101
|
Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol 2011; 7:1459-70. [DOI: 10.1517/17425255.2011.623126] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
102
|
Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1. mBio 2011; 2:mBio.00142-11. [PMID: 21810964 PMCID: PMC3147165 DOI: 10.1128/mbio.00142-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gram-negative outer membrane (OM) integrity is maintained in part by Mg2+ cross-links between phosphates on lipid A and on core sugars of adjacent lipopolysaccharide (LPS) molecules. In contrast to other Gram-negative bacteria, waaP, encoding an inner-core kinase, could not be inactivated in Pseudomonas aeruginosa. To examine this further, expression of the kinases WaaP or WapP/WapQ/PA5006 was placed under the control of the arabinose-regulated pBAD promoter. Growth of these strains was arabinose dependent, confirming that core phosphorylation is essential in P. aeruginosa. Transmission electron micrographs of kinase-depleted cells revealed marked invaginations of the inner membrane. SDS-PAGE of total LPS from WaaP-depleted cells showed accumulation of a fast-migrating band. Mass spectrometry (MS) analysis revealed that LPS from these cells exhibits a unique truncated core consisting of two 3-deoxy-d-manno-octulosonic acids (Kdo), two l-glycero-d-manno-heptoses (Hep), and one hexose but completely devoid of phosphates, indicating that phosphorylation by WaaP is necessary for subsequent core phosphorylations. MS analysis of lipid A from WaaP-depleted cells revealed extensive 4-amino-4-deoxy-l-arabinose modification. OM prepared from these cells by Sarkosyl extraction of total membranes or by sucrose density gradient centrifugation lacked truncated LPS. Instead, truncated LPS was detected in the inner membrane fractions, consistent with impaired transport/assembly of this species into the OM. Gram-negative bacteria have an outer membrane (OM) comprised of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The OM protects cells from toxic molecules and is important for survival during infection. The LPS core kinase gene waaP can be deleted in several Gram-negative bacteria but not in Pseudomonas aeruginosa. We used a controlled-expression system to deplete WaaP directly in P. aeruginosa cells, which halted growth. WaaP depletion also caused gross changes in cell morphology and led to the accumulation of an aberrant LPS lacking several core sugars and all core phosphates. The aberrant LPS failed to reach the OM, suggesting that WaaP is essential in P. aeruginosa because it is required to produce the full-length LPS that is recognized by the OM transport/assembly machinery in this organism. Therefore, WaaP may constitute a good target for the development of novel antipseudomonal agents.
Collapse
|
103
|
Zuckerman JM, Qamar F, Bono BR. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am 2011; 95:761-91, viii. [PMID: 21679791 DOI: 10.1016/j.mcna.2011.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The advanced macrolides, azithromycin and clarithromycin, and the ketolide, telithromycin, are structural analogs of erythromycin. They have several distinct advantages when compared with erythromycin, including enhanced spectrum of activity, more favorable pharmacokinetics and pharmacodynamics, once-daily administration, and improved tolerability. Clarithromycin and azithromycin are used extensively for the treatment of respiratory tract infections, sexually transmitted diseases, and Helicobacter pylori-associated peptic ulcer disease. Telithromycin is approved for the treatment of community-acquired pneumonia. Severe hepatotoxicity has been reported with the use of telithromycin.
Collapse
Affiliation(s)
- Jerry M Zuckerman
- Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
104
|
Gao X, Huang Y, Han Y, Bai CX, Wang G. The protective effects of Ambroxol in Pseudomonas aeruginosa-induced pneumonia in rats. Arch Med Sci 2011; 7:405-13. [PMID: 22312374 PMCID: PMC3258752 DOI: 10.5114/aoms.2011.23403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/02/2011] [Accepted: 02/08/2011] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION To evaluate the effect of Ambroxol on the pulmonary surfactant (PS) in rat pneumonia induced by Pseudomonas aeruginosa (PA). MATERIAL AND METHODS The pneumonic rats were obtained by injecting ATCC27853 intratracheally. One hundred and twenty SD rats were randomized into four groups: normal saline and Ambroxol was injected intraperitoneally following PA challenge in the PA/NS and PA/AM group; the other two groups were NS/AM and NS/NS. The wet/dry weight ratio (W/D), and pathological changes were assayed. Total proteins (TP), total phospholipid (TPL), and dipalmitoylphosphatidylcholine (DPPC) in bronchial alveolar lavage fluid (BALF) were analysed. Some BALF was cultured for colony counts. Ultrastructural change of the lung was observed by electron microscopy. RESULTS The W/D ratio in the PA/AM group was lower than that in the PA/NS group; both were higher than that in the NS/NS group (p < 0.05). There were more neutrophils in the PA/NS group than in the PA/AM group (p < 0.05), and more in the PA/AM group than in the NS/NS group (p < 0.05). The ratio of DSPC/TPL and DSPC/TP in the BALF in PA/NS group was lower than that in the PA/AM group; DSPC/TPL and DSPC/TP ratios also increased in the NS/AM group. The PA colony numbers in the PA/AM group were lower than in the PA/NS group (p > 0.05). In the PA/NS group, vacuolation occurred in the lamellar body of alveolar type 2 cells (AT2) and the PS layer was rough and broken in some areas. In the PA/AM group, the degree of vacuolation of the lamellar body was less than in the PA/NS group. CONCLUSIONS Ambroxol could protect rats from pneumonia by improving the level of endogenous PS, especially DPPC.
Collapse
Affiliation(s)
- Xiwen Gao
- Department of Internal Medicine, Minhang District Central Hospital, Ruijin Hospital Group, Shanghai, PR China
| | - Yi Huang
- Department of Pulmonary Medicine, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yipin Han
- Department of Pulmonary Medicine, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Chun-xue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Guifang Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
105
|
Townsend ML, Pound MW, Drew RH. Potential role of tigecycline in the treatment of community-acquired bacterial pneumonia. Infect Drug Resist 2011; 4:77-86. [PMID: 21694911 PMCID: PMC3108749 DOI: 10.2147/idr.s6030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 12/13/2022] Open
Abstract
Tigecycline is a member of the glycylcycline class of antimicrobials, which is structurally similar to the tetracycline class. It demonstrates potent in vitro activity against causative pathogens that are most frequently isolated in patients with community-acquired bacterial pneumonia (CABP), including (but not limited to) Streptococcus pneumoniae (both penicillin-sensitive and -resistant strains), Haemophilus influenzae and Moraxella catarrhalis (including β-lactamase-producing strains), Klebsiella pneumoniae, and ‘atypical organisms’ (namely Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila). Comparative randomized clinical trials to date performed in hospitalized patients receiving tigecycline 100 mg intravenous (IV) × 1 and then 50 mg IV twice daily thereafter have demonstrated efficacy and safety comparable to the comparator agent. Major adverse effects were primarily gastrointestinal in nature. Tigecycline represents a parenteral monotherapy option in hospitalized patients with CABP (especially in patients unable to receive respiratory fluoroquinolones). However, alternate and/or additional therapies should be considered in patients with more severe forms of CABP in light of recent data of increased mortality in patients receiving tigecycline for other types of severe infection.
