101
|
Sy SKB, Zhuang L, Xia H, Schuck VJ, Nichols WW, Derendorf H. A model-based analysis of pharmacokinetic-pharmacodynamic (PK/PD) indices of avibactam against Pseudomonas aeruginosa. Clin Microbiol Infect 2018; 25:904.e9-904.e16. [PMID: 30394361 DOI: 10.1016/j.cmi.2018.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of the present work was to use a semi-mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model developed from in vitro time-kill measurements with P. aeruginosa to compare different pharmacodynamic indices derived from simulated human avibactam exposures, with respect to their degree of correlation with the modelled bacterial responses. METHODS A mathematical model of the effect of ceftazidime-avibactam on the growth dynamics of P. aeruginosa was used to simulate bacterial responses to modelled human exposures from fractionated avibactam dosing regimens with a fixed ceftazidime dosing regimen (2 or 8 g q8h as a 2-h infusion). The relatedness of the 24-h change in bacterial density and avibactam exposure parameters was evaluated to determine exposure parameter that closely correlated with bacterial growth/killing responses. RESULTS Frequent dosing was associated with higher efficacy, resulting in a reduction of avibactam daily dose. The best-fit PD index of avibactam determined from the simulation was fT > CT of 1 mg/L avibactam and q8h was the longest dosing interval able to achieve 2-log kill: 41-87% (3.3 h to 7.0 h out of 8-h interval, respectively). The avibactam exposure magnitude required to achieve a 2-log kill in the simulations was dependent on the susceptibility of the bacterial isolate to ceftazidime. CONCLUSIONS Avibactam activity in combination with ceftazidime against multidrug resistant P. aeruginosa correlated with fT > CT. Setting a threshold avibactam concentration to 1 mg/L, superimposed over a simulated human-like exposure of ceftazidime, achieved at least 2-log kill for the clinical dose of 500 mg q8h avibactam as a 2-h infusion, depending on the minimum inhibitory concentration of ceftazidime alone.
Collapse
Affiliation(s)
- S K B Sy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - L Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - H Xia
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - H Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
102
|
Ceftazidime-Avibactam Susceptibility Breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.02590-17. [PMID: 30061279 DOI: 10.1128/aac.02590-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical susceptibility breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa for the ceftazidime-avibactam dosage regimen of 2,000/500 mg every 8 h (q8h) by 2-h intravenous infusion (adjusted for renal function) have been established by the FDA, CLSI, and EUCAST as susceptible (MIC, ≤8 mg/liter) and resistant (MIC, >8 mg/liter). The key supportive data from pharmacokinetic/pharmacodynamic analyses, in vitro surveillance, including molecular understanding of relevant resistance mechanisms, and efficacy in regulatory clinical trials are collated and analyzed here.
Collapse
|
103
|
Li J, Lovern M, Green ML, Chiu J, Zhou D, Comisar C, Xiong Y, Hing J, MacPherson M, Wright JG, Riccobene T, Carrothers TJ, Das S. Ceftazidime-Avibactam Population Pharmacokinetic Modeling and Pharmacodynamic Target Attainment Across Adult Indications and Patient Subgroups. Clin Transl Sci 2018; 12:151-163. [PMID: 30221827 PMCID: PMC6440567 DOI: 10.1111/cts.12585] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023] Open
Abstract
Ceftazidime‐avibactam is a novel β‐lactam/β‐lactamase inhibitor combination for the treatment of serious infections caused by resistant gram‐negative pathogens. Population pharmacokinetic (PopPK) models were built to incorporate pharmacokinetic (PK) data from five phase III trials in patients with complicated intra‐abdominal infection (cIAI), complicated urinary tract infection (cUTI), or nosocomial (including ventilator‐associated) pneumonia. Ceftazidime and avibactam pharmacokinetics were well‐described by two‐compartment disposition models, with creatinine clearance (CrCL) the key covariate determining clearance variability. Steady‐state ceftazidime and avibactam exposure for most patient subgroups differed by ≤ 20% vs. healthy volunteers. Probability of PK/pharmacodynamic (PD) target attainment (free plasma ceftazidime > 8 mg/L and avibactam > 1 mg/L for ≥ 50% of dosing interval) was ≥ 94.9% in simulations for all patient subgroups, including indication and renal function categories. No exposure‐microbiological response relationship was identified because target exposures were achieved in almost all patients. These modeling results support the approved ceftazidime‐avibactam dosage regimens (2000‐500 mg every 8 hours, adjusted for CrCL ≤ 50 mL/min).
