101
|
Aziz RK, Pabst MJ, Jeng A, Kansal R, Low DE, Nizet V, Kotb M. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol Microbiol 2003; 51:123-34. [PMID: 14651616 DOI: 10.1046/j.1365-2958.2003.03797.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A globally disseminated strain of M1T1 group A Streptococcus (GAS) has been associated with severe infections in humans including necrotizing fasciitis and toxic shock syndrome. Recent clinicoepidemiologic data showed a striking inverse relationship between disease severity and the degree to which M1T1 GAS express the streptococcal cysteine protease, SpeB. Electrophoretic 2-D gel analysis of the secreted M1T1 proteome, coupled with MALDI-TOF mass spectroscopy, revealed that expression of active SpeB caused the degradation of the vast majority of secreted GAS proteins, including several known virulence factors. Injection of a SpeB+/SpeA- M1T1 GAS strain into a murine subcutanous chamber model of infection selected for a stable phase-shift to a SpeB-/SpeA+ phenotype that expressed a full repertoire of secreted proteins and possessed enhanced lymphocyte-stimulating capacity. The proteome of the SpeB-in vivo phase-shift form closely matched the proteome of an isogenic speB gene deletion mutant of the original M1T1 isolate. The absence or the inactivation of SpeB allowed proteomic identification of proteins in this M1T1 clone that are not present in the previously sequenced M1 genome including SpeA and another bacteriophage-encoded novel streptodornase allele. Further proteomic analysis of the M1T1 SpeB+ and SpeB- phase-shift forms in the presence of a cysteine protease inhibitor demonstrated differences in the expression of several proteins, including the in vivo upregulation of SpeA, which occurred independently of SpeB inactivation.
Collapse
Affiliation(s)
- Ramy K Aziz
- Department of Microbiology, University of Tennessee-Health Sciences Center (UTHSC) Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Zagursky R. Vaccine discovery research by reverse engineering. Drug Discov Today 2003; 8:972-3. [PMID: 14643157 DOI: 10.1016/s1359-6446(03)02841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Zagursky
- Biotechnology/Bioinformatics Discovery Research, Wyeth Vaccines, 401 N Middletown Road, Pearl River, NY 10965, USA.
| |
Collapse
|
103
|
Zagursky RJ, Olmsted SB, Russell DP, Wooters JL. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Expert Rev Vaccines 2003; 2:417-36. [PMID: 12903807 DOI: 10.1586/14760584.2.3.417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic sequencing has provided a tremendous amount of information that can be useful in vaccine target identification. The sheer volume of information available necessitates the use of new research disciplines and techniques. Using bioinformatics, researchers sift through available data to identify appropriate candidates for biological analysis. This review provides an overview of available bioinformatic techniques for vaccine candidate identification and a few examples of how these techniques are being applied to specific bacterial pathogens.
Collapse
|
104
|
Lei B, Liu M, Meyers EG, Manning HM, Nagiec MJ, Musser JM. Histidine and aspartic acid residues important for immunoglobulin G endopeptidase activity of the group A Streptococcus opsonophagocytosis-inhibiting Mac protein. Infect Immun 2003; 71:2881-4. [PMID: 12704162 PMCID: PMC153276 DOI: 10.1128/iai.71.5.2881-2884.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted Mac protein made by serotype M1 group A Streptococcus (GAS) (designated Mac(5005)) inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear neutrophils. This protein also has cysteine endopeptidase activity against human immunoglobulin G (IgG). Site-directed mutagenesis was used to identify histidine and aspartic acid residues important for Mac IgG endopeptidase activity. Replacement of His262 with Ala abolished Mac5005 IgG endopeptidase activity. Asp284Ala and Asp286Ala mutant proteins had compromised enzymatic activity, whereas 21 other Asp-to-Ala mutant proteins cleaved human IgG at the apparent wild-type level. The results suggest that His262 is an active-site residue and that Asp284 and Asp286 are important for the enzymatic activity or structure of Mac protein. These Mac mutants provide new information about structure-activity relationships in this protein and will assist study of the mechanism of inhibition of opsonophagocytosis and killing of GAS by Mac.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