Collapse
Affiliation(s)
- Mary L Townsend
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC, USA
| | | | | |
Collapse
|
106
|
Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against Gram-positive and Gram-negative organisms, including multidrug-resistant pathogens, in Germany. Eur J Clin Microbiol Infect Dis 2011; 30:1095-103. [DOI: 10.1007/s10096-011-1197-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/04/2011] [Indexed: 11/25/2022]
|
107
|
Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int J Antimicrob Agents 2011; 37:187-93. [PMID: 21295448 DOI: 10.1016/j.ijantimicag.2010.11.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
Abstract
Adaptive resistance is an autoregulated phenomenon characterised by induction of resistance in the presence of drug and reversal to the sensitive phenotype in its absence. This type of resistance is well documented for polycationic antibiotics, including aminoglycosides and polymyxins, in Pseudomonas aeruginosa and other aerobic Gram-negative bacilli. It is not caused by selection of resistant mutants but rather by phenotypic alterations in order to survive the lethal drug effect. Adaptive resistance to aminoglycosides is mainly mediated by the MexXY-OprM efflux pump that is rapidly upregulated in bacteria surviving the first exposure to aminoglycosides and is downregulated when bacteria are no longer in contact with the drug. A two-component regulatory system designated ParR-ParS plays a major role in adaptive resistance induced by cationic peptides. In the presence of cationic peptides, ParR-ParS activates the lipopolysaccharide modification operon (arnBCADTEF) leading to increased resistance in polymyxins and aminoglycosides. The bactericidal kinetics related to adaptive resistance have important clinical implications and provide a rationale for administering cationic antibiotics in larger initial and longer interval bolus dosing. A better understanding of this phenomenon and the molecular mechanisms responsible will be essential not only for optimum use of cationic antibiotics but also for developing new agents with ability to counteract the detrimental effects of adaptive resistance and thus enhance the therapeutic efficacy of polycationic compounds.
Collapse
|
108
|
A Model-Based PK/PD Antimicrobial Chemotherapy Drug Development Platform to Simultaneously Combat Infectious Diseases and Drug Resistance. CLINICAL TRIAL SIMULATIONS 2011. [DOI: 10.1007/978-1-4419-7415-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
109
|
Abstract
With more antibiotic resistance and emerging pathogens in cystic fibrosis (CF) patients, the need for new strategies in the lifelong treatment of pulmonary infection has increased. Most of the focus is on chronic infection with Pseudomonas aeruginosa, which is still thought to be the main pathogen leading to advanced CF lung disease. Other bacterial species are also recognized in the pathogenesis of CF lung disease, even though their definitive role is not well established yet. Clearly, expansion of treatment options is urgently needed. This article focuses on recent developments in the field of new antimicrobial strategies for CF. It is clear that studies on new classes of antibiotics or antimicrobial-like drugs are scarce, and that most studies involve new (inhalation) formulations, new routes of delivery, or analogs of existing classes of antibiotics. Studies of new antibiotic-like drugs are, in most cases, in preclinical phases of development and only a few of these agents may reach the market. Importantly, new inhaled antibiotics, e.g. aztreonam, levofloxacin, and fosfomycin, and new, more efficient delivery systems such as dry powder inhalation and liposomes for current antibiotics are in the clinical phase of development. These developments will be of great importance in improving effective treatment and reducing the treatment burden for CF patients in the near future.
Collapse
Affiliation(s)
- Mireille van Westreenen
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| | | |
Collapse
|
110
|
Horiyama T, Nikaido E, Yamaguchi A, Nishino K. Roles of Salmonella multidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother 2010; 66:105-10. [DOI: 10.1093/jac/dkq421] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
111
|
Rajendran R, Quinn RF, Murray C, McCulloch E, Williams C, Ramage G. Efflux pumps may play a role in tigecycline resistance in Burkholderia species. Int J Antimicrob Agents 2010; 36:151-4. [PMID: 20399621 DOI: 10.1016/j.ijantimicag.2010.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate the role of multidrug resistance efflux pumps in relation to decreased susceptibility to tigecycline in clinical isolates of Burkholderia cepacia complex (BCC). The role of efflux pumps was analysed using the efflux pump inhibitor (EPI) MC-207,110. Minimum inhibitory concentrations (MICs) were determined for each strain against tigecycline alone and in the presence of 64 mg/L MC-207,110. The effect of efflux pump inhibition on the susceptibility of BCC isolates to tigecycline was assessed by a checkerboard titration assay. Ala-Nap uptake assay was performed to determine efflux pump activity in different strains. The checkerboard titration assay showed that the MIC decreased with increasing concentrations of EPI. MICs for tigecycline in the clinical isolates ranged between 8 mg/L and 32 mg/L, whereas in the presence of MC-207,110, MICs decreased significantly (range <0.125-1.0mg/L; 16 to >256 times reduction). Efflux pump activity was shown to be greatest in strains with the highest MIC and vice versa. In conclusion, BCC possess efflux pumps that influence their resistance to tigecycline. Use of an inhibitor of these pumps restored sensitivity to the antibiotic. Therefore, a combination of tigecycline and EPI to augment its efficacy may present an attractive therapeutic option.
Collapse
Affiliation(s)
- Ranjith Rajendran
- Section of Infection and Immunity, Glasgow Dental School, Faculty of Medicine, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | | | | | | | | | | |
Collapse
|
112
|
mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 2010; 55:508-14. [PMID: 21078928 DOI: 10.1128/aac.00830-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A null mutation in the mexS gene of Pseudomonas aeruginosa yielded an increased level of expression of a 3-gene operon containing a gene, xenB, whose product is highly homologous to a xenobiotic reductase in Pseudomonas fluorescens shown previously to remove nitro groups from trinitrotoluene and nitroglycerin (D. S. Blehert, B. G. Fox, and G. H. Chambliss, J. Bacteriol. 181:6254, 1999). This expression, which paralleled an increase in mexEF-oprN expression in the same mutant, was, like mexEF-oprN, dependent on the MexT LysR family positive regulator previously implicated in mexEF-oprN expression. As nitration is a well-known result of nitrosative stress, a role for xenB (and the coregulated mexEF-oprN) in a nitrosative stress response was hypothesized and tested. Using s-nitrosoglutathione (GSNO) as a source of nitrosative stress, the expression of xenB and mexEF-oprN was shown to be GSNO inducible, although in the case of xenB, this was seen only for a mutant lacking MexEF-OprN. In both instances, this GSNO-inducible expression was dependent upon MexT. Chloramphenicol, a nitroaromatic antimicrobial that is a substrate for MexEF-OprN, was shown to induce mexEF-oprN but not xenB, again dependent upon the MexT regulator, possibly because it resembles a nitrosated nitrosative stress product accommodated by MexEF-OprN.
Collapse
|
113
|
Ruzin A, Immermann FW, Bradford PA. RT-PCR and statistical analyses of adeABC expression in clinical isolates of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Microb Drug Resist 2010; 16:87-9. [PMID: 20438348 DOI: 10.1089/mdr.2009.0131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The relationship between expression of adeABC and minimal inhibitory concentration (MIC) of tigecycline was investigated by RT-PCR and statistical analyses in a population of 106 clinical isolates (MIC range, 0.0313-16 microg/ml) of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. There was a statistically significant linear relationship (p < 0.0001) between log-transformed expression values and log-transformed MIC values, indicating that overexpression of AdeABC efflux pump is a prevalent mechanism for decreased susceptibility to tigecycline in A. calcoaceticus-A. baumannii complex.