Collapse
Affiliation(s)
- Jianguo Li
- AstraZeneca, Waltham, Massachusetts, USA
| | - Mark Lovern
- Quantitative Solutions, Raleigh, North Carolina, USA
| | | | | | | | - Craig Comisar
- Quantitative Solutions, Raleigh, North Carolina, USA
| | - Yuan Xiong
- Quantitative Solutions, Raleigh, North Carolina, USA
| | - Jeremy Hing
- Quantitative Solutions, Raleigh, North Carolina, USA
| | | | | | | | | | - Shampa Das
- AstraZeneca, Alderley Park, Macclesfield, UK
| |
Collapse
|
104
|
In Vitro Activity of Newer and Conventional Antimicrobial Agents, Including Fosfomycin and Colistin, against Selected Gram-Negative Bacilli in Kuwait. Pathogens 2018; 7:pathogens7030075. [PMID: 30227619 PMCID: PMC6161270 DOI: 10.3390/pathogens7030075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Limited data are available on susceptibilities of these organisms to some of the recently made accessible antimicrobial agents. The in vitro activities of newer antibiotics, such as, ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (CZA) along with some “older” antibiotics, for example fosfomycin (FOS) and colistin (CL) were determined against selected strains (resistant to ≥3 antimicrobial agents) of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Minimum inhibitory concentrations (MIC) were determined by Clinical and Laboratory Standards Institute microbroth dilution. 133 isolates: 46 E. coli, 39 K. pneumoniae, and 48 P. aeruginosa were tested. Results showed that E. coli isolates with MIC50/90, 0.5/1 μg/mL for CL; 4/32 μg/mL for FOS; 0.25/32 μg/mL for C/T; 0.25/8 μg/mL for CZA, exhibited susceptibility rates of 95.7%, 97.8%, 76.1%, and 89.1%, respectively. On the other hand, K. pneumoniae strains with MIC50/90, 0.5/1 μg/mL for CL; 256/512 μg/mL for FOS; 2/128 μg/mL for C/T; 0.5/128 μg/mL for CZA showed susceptibility rates of 92.3%, 7.7%, 51.3%, and 64.1%, respectively. P. aeruginosa isolates with MIC50/90, 1/1 μg/mL for CL; 128/128 μg/mL for C/T; 32/64 μg/mL for CZA presented susceptibility rates of 97.9%, 33.3%, and 39.6%, respectively. Higher MICs were demonstrated against most of the antibiotics. However, CL retained efficacy at low MICs against most of the isolates tested.
Collapse
|
105
|
Dimelow R, Wright JG, MacPherson M, Newell P, Das S. Population Pharmacokinetic Modelling of Ceftazidime and Avibactam in the Plasma and Epithelial Lining Fluid of Healthy Volunteers. Drugs R D 2018; 18:221-230. [PMID: 30054895 PMCID: PMC6131119 DOI: 10.1007/s40268-018-0241-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Our objective was to develop population pharmacokinetic (PK) models for ceftazidime and avibactam in the plasma and epithelial lining fluid (ELF) of healthy volunteers and to compare ELF concentrations to plasma PK/pharmacodynamic (PD) targets. METHODS Plasma and ELF population PK models were developed for ceftazidime and avibactam concentration data from 42 subjects (NCT01395420). Two- and three-compartment plasma PK models were fitted to ceftazidime and avibactam plasma PK data, and different plasma-ELF linked models were evaluated. Using best-fitting models, plasma and ELF concentration-time profiles were simulated for 1000 subjects. ELF concentration-time profiles for ceftazidime/avibactam 2000-500 mg every 8 h were compared with plasma PK/PD targets for ceftazidime (50% of time above [fT >] 8 mg/l) and avibactam (50% fT > 1 mg/l). RESULTS Three-compartment PK models best fitted the plasma concentration data for ceftazidime and avibactam. ELF data for both drugs were best described by a direct response (instantaneous equilibrium) model. Ceftazidime plasma-ELF relationships were best described by a saturable Michaelis-Menten model. For avibactam, departure from plasma-ELF relationship linearity was more modest than for ceftazidime. ELF:plasma penetration ratios of both ceftazidime (52%) and avibactam (42%) at plasma concentrations relevant for efficacy (~ 8 mg/l for ceftazidime and ~ 1 mg/l for avibactam) were greater than previously calculated using non-compartmental area under the curve (AUC) methods, which average across the entire concentration range. Ceftazidime and avibactam ELF exposures exceeded their respective plasma PK/PD time-above-threshold targets by the dosing interval mid-point in most subjects. CONCLUSIONS This compartmental modelling analysis suggests ELF exposures of both ceftazidime and avibactam exceed levels required for efficacy in plasma.
Collapse
Affiliation(s)
- Richard Dimelow
- Wright Dose Ltd, Altrincham, Cheshire, UK
- GlaxoSmithKline, Stevenage, UK
| | | | - Merran MacPherson
- Wright Dose Ltd, Altrincham, Cheshire, UK
- SGS Exprimo, Mechelen, Belgium
| | - Paul Newell
- AstraZeneca Global Medicines Development, Alderley Park, Macclesfield, Cheshire, UK
- , Knutsford, Cheshire, UK
| | - Shampa Das
- AstraZeneca Global Medicines Development, Alderley Park, Macclesfield, Cheshire, UK.
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Liverpool, L69 3GA, UK.
