101
|
Identification of EnvC and Its Cognate Amidases as Novel Determinants of Intrinsic Resistance to Cationic Antimicrobial Peptides. Antimicrob Agents Chemother 2016; 60:2222-31. [PMID: 26810659 PMCID: PMC4808223 DOI: 10.1128/aac.02699-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are an essential part of the innate immune system. Some Gram-negative enteric pathogens, such as Salmonella enterica, show intrinsic resistance to CAMPs. However, the molecular basis of intrinsic resistance is poorly understood, largely due to a lack of information about the genes involved. In this study, using a microarray-based genomic technique, we screened the Keio collection of 3,985 Escherichia coli mutants for altered susceptibility to human neutrophil peptide 1 (HNP-1) and identified envC and zapB as novel genetic determinants of intrinsic CAMP resistance. In CAMP killing assays, an E. coli ΔenvCEc or ΔzapBEc mutant displayed a distinct profile of increased susceptibility to both LL-37 and HNP-1. Both mutants, however, displayed wild-type resistance to polymyxin B and human β-defensin 3 (HBD3), suggesting that the intrinsic resistance mediated by EnvC or ZapB is specific to certain CAMPs. A corresponding Salmonella ΔenvCSe mutant showed similarly increased CAMP susceptibility. The envC mutants of both E. coli and S. enterica displayed increased surface negativity and hydrophobicity, which partly explained the increased CAMP susceptibility. However, the ΔenvCEc mutant, but not the ΔenvCSe mutant, was defective in outer membrane permeability, excluding this defect as a common factor contributing to the increased CAMP susceptibility. Animal experiments showed that the Salmonella ΔenvCSe mutant had attenuated virulence. Taken together, our results indicate that the role of envC in intrinsic CAMP resistance is likely conserved among Gram-negative enteric bacteria, demonstrate the importance of intrinsic CAMP resistance for full virulence of S. enterica, and provide insight into distinct mechanisms of action of CAMPs.
Collapse
|
102
|
Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress. mBio 2016; 7:e00154. [PMID: 26956590 PMCID: PMC4810482 DOI: 10.1128/mbio.00154-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. Nontyphoidal Salmonella bacteria cause an estimated 1.2 million illnesses annually in the United States, 80 million globally, due to ingestion of contaminated food or water. Salmonella Typhimurium is one of the most common serovars associated with foodborne illness, causing self-limiting gastroenteritis and, in approximately 5% of infected patients, systemic infection. Although some S. Typhimurium strains are speculated to be more virulent than others, it is unknown how strain diversity and genetic factors contribute to differential human pathogenicity. Ours is the first study to examine the diversity of S. Typhimurium associated with recent cases of U.S. salmonellosis and to provide some initial correlation between observed genotypes and phenotypes. Definition of specific S. Typhimurium lineages based on such phenotype/genotype correlations may identify strains with greater capability of associating with specific food sources, allowing outbreaks to be more quickly identified. Additionally, defining simple correlates of pathogenesis may have predictive value for patient outcome.
Collapse
|
103
|
Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S, Zhao M, Hoffman RM, Andrews-Polymenis H, Contreras I, Santiviago CA, McClelland M. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice. Front Microbiol 2016; 6:1455. [PMID: 26779130 PMCID: PMC4700939 DOI: 10.3389/fmicb.2015.01455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/04/2015] [Indexed: 01/20/2023] Open
Abstract
Two pools of individual single gene deletion (SGD) mutants of S. Typhimurium 14028s encompassing deletions of 3,923 annotated non-essential ORFs and sRNAs were screened by intraperitoneal (IP) injection in BALB/c mice followed by recovery from spleen and liver 2 days post infection. The relative abundance of each mutant was measured by microarray hybridization. The two mutant libraries differed in the orientation of the antibiotic resistance cassettes (either sense-oriented Kan(R), SGD-K, or antisense-oriented Cam(R), SGD-C). Consistent systemic colonization defects were observed in both libraries and both organs for hundreds of mutants of genes previously reported to be important after IP injection in this animal model, and for about 100 new candidate genes required for systemic colonization. Four mutants with a range of apparent fitness defects were confirmed using competitive infections with the wild-type parental strain: ΔSTM0286, ΔSTM0551, ΔSTM2363, and ΔSTM3356. Two mutants, ΔSTM0286 and ΔSTM2363, were then complemented in trans with a plasmid encoding an intact copy of the corresponding wild-type gene, and regained the ability to fully colonize BALB/c mice systemically. These results suggest the presence of many more undiscovered Salmonella genes with phenotypes in IP infection of BALB/c mice, and validate the libraries for application to other systems.
Collapse
Affiliation(s)
- Cecilia A. Silva-Valenzuela
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Roberto C. Molina-Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
- Center for Adaptation Genetics and Drug Resistance, Tufts UniversityBoston, MA, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| | | | - Robert M. Hoffman
- Anticancer Inc.San Diego, CA, USA
- Department of Surgery, UC San Diego School of Medicine, University of California, San DiegoSan Diego, CA, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M UniversityCollege Station, TX, USA
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| |
Collapse
|
104
|
Laboratory-Acquired Infection with Salmonella enterica Serovar Typhimurium Exposed by Whole-Genome Sequencing. J Clin Microbiol 2015; 54:190-3. [PMID: 26511736 DOI: 10.1128/jcm.02720-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Despite advances in laboratory design, professional training, and workplace biosafety guidelines, laboratory-acquired infections continue to occur. Effective tools are required to investigate cases and prevent future illness. Here, we demonstrate the value of whole-genome sequencing as a tool for the identification and source attribution of laboratory-acquired salmonellosis.