Collapse
Affiliation(s)
- Alexey Ruzin
- Department of Infectious Disease, Wyeth Research, Pearl River, New York, USA.
| | | | | |
Collapse
|
114
|
Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54:4389-93. [PMID: 20696879 DOI: 10.1128/aac.00155-10] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a major nosocomial pathogen which frequently develops multidrug resistance by acquisition of antibiotic resistance genes and overexpression of intrinsic efflux systems, such as the RND efflux pumps AdeABC and AdeIJK. A third RND system was characterized by studying spontaneous mutants BM4663 and BM4664, which were selected in the presence of chloramphenicol and norfloxacin, respectively, from the AdeABC- and AdeIJK-defective derivative A. baumannii BM4652. They exhibited enhanced resistance to fluoroquinolones, tetracycline-tigecycline, chloramphenicol, clindamycin, trimethoprim, sulfamethoxazole, sodium dodecyl sulfate, and dyes such as ethidium bromide, safranin O, and acridine orange. Comparison of transcriptomes of mutants with that of their parental strain, using a microarray technology, demonstrated the overexpression of three genes that encoded an RND efflux system, named AdeFGH. Inactivation of AdeFGH in BM4664 restored an antibiotic susceptibility profile identical to that of BM4652, indicating that AdeFGH was cryptic in BM4652 and responsible for multidrug resistance in its mutants. RNA analysis demonstrated that the three genes were cotranscribed. The adeFGH operon was found in 36 out of 40 A. baumannii clinical isolates, but none of the 22 isolates tested overexpressed the pump genes. Spontaneous MDR mutant BM4684, overexpressing adeFGH, was obtained from clinical isolate BM4587, indicating that adeFGH can be overexpressed in a strain harboring adeABC-adeIJK. An open reading frame, coding a LysR-type transcriptional regulator, named adeL, was located upstream from the adeFGH operon and transcribed in the opposite direction. Mutations in adeL were found in the three adeFGH-overexpressing mutants, suggesting that they were responsible for overexpression of AdeFGH.
Collapse
|
115
|
Darabi A, Hocquet D, Dowzicky MJ. Antimicrobial activity against Streptococcus pneumoniae and Haemophilus influenzae collected globally between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. Diagn Microbiol Infect Dis 2010; 67:78-86. [PMID: 20385351 DOI: 10.1016/j.diagmicrobio.2009.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/24/2009] [Accepted: 12/06/2009] [Indexed: 11/16/2022]
Abstract
We report here on the in vitro activity of tigecycline and comparators against a global collection of Streptococcus pneumoniae and Haemophilus influenzae collected between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. A total of 6785 S. pneumoniae and 6642 H. influenzae isolates were collected, most from North America. The percentages of penicillin-intermediate resistance and penicillin resistance among S. pneumoniae in North America were 27.8% and 14.3%, respectively. Penicillin resistance ranged from 9.3% in Europe to 25.1% in the Asia-Pacific Rim. The rate of beta-lactamase-producing H. influenzae was 25.8% in North America, and among the other regions, it ranged from 8.7% in South Africa to 26.8% in the Asia-Pacific Rim. Tigecycline MIC(90)'s were 0.03 to 0.12 mg/L and 0.5 to 2 mg/L, depending on the region considered, against S. pneumoniae and H. influenzae, respectively. Tigecycline had low MIC(90)'s against S. pneumoniae and H. influenzae, irrespective of resistance to beta-lactams.
Collapse
Affiliation(s)
- Ali Darabi
- WPAHS, Core Lab., Pittsburgh, PA 15212, USA
| | | | | |
Collapse
|
116
|
Stickland HG, Davenport PW, Lilley KS, Griffin JL, Welch M. Mutation of nfxB causes global changes in the physiology and metabolism of Pseudomonas aeruginosa. J Proteome Res 2010; 9:2957-67. [PMID: 20373734 DOI: 10.1021/pr9011415] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss-of-function mutations in nfxB lead to up-regulation of mexCD-oprJ expression and, consequently, increased resistance to fluoroquinolone antibiotics. Such nfxB mutants have also been reported to exhibit altered virulence profiles, diminished type III secretion system-dependent cytotoxicity, and impaired fitness. However, it is not clear whether these phenotypes are directly linked to NfxB activity or whether inappropriate expression of the MexCD-OprJ pump has pleiotropic effects, thereby impacting indirectly on the phenotype of the cells. The aim of the current work is to investigate which of these possibilities is correct. We isolated a novel type of nfxB mutant generated by a spontaneous polygenic deletion and show that this mutant is rapidly out-competed when grown in a mixed culture with the wild-type progenitor. This competitive fitness defect only manifested itself during the stationary phase of growth. The endoproteome of the nfxB mutant, assessed using 2D-DiGE (difference gel electrophoresis), showed major alterations compared with the wild-type. Consistent with this, we found that the nfxB mutant was impaired in all forms of motility (swimming, swarming, and twitching) as well as in the production of siderophores, rhamnolipid, secreted protease, and pyocyanin. Further investigation showed that the exoproteome, endometabolome, and exometabolome of the nfxB mutant were all globally different compared with the wild-type. The exometabolome of the nfxB mutant was enriched in a selection of long chain fatty acids raising the possibility that these might be substrates for the MexCD-OprJ pump. The nfxB mutant metabotype could be complemented by expression of nfxB in trans and was abolished in an nfxB mexD double mutant, suggesting that inappropriate overexpression of a functional MexCD-OprJ efflux pump causes pleiotropic changes. Taken together, our data suggest that many of the nfxB mutant phenotypes are not caused by the direct effects of the NfxB regulator, but instead by inappropriate mexCD-oprJ expression. Furthermore, the pleiotropic nature of the phenotypes indicate that these may simply reflect the globally dysregulated physiology of the strain.
Collapse
Affiliation(s)
- Hannah G Stickland
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
117
|
Petersen PJ, Ruzin A, Tuckman M, Jones CH. In vitro activity of tigecycline against patient isolates collected during phase 3 clinical trials for diabetic foot infections. Diagn Microbiol Infect Dis 2010; 66:407-18. [DOI: 10.1016/j.diagmicrobio.2009.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/19/2009] [Accepted: 11/22/2009] [Indexed: 02/06/2023]
|
118
|
Farrell DJ, Turnidge JD, Bell J, Sader HS, Jones RN. The in vitro evaluation of tigecycline tested against pathogens isolated in eight countries in the Asia-Western Pacific region (2008). J Infect 2010; 60:440-51. [PMID: 20361999 DOI: 10.1016/j.jinf.2010.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/15/2010] [Accepted: 03/25/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To determine the in vitro activity of tigecycline and comparator common use antimicrobial agents tested against contemporary bacterial pathogens from the Asia-Western Pacific region. METHODS As part of the SENTRY Antimicrobial Surveillance Program, a total of 5759 Gram-positive and Gram-negative isolates were collected from 28 medical centers in eight Asia-Western Pacific countries during 2008. Minimum inhibitory concentrations (MICs) were determined using Clinical and Laboratory Standards Institute (CLSI) broth microdilution method and interpreted using CLSI breakpoints. United States Food and Drug Administration (US-FDA) breakpoints were used to interpret tigecycline susceptibility. RESULTS Antimicrobial resistance was found to be widespread and prevalence varied considerably between the eight countries. Against pathogens for which breakpoints were available, >98% of all isolates were susceptible to tigecycline. Against all Gram-positive isolates, including methicillin (oxacillin)-resistant Staphylococcus aureus, penicillin- and multidrug-resistant pneumococci, and vancomycin-resistant enterococci, the highest tigecycline MIC found was 1 microg/ml. Against all Enterobacteriaceae, including extended-spectrum beta-lactamase phenotypes, tigecycline susceptibility was 97.5%. Tigecycline had good activity against Acinetobacter spp. but was much less active against Pseudomonas aeruginosa. CONCLUSION Tigecycline demonstrated excellent sustained in vitro activity against a wide spectrum of contemporary Gram-positive and -negative pathogens from Asia-Western Pacific countries.