| |
Collapse
|
106
|
Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime–Avibactam Combination: A Model-Informed Strategy for its Clinical Development. Clin Pharmacokinet 2018; 58:545-564. [DOI: 10.1007/s40262-018-0705-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
107
|
Mantero M, Rogliani P, Cazzola M, Blasi F, Di Pasquale M. Emerging antibacterial and antiviral drugs for treating respiratory tract infections. Expert Opin Emerg Drugs 2018; 23:185-199. [DOI: 10.1080/14728214.2018.1504020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Mantero
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rogliani
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Respiratory Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Di Pasquale
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center,IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
108
|
In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2018; 62:AAC.02569-17. [PMID: 29760124 DOI: 10.1128/aac.02569-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/25/2018] [Indexed: 01/13/2023] Open
Abstract
The in vitro activities of ceftazidime-avibactam and comparators against 9,149 isolates of Enterobacteriaceae and 2,038 isolates of Pseudomonas aeruginosa collected by 42 medical centers in nine countries in the Asia-Pacific region from 2012 to 2015 were determined as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program. Antimicrobial susceptibility testing was conducted by Clinical and Laboratory Standards Institute (CLSI) broth microdilution, and isolate subset analysis was performed on the basis of the resistant phenotypes and β-lactamase content. Ceftazidime-avibactam demonstrated potent in vitro activity (MIC, ≤8 μg/ml) against all Enterobacteriaceae tested (99.0% susceptible) and was the most active against isolates that were metallo-β-lactamase (MBL) negative (99.8% susceptible). Against P. aeruginosa, 92.6% of all isolates and 96.1% of MBL-negative isolates were susceptible to ceftazidime-avibactam (MIC, ≤8 μg/ml). The rates of susceptibility to ceftazidime-avibactam ranged from 97.0% (Philippines) to 100% (Hong Kong, South Korea) for Enterobacteriaceae and from 83.1% (Thailand) to 100% (Hong Kong) among P. aeruginosa isolates, with lower susceptibilities being observed in countries where MBLs were more frequently encountered (Philippines, Thailand). Ceftazidime-avibactam inhibited 97.2 to 100% of Enterobacteriaceae isolates, per country, that carried serine β-lactamases, including extended-spectrum β-lactamases, AmpC cephalosporinases, and carbapenemases (KPC, GES, OXA-48-like). It also inhibited 91.3% of P. aeruginosa isolates that were carbapenem nonsusceptible in which no acquired β-lactamase was detected. Among MBL-negative Enterobacteriaceae isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 96.1, 87.7, 100, and 98.8% of isolates, respectively, and among MBL-negative P. aeruginosa isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 79.6, 83.6, 83.3, and 68.2% of isolates, respectively. Overall, clinical isolates of Enterobacteriaceae and P. aeruginosa collected in nine Asia-Pacific countries from 2012 to 2015 were highly susceptible to ceftazidime-avibactam.
Collapse
|
109
|
Natrajan Arumugam S, Chickamagalur Rudraradhya A, Sadagopan S, Sukumaran S, Sambasivam G, Ramesh N. Analysis of Susceptibility Patterns of Pseudomonas aeruginosa and Isolation, Characterization of Lytic Bacteriophages Targeting Multi Drug Resistant Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pseudomonas aeruginosa is known to be a major cause of Hospital Acquired Infections leading to high mortality in immune-compromised patients. Due to precipitous rise in antibiotic resistance, bacteriophages are significant alternative therapeutic approach for treatment and to combat resistance development. Objective of the current study was to identify MDR Pseudomonas aeruginosa from clinical isolates and to isolate bacteriophages from sewage samples against these MDR Pseudomonas aeruginosa strains. One hundred and forty-four Pseudomonas isolates were tested for their susceptibility pattern with 13 different antibiotics by micro-broth dilution method. Frequency of multidrug resistant (MDR) and Extensive Drug resistant (XDR) of Pseudomonas aeruginosa were found to be 35.5% and 23.6%, respectively. 7.61% isolates were identified as Pan drug resistant (PDR). Rate of susceptibility pattern were Piperacillin/Tazobactam 75%, Polymyxin B 74.6%, Meropenem 73.6%, Colistin 69.2%, Cefepime 54.9%, Ciprofloxacin 54.2%, Gentamicin 54.2%, Aztreonam 53.5%, Tobramycin 47.9%, Ticarcillin/Clavulanic acid 46.9%, Ertapenem 45.8%, Ceftazidime 40.3% and Imipenem 39.2%. Ninety-four bacteriophages were isolated from sewage samples against Pseudomonas aeruginosa PAO1/ATCC9027/clinical strains and host range testing study was carried out with all MDR clinical isolates. Among 51 MDR strains 34 strains were infected by phages. Phage infectivity rate were calculated for individual phages based on their host range infectivity results. AP025 and AP006 phages exhibited good infectivity rate of 39% and 30% respectively against MDR strains. Combination of 5 phages (AP002, AP006, AP011, AP025 and AP067) lysed 62.7% of the strains. Based on the obtained results, phages could be employed for treatment of infections caused by MDR strains with substantiated in-vivo experiments.
Collapse
Affiliation(s)
| | | | | | | | | | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore Tamil Nadu, India
| |
Collapse
|
110
|
Yokota SI, Hakamada H, Yamamoto S, Sato T, Shiraishi T, Shinagawa M, Takahashi S. Release of large amounts of lipopolysaccharides from Pseudomonas aeruginosa cells reduces their susceptibility to colistin. Int J Antimicrob Agents 2018; 51:888-896. [PMID: 29432867 DOI: 10.1016/j.ijantimicag.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/10/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa is an important etiological agent of opportunistic infections. Injectable colistin is available as a last-line treatment option for multidrug-resistant P. aeruginosa infections. When cells were inoculated at a high number, colistin-susceptible P. aeruginosa grew on agar medium containing colistin at a concentration 10-fold higher than the minimum inhibitory concentration without acquiring colistin resistance. This study examined the responsible mechanism for growth in the presence of a high concentration of colistin. Cell wash fluid derived from P. aeruginosa efficiently reduced colistin antimicrobial activity. This reduction was mediated by lipopolysaccharide (LPS) in the wash fluid. Extracellular LPS inhibited colistin activity more effectively than cell-bound LPS in fixed cells. Cell wash fluids from Escherichia coli and Acinetobacter baumannii also reduced colistin activity; however, they were less potent than those from P. aeruginosa. The amount of LPS in cell wash fluid from P. aeruginosa was approximately 10-fold higher than that in fluid from E. coli or A. baumannii. In conclusion, cell-free LPS derived from bacterial cells inhibited the antimicrobial activity of colistin, and this effect was greatest for P. aeruginosa. Thus, large amounts of broken and dead cells of P. aeruginosa at infection foci will reduce the effectiveness of colistin, even against cells that have not yet acquired resistance.