Collapse
|
105
|
Bonocora RP, Smith C, Lapierre P, Wade JT. Genome-Scale Mapping of Escherichia coli σ54 Reveals Widespread, Conserved Intragenic Binding. PLoS Genet 2015; 11:e1005552. [PMID: 26425847 PMCID: PMC4591121 DOI: 10.1371/journal.pgen.1005552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial RNA polymerases must associate with a σ factor to bind promoter DNA and initiate transcription. There are two families of σ factor: the σ70 family and the σ54 family. Members of the σ54 family are distinct in their ability to bind promoter DNA sequences, in the context of RNA polymerase holoenzyme, in a transcriptionally inactive state. Here, we map the genome-wide association of Escherichia coli σ54, the archetypal member of the σ54 family. Thus, we vastly expand the list of known σ54 binding sites to 135. Moreover, we estimate that there are more than 250 σ54 sites in total. Strikingly, the majority of σ54 binding sites are located inside genes. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this assertion, we identify three conserved, intragenic σ54 promoters that drive transcription of mRNAs with unusually long 5ʹ UTRs. Bacterial RNA polymerases must associate with a σ factor to bind to promoter DNA sequences upstream of genes and initiate transcription. There are two families of σ factor: σ70 and σ54. Members of the σ54 family are distinct from members of the σ70 family in their ability to bind promoter DNA sequences, in association with RNA polymerase, in a transcriptionally inactive state. We have determined positions in the Escherichia coli genome that are bound by σ54, the archetypal member of the σ54 family. Surprisingly, we identified 135 binding sites for σ54, a huge increase over the number of previously described sites. Our data suggest that there are more than 250 σ54 sites in total. Strikingly, most σ54 binding sites are located inside genes, whereas only one intragenic σ54 binding site has previously been described. The location and orientation of intragenic σ54 binding sites is non-random, and many intragenic σ54 binding sites are conserved in other bacterial species. We conclude that many intragenic σ54 binding sites are likely to be functional. Consistent with this notion, we identify three σ54 promoters in E. coli that are located inside genes but drive transcription of unusual mRNAs for the neighboring genes.
Collapse
Affiliation(s)
- Richard P. Bonocora
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
106
|
Balbontín R, Vlamakis H, Kolter R. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization. Microb Biotechnol 2015; 7:589-600. [PMID: 25351041 PMCID: PMC4265077 DOI: 10.1111/1751-7915.12182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023] Open
Abstract
Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology.
Collapse
Affiliation(s)
- Roberto Balbontín
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, HIM building, Room #1042, Boston, MA, 02115, USA
| | | | | |
Collapse
|
107
|
Matthews TD, Schmieder R, Silva GGZ, Busch J, Cassman N, Dutilh BE, Green D, Matlock B, Heffernan B, Olsen GJ, Farris Hanna L, Schifferli DM, Maloy S, Dinsdale EA, Edwards RA. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum. PLoS One 2015; 10:e0126883. [PMID: 26039056 PMCID: PMC4454671 DOI: 10.1371/journal.pone.0126883] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.
Collapse
Affiliation(s)
- T. David Matthews
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert Schmieder
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
| | - Genivaldo G. Z. Silva
- Computational Science Research Center, San Diego State University, San Diego, California, 92182, United States of America
| | - Julia Busch
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Noriko Cassman
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dawn Green
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Matlock
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Heffernan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gary J. Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Leigh Farris Hanna
- Molecular Sciences Department, University of Tennessee Health Sciences Center, 858 Madison Ave, Memphis, Tennessee, United States of America
| | - Dieter M. Schifferli
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce St, Philadelphia, Pennsylvania, 19104, United States of America
| | - Stanley Maloy
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
| | - Robert A. Edwards
- Department of Biology, San Diego State University, San Diego, California, 92182, United States of America
- Department of Computer Science, San Diego State University, San Diego, California, 92182, United States of America
- Department of Marine Biology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois, 60349, United States of America
- * E-mail:
| |
Collapse
|
108
|
MacKenzie KD, Wang Y, Shivak DJ, Wong CS, Hoffman LJL, Lam S, Kröger C, Cameron ADS, Townsend HGG, Köster W, White AP. Bistable expression of CsgD in Salmonella enterica serovar Typhimurium connects virulence to persistence. Infect Immun 2015; 83:2312-26. [PMID: 25824832 PMCID: PMC4432751 DOI: 10.1128/iai.00137-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/20/2015] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria often need to survive in the host and the environment, and it is not well understood how cells transition between these equally challenging situations. For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is correlated with persistence outside a host, but the connection to virulence is unknown. In this study, we analyzed multicellular-aggregate and planktonic-cell subpopulations that coexist when S. Typhimurium is grown under biofilm-inducing conditions. These cell types arise due to bistable expression of CsgD, the central biofilm regulator. Despite being exposed to the same stresses, the two cell subpopulations had 1,856 genes that were differentially expressed, as determined by transcriptome sequencing (RNA-seq). Aggregated cells displayed the characteristic gene expression of biofilms, whereas planktonic cells had enhanced expression of numerous virulence genes. Increased type three secretion synthesis in planktonic cells correlated with enhanced invasion of a human intestinal cell line and significantly increased virulence in mice compared to the aggregates. However, when the same groups of cells were exposed to desiccation, the aggregates survived better, and the competitive advantage of planktonic cells was lost. We hypothesize that CsgD-based differentiation is a form of bet hedging, with single cells primed for host cell invasion and aggregated cells adapted for persistence in the environment. This allows S. Typhimurium to spread the risks of transmission and ensures a smooth transition between the host and the environment.