Collapse
|
119
|
ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010; 54:2720-3. [PMID: 20350947 DOI: 10.1128/aac.00085-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Five Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline (MIC, 2 microg/ml) were analyzed. A gene homologous to ramR of Salmonella enterica was identified in Klebsiella pneumoniae. Sequencing of ramR in the nonsusceptible Klebsiella strains revealed deletions, insertions, and point mutations. Transformation of mutants with wild-type ramR genes, but not with mutant ramR genes, restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. Thus, this study reveals a molecular mechanism for tigecycline resistance in Klebsiella pneumoniae.
Collapse
|
120
|
Hornsey M, Ellington MJ, Doumith M, Hudson S, Livermore DM, Woodford N. Tigecycline resistance in Serratia marcescens associated with up-regulation of the SdeXY-HasF efflux system also active against ciprofloxacin and cefpirome. J Antimicrob Chemother 2010; 65:479-82. [PMID: 20051474 DOI: 10.1093/jac/dkp475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Efflux by RND-type transporters is known to confer resistance to tigecycline in several Enterobacteriaceae species and we examined the potential of this mechanism in Serratia marcescens using a clinical isolate and laboratory-selected mutants. METHODS Expression of RND-type efflux pump genes was analysed by real-time RT-PCR. Laboratory mutants were selected by exposure to either tigecycline or tetracycline in vitro. Efflux pump genes were inactivated by suicide plasmids containing the R6K gamma origin of replication. RESULTS Higher tigecycline MICs correlated with elevated expression of the RND-type efflux pump genes sdeXY. Inactivation of sdeY or the outer membrane component gene hasF reduced MICs of tigecycline, tetracycline, ciprofloxacin and cefpirome to below those for strain NCTC 10211. A tetracycline-selected laboratory mutant also showed increases in sdeXY expression and tigecycline MIC. CONCLUSIONS Up-regulation of endogenous SdeXY-HasF-mediated efflux is associated with tigecycline resistance in S. marcescens along with MIC rises for tetracycline, ciprofloxacin and cefpirome. Inactivation of this efflux system reduced MICs of those compounds to below those for strain NCTC 10211.
Collapse
Affiliation(s)
- Michael Hornsey
- Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK.
| | | | | | | | | | | |
Collapse
|
121
|
Zuckerman JM, Qamar F, Bono BR. Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 2010; 23:997-1026, ix-x. [PMID: 19909895 DOI: 10.1016/j.idc.2009.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The advanced macrolides, azithromycin and clarithromycin, and the ketolide, telithromycin, are structural analogs of erythromycin. They have several distinct advantages when compared with erythromycin, including enhanced spectrum of activity, more favorable pharmacokinetics and pharmacodynamics, once-daily administration, and improved tolerability. Clarithromycin and azithromycin are used extensively for the treatment of respiratory tract infections, sexually transmitted diseases, and Helicobacter pylori-associated peptic ulcer disease. Telithromycin is approved for the treatment of community-acquired pneumonia. Severe hepatotoxicity has been reported with the use of telithromycin.
Collapse
Affiliation(s)
- Jerry M Zuckerman
- Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
122
|
Petersen PJ, Tuckman M, Jones CH. In vitro activity of tigecycline against patient isolates collected during phase 3 clinical trials for hospital acquired pneumonia. Infect Dis Rep 2010; 2:e1. [PMID: 24470884 PMCID: PMC3892572 DOI: 10.4081/idr.2010.e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 11/30/2022] Open
Abstract
The in vitro activity of tigecycline was evaluated against 819 baseline pathogens isolated from 383 patients enrolled in the phase 3 clinical trial investigating the efficacy of tigecycline in hospital acquired pneumonia (HAP). The trials were global, enrolling patients in 27 countries. Tigecycline was active against the most prevalent pathogens in HAP, including gram-positive and gram-negative strains (90% of MICs ≤2 µg/mL for the entire collection). The spectrum of activity of tigecycline included important pathogens such as Staphylococcus aureus (including methicillin-resistant S. aureus), Enterococcus faecalis, Streptococcus pneumoniae, Acinetobacter baumannii/calcoaceticus complex, Escherichia coli, Klebsiella pneumonia, and Enterobacter cloacae. As reported previously, a few genera, such as Pseudomonas aeruginosa and the Proteeae, were generally less susceptible to tigecycline by comparison to other gram-negative pathogens. The excellent in vitro, expanded, broad-spectrum activity of tigecycline in the clinical isolates confirmed the potential utility of tigecycline for pathogens associated with with hospital acquired pneumonia infections.
Collapse
Affiliation(s)
- Peter J Petersen
- Infectious Diseases, Biosynthetic Chemistry, Wyeth Research, Pearl River, NY, USA
| | - Margareta Tuckman
- Infectious Diseases, Biosynthetic Chemistry, Wyeth Research, Pearl River, NY, USA
| | - C Hal Jones
- Infectious Diseases, Biosynthetic Chemistry, Wyeth Research, Pearl River, NY, USA
| |
Collapse
|
123
|
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2010; 22:582-610. [PMID: 19822890 DOI: 10.1128/cmr.00040-09] [Citation(s) in RCA: 1218] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces.
Collapse
|
124
|
Tetracyclines and chloramphenicol. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
125
|
Mc Cay PH, Ocampo-Sosa AA, Fleming GTA. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology (Reading) 2010; 156:30-38. [DOI: 10.1099/mic.0.029751-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigates the link between adaptation to biocides and antibiotics in Pseudomonas aeruginosa. An enrichment continuous culture of P. aeruginosa NCIMB 10421 (MIC 25 mg BKC l−1) was operated (D=0.04 h−1, 792 h) with added benzalkonium chloride (BKC). A derivative, PA-29 (696 h), demonstrated a >12-fold decrease in sensitivity to the biocide (MIC >350 mg BKC l−1). The variant demonstrated a 256-fold increase in resistance to ciprofloxacin, with a mutation in the gyrA gene (Thr-83→Ile). Similarly, culturing of the original strain in a continuous-culture system with ciprofloxacin selection pressure led to the evolution of BKC-adapted populations (MIC 100 mg BKC l−1). Efflux pump activity predominantly contributed to the developed phenotype of PA-29. An amino acid substitution (Val-51→Ala) in nfxB, the Mex efflux system regulator gene, was observed for PA-29. Overexpression of both MexAB-OprM and MexCD-OprJ was recorded for PA-29. Similarly, mexR, a repressor of the Mex system, was downregulated. Competition studies were carried out in continuous culture between PA-29 and the original strain (in the presence of subinhibitory concentrations of BKC). The outcome of competition was influenced by the concentration of biocide used and the nature of limiting nutrient. The inclusion of 1 mg BKC l−1 in the medium feed was sufficient to select (S=0.011) for the BKC-adapted strain in magnesium-limited culture. Conversely, the presence of 10 mg BKC l−1 in the medium supply was insufficient to select for the same organism (S=−0.017) in the glucose-limited culture. These results indicate the importance of environmental conditions on selection and maintenance of biocide adaptation.
Collapse
Affiliation(s)
- Paul H. Mc Cay
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Alain A. Ocampo-Sosa
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Gerard T. A. Fleming
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
126
|
Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob Agents Chemother 2009; 54:1319-22. [PMID: 20028818 DOI: 10.1128/aac.00993-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A Salmonella enterica serovar Hadar strain resistant to tigecycline (MIC, 16 microg/ml) was isolated. Molecular characterization revealed the presence of a plasmid-borne tet(A) variant associated with Tn1721 mediating a rise of the MIC for tigecycline when transferred to Escherichia coli. Additionally, a truncating mutation in ramR was detected. Transformation with wild-type ramR but not with the mutated ramR lowered the MIC for tigecycline. Characterization of this Salmonella isolate implicates ramR in resistance to tigecycline.