Collapse
Affiliation(s)
- Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Hiroshi Hakamada
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaaki Shinagawa
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan; Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
111
|
Abstract
Avibactam is a novel non-β-lactam β-lactamase inhibitor that has been approved in the United States and Europe for use in combination with ceftazidime. Combinations of avibactam with aztreonam or ceftaroline fosamil have also been clinically evaluated. Until recently, there has been very little precedence of which pharmacokinetic/pharmacodynamic (PK/PD) indices and magnitudes are appropriate to use for β-lactamase inhibitors in population PK modeling for analyzing potential doses and susceptibility breakpoints. For avibactam, several preclinical studies using different in vitro and in vivo models have been conducted to identify the PK/PD index of avibactam and the magnitude of exposure necessary for effect in combination with ceftazidime, aztreonam, or ceftaroline fosamil. The PD driver of avibactam critical for restoring the activity of all three partner β-lactams was found to be time dependent rather than concentration dependent and was defined as the time that the concentration of avibactam exceeded a critical concentration threshold (%fT>CT). The magnitude of the CT and the time that this threshold needed to be exceeded to elicit particular PD endpoints varied depending on the model and the partner β-lactam. This review describes the preclinical studies used to determine the avibactam PK/PD target in combination with its β-lactam partners.
Collapse
|
112
|
Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018; 78:675-692. [PMID: 29671219 DOI: 10.1007/s40265-018-0902-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ceftazidime-avibactam (Zavicefta®) is an intravenously administered combination of the third-generation cephalosporin ceftazidime and the novel, non-β-lactam β-lactamase inhibitor avibactam. In the EU, ceftazidime-avibactam is approved for the treatment of adults with complicated urinary tract infections (cUTIs) [including pyelonephritis], complicated intra-abdominal infections (cIAIs), hospital-acquired pneumonia (HAP) [including ventilator-associated pneumonia (VAP)], and other infections caused by aerobic Gram-negative organisms in patients with limited treatment options. This article discusses the in vitro activity and pharmacological properties of ceftazidime-avibactam, and reviews data on the agent's clinical efficacy and tolerability relating to use in these indications, with a focus on the EU label. Ceftazidime-avibactam has excellent in vitro activity against many important Gram-negative pathogens, including many extended-spectrum β-lactamase-, AmpC-, Klebsiella pneumoniae carbapenemase- and OXA-48-producing Enterobacteriaceae and drug-resistant Pseudomonas aeruginosa isolates; it is not active against metallo-β-lactamase-producing strains. The clinical efficacy of ceftazidime-avibactam in the treatment of cUTI, cIAI and HAP (including VAP) in adults was demonstrated in pivotal phase III non-inferiority trials with carbapenem comparators. Ceftazidime-avibactam treatment was associated with high response rates at the test-of-cure visit in patients with infections caused by ceftazidime-susceptible and -nonsusceptible Gram-negative pathogens. Ceftazidime-avibactam was generally well tolerated, with a safety and tolerability profile consistent with that of ceftazidime alone and that was generally typical of the injectable cephalosporins. Thus, ceftazidime-avibactam represents a valuable new treatment option for these serious and difficult-to-treat infections.
Collapse
Affiliation(s)
- Matt Shirley
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
113
|
Claeys KC, Zasowski EJ, Trinh TD, Lagnf AM, Davis SL, Rybak MJ. Antimicrobial Stewardship Opportunities in Critically Ill Patients with Gram-Negative Lower Respiratory Tract Infections: A Multicenter Cross-Sectional Analysis. Infect Dis Ther 2018; 7:135-146. [PMID: 29164489 PMCID: PMC5840098 DOI: 10.1007/s40121-017-0179-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Lower respiratory tract infections (LRTIs) are a major cause of morbidity and death. Because of changes in how LRTIs are defined coupled with the increasing prevalence of drug resistance, there is a gap in knowledge regarding the current burden of antimicrobial use for Centers for Disease Control and Prevention (CDC)-defined LRTIs. We describe the infection characteristics, antibiotic consumption, and clinical and economic outcomes of patients with Gram-negative (GN) LRTIs treated in intensive care units (ICUs). METHODS This was a retrospective, observational, cross-sectional study of adult patients treated in ICUs at two large academic medical centers in metropolitan Detroit, Michigan, from October 2013 to October 2015. To meet the inclusion criteria, patients must have had CDC-defined LRTI caused by a GN pathogen during ICU stay. Microbiological assessment of available Pseudomonas aeruginosa isolates included minimum inhibitory concentrations for key antimicrobial agents. RESULTS Four hundred and seventy-two patients, primarily from the community (346, 73.3%), were treated in medical ICUs (272, 57.6%). Clinically defined pneumonia was common (264, 55.9%). Six hundred and nineteen GN organisms were identified from index respiratory cultures: P. aeruginosa was common (224, 36.2%), with 21.6% of these isolates being multidrug resistant. Cefepime (213, 45.1%) and piperacillin/tazobactam (174, 36.8%) were the most frequent empiric GN therapies. Empiric GN therapy was inappropriate in 44.6% of cases. Lack of in vitro susceptibility (80.1%) was the most common reason for inappropriateness. Patients with inappropriate empiric GN therapy had longer overall stay, which translated to a median total cost of care of $79,800 (interquartile range $48,775 to $129,600) versus $68,000 (interquartile range $38,400 to $116,175), p = 0.013. Clinical failure (31.5% vs 30.0%, p = 0.912) and in-hospital all-cause mortality (26.4% vs 25.9%, p = 0.814) were not different. CONCLUSION Drug-resistant pathogens were frequently found and empiric GN therapy was inappropriate in nearly 50% of cases. Inappropriate therapy led to increased lengths of stay and was associated with higher costs of care.