Collapse
Affiliation(s)
- Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yejun Wang
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Dylan J Shivak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia S Wong
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Leia J L Hoffman
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Hugh G G Townsend
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, Saskatchewan, Canada Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
109
|
Wang Y, MacKenzie KD, White AP. An empirical strategy to detect bacterial transcript structure from directional RNA-seq transcriptome data. BMC Genomics 2015; 16:359. [PMID: 25947005 PMCID: PMC4422608 DOI: 10.1186/s12864-015-1555-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background As sequencing costs are being lowered continuously, RNA-seq has gradually been adopted as the first choice for comparative transcriptome studies with bacteria. Unlike microarrays, RNA-seq can directly detect cDNA derived from mRNA transcripts at a single nucleotide resolution. Not only does this allow researchers to determine the absolute expression level of genes, but it also conveys information about transcript structure. Few automatic software tools have yet been established to investigate large-scale RNA-seq data for bacterial transcript structure analysis. Results In this study, 54 directional RNA-seq libraries from Salmonella serovar Typhimurium (S. Typhimurium) 14028s were examined for potential relationships between read mapping patterns and transcript structure. We developed an empirical method, combined with statistical tests, to automatically detect key transcript features, including transcriptional start sites (TSSs), transcriptional termination sites (TTSs) and operon organization. Using our method, we obtained 2,764 TSSs and 1,467 TTSs for 1331 and 844 different genes, respectively. Identification of TSSs facilitated further discrimination of 215 putative sigma 38 regulons and 863 potential sigma 70 regulons. Combining the TSSs and TTSs with intergenic distance and co-expression information, we comprehensively annotated the operon organization in S. Typhimurium 14028s. Conclusions Our results show that directional RNA-seq can be used to detect transcriptional borders at an acceptable resolution of ±10-20 nucleotides. Technical limitations of the RNA-seq procedure may prevent single nucleotide resolution. The automatic transcript border detection methods, statistical models and operon organization pipeline that we have described could be widely applied to RNA-seq studies in other bacteria. Furthermore, the TSSs, TTSs, operons, promoters and unstranslated regions that we have defined for S. Typhimurium 14028s may constitute valuable resources that can be used for comparative analyses with other Salmonella serotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yejun Wang
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Keith D MacKenzie
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Aaron P White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
110
|
Khetrapal V, Mehershahi K, Rafee S, Chen S, Lim CL, Chen SL. A set of powerful negative selection systems for unmodified Enterobacteriaceae. Nucleic Acids Res 2015; 43:e83. [PMID: 25800749 PMCID: PMC4513841 DOI: 10.1093/nar/gkv248] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/10/2015] [Indexed: 12/21/2022] Open
Abstract
Creation of defined genetic mutations is a powerful method for dissecting mechanisms of bacterial disease; however, many genetic tools are only developed for laboratory strains. We have designed a modular and general negative selection strategy based on inducible toxins that provides high selection stringency in clinical Escherichia coli and Salmonella isolates. No strain- or species-specific optimization is needed, yet this system achieves better selection stringency than all previously reported negative selection systems usable in unmodified E. coli strains. The high stringency enables use of negative instead of positive selection in phage-mediated generalized transduction and also allows transfer of alleles between arbitrary strains of E. coli without requiring phage. The modular design should also allow further extension to other bacteria. This negative selection system thus overcomes disadvantages of existing systems, enabling definitive genetic experiments in both lab and clinical isolates of E. coli and other Enterobacteriaceae.
Collapse
Affiliation(s)
- Varnica Khetrapal
- National University of Singapore, Department of Medicine, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074
| | - Kurosh Mehershahi
- National University of Singapore, Department of Medicine, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074
| | - Shazmina Rafee
- National University of Singapore, Department of Medicine, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074
| | - Siyi Chen
- National University of Singapore, Department of Medicine, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074
| | - Chiew Ling Lim
- National University of Singapore, Department of Medicine, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074
| | - Swaine L Chen
- National University of Singapore, Department of Medicine, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119074 Genome Institute of Singapore, Infectious Diseases Group, 60 Biopolis Street, Genome, #02-01, Singapore 138672
| |
Collapse
|
111
|
Complete genome sequence of Salmonella enterica serovar Typhimurium VNP20009, a strain engineered for tumor targeting. J Biotechnol 2014; 192 Pt A:177-8. [DOI: 10.1016/j.jbiotec.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022]
|
112
|
De novo amino acid biosynthesis contributes to salmonella enterica growth in Alfalfa seedling exudates. Appl Environ Microbiol 2014; 81:861-73. [PMID: 25416761 DOI: 10.1128/aem.02985-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is a member of the plant microbiome. Growth of S. enterica in sprouting-seed exudates is rapid; however, the active metabolic networks essential in this environment are unknown. To examine the metabolic requirements of S. enterica during growth in sprouting-seed exudates, we inoculated alfalfa seeds and identified 305 S. enterica proteins extracted 24 h postinoculation from planktonic cells. Over half the proteins had known metabolic functions, and they are involved in over one-quarter of the known metabolic reactions. Ion and metabolite transport accounted for the majority of detected reactions. Proteins involved in amino acid transport and metabolism were highly represented, suggesting that amino acid metabolic networks may be important for S. enterica growth in association with roots. Amino acid auxotroph growth phenotypes agreed with the proteomic data; auxotrophs in amino acid-biosynthetic pathways that were detected in our screen developed growth defects by 48 h. When the perceived sufficiency of each amino acid was expressed as a ratio of the calculated biomass requirement to the available concentration and compared to growth of each amino acid auxotroph, a correlation between nutrient availability and bacterial growth was found. Furthermore, glutamate transport acted as a fitness factor during S. enterica growth in association with roots. Collectively, these data suggest that S. enterica metabolism is robust in the germinating-alfalfa environment; that single-amino-acid metabolic pathways are important but not essential; and that targeting central metabolic networks, rather than dedicated pathways, may be necessary to achieve dramatic impacts on bacterial growth.
Collapse
|
113
|
Brandis G, Pietsch F, Alemayehu R, Hughes D. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2014; 70:680-5. [PMID: 25362573 DOI: 10.1093/jac/dku434] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Mutations in the β-subunit of RNA polymerase (RNAP), encoded by rpoB, are responsible for rifampicin resistance (Rif(R)). Although many mutations in rpoB can reduce susceptibility, only a few are frequent amongst Rif(R) clinical Mycobacterium tuberculosis (MTB) isolates. It has been suggested that there is a negative correlation between the fitness costs of Rif(R) mutations and their respective clinical frequency, but so far comparable fitness cost measurements have only been conducted for a very limited number of Rif(R) mutations. We tested this hypothesis using Salmonella and Mycobacterium smegmatis as model organisms. METHODS We constructed 122 different Rif(R) mutations in Salmonella. MICs and relative fitness costs in the presence and absence of rifampicin were determined for each mutant, including for a smaller number of Rif(R) M. smegmatis strains. Results were compared with available mutation frequency data from clinical MTB isolates. RESULTS (i) Rif(R) mutations frequently found in MTB isolates have a fitness cost in Salmonella Typhimurium and M. smegmatis. (ii) Clinically frequent Rif(R) mutations have a high rifampicin MIC. (iii) There is a strong correlation between the magnitude of the fitness cost of a Rif(R) mutation in Salmonella Typhimurium or M. smegmatis and the frequency with which that mutation is associated with secondary (putative compensatory) mutations in RNAP of clinical MTB isolates. CONCLUSIONS This suggests that the success of Rif(R) mutations in clinical MTB isolates may be dependent not only on a low initial fitness cost, but rather the results of three factors: (i) a high rifampicin MIC; (ii) a relatively low initial fitness cost; and (iii) the ability to additionally acquire compensatory mutations selected to further reduce fitness cost.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Franziska Pietsch
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Rahel Alemayehu
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
114
|
Maier L, Barthel M, Stecher B, Maier RJ, Gunn JS, Hardt WD. Salmonella Typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites. PLoS One 2014; 9:e110187. [PMID: 25303479 PMCID: PMC4193879 DOI: 10.1371/journal.pone.0110187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.