Collapse
|
127
|
Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009. [PMID: 19822890 DOI: 10.1128/cmr.00040-09.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of infectious diseases becomes more challenging with each passing year. This is especially true for infections caused by the opportunistic pathogen Pseudomonas aeruginosa, with its ability to rapidly develop resistance to multiple classes of antibiotics. Although the import of resistance mechanisms on mobile genetic elements is always a concern, the most difficult challenge we face with P. aeruginosa is its ability to rapidly develop resistance during the course of treating an infection. The chromosomally encoded AmpC cephalosporinase, the outer membrane porin OprD, and the multidrug efflux pumps are particularly relevant to this therapeutic challenge. The discussion presented in this review highlights the clinical significance of these chromosomally encoded resistance mechanisms, as well as the complex mechanisms/pathways by which P. aeruginosa regulates their expression. Although a great deal of knowledge has been gained toward understanding the regulation of AmpC, OprD, and efflux pumps in P. aeruginosa, it is clear that we have much to learn about how this resourceful pathogen coregulates different resistance mechanisms to overcome the antibacterial challenges it faces.
Collapse
|
128
|
Abstract
The emergence of multidrug-resistant (MDR) Gram-negative bacilli creates a challenge in the treatment of nosocomial infections. While the pharmaceutical pipeline is waning, two revived old antibacterials (colistin and fosfomycin), a newer one (tigecycline) and an 'improved' member of an existing class (doripenem) are the only therapeutic options left. The class of polymyxins, known since 1947 and represented mostly by polymyxin B and polymyxin E (colistin), has recently gained a principal role in the treatment of the most problematic MDR Gram-negative pathogens (such as Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia). Future prospective studies are needed to answer important clinical questions, such as the possible benefit of combination with other antimicrobials versus monotherapy, the efficacy of colistin in neutropenic hosts and the role of inhaled colistin. As new pharmacokinetic data emerge, clarification of the pharmacokinetic/pharmacodynamic (PK/PD) profile of colistin as well as appropriate dosing seems urgent, while development of resistance must be carefully monitored. Fosfomycin tromethamine, a synthetic salt of fosfomycin discovered in 1969, has regained attention because of its in vitro activity against extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae and MDR P. aeruginosa. Although in use for decades in oral and parenteral formulations for a variety of infections without significant toxicity, its clinical utility in MDR infections remains to be explored in future studies. Tigecycline, the first representative of the new class of glycylcyclines, holds promise in infections from MDR K. pneumoniae (K. pneumoniae carbapenemase [KPC]- and ESBL-producing strains) and Enterobacteriaceae with various mechanisms of resistance. The in vitro activity of tigecycline against A. baumannii makes it a tempting option, as it is currently the most active compound against MDR strains along with colistin. However, the usual minimum inhibitory concentration values of this pathogen are approximately 2 mg/L and compromise clinical outcomes based on PK/PD issues. Its advantageous penetration into various tissues is useful in infections of the skin and soft tissues as well as intra-abdominal infections (official indications), whereas low serum concentrations compromise its use in bloodstream infections. Therefore, prospective studies with dose escalation are urgently needed, as well as clarification of its role in nosocomial pneumonia, after poor results in the study of ventilator-associated pneumonia. Finally, doripenem, the recently licensed member of the carbapenems (without significant spectrum alterations from the ascendant members) seems to possess a lower potential for resistance selection and a more favourable pharmacokinetic profile when given as an extended infusion. The latter strategy could prove helpful in overcoming low level resistance of A. baumannii and P. aeruginosa strains.
Collapse
Affiliation(s)
- Helen Giamarellou
- 4th Department of Internal Medicine, Athens University School of Medicine, ATTIKON University Hospital of Athens, Athens, Greece.
| | | |
Collapse
|
129
|
Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression. Antimicrob Agents Chemother 2009; 53:5015-21. [PMID: 19786597 DOI: 10.1128/aac.00253-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrinsic resistance of P. aeruginosa PAO1 to the peptide deformylase inhibitor (PDF-I) LBM415 was mediated by the MexAB-OprM and MexXY-OprM efflux pumps, the latter of which was strongly induced by LBM415. Single-step exposure of PAO1 deleted for mexAB-oprM (therefore lacking both MexAB-OprM and MexXY-OprM functions) to PDF-Is selected for nfxB mutants, which express the MexCD-OprJ efflux pump, indicating that these compounds are also substrates for this pump. Selection of resistant mutants by use of levels of LBM415 greater than that accommodated by efflux yielded two additional groups of mutations, in the methionyl-tRNA(fmet) formyltransferase (fmt) and folD genes. Both mechanisms are known to impose an in vitro growth deficit (also observed here), presumably due to impairment of protein synthesis. We surmised that this inherent impairment of protein synthesis would upregulate expression of mexXY in a fashion similar to upregulation by LBM415 or by ribosome inhibitory compounds. Transcriptional profiling and/or mexX::lux promoter fusion analysis revealed that fmt and folD mutants were strongly upregulated for mexXY and another gene known to be required for upregulation of the pump, PA5471. Complementation of the fmt mutation in trans reversed this constitutive expression. This supports the notion that MexXY has a natural physiological function responding to impairment of ribosome function or protein synthesis and that fmt mutation (Fmt bypass) and folD mutation generate the intracellular mexXY-inducing signal.
Collapse
|
130
|
Gómez-Garcés JL, Aracil B, Gil Y, Burillo A. Susceptibility of 228 non-fermenting gram-negative rods to tigecycline and six other antimicrobial drugs. J Chemother 2009; 21:267-71. [PMID: 19567346 DOI: 10.1179/joc.2009.21.3.267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of the study was to determine the in vitro activity of tigecycline and 6 other antimicrobial drugs used in clinical practice against 228 clinical isolates of nonfermenting Gram-negative rods (NFGNRs) including Acinetobacter spp., Stenotrophomonas maltophilia, and Pseudomonas aeruginosa. Minimum inhibitory concentrations (MICs) were determined according to the recommendations of the Clinical and laboratory Standards institute. for tigecycline, we used the criteria approved by the fDA. Almost 50% of the clinical isolates of Acinetobacter spp. were resistant to piperacillin/tazobactam, ciprofloxacin, gentamicin, and ceftazidime. Strains of this microorganism were more susceptible to imipenem, and even more susceptible to colistin and tigecycline; no strains were resistant to tigecycline. Stenotrophomonas maltophilia showed even greater resistance to the drugs tested. Thus, all strains were resistant to imipenem and a large percentage (82.6%) were resistant to piperacillin/tazobactam. Resistance to the other agents tested was also high, with the exception of tigecycline, with only 3 resistant strains (MIC >8 microg/ml). Tigecycline, on the other hand, was scarcely active against Pseudomonas aeruginosa, which bears efflux pump systems such as MexXy-OprM. Almost 90% of strains were resistant to ciprofloxacin; only 8% were resistant to gentamicin; over half were colistin-intermediate or -resistant, and finally, approximately half of the strains were susceptible to the 3 beta-lactams studied. In conclusion, NFGNRs present variable susceptibility patterns, although they are generally highly resistant to antimicrobial agents including those considered more specific. Tigecycline, which showed good activity against most of the strains examined, broadens the spectrum of drugs available for the treatment of infections caused by these complex microorganisms.