Collapse
Affiliation(s)
| | - Evan J Zasowski
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Trang D Trinh
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Abdalhamid M Lagnf
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Susan L Davis
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Michael J Rybak
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
114
|
Mensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, Bou G, del Castillo JG, Maseda E, Azanza JR, Pasquau J, García-Vidal C, Reguera JM, Sousa D, Gómez J, Montejo M, Borges M, Torres A, Alvarez-Lerma F, Salavert M, Zaragoza R, Oliver A. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2018; 31:78-100. [PMID: 29480677 PMCID: PMC6159363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa is characterized by a notable intrinsic resistance to antibiotics, mainly mediated by the expression of inducible chromosomic β-lactamases and the production of constitutive or inducible efflux pumps. Apart from this intrinsic resistance, P. aeruginosa possess an extraordinary ability to develop resistance to nearly all available antimicrobials through selection of mutations. The progressive increase in resistance rates in P. aeruginosa has led to the emergence of strains which, based on their degree of resistance to common antibiotics, have been defined as multidrug resistant, extended-resistant and panresistant strains. These strains are increasingly disseminated worldwide, progressively complicating the treatment of P. aeruginosa infections. In this scenario, the objective of the present guidelines was to review and update published evidence for the treatment of patients with acute, invasive and severe infections caused by P. aeruginosa. To this end, mechanisms of intrinsic resistance, factors favoring development of resistance during antibiotic exposure, prevalence of resistance in Spain, classical and recently appeared new antibiotics active against P. aeruginosa, pharmacodynamic principles predicting efficacy, clinical experience with monotherapy and combination therapy, and principles for antibiotic treatment were reviewed to elaborate recommendations by the panel of experts for empirical and directed treatment of P. aeruginosa invasive infections.
Collapse
Affiliation(s)
- José Mensa
- Servicio de Enfermedades Infecciosas, Hospital Clinic, Barcelona, Spain
| | - José Barberán
- Servicio de Medicina Enfermedades infecciosas, Hospital Universitario HM Montepríncipe, Universidad San Pablo CEU. Madrid, Spain
| | - Alex Soriano
- Servicio de Enfermedades Infecciosas, Hospital Clinic, Barcelona, Spain
| | - Pedro Llinares
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario A Coruña, Spain
| | - Francesc Marco
- Servicio de Microbiología, Hospital Clinic, Barcelona, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, Spain
| | - German Bou
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña, Spain
| | | | - Emilio Maseda
- Servicio de Anestesiología, Hospital Universitario La Paz, Madrid, Spain
| | - José Ramón Azanza
- Servicio de Farmacología, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Juan Pasquau
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen de la Nieves, Granada, Spain
| | | | - José María Reguera
- Servicio de Enfermedades Infecciosas, Hospital Universitario Carlos Haya, Málaga, Spain
| | - Dolores Sousa
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario A Coruña, Spain
| | - Joaquín Gómez
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Miguel Montejo
- Servicio de Enfermedades Infecciosas, Hospital Universitario Cruces, Bilbao, Spain
| | - Marcio Borges
- Servicio de Medicina Intensiva, Hospital Son Llátzer, Palma de Mallorca, Spain
| | - Antonio Torres
- Departamento de Neumología, Hospital Clinic, Barcelona, Spain
| | | | - Miguel Salavert
- Unidad de Enfermedades Infecciosas. Hospital Univeristario la Fe, Valencia, Spain
| | - Rafael Zaragoza
- Servicio de Medicina Intensiva, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (idISBa), Palma de Mallorca, Spain
| |
Collapse
|
115
|
Buyck JM, Luyckx C, Muccioli GG, Krause KM, Nichols WW, Tulkens PM, Van Bambeke F. Pharmacodynamics of ceftazidime/avibactam against extracellular and intracellular forms of Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 72:1400-1409. [PMID: 28137941 DOI: 10.1093/jac/dkw587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 02/05/2023] Open
Abstract
Objectives When tested in broth, avibactam reverses ceftazidime resistance in many Pseudomonas aeruginosa that express ESBLs. We examined whether similar reversal is observed against intracellular forms of P. aeruginosa . Methods Strains: reference strains; two engineered strains with basal non-inducible expression of AmpC and their isogenic mutants with stably derepressed AmpC; and clinical isolates with complete, partial or no resistance to reversion with avibactam. Pharmacodynamic model: 24 h concentration-response to ceftazidime [0.01-200 mg/L alone or with avibactam (4 mg/L)] of bacteria in broth or bacteria phagocytosed by THP-1 monocytes, with calculation of ceftazidime relative potency ( C s : concentration yielding a static effect) and maximal relative effect [ E max : cfu decrease at infinitely large antibiotic concentrations (efficacy in the model)] using the Hill equation. Cellular content of avibactam: quantification by LC-MS/MS. Results For both extracellular and intracellular bacteria, ceftazidime C s was always close to its MIC. For ceftazidime-resistant strains, avibactam addition shifted ceftazidime C s to values close to the MIC of the combination in broth. E max was systematically below the detection limit (-5 log 10 ) for extracellular bacteria, but limited to -1.3 log 10 for intracellular bacteria (except for two isolates) with no effect of avibactam. The cellular concentration of avibactam reflected extracellular concentration and was not influenced by ceftazidime (0-160 mg/L). Conclusions The potential for avibactam to inhibit β-lactamases does not differ for extracellular and intracellular forms of P. aeruginosa , denoting an unhindered access to its target in both situations. The loss of maximal relative efficacy of ceftazidime against intracellular P. aeruginosa was unrelated to resistance via avibactam-inhibitable β-lactamases.