Collapse
Affiliation(s)
- Lisa Maier
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Bärbel Stecher
- Max von Pettenkofer-Institut, München, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Biomedical Research Tower, The Ohio State University, Columbus, Ohio, United States of America
| | | |
Collapse
|
115
|
Acetate availability and utilization supports the growth of mutant sub-populations on aging bacterial colonies. PLoS One 2014; 9:e109255. [PMID: 25275605 PMCID: PMC4183559 DOI: 10.1371/journal.pone.0109255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
When bacterial colonies age most cells enter a stationary phase, but sub-populations of mutant bacteria can continue to grow and accumulate. These sub-populations include bacteria with mutations in rpoB (RNA polymerase β-subunit) or rpoS (RNA polymerase stress-response sigma factor). Here we have identified acetate as a nutrient present in the aging colonies that is utilized by these mutant subpopulations to support their continued growth. Proteome analysis of aging colonies showed that several proteins involved in acetate conversion and utilization were upregulated during aging. Acetate is known to be excreted during the exponential growth phase but can be imported later during the transition to stationary phase and converted to acetyl-CoA. Acetyl-CoA is used in multiple processes, including feeding into the TCA cycle, generating ATP via the glyoxylate shunt, as a source of acetyl groups for protein modification, and to support fatty acid biosynthesis. We showed that deletion of acs (encodes acetyl-CoA synthetase; converts acetate into acetyl-CoA) significantly reduced the accumulation of rpoB and rpoS mutant subpopulations on aging colonies. Measurement of radioactive acetate uptake showed that the rate of conversion decreased in aging wild-type colonies, was maintained at a constant level in the rpoB mutant, and significantly increased in the aging rpoS mutant. Finally, we showed that the growth of subpopulations on aging colonies was greatly enhanced if the aging colony itself was unable to utilize acetate, leaving more acetate available for mutant subpopulations to use. Accordingly, the data show that the accumulation of subpopulations of rpoB and rpoS mutants on aging colonies is supported by the availability in the aging colony of acetate, and by the ability of the subpopulation cells to convert the acetate to acetyl-CoA.
Collapse
|
116
|
Abed N, Grépinet O, Canepa S, Hurtado-Escobar GA, Guichard N, Wiedemann A, Velge P, Virlogeux-Payant I. Direct regulation of the pefI-srgC operon encoding the Rck invasin by the quorum-sensing regulator SdiA in Salmonella Typhimurium. Mol Microbiol 2014; 94:254-71. [PMID: 25080967 DOI: 10.1111/mmi.12738] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 01/18/2023]
Abstract
One important step for the pathogenesis of Salmonella is its ability to penetrate host cells. Recently, a new entry system involving the outer membrane protein Rck has been characterized. Previous studies have shown that the pefI-srgC locus, which contains rck, was regulated by the temperature and SdiA, the transcriptional regulator of quorum sensing in Salmonella. To decipher the regulation of rck by SdiA, we first confirmed the operon organization of the pefI-srgC locus. Using plasmid-based transcriptional fusions, we showed that only the predicted distal promoter upstream of pefI, PefIP2, displays an SdiA- and acyl-homoserine lactones-dependent activity while the predicted proximal PefIP1 promoter exhibits a very low activity independent on SdiA in our culture conditions. A direct and specific interaction of SdiA with this PefIP2 region was identified using electrophoretic mobility shift assays and surface plasmon resonance studies. We also observed that Rck expression is negatively regulated by the nucleoid-associated H-NS protein at both 25°C and 37°C. This work is the first demonstration of a direct regulation of genes by SdiA in Salmonella and will help further studies designed to identify environmental conditions required for Rck expression and consequently contribute to better characterize the role of this invasin in vivo.
Collapse
Affiliation(s)
- Nadia Abed
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France; INRA, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
117
|
DasSarma P, Negi VD, Balakrishnan A, Karan R, Barnes S, Ekulona F, Chakravortty D, DasSarma S. Haloarchaeal gas vesicle nanoparticles displaying Salmonella SopB antigen reduce bacterial burden when administered with live attenuated bacteria. Vaccine 2014; 32:4543-4549. [PMID: 24950351 PMCID: PMC4729386 DOI: 10.1016/j.vaccine.2014.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/25/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ΔpmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-γ, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases.
Collapse
Affiliation(s)
- Priya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Vidya Devi Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ram Karan
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Susan Barnes
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Folasade Ekulona
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
118
|
Porwollik S, Santiviago CA, Cheng P, Long F, Desai P, Fredlund J, Srikumar S, Silva CA, Chu W, Chen X, Canals R, Reynolds MM, Bogomolnaya L, Shields C, Cui P, Guo J, Zheng Y, Endicott-Yazdani T, Yang HJ, Maple A, Ragoza Y, Blondel CJ, Valenzuela C, Andrews-Polymenis H, McClelland M. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 2014; 9:e99820. [PMID: 25007190 PMCID: PMC4089911 DOI: 10.1371/journal.pone.0099820] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 01/30/2023] Open
Abstract
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Collapse
Affiliation(s)
- Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pui Cheng
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Fred Long
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Jennifer Fredlund
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Shabarinath Srikumar
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Cecilia A. Silva
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Xin Chen
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Rocío Canals
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - M. Megan Reynolds
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Christine Shields
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Ping Cui
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yi Zheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Tiana Endicott-Yazdani
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Hee-Jeong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Aimee Maple
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yury Ragoza
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
119
|
Robijns SCA, Roberfroid S, Van Puyvelde S, De Pauw B, Uceda Santamaría E, De Weerdt A, De Coster D, Hermans K, De Keersmaecker SCJ, Vanderleyden J, Steenackers HPL. A GFP promoter fusion library for the study of Salmonella biofilm formation and the mode of action of biofilm inhibitors. BIOFOULING 2014; 30:605-625. [PMID: 24735176 DOI: 10.1080/08927014.2014.907401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Salmonella, an important foodborne pathogen, forms biofilms in many different environments. The composition of these biofilms differs depending on the growth conditions, and their development is highly coordinated in time. To develop efficient treatments, it is therefore essential that biofilm formation and its inhibition be understood in different environments and in a time-dependent manner. Many currently used techniques, such as transcriptomics or proteomics, are still expensive and thus limited in their application. Therefore, a GFP-promoter fusion library with 79 important Salmonella biofilm genes was developed (covering among other things matrix production, fimbriae and flagella synthesis, and c-di-GMP regulation). This library is a fast, inexpensive, and easy-to-use tool, and can therefore be conducted in different experimental setups in a time-dependent manner. In this paper, four possible applications are highlighted to illustrate and validate the use of this reporter fusion library.