105
|
Reinscheid DJ, Ehlert K, Chhatwal GS, Eikmanns BJ. Functional analysis of a PcsB-deficient mutant of group B streptococcus. FEMS Microbiol Lett 2003; 221:73-9. [PMID: 12694913 DOI: 10.1016/s0378-1097(03)00167-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Group B streptococcus (GBS) is the major cause of bacterial sepsis and meningitis in neonates and poses a significant threat to parturient women. Recently, we identified in GBS the polypeptide PcsB, which is a protein required for cell separation of GBS, and which is also involved in the antibiotic sensitivity of these bacteria. In the present study, the introduction of the pcsB-carrying plasmid pATpcsB into the PcsB-deficient GBS mutant Sep1 restored the phenotype and the antibiotic susceptibility of this strain to that of the GBS wild-type. Although Northern blots revealed a four- to five-fold increased transcription of pcsB in pATpcsB-carrying GBS strains, overexpression of pcsB did not result in higher amounts of PcsB in the cell wall and in the culture supernatant of GBS, indicating regulatory mechanisms that control the translation or secretion of PcsB in these bacteria. In the culture supernatant of mutant Sep1 significant amounts of enolase were identified. As this protein was also present in extracts of cell wall-bound proteins from the GBS wild-type, it can be speculated that GBS can translocate enolase across the cytoplasmic membrane. Northern blot analysis exhibited similar expression of the enolase gene in the GBS strains 6313 and Sep1, indicating that mutant Sep1 is impaired in the anchoring of this protein to its cell wall.
Collapse
Affiliation(s)
- Dieter J Reinscheid
- Department of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany.
| | | | | | | |
Collapse
|
106
|
Abstract
Housekeeping enzymes are ubiquitously present in almost all living beings to perform essential metabolic functions for the purpose of survival. These enzymes have been characterized in detail for many years. In recent years, there has been a number of reports indicating that some of these enzymes perform a variety of other functions. In case of many pathogens, certain enzymes play a role to enhance virulence. To perform such a function, enzymes must be located on the surface of pathogens. Although they do not have the typical signal sequence or membrane anchoring mechanisms, they do get secreted and are displayed on the surface, probably by their reassociation. Once on the surface, these enzymes interact with host components, such as fibronectin and plasminogen, or interact directly with the host cells, to trigger signal transduction and thereby enable the pathogens to colonize, persist and invade the host tissue. Therefore, certain housekeeping enzymes may act as putative virulence factors and targets for the development of new strategies to control the infection by using agents that can block their secretion and/or reassociation.
Collapse
Affiliation(s)
- Vijay Pancholi
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, The International Center for Public Health, Newark 07103-3535, USA.
| | | |
Collapse
|
107
|
Lei B, DeLeo FR, Reid SD, Voyich JM, Magoun L, Liu M, Braughton KR, Ricklefs S, Hoe NP, Cole RL, Leong JM, Musser JM. Opsonophagocytosis-inhibiting mac protein of group a streptococcus: identification and characteristics of two genetic complexes. Infect Immun 2002; 70:6880-90. [PMID: 12438365 PMCID: PMC133040 DOI: 10.1128/iai.70.12.6880-6890.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, it was reported that a streptococcal Mac protein (designated Mac(5005)) made by serotype M1 group A Streptococcus (GAS) is a homologue of human CD11b that inhibits opsonophagocytosis and killing of GAS by human polymorphonuclear leukocytes (PMNs) (B. Lei, F. R. DeLeo, N. P. Hoe, M. R. Graham, S. M. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott, and J. M. Musser, Nat. Med. 7:1298-1305, 2001). To study mac variation and expression of the Mac protein, the gene in 67 GAS strains representing 36 distinct M protein serotypes was sequenced. Two distinct genetic complexes were identified, and they were designated complex I and complex II. Mac variants in each of the two complexes were closely related, but complex I and complex II variants differed on average at 50.66 +/- 5.8 amino acid residues, most of which were located in the middle one-third of the protein. Complex I Mac variants have greater homology with CD11b than complex II variants. GAS strains belonging to serotypes M1 and M3, the most abundant M protein serotypes responsible for human infections in many case series, have complex I Mac variants. The mac gene was cloned from representative strains assigned to complexes I and II, and the Mac proteins were purified to apparent homogeneity. Both Mac variants had immunoglobulin G (IgG)-endopeptidase activity. In contrast to Mac(5005) (complex I), Mac(8345) (complex II) underwent autooxidation of its cysteine residues, resulting in the loss of IgG-endopeptidase activity. A Mac(5005) Cys94Ala site-specific mutant protein was unable to cleave IgG but retained the ability to inhibit IgG-mediated phagocytosis by human PMNs. Thus, the IgG-endopeptidase activity was not essential for the key biological function of Mac(5005). Although Mac(5005) and Mac(8345) each have an Arg-Gly-Asp (RGD) motif, the proteins differed in their interactions with human integrins alpha(v)beta(3) and alpha(IIb)beta(3). Binding of Mac(5005) to integrins alpha(v)beta(3) and alpha(IIb)beta(3) was mediated primarily by the RGD motif in Mac(5005), whereas binding of Mac(8345) involved the RGD motif and a region in the middle one-third of the molecule whose sequence is different in Mac(8345) and Mac(5005). Taken together, the data add to the emerging theme in GAS pathogenesis that allelic variation in virulence genes contributes to fundamental differences in host-pathogen interactions among strains.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Reid SD, Green NM, Sylva GL, Voyich JM, Stenseth ET, DeLeo FR, Palzkill T, Low DE, Hill HR, Musser JM. Postgenomic analysis of four novel antigens of group a streptococcus: growth phase-dependent gene transcription and human serologic response. J Bacteriol 2002; 184:6316-24. [PMID: 12399501 PMCID: PMC151937 DOI: 10.1128/jb.184.22.6316-6324.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of three group A Streptococcus genomes (serotypes M1, M3, and M18) recently identified four previously undescribed genes that encode extracellular proteins. Each of these genes encode proteins with an LPXTG amino acid motif that covalently links many virulence factors produced by gram-positive bacteria to the cell surface. Western immunoblot analysis of serum samples obtained from 80 patients with invasive infections, noninvasive soft tissue infections, pharyngitis, and rheumatic fever indicated that these four proteins are expressed in vivo. However, the level of gene transcript and the time of maximal gene transcription varied in representative serotype M1, M3, and M18 strains. Surface expression of two proteins was confirmed by flow cytometry. Studies using a mouse infection model suggest that antibodies specific for one of the proteins (Spy0843) may contribute to a protective host immune response against a serotype M1 infection. These results are additional evidence that postgenomic strategies provide new ways to identify and investigate novel bacterial proteins that may participate in host-pathogen interactions or serve as targets for therapeutics research.
Collapse
Affiliation(s)
- Sean D Reid
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Graham MR, Smoot LM, Migliaccio CAL, Virtaneva K, Sturdevant DE, Porcella SF, Federle MJ, Adams GJ, Scott JR, Musser JM. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 2002; 99:13855-60. [PMID: 12370433 PMCID: PMC129787 DOI: 10.1073/pnas.202353699] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.