Collapse
Affiliation(s)
- J M Buyck
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - C Luyckx
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - G G Muccioli
- MASSMET Platform, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - W W Nichols
- AstraZeneca Pharmaceuticals, Waltham, MA, USA
| | - P M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - F Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
116
|
Theuretzbacher U. New drugs – will they solve the problem of resistance to antibiotics? Clin Microbiol Infect 2017; 23:695-696. [DOI: 10.1016/j.cmi.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
117
|
Sy SKB, Zhuang L, Beaudoin ME, Kircher P, Tabosa MAM, Cavalcanti NCT, Grunwitz C, Pieper S, Schuck VJ, Nichols WW, Derendorf H. Potentiation of ceftazidime by avibactam against β-lactam-resistant Pseudomonas aeruginosa in an in vitro infection model. J Antimicrob Chemother 2017; 72:1109-1117. [PMID: 28077672 DOI: 10.1093/jac/dkw535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Objectives This study evaluated the in vitro pharmacodynamics of combinations of ceftazidime and the non-β-lactam β-lactamase inhibitor, avibactam, against ceftazidime-, piperacillin/tazobactam- and meropenem-multiresistant Pseudomonas aeruginosa by a quantitative time-kill method. Methods MICs of ceftazidime plus 0-16 mg/L avibactam were determined against eight isolates of P. aeruginosa . Single-compartment, 24 h time-kill kinetics were investigated for three isolates at 0-16 mg/L avibactam with ceftazidime at 0.25-4-fold the MIC as measured at the respective avibactam concentration. Ceftazidime and avibactam concentrations were measured by LC-MS/MS during the time-kill kinetic studies to evaluate drug degradation. Results Avibactam alone displayed no antimicrobial activity. MICs of ceftazidime decreased by 8-16-fold in the presence of avibactam at 4 mg/L. The changes in log 10 cfu/mL at both the 10 h and 24 h timepoints (versus 0 h) revealed bacterial killing at ≥1-fold MIC. Significantly higher concentrations of ceftazidime alone, as compared with those of ceftazidime in combination, were required to produce any given kill. Without avibactam, ceftazidime degradation was significant (defined as degradation t 1/2 < 24 h), with as little as 19% ± 18% of the original concentration remaining at 8 h for the most resistant strain. In combination with avibactam, ceftazidime degradation at ≥ 1-fold MIC was negligible. Conclusion The addition of avibactam protected ceftazidime from degradation in a dose-dependent manner and restored its cidal and static activity at concentrations in combination well below the MIC of ceftazidime alone.
Collapse
Affiliation(s)
- Sherwin K B Sy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Philipp Kircher
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Maria A M Tabosa
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Noely C T Cavalcanti
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christian Grunwitz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sebastian Pieper
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
118
|
Rossi F, Cury AP, Franco MR, Testa R, Nichols WW. The in vitro activity of ceftazidime–avibactam against 417 Gram-negative bacilli collected in 2014 and 2015 at a teaching hospital in São Paulo, Brazil. Braz J Infect Dis 2017; 21:569-573. [PMID: 28435011 PMCID: PMC9425450 DOI: 10.1016/j.bjid.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 03/09/2017] [Indexed: 10/28/2022] Open
|
119
|
Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In Vitro Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by Clinical Laboratories in 40 Countries from 2012 to 2015. Antimicrob Agents Chemother 2017; 61:e00472-17. [PMID: 28630192 PMCID: PMC5571336 DOI: 10.1128/aac.00472-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/09/2017] [Indexed: 01/08/2023] Open
Abstract
The combination of the monobactam aztreonam and the non-β-lactam β-lactamase inhibitor avibactam is currently in clinical development for the treatment of serious infections caused by metallo-β-lactamase (MBL)-producing Enterobacteriaceae, a difficult-to-treat subtype of carbapenem-resistant Enterobacteriaceae for which therapeutic options are currently very limited. The present study tested clinically significant isolates of Enterobacteriaceae (n = 51,352) and Pseudomonas aeruginosa (n = 11,842) collected from hospitalized patients in 208 medical center laboratories from 40 countries from 2012 to 2015 for in vitro susceptibility to aztreonam-avibactam, aztreonam, and comparator antimicrobial agents using a standard broth microdilution methodology. Avibactam was tested at a fixed concentration of 4 μg/ml in combination with 2-fold dilutions of aztreonam. The MIC90s of aztreonam-avibactam and aztreonam were 0.12 and 64 μg/ml, respectively, for all Enterobacteriaceae isolates; >99.9% of all isolates and 99.8% of meropenem-nonsusceptible isolates (n = 1,498) were inhibited by aztreonam-avibactam at a concentration of ≤8 μg/ml. PCR and DNA sequencing identified 267 Enterobacteriaceae isolates positive for MBL genes (NDM, VIM, IMP); all Enterobacteriaceae carrying MBLs demonstrated aztreonam-avibactam MICs of ≤8 μg/ml and a MIC90 of 1 μg/ml. Against all P. aeruginosa isolates tested, the MIC90 of both aztreonam-avibactam and aztreonam was 32 μg/ml; against MBL-positive P. aeruginosa isolates (n = 452), MIC90 values for aztreonam-avibactam and aztreonam were 32 and 64 μg/ml, respectively. The current study demonstrated that aztreonam-avibactam possesses potent in vitro activity against a recent, sizeable global collection of Enterobacteriaceae clinical isolates, including isolates that were meropenem nonsusceptible, and against MBL-positive isolates of Enterobacteriaceae, for which there are few treatment options.