Collapse
Affiliation(s)
- S C A Robijns
- a Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics , KU Leuven , Leuven , Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Salazar-Echegarai FJ, Tobar HE, Nieto PA, Riedel CA, Bueno SM. Conjugal transfer of the pathogenicity island ROD21 in Salmonella enterica serovar Enteritidis depends on environmental conditions. PLoS One 2014; 9:e90626. [PMID: 24705125 PMCID: PMC3976249 DOI: 10.1371/journal.pone.0090626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/04/2014] [Indexed: 01/14/2023] Open
Abstract
Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature.
Collapse
Affiliation(s)
- Francisco J. Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Tobar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A. Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM UMR 1064, Nantes, France
- * E-mail:
| |
Collapse
|
121
|
Park SH, Aydin M, Khatiwara A, Dolan MC, Gilmore DF, Bouldin JL, Ahn S, Ricke SC. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiol 2014; 38:250-62. [DOI: 10.1016/j.fm.2013.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/28/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022]
|
122
|
Mühlig A, Kabisch J, Pichner R, Scherer S, Müller-Herbst S. Contribution of the NO-detoxifying enzymes HmpA, NorV and NrfA to nitrosative stress protection of Salmonella Typhimurium in raw sausages. Food Microbiol 2014; 42:26-33. [PMID: 24929713 DOI: 10.1016/j.fm.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/27/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
The antimicrobial action of the curing agent sodium nitrite (NaNO2) in raw sausage fermentation is thought to mainly depend on the release of cytotoxic nitric oxide (NO) at acidic pH. Salmonella Typhimurium is capable of detoxifying NO via the flavohemoglobin HmpA, the flavorubredoxin NorV and the periplasmic cytochrome C nitrite reductase NrfA. In this study, the contribution of these systems to nitrosative stress tolerance in raw sausages was investigated. In vitro growth assays of the S. Typhimurium 14028 deletion mutants ΔhmpA, ΔnorV and ΔnrfA revealed a growth defect of ΔhmpA in the presence of acidified NaNO2. Transcriptional analysis of the genes hmpA, norV and nrfA in the wild-type showed a 41-fold increase in hmpA transcript levels in the presence of 150 mg/l acidified NaNO2, whereas transcription of norV and nrfA was not enhanced. However, challenge assays performed with short-ripened spreadable sausages produced with 0 or 150 mg/kg NaNO2 failed to reveal a phenotype for any of the mutants compared to the wild-type. Hence, none of the NO detoxification systems HmpA, NorV and NrfA is solely responsible for nitrosative stress tolerance of S. Typhimurium in raw sausages. Whether these systems act cooperatively, or if there are other yet undescribed mechanisms involved is currently unknown.
Collapse
Affiliation(s)
- Anna Mühlig
- Abteilung Mikrobiologie (ZIEL), Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | - Jan Kabisch
- Institut für Mikrobiologie und Biotechnologie, MRI, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, D-95326 Kulmbach, Germany
| | - Rohtraud Pichner
- Institut für Mikrobiologie und Biotechnologie, MRI, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, D-95326 Kulmbach, Germany
| | - Siegfried Scherer
- Abteilung Mikrobiologie (ZIEL), Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany; Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | - Stefanie Müller-Herbst
- Abteilung Mikrobiologie (ZIEL), Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany; Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
123
|
Hiley L, Fang NX, Micalizzi GR, Bates J. Distribution of Gifsy-3 and of variants of ST64B and Gifsy-1 prophages amongst Salmonella enterica Serovar Typhimurium isolates: evidence that combinations of prophages promote clonality. PLoS One 2014; 9:e86203. [PMID: 24475087 PMCID: PMC3901673 DOI: 10.1371/journal.pone.0086203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Salmonella isolates harbour a range of resident prophages which can influence their virulence and ability to compete and survive in their environment. Phage gene profiling of a range of phage types of Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) indicates a significant level of correlation of phage gene profile with phage type as well as correlation with genotypes determined by a combination of multi-locus variable-number tandem repeat (VNTR) typing and clustered regularly interspaced short palindromic repeats (CRISPR) typing. Variation in phage gene profiles appears to be partly linked to differences in composition of variants of known prophages. We therefore conducted a study of the distribution of variants of ST64B and Gifsy-1 prophages and coincidently the presence of Gifsy-3 prophage in a range of S. Typhimurium phage types and genotypes. We have discovered two variants of the DT104 variant of ST64B and at least two new variants of Gifsy-1 as well as variants of related phage genes. While there is definite correlation between phage type and the prophage profile based on ST64B and Gifsy-1 variants we find stronger correlation between the VNTR/CRISPR genotype and prophage profile. Further differentiation of some genotypes is obtained by addition of the distribution of Gifsy-3 and a sequence variant of the substituted SB26 gene from the DT104 variant of ST64B. To explain the correlation between genotype and prophage profile we propose that suites of resident prophages promote clonality possibly through superinfection exclusion systems.
Collapse
Affiliation(s)
- Lester Hiley
- Public Health Microbiology Laboratory, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
- * E-mail:
| | - Ning-Xia Fang
- Public Health Microbiology Laboratory, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| | - Gino R. Micalizzi
- Public Health Microbiology Laboratory, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| | - John Bates
- Public Health Microbiology Laboratory, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Queensland, Australia
| |
Collapse
|
124
|
Jeong JH, Kim K, Lim D, Jeong K, Hong Y, Nguyen VH, Kim TH, Ryu S, Lim JA, Kim JI, Kim GJ, Kim SC, Min JJ, Choy HE. Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One 2014; 9:e80050. [PMID: 24416126 PMCID: PMC3885380 DOI: 10.1371/journal.pone.0080050] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022] Open
Abstract
Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD) as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP) derived from a voltage-gated potassium channel (Kv2.1). The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD, a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwangsoo Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwangjoon Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Vu H. Nguyen
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry, Chosun University Medical School, Gwangju, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| | - Jeong-A Lim
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| | - Jae Il Kim
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail: (JJM); (HEC)
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail: (JJM); (HEC)
| |
Collapse
|
125
|
Herrero-Fresno A, Wallrodt I, Leekitcharoenphon P, Olsen JE, Aarestrup FM, Hendriksen RS. The role of the st313-td gene in virulence of Salmonella Typhimurium ST313. PLoS One 2014; 9:e84566. [PMID: 24404174 PMCID: PMC3880295 DOI: 10.1371/journal.pone.0084566] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/23/2013] [Indexed: 11/18/2022] Open
Abstract
Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02–03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313.