Collapse
Affiliation(s)
- J L Gómez-Garcés
- Servicio de Microbiología Clínica, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain.
| | | | | | | |
Collapse
|
131
|
Jamal WY, Al Hashem G, Khodakhast F, Rotimi VO. Comparative in vitro activity of tigecycline and nine other antibiotics against gram-negative bacterial isolates, including ESBL-producing strains. J Chemother 2009; 21:261-6. [PMID: 19567345 DOI: 10.1179/joc.2009.21.3.261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The enterobacteriaceae, especially Escherichia coli and Klebsiella spp., as well as Acinetobacter spp., are important agents of nosocomial infections in hospitalized patients. A total of 460 Gram-negative bacteria (GNb), were investigated for their susceptibility to tigecycline and 9 other antibiotics by the etest. ESBL production was inferred from ESBL etest phenotypes. All the GNb, including the ESBL-producers, were susceptible to tigecycline with MIC(90 )ranges of 0.25 to 2 microg/ml. Imipenem and meropenem were very active against ESBL and non-ESBL producers; mean MIC(90)s of 0.19 and 0.09 microg/ml and 0.05 microg/ml and 0.02 microg/ml, respectively. The MIC(90)s of imipenem and meropenem for the Acinetobacter spp. were 16 and >32 microg/ml, respectively with resistance rates of 64.3 and 66.1%. ESBL production was detected in 62% and 82.1% of the E. coli and K. pneumoniae isolates, respectively. Resistance to ciprofloxacin was higher among the ESBL-producing strains of E. coli and K. pneumoniae than the non-ESBL producers. Comparatively, tigecycline had excellent in vitro activities against ESBL-producing enterobacteriaceae and demonstrated superior activity against Acinetobacter spp. Increasing ESBL production and resistance to ciprofloxacin and gentamicin in enterobacteriaceae require careful selection of empirical therapy. Tigecycline holds promise as an alternative choice of therapy for infections caused by ESBL-producing isolates and multi-drug resistant Acinetobacter spp.
Collapse
Affiliation(s)
- W Y Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | | | | | | |
Collapse
|
132
|
Eliopoulos GM. Microbiology of drugs for treating multiply drug-resistant Gram-positive bacteria. J Infect 2009; 59 Suppl 1:S17-24. [DOI: 10.1016/s0163-4453(09)60004-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
133
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
134
|
Abstract
Tigecycline derived from minocycline. It is part of a new class of antibiotics called glycylcyclines. Tigecycline is given intravenously and has activity against a variety of gram-positive and gram-negative bacterial pathogens, many of which are resistant to existing antibiotics. Tigecycline successfully completed phase III trials in which it was at least equal to intravenous vancomycin and aztreonam to treat complicated skin and skin structure infections (cSSSI), and to intravenous imipenem and cilastatin to treat complicated intra-abdominal infections (cIAI). Tigecycline side effects are primarily digestive upset. It should be a valuable addition to the armamentarium to treat even the most resistant pathogens.
Collapse
Affiliation(s)
- Noah Scheinfeld
- Department of Dermatology, St Lukes Roosevelt Hospital, New York, USA.
| |
Collapse
|
135
|
Yamamoto M, Ueda A, Kudo M, Matsuo Y, Fukushima J, Nakae T, Kaneko T, Ishigatsubo Y. Role of MexZ and PA5471 in transcriptional regulation of mexXY in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2009; 155:3312-3321. [PMID: 19589837 DOI: 10.1099/mic.0.028993-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MexXY, a drug efflux pump in Pseudomonas aeruginosa, confers resistance to aminoglycoside antibiotics. We recently reported that MexZ binds to the promoter region of the mexXY operon. Electrophoretic mobility shift assay (EMSA) using recombinant MexZ and oligonucleotide probes prepared from the intergenic region between mexZ and mexX revealed that MexZ binds to a 20 bp palindromic sequence. Culture of P. aeruginosa in the presence of tetracycline induced higher levels of MexX and MexZ, as measured by immunoblotting and EMSA, than in the absence of antibiotics. When MexZ was expressed by a mexZ expression plasmid, the plasmid-borne MexZ repressed drug-induced MexX production, further confirming that MexZ acts as a repressor of the mexXY operon. PA5471 protein has been reported to be essential for drug-induced MexXY production. Similarly to that report, we observed that plasmid-borne PA5471 induced both MexX and MexZ production in PAO1 cells. Interestingly, interaction between MexZ and PA5471 was observed in a yeast two-hybrid assay. Furthermore, EMSA and in vitro transcription assays revealed that interaction between PA5471 and MexZ reduced MexZ DNA-binding ability, leading to mexXY transcription. These findings contribute to the understanding of the molecular mechanisms underlying the transcriptional regulation of mexZ and mexXY by drug-induced PA5471 expression.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsuhisa Ueda
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Makoto Kudo
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yasuhiro Matsuo
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Jun Fukushima
- Department of Biotechnology, Akita Prefectural University, Akita 010-0195, Japan
| | - Taiji Nakae
- Antimicrobial Research Center, Kitasato Institute, Kitasato University, Sagamihara 228-8555, Japan
| | - Takeshi Kaneko
- Department of Pulmonary Medicine, Yokohama City University Medical Center, Yokohama 232-0024, Japan
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
136
|
Abstract
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic-free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra- and inter-domain communication in various ecosystems. This signalling by non-clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.
Collapse
Affiliation(s)
- Rustam I Aminov
- University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK.
| |
Collapse
|
137
|
Nicolau DP. Management of complicated infections in the era of antimicrobial resistance: the role of tigecycline. Expert Opin Pharmacother 2009; 10:1213-22. [PMID: 19405794 DOI: 10.1517/14656560902900853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Increasing antimicrobial resistance and infection complications pose challenges to optimal antibiotic therapy. Paucity of new antibiotics (and the eventual bacterial resistance they face) highlights the critical need for more appropriate use of broadly effective agents, which may help to thwart the dramatic rise in global resistance. Single agents that can be combined effectively with others, if needed, promise the simplest overall utility. Approved in 2005 to treat complicated skin and intra-abdominal infections, tigecycline is a novel extended-spectrum minocycline derivative that circumvents bacterial resistance, as it is unaffected by efflux pumps and ribosomal protection. However, tigecycline should not be used as empiric monotherapy for treatment of health-care associated infections known or suspected to be owing to Pseudomonas aeruginosa or Proteus spp. OBJECTIVE This article summarizes the demonstrated clinical utility of tigecycline so far. METHODS A MEDLINE search examined authoritative published clinical studies, reviews and case reports detailing the clinical record of tigecycline since 2004. RESULTS/CONCLUSION Tigecycline continues to maintain satisfactory profiles of safety, efficacy and antimicrobial resistance avoidance. Regardless, continued surveillance is needed to detect reduced susceptibility and resistance against both community and nosocomial pathogens. Judicious use of agents reserved for multidrug resistant pathogens is vital to preserve their effectiveness.
Collapse
Affiliation(s)
- David P Nicolau
- Center for Anti-Infective Research & Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102-5037, USA.
| |
Collapse
|
138
|
Abstract
The first article in this supplement is an overall review of the first glycylcycline, tigecycline, which includes a brief overview of the problem of tetracycline resistance as well as tigecycline's mode of action, antibacterial activity, pharmacokinetics, pharmacodynamics, clinical efficacy, safety and tolerability. The remaining articles in the supplement report the European clinical experience from the pivotal clinical trials in complicated intra-abdominal infections, complicated skin and skin structure infections and community acquired pneumonia.