Collapse
Affiliation(s)
- James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, Illinois, USA
| | | |
Collapse
|
120
|
In Vivo Emergence of Resistance to Novel Cephalosporin-β-Lactamase Inhibitor Combinations through the Duplication of Amino Acid D149 from OXA-2 β-Lactamase (OXA-539) in Sequence Type 235 Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.01117-17. [PMID: 28674059 DOI: 10.1128/aac.01117-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023] Open
Abstract
Resistance development to novel cephalosporin-β-lactamase inhibitor combinations during ceftazidime treatment of a surgical infection by Pseudomonas aeruginosa was investigated. Both initial (97C2) and final (98G1) isolates belonged to the high-risk clone sequence type (ST) 235 and were resistant to carbapenems (oprD), fluoroquinolones (GyrA-T83I, ParC-S87L), and aminoglycosides (aacA7/aacA8/aadA6). 98G1 also showed resistance to ceftazidime, ceftazidime-avibactam, and ceftolozane-tazobactam. Sequencing identified blaOXA-2 in 97C2, but 98G1 contained a 3-bp insertion leading to the duplication of the key residue D149 (designated OXA-539). Evaluation of PAO1 transformants producing cloned OXA-2 or OXA-539 confirmed that D149 duplication was the cause of resistance. Active surveillance of the emergence of resistance to these new valuable agents is warranted.
Collapse
|
121
|
Chou YC, Lee D, Chang TM, Hsu YH, Yu YH, Chan EC, Liu SJ. Combination of a biodegradable three-dimensional (3D) – printed cage for mechanical support and nanofibrous membranes for sustainable release of antimicrobial agents for treating the femoral metaphyseal comminuted fracture. J Mech Behav Biomed Mater 2017; 72:209-218. [DOI: 10.1016/j.jmbbm.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
|
122
|
In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program). Antimicrob Agents Chemother 2017; 61:AAC.02209-16. [PMID: 28320716 DOI: 10.1128/aac.02209-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/10/2017] [Indexed: 01/23/2023] Open
Abstract
Relebactam (formerly MK-7655) is an inhibitor of class A and C β-lactamases, including Klebsiella pneumoniae carbapenemase (KPC), and is currently in clinical development in combination with imipenem-cilastatin. Using Clinical and Laboratory Standards Institute (CLSI)-defined broth microdilution methodology, we evaluated the in vitro activities of imipenem-relebactam, imipenem, and seven routinely tested parenteral antimicrobial agents against Gram-negative ESKAPE pathogens (including Klebsiella pneumoniae, n = 689; Acinetobacter baumannii, n = 72; Pseudomonas aeruginosa, n = 845; and Enterobacter spp., n = 399) submitted by 21 clinical laboratories in the United States in 2015 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Relebactam was tested at a fixed concentration of 4 μg/ml in combination with doubling dilutions of imipenem. Imipenem-relebactam MICs were interpreted using CLSI imipenem breakpoints. The respective rates of susceptibility to imipenem-relebactam and imipenem were 94.2% (796/845) and 70.3% (594/845) for P. aeruginosa, 99.0% (682/689) and 96.1% (662/689) for K. pneumoniae, and 100% (399/399) and 98.0% (391/399) for Enterobacter spp. Relebactam restored imipenem susceptibility to 80.5% (202/251), 74.1% (20/27), and 100% (8/8) of isolates of imipenem-nonsusceptible P. aeruginosa, K. pneumoniae, and Enterobacter spp. Relebactam did not increase the number of isolates of Acinetobacter spp. susceptible to imipenem, and the rates of resistance to all of the agents tested against this pathogen were >30%. Further development of imipenem-relebactam is warranted given the demonstrated ability of relebactam to restore the activity of imipenem against current clinical isolates of Enterobacteriaceae and P. aeruginosa that are nonsusceptible to carbapenems and its potential as a therapy for treating patients with antimicrobial-resistant Gram-negative infections.