Collapse
Affiliation(s)
- Morag R Graham
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/NIH, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
|
111
|
von Pawel-Rammingen U, Johansson BP, Tapper H, Björck L. Streptococcus pyogenes and phagocytic killing. Nat Med 2002; 8:1044-5; author reply 1045-6. [PMID: 12357219 DOI: 10.1038/nm1002-1044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
112
|
Lei B, Smoot LM, Menning HM, Voyich JM, Kala SV, Deleo FR, Reid SD, Musser JM. Identification and characterization of a novel heme-associated cell surface protein made by Streptococcus pyogenes. Infect Immun 2002; 70:4494-500. [PMID: 12117961 PMCID: PMC128137 DOI: 10.1128/iai.70.8.4494-4500.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome sequence of a serotype M1 group A Streptococcus (GAS) strain identified a gene encoding a previously undescribed putative cell surface protein. The gene was cloned from a serotype M1 strain, and the recombinant protein was overexpressed in Escherichia coli and purified to homogeneity. The purified protein was associated with heme in a 1:1 stoichiometry. This streptococcal heme-associated protein, designated Shp, was produced in vitro by GAS, located on the bacterial cell surface, and accessible to specific antibody raised against the purified recombinant protein. Mice inoculated subcutaneously with GAS and humans with invasive infections and pharyngitis caused by GAS seroconverted to Shp, indicating that Shp was produced in vivo. The blood of mice actively immunized with Shp had significantly higher bactericidal activity than the blood of unimmunized mice. The shp gene was cotranscribed with eight contiguous genes, including homologues of an ABC transporter involved in iron uptake in gram-negative bacteria. Our results indicate that Shp is a novel cell surface heme-associated protein.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smoot JC, Porcella SF, Parkins LD, Campbell DS, Smith TM, McCormick JK, Leung DYM, Schlievert PM, Musser JM. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 2002; 99:10078-83. [PMID: 12122206 PMCID: PMC126627 DOI: 10.1073/pnas.152298499] [Citation(s) in RCA: 361] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Accepted: 05/17/2002] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.
Collapse
Affiliation(s)
- Stephen B Beres
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Due to its small size, rapid generation time, powerful genetic systems, and genomic resources, the zebrafish has emerged as an important model of vertebrate development and human disease. Its well-developed adaptive and innate cellular immune systems make the zebrafish an ideal model for the study of infectious diseases. With a natural and important pathogen of fish, Streptococcus iniae, we have established a streptococcus- zebrafish model of bacterial pathogenesis. Following injection into the dorsal muscle, zebrafish developed a lethal infection, with a 50% lethal dose of 10(3) CFU, and died within 2 to 3 days. The pathogenesis of infection resembled that of S. iniae in farmed fish populations and that of several important human streptococcal diseases and was characterized by an initial focal necrotic lesion that rapidly progressed to invasion of the pathogen into all major organ systems, including the brain. Zebrafish were also susceptible to infection by the human pathogen Streptococcus pyogenes. However, disease was characterized by a marked absence of inflammation, large numbers of extracellular streptococci in the dorsal muscle, and extensive myonecrosis that occurred far in advance of any systemic invasion. The genetic systems available for streptococci, including a novel method of mutagenesis which targets genes whose products are exported, were used to identify several mutants attenuated for virulence in zebrafish. This combination of a genetically amenable pathogen with a well-defined vertebrate host makes the streptococcus-zebrafish model of bacterial pathogenesis a powerful model for analysis of infectious disease.
Collapse
Affiliation(s)
- Melody N Neely
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | |
Collapse
|
115
|
Thongboonkerd V, Luengpailin J, Cao J, Pierce WM, Cai J, Klein JB, Doyle RJ. Fluoride exposure attenuates expression of Streptococcus pyogenes virulence factors. J Biol Chem 2002; 277:16599-605. [PMID: 11867637 DOI: 10.1074/jbc.m200746200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fluoridation causes an obvious reduction of dental caries by interference with cariogenic streptococci. However, the effect of fluoride on group A streptococci that causes rheumatic fever and acute poststreptococcal glomerulonephritis is not known. We have used proteomic analysis to create a reference proteome map for Streptococcus pyogenes and to determine fluoride-induced protein changes in the streptococci. Cellular and extracellular proteins were resolved by two-dimensional polyacrylamide gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. 