Collapse
Affiliation(s)
- Ana Herrero-Fresno
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | - Inke Wallrodt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pimlapas Leekitcharoenphon
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frank M. Aarestrup
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Rene S. Hendriksen
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
126
|
Identification of HilD-regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol 2013; 196:1094-101. [PMID: 24375101 DOI: 10.1128/jb.01449-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) pathogenicity island 1 (SPI-1) encodes a type III secretion system required for invasion of host gut epithelial cells. Expression of SPI-1 virulence genes is controlled by a complex hierarchy of transcription factors encoded within and outside SPI-1. The master regulator of SPI-1, HilA, is itself regulated by three homologous transcription factors, HilD, HilC, and RtsA. HilD activates transcription of hilA and other target genes in response to environmental conditions associated with the intestinal microenvironment of the host. We have mapped the binding of HilD across the S. Typhimurium genome using chromatin immunoprecipitation-sequencing (ChIP-seq). Thus, we have identified 17 regions bound by HilD, including 11 novel targets. The majority of HilD targets are located outside SPI-1. We demonstrate transcription activation of 8 genes by HilD; four of these genes have not been previously described as being regulated by HilD, including lpxR, which encodes a lipid A deacylase important for immune evasion. We also show that HilD-activated genes are frequently activated by HilC and RtsA, indicating extensive overlap of the HilD, HilC, and RtsA regulons.
Collapse
|
127
|
Rosenkrantz JT, Aarts H, Abee T, Rolfe MD, Knudsen GM, Nielsen MB, Thomsen LE, Zwietering MH, Olsen JE, Pin C. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium. BMC Microbiol 2013; 13:294. [PMID: 24345035 PMCID: PMC3878590 DOI: 10.1186/1471-2180-13-294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes (hubs) in these networks were essential for growth, stress adaptation and virulence. RESULTS De novo generated as well as published transcriptional data for 425 selected genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways and cellular functions. Both networks were shown to belong to the family of scale-free networks characterized by the presence of highly connected nodes or hubs which are genes whose transcription is regulated when responding to many of the assayed culture conditions or genes encoding products involved in a high number of metabolic pathways and cell functions.The five genes with most connections in the transcriptional network (wraB, ygaU, uspA, cbpA and osmC) and in the genome scale network (ychN, siiF (STM4262), yajD, ybeB and dcoC) were selected for mutations, however mutagenesis of ygaU and ybeB proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably, however, deviations of phenotypes with respect to the wild type were observed when combinations of these genes were deleted. CONCLUSION Network analysis revealed the presence of hubs in both transcriptional and functional networks of S. Typhimurium. Hubs theoretically confer higher resistance to random mutation but a greater susceptibility to directed attacks, however, we found that genes that formed hubs were dispensable for growth, stress adaptation and virulence, suggesting that evolution favors non-essential genes as main connectors in cellular networks.
Collapse
Affiliation(s)
- Jesper T Rosenkrantz
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
| | - Henk Aarts
- Centre for Infectious disease control, National Institute for Public Health, PO box 1, 3720 BA Bilthoven, The Netherlands
| | - Tjakko Abee
- Wageningen University and Research Centre, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, Netherlands
| | - Matthew D Rolfe
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Gitte M Knudsen
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
- National Food Institute, Danish Technical University, Soelvtofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Maj-Britt Nielsen
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
- Present address: DANSTEM Laboratory, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, N, Denmark
| | - Line E Thomsen
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
| | - Marcel H Zwietering
- Wageningen University and Research Centre, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, Netherlands
| | - John E Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
| | - Carmen Pin
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| |
Collapse
|
128
|
Herrero-Fresno A, Leekitcharoenphon P, Hendriksen RS, Olsen JE, Aarestrup FM. .Analysis of the contribution of bacteriophage ST64B to in vitro virulence traits of Salmonella enterica serovar Typhimurium. J Med Microbiol 2013; 63:331-342. [PMID: 24324031 DOI: 10.1099/jmm.0.068221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparison of the publicly available genomes of the virulent Salmonella enterica serovar Typhimurium (S. Typhimurium) strains SL1344, 14028s and D23580 to that of the virulence-attenuated isolate LT2 revealed the absence of a full sequence of bacteriophage ST64B in the latter. Four selected ST64B regions of unknown function (sb7-sb11, sb46, sb49-sb50 and sb54) were mapped by PCR in two strain collections: (i) 310 isolates of S. Typhimurium from human blood or stool samples, and from food, animal and environmental reservoirs; and (ii) 90 isolates belonging to other serovars. The region sb49-sb50 was found to be unique to S. Typhimurium and was strongly associated with strains isolated from blood samples (100 and 28.4 % of the blood and non-blood isolates, respectively). The region was cloned into LT2 and knocked out in SL1344, and these strains were compared to wild-type isogenic strains in in vitro assays used to predict virulence association. No difference in invasion of the Int407 human cell line was observed between the wild-type and mutated strains, but the isolate carrying the whole ST64B prophage was found to have a slightly better survival in blood. The study showed a high prevalence and a strong association between the prophage ST64B and isolates of S. Typhimurium collected from blood, and may indicate that such strains constitute a selected subpopulation within this serovar. Further studies are indicated to determine whether the slight increase in blood survival observed in the strain carrying ST64B genes is of paramount importance for systemic infections.