Collapse
Affiliation(s)
- G L French
- King's College and Guy's & St Thomas Hospital, Department of Infection, St Thomas' Hospital, London, UK.
| |
Collapse
|
139
|
Manos J, Arthur J, Rose B, Bell S, Tingpej P, Hu H, Webb J, Kjelleberg S, Gorrell MD, Bye P, Harbour C. Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett 2009; 292:107-114. [PMID: 19222585 DOI: 10.1111/j.1574-6968.2008.01472.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Epidemic Pseudomonas aeruginosa have been identified in cystic fibrosis (CF) patients worldwide. The Australian Epidemic Strain-2 (AES-2) infects up to 40% of patients in three eastern Australian CF clinics. To investigate whether AES-2 isolates from chronically infected CF adults differentially express well-conserved genes potentially associated with transmissibility, we compared the transcriptomes of planktonic and biofilm-grown AES-2, infrequent P. aeruginosa clones and the reference P. aeruginosa PAO1 using the Affymetrix PAO1 array. The most interesting findings emerged from comparisons of planktonic and biofilm AES-2. AES-2 biofilms upregulated Type III secretion system genes, but downregulated quorum-sensing (QS)-regulatory genes, except lasR, QS-regulated, oxidative-stress and iron-storage genes. QS-regulated and iron-storage genes were downregulated to a greater extent in AES-2 biofilms compared with infrequent clone and PAO1 biofilms, suggesting enhanced anaerobic respiration in AES-2. Chitinase and chitin-binding protein maintained high expression in AES-2 biofilms compared with infrequent clone and PAO1 biofilms. Planktonic AES-2 upregulated QS regulators and QS-regulated genes, iron acquisition and aerobic respiration genes, and had high expression of Group III Type IV pilA compared with low expression of Group I Type IV pilA in infrequent clones. Together, these properties may enhance long-term survival of AES-2 in CF lung and contribute to its transmissibility.
Collapse
Affiliation(s)
- Jim Manos
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Bassetti M, Righi E, Esposito S, Petrosillo N, Nicolini L. Drug treatment for multidrug-resistant Acinetobacter baumannii infections. Future Microbiol 2009; 3:649-60. [PMID: 19072182 DOI: 10.2217/17460913.3.6.649] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acinetobacter baumannii has emerged in the last decades as a major cause of healthcare-associated infections and nosocomial outbreaks. Multidrug-resistant (MDR) A. baumannii is a rapidly emerging pathogen in healthcare settings, where it causes infections that include bacteremia, pneumonia, meningitis, and urinary tract and wound infections. Antimicrobial resistance poses great limits for therapeutic options in infected patients, especially if the isolates are resistant to the carbapenems. Other therapeutic options include sulbactam, aminoglycosides, polymixyns and tigecycline. The discovery of new therapies coupled with the development of controlled clinical trial antibiotic testing combinations and the prevention of transmission of MDR Acinetobacter infection are essential to face this important hospital problem.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, Azienda Ospedaliera Universitaria San Martino, Largo R Benzi 10, 16132 Genova, Italy.
| | | | | | | | | |
Collapse
|
141
|
Entenza JM, Moreillon P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int J Antimicrob Agents 2009; 34:8.e1-9. [PMID: 19162449 DOI: 10.1016/j.ijantimicag.2008.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
Tigecycline has been investigated in combination with other antibacterials against a wide range of susceptible and multiresistant Gram-positive and Gram-negative bacteria. Combinations have been analysed in vitro, in animal models and in human case reports. In vitro, tigecycline combined with other antimicrobials produces primarily an indifferent response (neither synergy nor antagonism). Nevertheless, synergy occurred when tigecycline was combined with rifampicin against 64-100% of Enterococcus spp., Streptococcus pneumoniae, Enterobacter spp. and Brucella melitensis isolates. Combinations of tigecycline with amikacin also showed synergy for 40-100% of Enterobacter spp., Klebsiella pneumoniae, Proteus spp. and Stenotrophomonas maltophilia isolates. Moreover, bactericidal synergisms occurred with tigecycline plus amikacin against problematic Acinetobacter baumannii and Proteus vulgaris, and with colistin against K. pneumoniae. Data from animal experiments and case reports, although limited, displayed consistent beneficial activity of tigecycline in combination with other antibacterials against multiresistant organisms, including vancomycin against penicillin-resistant S. pneumoniae in experimental meningitis, gentamicin against Pseudomonas aeruginosa in experimental pneumonia, daptomycin against Enterococcus faecium endocarditis, and colistin against K. pneumoniae bacteraemia and P. aeruginosa osteomyelitis. Antagonism was extremely rare in vitro and was not reported in vivo. Thus, tigecycline may be combined with a second antimicrobial as part of a combination regimen.
Collapse
Affiliation(s)
- J M Entenza
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
142
|
Pagès JM, Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:826-33. [PMID: 19150515 DOI: 10.1016/j.bbapap.2008.12.011] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 11/16/2022]
Abstract
Chemoresistance presents a general health problem concerning the therapy of infectious disease and cancer. In this context, the worldwide dissemination of "multidrugresistant" (MDR) pathogens has severely reduced the efficacy of our antimicrobial weapons and dramatically increased the frequency of therapeutic failure. Because MDR bacterial infections involve the over-expression of efflux pumps that expel unrelated antibiotics before they can reach their targets, it is necessary to clearly define the molecular and genetic bases of the MDR mechanisms in order to combat these infectious diseases. This characterization of efflux pumps allows the definition of an original anti-resistance weapon, the efflux pump inhibitor (EPI). Several chemical families of EPIs have been now described and characterized. Among them several inhibitor compounds display an efficient activity and inhibit the major AcrAB-TolC and MexAB-OprM efflux systems which are the major efflux pumps responsible for MDR Gram negative clinical isolates. The use of these EPIs induces a significant reduction of resistance to one or more antibiotics to which these isolates were initially resistant. Hence, the EPI when used as an adjuvant to the given antibiotic, restores the activity of the antibiotic. The description of the responsible efflux mechanism at its structural and physiological level will make it possible to develop along intelligent lines an improved new generation of EPIs that can readily be added to the armamentarium of current and past "fallen by the wayside" antibiotic therapies.
Collapse
Affiliation(s)
- Jean-Marie Pagès
- UMR-MD-1, Transporteurs Membranaires, Chimiorésistance et Drug Design, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France.
| | | |
Collapse
|
143
|
Naesens R, Ursi JP, Van Schaeren J, Jeurissen A. In vitro activity of tigecycline against multidrug-resistant Enterobacteriaceae isolates from a Belgian hospital. Eur J Clin Microbiol Infect Dis 2008; 28:381-4. [PMID: 18802728 DOI: 10.1007/s10096-008-0629-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 08/27/2008] [Indexed: 11/28/2022]
Abstract
Bacterial resistance among Gram-negative pathogens is a challenging clinical problem. Tigecycline has been developed specifically to overcome resistance. The aim of this study was to assess the in vitro activity of tigecycline against ESBL-producing Escherichia coli, ESBL-producing Klebsiella spp., and multidrug-resistant Enterobacter spp. Between May 2007 and March 2008, 26 strains of ESBL-producing Escherichia coli, 10 strains of ESBL-producing Klebsiella spp., and 27 strains of multidrug-resistant Enterobacter spp. were isolated consecutively from inpatients with a documented infection in which the collected isolate was identified as the probable causative organism. The in vitro susceptibility against tigecycline was measured by the E-test method. MIC(50) values were 1 microg/ml, 2 microg/ml, and 3 microg/ml respectively. MIC(90) values were respectively 1.5 microg/ml, 4 microg/ml, and 12 microg/ml. Nonsusceptibility rates of 35%, 100%, and 96% respectively were found using EUCAST breakpoints. Despite the limited number of strains tested, our in vitro data suggest that tigecycline is unsuitable for the treatment of infections with multidrug-resistant Enterobacteriaceae in our setting. Therefore, we suggest that larger multicenter studies should be conducted to reconsider the value of tigecycline for the treatment of infections with multidrug-resistant, Gram-negative bacteria.