183 protein spots were visualized, and 74 spots representing 60 unique proteins were identified. A 16-h exposure to sodium fluoride caused decreased expression of proteins required to respond to cellular stress, including anti-oxidants, glycolytic enzymes, transcriptional and translational regulators, and protein folding. Fluoride caused decreased cellular expression of two well-characterized S. pyogenes virulence factors. Fluoride decreased expression of glyceraldehyde-3-phosphate dehydrogenase, which acts to bind fibronectin and promote bacterial adherence. We also performed proteomic analysis of protein released by S. pyogenes into the culture supernatant and observed decreased expression of M proteins following fluoride exposure. These data provide evidence that fluoride causes decreased expression by S. pyogenes proteins used to respond to stress, virulence factors, and implicated in non-suppurative complications of S. pyogenes, including glomerulonephritis and rheumatic fever.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Core Proteomics Laboratory, Kidney Disease Program, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Even though cell wall proteins of Bacillus subtilis are characterized by specific cell wall retention signals, some of these are also components of the extracellular proteome. In contrast to the majority of extracellular proteins, wall binding proteins disappeared from the extracellular proteome during the stationary phase and are subjected to proteolysis. Thus, the extracellular proteome of the multiple protease-deficient strain WB700 was analyzed which showed an increased stability of secreted WapA processing products during the stationary phase. In addition, stabilization of the WapA processing products was observed also in a sigD mutant strain which is impaired in motility and cell wall turnover. Next, we analyzed if proteins that can be extracted from B. subtilis cell walls are stabilized in the WB700 strain as well as in the sigD mutant. Thus, the cell wall proteome of B. subtilis wild type was defined showing most abundantly cell wall binding proteins (CWBPs) resulting from the WapA and WprA precursor processing. The inactivation of extracellular proteases as well as SigmaD caused an increase of CWBP105 and a decrease of CWBP62 in the cell wall proteome. We conclude that WapA processing products are substrates for the extracellular proteases which are stabilized in the absence of sigD due to an impaired cell wall turnover.
Collapse
Affiliation(s)
- Haike Antelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt- Universität Greifswald, Greifswald, Germany.
| | | | | | | |
Collapse
|
117
|
von Pawel-Rammingen U, Johansson BP, Björck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 2002; 21:1607-15. [PMID: 11927545 PMCID: PMC125946 DOI: 10.1093/emboj/21.7.1607] [Citation(s) in RCA: 354] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent work from several laboratories has demonstrated that proteolytic mechanisms significantly contribute to the molecular interplay between Streptococcus pyogenes, an important human pathogen, and its host. Here we describe the identification, purification and characterization of a novel extracellular cysteine proteinase produced by S.pyogenes. This enzyme, designated IdeS for Immunoglobulin G-degrading enzyme of S.pyogenes, is distinct from the well-characterized streptococcal cysteine proteinase, SpeB, and cleaves human IgG in the hinge region with a high degree of specificity. Thus, other human proteins, including immunoglobulins M, A, D and E, are not degraded by IdeS. The enzyme efficiently cleaves IgG antibodies bound to streptococcal surface structures, thereby inhibiting the killing of S.pyogenes by phagocytic cells. This and additional observations on the distribution and expression of the ideS gene indicate that IdeS represents a novel and significant bacterial virulence determinant, and a potential therapeutic target.
Collapse
Affiliation(s)
- Ulrich von Pawel-Rammingen
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, BMC, B14, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
118
|
Gibson CM, Caparon MG. Alkaline phosphatase reporter transposon for identification of genes encoding secreted proteins in gram-positive microorganisms. Appl Environ Microbiol 2002; 68:928-32. [PMID: 11823238 PMCID: PMC126685 DOI: 10.1128/aem.68.02.928-932.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We describe the construction of TnFuZ, a genetic tool for the discovery and mutagenesis of proteins exported from gram-positive bacteria. This tool combines a transposable element (Tn4001) of broad host range in gram-positive bacteria and an alkaline phosphatase gene (phoZ) derived from a gram-positive bacterium that has been modified by removal of the region encoding its export signal. Mutagenesis of Streptococcus pyogenes with TnFuZ ("FuZ" stands for fusions to phoZ) identified genes encoding secreted proteins whose expression was enhanced during growth in an aerobic environment. Thus, TnFuZ should be valuable for analysis of protein secretion, gene regulation, and virulence in gram-positive bacteria.