Collapse
Affiliation(s)
- Ana Herrero-Fresno
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rene S Hendriksen
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - John E Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Frank M Aarestrup
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
129
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
130
|
Genome-scale analyses of Escherichia coli and Salmonella enterica AraC reveal noncanonical targets and an expanded core regulon. J Bacteriol 2013; 196:660-71. [PMID: 24272778 DOI: 10.1128/jb.01007-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli AraC is a well-described transcription activator of genes involved in arabinose metabolism. Using complementary genomic approaches, chromatin immunoprecipitation (ChIP)-chip, and transcription profiling, we identify direct regulatory targets of AraC, including five novel target genes: ytfQ, ydeN, ydeM, ygeA, and polB. Strikingly, only ytfQ has an established connection to arabinose metabolism, suggesting that AraC has a broader function than previously described. We demonstrate arabinose-dependent repression of ydeNM by AraC, in contrast to the well-described arabinose-dependent activation of other target genes. We also demonstrate unexpected read-through of transcription at the Rho-independent terminators downstream of araD and araE, leading to significant increases in the expression of polB and ygeA, respectively. AraC is highly conserved in the related species Salmonella enterica. We use ChIP sequencing (ChIP-seq) and RNA sequencing (RNA-seq) to map the AraC regulon in S. enterica. A comparison of the E. coli and S. enterica AraC regulons, coupled with a bioinformatic analysis of other related species, reveals a conserved regulatory network across the family Enterobacteriaceae comprised of 10 genes associated with arabinose transport and metabolism.
Collapse
|
131
|
Hawkey J, Edwards DJ, Dimovski K, Hiley L, Billman-Jacobe H, Hogg G, Holt KE. Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm. BMC Genomics 2013; 14:800. [PMID: 24245509 PMCID: PMC3870983 DOI: 10.1186/1471-2164-14-800] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most frequent causes of foodborne outbreaks of gastroenteritis. Between 2005-2008 a series of S. Typhimurium outbreaks occurred in Tasmania, Australia, that were all traced to eggs originating from a single chicken farm. We sequenced the genomes of 12 isolates linked to these outbreaks, in order to investigate the microevolution of a pathogenic S. Typhimurium clone in a natural, spatiotemporally restricted population. RESULTS The isolates, which shared a phage type similar to DT135 known locally as 135@ or 135a, formed a clade within the S. Typhimurium population with close similarity to the reference genome SL1334 (160 single nucleotide polymorphisms, or SNPs). Ten of the isolates belonged to a single clone (<23 SNPs between isolate pairs) which likely represents the population of S. Typhimurium circulating at the chicken farm; the other two were from sporadic cases and were genetically distinct from this clone. Divergence dating indicated that all 12 isolates diverged from a common ancestor in the mid 1990 s, and the clone began to diversify in 2003-2004. This clone spilled out into the human population several times between 2005-2008, during which time it continued to accumulate SNPs at a constant rate of 3-5 SNPs per year or 1x10-6 substitutions site-1 year-1, faster than the longer-term (~50 year) rates estimated previously for S. Typhimurium. Our data suggest that roughly half of non-synonymous substitutions are rapidly removed from the S. Typhimurium population, after which purifying selection is no longer important and the remaining substitutions become fixed in the population. The S. Typhimurium 135@ isolates were nearly identical to SL1344 in terms of gene content and virulence plasmids. Their phage contents were close to SL1344, except that they carried a different variant of Gifsy-1, lacked the P2 remnant found in SL1344 and carried a novel P2 phage, P2-Hawk, in place SL1344's P2 phage SopEϕ. DT135 lacks P2 prophage. Two additional plasmids were identified in the S. Typhimurium 135@ isolates, pSTM2 and pSTM7. Both plasmids were IncI1, but phylogenetic analysis of the plasmids and their bacterial hosts shows these plasmids are genetically distinct and result from independent plasmid acquisition events. CONCLUSIONS This study provides a high-resolution insight into short-term microevolution of the important human pathogen S. Typhimurium. It indicates that purifying selection occurs rapidly in this population (≤ 6 years) and then declines, and provides an estimate for the short-term substitution rate. The latter is likely to be more relevant for foodborne outbreak investigation than previous estimates based on longer time scales.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
132
|
Pang S, Octavia S, Feng L, Liu B, Reeves PR, Lan R, Wang L. Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types. BMC Genomics 2013; 14:718. [PMID: 24138507 PMCID: PMC3853940 DOI: 10.1186/1471-2164-14-718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing. Results Variations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2. Conclusion The genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
133
|
Morales EH, Collao B, Desai PT, Calderón IL, Gil F, Luraschi R, Porwollik S, McClelland M, Saavedra CP. Probing the ArcA regulon under aerobic/ROS conditions in Salmonella enterica serovar Typhimurium. BMC Genomics 2013; 14:626. [PMID: 24044554 PMCID: PMC3848847 DOI: 10.1186/1471-2164-14-626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/16/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hydrogen peroxide (H₂O₂) is a reactive oxygen species (ROS), which is part of the oxidative burst encountered upon internalization of Salmonella enterica serovar Typhimurium (S. Typhimurium) by phagocytic cells. It has previously been established that, the ArcAB two-component system plays a critical role in ROS resistance, but the genes regulated by the system remained undetermined to date. We therefore investigated the ArcA regulon in aerobically growing S. Typhimurium before and after exposure to H₂O₂ by querying gene expression and other physiological changes in wild type and ΔarcA strains. RESULTS In the ΔarcA strain, expression of 292 genes showed direct or indirect regulation by ArcA in response to H₂O₂, of which 141were also regulated in aerobiosis, but in the opposite direction. Gene set enrichment analysis (GSEA) of the expression data from WT and ΔarcA strains, revealed that, in response to H₂O₂ challenge in aerobically grown cells, ArcA down regulated multiple PEP-PTS and ABC transporters, while up regulating genes involved in glutathione and glycerolipid metabolism and nucleotide transport. Further biochemical analysis guided by GSEA results showed that deletion of arcA during aerobic growth lead to increased reactive oxygen species (ROS) production which was concomitant with an increased NADH/NAD+ ratio. In absence of ArcA under aerobic conditions, H₂O₂ exposure resulted in lower levels of glutathione reductase activity, leading to a decreased GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio. CONCLUSION The ArcA regulon was defined in 2 conditions, aerobic growth and the combination of peroxide treatment and aerobic growth in S. Typhimurium. ArcA coordinates a response that involves multiple aspects of the carbon flux through central metabolism, which ultimately modulates the reducing potential of the cell.
