirable features of on-skin electrodes are briefly discussed from the perspective of performances. Then, recent advances in the development of electrode materials, followed by the analysis of strategies and methods to enhance adhesion and breathability of on-skin electrodes are examined. In addition, representative integrated electrode systems and practical applications of on-skin electrodes in healthcare monitoring and HMI are introduced in detail. It is concluded with the discussion of key challenges and opportunities for on-skin electrodes and their integrated systems.
Collapse
Affiliation(s)
- Hao Wu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Ganguang Yang
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Kanhao Zhu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Shaoyu Liu
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Wei Guo
- Flexible Electronics Research CenterState Key Laboratory of Digital Manufacturing Equipment and TechnologySchool of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhuo Jiang
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Zhuo Li
- Department of Materials ScienceFudan UniversityShanghai200433China
| |
Collapse
|
150
|
Easttom C, Bianchi L, Valeriani D, Nam CS, Hossaini A, Zapala D, Roman-Gonzalez A, Singh AK, Antonietti A, Sahonero-Alvarez G, Balachandran P. A Functional Model for Unifying Brain Computer Interface Terminology. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:91-96. [PMID: 35402984 PMCID: PMC8901026 DOI: 10.1109/ojemb.2021.3057471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Brain Computer Interface (BCI) technology is a critical area both for researchers and clinical practitioners. The IEEE P2731 working group is developing a comprehensive BCI lexicography and a functional model of BCI. The glossary and the functional model are inextricably intertwined. The functional model guides the development of the glossary. Terminology is developed from the basis of a BCI functional model. This paper provides the current status of the P2731 working group's progress towards developing a BCI terminology standard and functional model for the IEEE.
Collapse
Affiliation(s)
| | | | | | - Chang S Nam
- North Carolina State University Raleigh NC 27695 USA
| | | | - Dariusz Zapala
- John Paul II Catholic University of Lublin Lublin 20-950 Poland
| | | | - Avinash K Singh
- Australian Artificial Intelligence InstituteUniversity of Technology Sydney NSW 2007 Australia
| | | | | | - Pradeep Balachandran
- Georgetown University Washington DC 20057 USA
- Tor Vergata University Rome 00133 Italy
- Harvard University Boston MA 02114 USA
- North Carolina State University Raleigh NC 27695 USA
- King's College London London N6 6HD U.K
- John Paul II Catholic University of Lublin Lublin 20-950 Poland
- Universidad Nacional Tecnologica de Lima Sur 15834 Villa el Salvador Peru
- Australian Artificial Intelligence InstituteUniversity of Technology Sydney NSW 2007 Australia
- Politecnico di Milano 20133 Milan Italy
- Universidad Católica Boliviana San Pablo 4805 La Paz Bolivia
| |
Collapse
|