Collapse
Affiliation(s)
- Carmela M Gibson
- Department of Molecular Microbiology, University Medical Center, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
119
|
Abstract
Pathogenic bacteria often produce proteinases that are believed to be involved in virulence. Moreover, several host defence systems depend on proteolysis, demonstrating that proteolysis and its regulation play an important role during bacterial infections. Here, we discuss how proteolytical events are regulated at the surface of Streptococcus pyogenes during infection with this important human pathogen. Streptococcus pyogenes produces proteinases, and host proteinases are produced and released as a result of the infection. Streptococcus pyogenes also recruits host proteinase inhibitors to its surface, suggesting that proteolysis is tightly regulated at the bacterial surface. We propose that the initial phase of a S. pyogenes infection is characterized by inhibition of proteolysis and complement activity at the bacterial surface. This is achieved mainly through binding of host proteinase inhibitors and complement regulatory proteins to bacterial surface proteins. In a later phase of the infection, massive proteolytic activity will release bacterial surface proteins and degrade human tissues, thus facilitating bacterial spread. These proteolytic events are regulated both temporally and spatially, and should influence virulence and the outcome of S. pyogenes infections.
Collapse
Affiliation(s)
- Magnus Rasmussen
- Section for Molecular Pathogenesis, Department of Cell and Molecular Biology, Lund University, Lund, Sweden.
| | | |
Collapse
|
120
|
Lei B, DeLeo FR, Hoe NP, Graham MR, Mackie SM, Cole RL, Liu M, Hill HR, Low DE, Federle MJ, Scott JR, Musser JM. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat Med 2001; 7:1298-305. [PMID: 11726969 DOI: 10.1038/nm1201-1298] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial pathogens must evade the human immune system to survive, disseminate and cause disease. By proteome analysis of the bacterium Group A Streptococcus (GAS), we identified a secreted protein with homology to the alpha-subunit of Mac-1, a leukocyte beta2 integrin required for innate immunity to invading microbes. The GAS Mac-1-like protein (Mac) was secreted by most pathogenic strains, produced in log-phase and controlled by the covR-covS two-component gene regulatory system, which also regulates transcription of other GAS virulence factors. Patients with GAS infection had titers of antibody specific to Mac that correlated with the course of disease, demonstrating that Mac was produced in vivo. Mac bound to CD16 (FcgammaRIIIB) on the surface of human polymorphonuclear leukocytes and inhibited opsonophagocytosis and production of reactive oxygen species, which resulted in significantly decreased pathogen killing. Thus, by mimicking a host-cell receptor required for an innate immune response, the GAS Mac protein inhibits professional phagocyte function by a novel strategy that enhances pathogen survival, establishment of infection and dissemination.
Collapse
Affiliation(s)
- B Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M. A proteomic view on genome-based signal peptide predictions. Genome Res 2001; 11:1484-502. [PMID: 11544192 DOI: 10.1101/gr.182801] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The availability of complete genome sequences has allowed the prediction of all exported proteins of the corresponding organisms with dedicated algorithms. Even though numerous studies report on genome-based predictions of signal peptides and cell retention signals, they lack a proteomic verification. For example, 180 secretory and 114 lipoprotein signal peptides were predicted recently for the Gram-positive eubacterium Bacillus subtilis. In the present studies, proteomic approaches were used to define the extracellular complement of the B. subtilis secretome. Using different growth conditions and a hyper-secreting mutant, approximately 200 extracellular proteins were visualized by two-dimensional (2D) gel electrophoresis, of which 82 were identified by mass spectrometry. These include 41 proteins that have a potential signal peptide with a type I signal peptidase (SPase) cleavage site, and lack a retention signal. Strikingly, the remaining 41 proteins were predicted previously to be cell associated because of the apparent absence of a signal peptide (22), or the presence of specific cell retention signals in addition to an export signal (19). To test the importance of the five type I SPases and the unique lipoprotein-specific SPase of B. subtilis, the extracellular proteome of (multiple) SPase mutants was analyzed. Surprisingly, only the processing of the polytopic membrane protein YfnI was strongly inhibited in Spase I mutants, showing for the first time that a native eubacterial membrane protein is a genuine Spase I substrate. Furthermore, a mutation affecting lipoprotein modification and processing resulted in the shedding of at least 23 (lipo-)proteins into the medium. In conclusion, our observations show that genome-based predictions reflect the actual composition of the extracellular proteome for approximately 50%. Major problems are currently encountered with the prediction of extracellular proteins lacking signal peptides (including cytoplasmic proteins) and lipoproteins.