Collapse
|
123
|
Lob SH, Hackel MA, Kazmierczak KM, Hoban DJ, Young K, Motyl MR, Karlowsky JA, Sahm DF. Invitro activity of imipenem-relebactam against gram-negative bacilli isolated from patients with lower respiratory tract infections in the United States in 2015 - Results from the SMART global surveillance program. Diagn Microbiol Infect Dis 2017; 88:171-176. [PMID: 28291628 DOI: 10.1016/j.diagmicrobio.2017.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Abstract
The β-lactamase inhibitor relebactam inactivates class A β-lactamases, including KPC-type carbapenemases, and class C β-lactamases. Relebactam combined with imipenem is in clinical development for several indications, including hospital-acquired and ventilator-associated pneumonia. Employing CLSI-defined broth microdilution methodology, we evaluated the activities of imipenem-relebactam (using imipenem MIC breakpoints) and comparators against non-Proteeae Enterobacteriaceae (n=853) and Pseudomonas aeruginosa (n=598) isolated from lower respiratory tract infection samples in 20 hospital laboratories in the United States participating in the 2015 SMART (Study for Monitoring Antimicrobial Resistance Trends) global surveillance program. Imipenem-relebactam and imipenem susceptibilities were 97.2% and 91.6% for non-Proteeae Enterobacteriaceae and 93.1% and 68.1% for P. aeruginosa. Relebactam restored imipenem susceptibility to 66.7% and 78.5% of imipenem-non-susceptible non-Proteeae Enterobacteriaceae isolates (n=72) and P. aeruginosa (n=191), respectively. Further development of imipenem-relebactam as therapy for lower respiratory tract infections is warranted given relebactam's ability to restore activity to imipenem against non-susceptible non-Proteeae Enterobacteriaceae and P. aeruginosa.
Collapse
Affiliation(s)
- Sibylle H Lob
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | - Meredith A Hackel
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | - Krystyna M Kazmierczak
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | - Daryl J Hoban
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA; Department of Medical Microbiology, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Katherine Young
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - Mary R Motyl
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - James A Karlowsky
- Department of Medical Microbiology, College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Daniel F Sahm
- International Health Management Associates, Inc., 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| |
Collapse
|
124
|
Xipell M, Bodro M, Marco F, Losno RA, Cardozo C, Soriano A. Clinical experience with ceftazidime/avibactam in patients with severe infections, including meningitis and lung abscesses, caused by extensively drug-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2017; 49:266-268. [DOI: 10.1016/j.ijantimicag.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 11/26/2022]
|
125
|
Walkty A, Lagace-Wiens P, Adam H, Baxter M, Karlowsky J, Mulvey MR, McCracken M, Zhanel GG. Antimicrobial susceptibility of 2906 Pseudomonasaeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: Results of the Canadian Ward surveillance study (CANWARD), 2008-2015. Diagn Microbiol Infect Dis 2016; 87:60-63. [PMID: 28336136 DOI: 10.1016/j.diagmicrobio.2016.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa is an important nosocomial pathogen. The purpose of this study was to evaluate the antimicrobial susceptibility profile of P. aeruginosa clinical isolates obtained from inpatients and outpatients at hospitals across Canada from January 2008 to December 2015 (CANWARD Study). Susceptibility testing was performed using broth microdilution, as described by the Clinical and Laboratory Standards Institute. In total, 2906 P. aeruginosa isolates were evaluated. The percentage of isolates susceptible to common antipseudomonal antimicrobials was: colistin 94.9%, amikacin 93.2%, piperacillin-tazobactam 84.3%, ceftazidime 83.1%, gentamicin 82.7%, meropenem 80.5%, ciprofloxacin 76.5%. In general, susceptibility to the antipseudomonal antimicrobials tested remained fairly stable or slightly improved (ciprofloxacin, gentamicin, colistin) over the 8year study period. Multidrug-resistant (MDR = non-susceptible to at least one antimicrobial from ≥3 classes) and extensively drug-resistant (XDR = non-susceptible to at least one antimicrobial from 5 classes) P. aeruginosa accounted for 14.5% and 2.6% of the isolates, respectively. Colistin remained active against 92.9% of MDR and 88.3% of XDR P. aeruginosa.
Collapse
Affiliation(s)
- Andrew Walkty
- Department of Internal Medicine, Section of Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada.
| | - Philippe Lagace-Wiens
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Heather Adam
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | - Melanie Baxter
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Karlowsky
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Diagnostic Services Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - George G Zhanel
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
126
|
In vitro potency of amikacin and comparators against E. coli, K. pneumoniae and P. aeruginosa respiratory and blood isolates. Ann Clin Microbiol Antimicrob 2016; 15:39. [PMID: 27316973 PMCID: PMC4912699 DOI: 10.1186/s12941-016-0155-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 12/04/2022] Open
Abstract
Background The purpose of this study was to define the potency of amikacin and comparator agents against a collection of blood and respiratory nosocomial isolates implicated in ICU based pulmonary infections gathered from US hospitals. Methods Minimum inhibitory concentrations of amikacin, aztreonam, cefepime, ceftazidime, ceftolozane/tazobactam, ceftriaxone, ciprofloxacin, imipenem, meropenem, piperacillin/tazobactam and tobramycin were tested against 2460 Gram-negative isolates. Amikacin had 96 % susceptibility against the combined E. coli and K. pneumoniae isolates and 95 % susceptibility against P. aeruginosa. Results Ninety-six percent of all of isolates tested were susceptible (i.e., MICs ≤16 mg/L) to amikacin by current laboratory standards which demonstrates a high level of activity to combat infections caused by these organisms including ESBL, MDR, β-lactam and fluoroquinolone resistant strains. Moreover, 99 % of all organisms had amikacin MICs ≤64 mg/L. Conclusions Overall, these data highlight the continued potency of amikacin and suggest that the achievable lung concentrations of approximately 5000 mg/L with the administration of the amikacin by inhalation (Amikacin Inhale, BAY41-6551) will exceed the MICs typically observed for P. aeruginosa, E. coli and K. pneumoniae in the hospital setting.
Collapse
|