Collapse
|
144
|
Perez F, Salata RA, Bonomo RA. Current and novel antibiotics against resistant Gram-positive bacteria. Infect Drug Resist 2008; 1:27-44. [PMID: 21694878 PMCID: PMC3108725 DOI: 10.2147/idr.s3545] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The challenge posed by resistance among Gram-positive bacteria, epitomized by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new generation of antimicrobials. This review focuses on the new β-lactams with activity against MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, and telavancin). It will also consider the role of vancomycin in an era of existing alternatives such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are described, such as iclaprim, friulimicin, and retapamulin, among others.
Collapse
Affiliation(s)
- Federico Perez
- Division of Infectious Diseases and HIV Medicine, University Hospitals Case Medical Center, Cleveland OH, USA
| | | | | |
Collapse
|
145
|
Vasilev K, Reshedko G, Orasan R, Sanchez M, Teras J, Babinchak T, Dukart G, Cooper A, Dartois N, Gandjini H, Orrico R, Ellis-Grosse E. A Phase 3, open-label, non-comparative study of tigecycline in the treatment of patients with selected serious infections due to resistant Gram-negative organisms including Enterobacter species, Acinetobacter baumannii and Klebsiella pneumoniae. J Antimicrob Chemother 2008; 62 Suppl 1:i29-40. [DOI: 10.1093/jac/dkn249] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
146
|
Kelesidis T, Karageorgopoulos DE, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother 2008; 62:895-904. [PMID: 18676620 DOI: 10.1093/jac/dkn311] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Antimicrobial drug resistance is spreading among Enterobacteriaceae, limiting the utility of traditionally used agents. We sought to systematically review the microbiological activity and clinical effectiveness of tigecycline for multidrug-resistant (MDR) Enterobacteriaceae, including those resistant to broad-spectrum beta-lactams due to the expression of extended-spectrum beta-lactamases (ESBLs), AmpC enzymes and carbapenemases (including metallo-beta-lactamases). METHODS PubMed was searched for articles including relevant data. RESULTS Twenty-six microbiological and 10 clinical studies were identified. Tigecycline was active against more than 99% of 1936 Escherichia coli isolates characterized by any of the above resistance patterns (including 1636 ESBL-producing isolates) using the US Food and Drug Administration (FDA) breakpoint of susceptibility (MIC < or = 2 mg/L). Findings were not different using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint (< or = 1 mg/L). Susceptibility rates for Klebsiella spp. with any of the above resistance patterns were 91.2% for 2627 isolates by the FDA criteria and 72.3% for 1504 isolates by the EUCAST criteria (92.3% for 2030 and 72.3% for 1284 ESBL-producing isolates, by the FDA and EUCAST criteria, respectively). The degree of microbiological activity of tigecycline against 576 MDR Enterobacter spp. isolates was moderate. In clinical studies, 69.7% of the 33 reported patients treated with tigecycline achieved resolution of an infection caused by a carbapenem-resistant or ESBL-producing or MDR Enterobacteriaceae. CONCLUSIONS Tigecycline is microbiologically active against almost all of the ESBL or MDR E. coli isolates and the great majority of ESBL or MDR Klebsiella spp. isolates. Further evaluation of its clinical utility against such resistant Enterobacteriaceae, particularly regarding non-labelled indications, is warranted.
Collapse
|
147
|
Real-time PCR and statistical analyses of acrAB and ramA expression in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 2008; 52:3430-2. [PMID: 18625776 DOI: 10.1128/aac.00591-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clinical isolates of Klebsiella pneumoniae were tested for a correlation between tigecycline MIC and expression of ramA by using real-time PCR. At MICs of 4 and 8 microg/ml, the expression of ramA was statistically significantly different from MICs of 2 microg/ml or less, supporting the tigecycline susceptibility breakpoint of <or=2 microg/ml for K. pneumoniae.
Collapse
|
148
|
Al-Yaqoubi M, Elhag K. Susceptibilities of common bacterial isolates from oman to old and new antibiotics. Oman Med J 2008; 23:173-178. [PMID: 22359709 PMCID: PMC3282317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 04/01/2008] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES The purpose of this study is to compare the antimicrobial activity of linezolid and tigecycline with other commonly used antibiotics against a variety of clinical isolates at Royal Hospital, Muscat. METHODS Clinically-significant bacterial isolates in Royal hospital during the period from 1st of March to 30th of June 2007 were collected, stored and finally tested to determine their susceptibility to different antibiotics by broth microdilution (microscan panels). RESULTS Two hundred ten bacterial strains were collected and tested including Staphylococcus aureus (29), Group B ß-haemolytic Streptococcus (10), Streptococcus pneumoniae (15), Enterococcus spp. (16), Haemophilus spp. (15), Escherichia coli (26), Klebsiella spp. (26), Enterobacter spp. (25), Serratia spp. (10), Acinetobacter baumannii (17) and Pseudomonas aeruginosa (21). All strains except P. aeuginosa were susceptible to tigecycline. All gram-positive strains were susceptible to linezolid. Meropenem and piperacillin-tazobactam showed good activity against most organisms tested including P. aeruginosa and Acinetobacter baumannii. Levofloxacin showed 100% activity against K. pneumoniae and 61% activity against E. coli. The activity of 3rd generation cephalosporins against E.coli and K.pneumoniae ranged from 76% to 100%. CONCLUSION Tigecycline and linezolid showed excellent activity against microorganisms in their relevant spectrum of activity. However, they should be used wisely and judiciously.
Collapse
Affiliation(s)
- Mubarak Al-Yaqoubi
- Address correspondence and reprint requests to: Moburak Al Yaqoubi MD, DM, Department of Mircobiology,Royal Hospital, Muscat, Sultanate of Oman E-mail:
| | | |
Collapse
|
149
|
Abstract
The emergence and spread of multidrug resistance in many pathogenic bacterial species is increasing at an alarming rate, especially with hospital-acquired infections in the critical care setting. Deaths associated with hospital-acquired infections have exceeded the number attributable to several of the top 10 leading causes of death reported in the United States. The emerging resistance limits the use of older antibiotics. Tigecycline is a new agent, and this article explores its role in the treatment of adults in the critical care setting.
Collapse
Affiliation(s)
- Praveen K Mullangi
- Department of Infectious Diseases, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, USA
| | | |
Collapse
|
150
|
Abstract
A clear imperative exists to generate radically different antibacterial technologies that will reduce the usage of conventional chemical antibiotics. Here we trace one route into this new frontier of drug discovery, a concept that we call the bacterial conjugation-based technologies (BCBT). One of the objectives of the BCBT is to exploit plasmid biology for combating the rising tide of antibiotic-resistant bacteria. Specifically, the concept utilizes conjugationally delivered plasmids as antimicrobial agents, and it builds on the accumulated work of many scientists dating back to the discoveries of conjugation and plasmids themselves. Each of the individual components that comprise the approach has been demonstrated to be feasible. We discuss the properties of bacterial plasmids to be employed in BCBT.
Collapse
|