Collapse
Affiliation(s)
- H Antelmann
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universiät Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
122
|
Heath A, Miller A, DiRita VJ, Engleberg CN. Identification of a major, CsrRS-regulated secreted protein of Group A streptococcus. Microb Pathog 2001; 31:81-9. [PMID: 11453703 DOI: 10.1006/mpat.2001.0450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CsrR/CsrS (CovR/CovS) is a two-component regulator of extracellular virulence factors in Group A streptococcus, but the full range of regulated exoproteins is unknown. Since CsrR represses expression of regulated factors, culture supernates of wild-type and CsrR(-)mutant strains were compared by two-dimensional gel electrophoresis (2DGE) to identify regulated exoproteins. Supernates of DeltacsrRS(-)mutant, but not wild-type, bacteria contained an abundant 23 kDa protein. The N-terminal sequence of this spot corresponded to a putative open reading frame (ORF) in the streptococcal genome. In a mobility shift assay, phosphorylated CsrR bound to a PCR amplicon that included sequences upstream of this ORF. By primer extension analysis, the ORF (designated mspA, for Mucoidy-associated Secreted Protein) was expressed in mid- and late-exponential phase in a DeltacsrRS(-)mutant. The presence of an in-frame deletion in mspA did not affect colony appearance, mucoidy or in vitro growth, and there was no difference between DeltamspA and wild-type strains in a mouse model of skin infection. MspA is co-regulated with other factors required for dermonecrosis (e.g. capsule, streptolysin S and purogenic exotoxin B); however, deletion of this gene does not affect expression of hyaluronic acid capsule or severity of skin infection in mice.
Collapse
Affiliation(s)
- A Heath
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, U.S.A
| | | | | | | |
Collapse
|
123
|
Janulczyk R, Rasmussen M. Improved pattern for genome-based screening identifies novel cell wall-attached proteins in gram-positive bacteria. Infect Immun 2001; 69:4019-26. [PMID: 11349071 PMCID: PMC98464 DOI: 10.1128/iai.69.6.4019-4026.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
With a large number of sequenced microbial genomes available, tools for identifying groups or classes of proteins have become increasingly important. Here we present an improved pattern for the identification of cell wall-attached proteins (CWPs), a group of proteins with diverse and important functions in gram-positive bacteria. This tripartite pattern is based on analysis of 65 previously described cell wall-attached proteins and takes into account the three principal requirements for cell wall sorting; a sortase target region (LPXTGX), a membrane-spanning region, and a charged stop-transfer tail. In five different genomes of gram-positive bacteria, the tripartite pattern identified a total of 35 putative CWPs, 19 of which were novel. The specificity and sensitivity of the tripartite pattern are higher than those of the classical pattern, which is based solely on the sortase target region. Several putative CWPs with atypical sortase target regions were identified. In the complete genome of the important human pathogen Streptococcus pyogenes, the tripartite pattern identified 14 putative CWPs. Seven of the putative S. pyogenes proteins were novel, and two of these were a 5' nucleotidase and a pullulanase. This study represents the first whole-genome screening for CWPs, and we conclude that the tripartite pattern is highly suitable for this purpose. Identification of CWPs using this pattern offers important possibilities in the study of the pathogenesis and physiology of gram-positive bacteria.
Collapse
Affiliation(s)
- R Janulczyk
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, Sweden.
| | | |
Collapse
|
124
|
Graham MR, Smoot LM, Lei B, Musser JM. Toward a genome-scale understanding of group A Streptococcus pathogenesis. Curr Opin Microbiol 2001; 4:65-70. [PMID: 11173036 DOI: 10.1016/s1369-5274(00)00166-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent significant contributions have been made to the understanding of Group A Streptococcus (GAS) pathogenesis. New regulatory pathways have been discovered, insight into the molecular basis of epidemics of serotype M1 disease has been obtained, the crystal structures of four toxins have been reported and a genome sequence of one GAS strain has been determined. Genome-scale approaches to the study of GAS pathogenesis are now rapidly emerging and will advance our fundamental understanding of the molecular basis of host-pathogen interactions.
Collapse
Affiliation(s)
- M R Graham
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|