Collapse
Affiliation(s)
- Eduardo H Morales
- Laboratorio de Microbiología Molecular, Facultad Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Salmonella utilizes D-glucosaminate via a mannose family phosphotransferase system permease and associated enzymes. J Bacteriol 2013; 195:4057-66. [PMID: 23836865 DOI: 10.1128/jb.00290-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Salmonella enterica is a globally significant bacterial food-borne pathogen that utilizes a variety of carbon sources. We report here that Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) uses d-glucosaminate (2-amino-2-deoxy-d-gluconic acid) as a carbon and nitrogen source via a previously uncharacterized mannose family phosphotransferase system (PTS) permease, and we designate the genes encoding the permease dgaABCD (d-glucosaminate PTS permease components EIIA, EIIB, EIIC, and EIID). Two other genes in the dga operon (dgaE and dgaF) were required for wild-type growth of S. Typhimurium with d-glucosaminate. Transcription of dgaABCDEF was dependent on RpoN (σ(54)) and an RpoN-dependent activator gene we designate dgaR. Introduction of a plasmid bearing dgaABCDEF under the control of the lac promoter into Escherichia coli strains DH5α, BL21, and JM101 allowed these strains to grow on minimal medium containing d-glucosaminate as the sole carbon and nitrogen source. Biochemical and genetic data support a catabolic pathway in which d-glucosaminate, as it is transported across the cell membrane, is phosphorylated at the C-6 position by DgaABCD. DgaE converts the resulting d-glucosaminate-6-phosphate to 2-keto-3-deoxygluconate 6-phosphate (KDGP), which is subsequently cleaved by the aldolase DgaF to form glyceraldehyde-3-phosphate and pyruvate. DgaF catalyzes the same reaction as that catalyzed by Eda, a KDGP aldolase in the Entner-Doudoroff pathway, and the two enzymes can substitute for each other in their respective pathways. Examination of the Integrated Microbial Genomes database revealed that orthologs of the dga genes are largely restricted to certain enteric bacteria and a few species in the phylum Firmicutes.
Collapse
|
135
|
Deatherage Kaiser BL, Li J, Sanford JA, Kim YM, Kronewitter SR, Jones MB, Peterson CT, Peterson SN, Frank BC, Purvine SO, Brown JN, Metz TO, Smith RD, Heffron F, Adkins JN. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection. PLoS One 2013; 8:e67155. [PMID: 23840608 PMCID: PMC3694140 DOI: 10.1371/journal.pone.0067155] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.
Collapse
Affiliation(s)
- Brooke L. Deatherage Kaiser
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Jie Li
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Scott R. Kronewitter
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Marcus B. Jones
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Christine T. Peterson
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Scott N. Peterson
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bryan C. Frank
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joseph N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
136
|
Brandis G, Hughes D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 2013; 68:2493-7. [PMID: 23759506 DOI: 10.1093/jac/dkt224] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The evolution of rifampicin resistance in Mycobacterium tuberculosis is a major threat to effective tuberculosis therapy. Much is known about the initial emergence of rifampicin resistance, but the further evolution of these resistant strains has only lately been subject to investigation. Although resistance can be caused by many different mutations in rpoB, among clinical M. tuberculosis isolates the mutation rpoB S531L is overwhelmingly the most frequently found. Clinical isolates with rpoB S531L frequently carry additional mutations in genes for RNA polymerase subunits, and it has been speculated that these are fitness-compensatory mutations, ameliorating the fitness cost of the primary resistance mutation. We tested this hypothesis using Salmonella as a model organism. METHODS We created the rpoB S531L mutation in Salmonella and then evolved independent lineages with selection for mutants with increased relative fitness. Relative fitness associated with putative compensatory mutations was measured after genetic reconstruction in isogenic strains. RESULTS Compensatory mutations were identified in genes coding for different subunits of RNA polymerase: rpoA, rpoB and rpoC. Genetic reconstructions demonstrated that each of these secondary mutations reduced the fitness cost of the rpoB S531L resistance mutation. CONCLUSIONS The compensatory mutations identified in Salmonella cluster in similar locations to the additional mutations found in M. tuberculosis isolates. These new data strongly support the idea that many of the previously identified rpoA, rpoB and rpoC mutations in rifampicin-resistant M. tuberculosis (rpoB S531L) are indeed fitness-compensatory mutations.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
137
|
Anwar N, Sem XH, Rhen M. Oxidoreductases that act as conditional virulence suppressors in Salmonella enterica serovar Typhimurium. PLoS One 2013; 8:e64948. [PMID: 23750221 PMCID: PMC3672137 DOI: 10.1371/journal.pone.0064948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/19/2013] [Indexed: 11/28/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium.
Collapse
Affiliation(s)
- Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Hui Sem
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
138
|
Wang Y, Sun M, Bao H, White AP. T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 2013; 8:e58173. [PMID: 23472154 PMCID: PMC3589343 DOI: 10.1371/journal.pone.0058173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
MOTIVATION Type III Secretion Systems (T3SSs) play important roles in the interaction between gram-negative bacteria and their hosts. T3SSs function by translocating a group of bacterial effector proteins into the host cytoplasm. The details of specific type III secretion process are yet to be clarified. This research focused on comparing the amino acid composition within the N-terminal 100 amino acids from type III secretion (T3S) signal sequences or non-T3S proteins, specifically whether each residue exerts a constraint on residues found in adjacent positions. We used these comparisons to set up a statistic model to quantitatively model and effectively distinguish T3S effectors. RESULTS In this study, the amino acid composition (Aac) probability profiles conditional on its sequentially preceding position and corresponding amino acids were compared between N-terminal sequences of T3S and non-T3S proteins. The profiles are generally different. A Markov model, namely T3_MM, was consequently designed to calculate the total Aac conditional probability difference, i.e., the likelihood ratio of a sequence being a T3S or a non-T3S protein. With T3_MM, known T3S and non-T3S proteins were found to well approximate two distinct normal distributions. The model could distinguish validated T3S and non-T3S proteins with a 5-fold cross-validation sensitivity of 83.9% at a specificity of 90.3%. T3_MM was also shown to be more robust, accurate, simple, and statistically quantitative, when compared with other T3S protein prediction models. The high effectiveness of T3_MM also indicated the overall Aac difference between N-termini of T3S and non-T3S proteins, and the constraint of Aac exerted by its preceding position and corresponding Aac. AVAILABILITY An R package for T3_MM is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/T3_MM. T3_MM web server: http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php.
Collapse
Affiliation(s)
- Yejun Wang
- Genomics Research Center, Haerbin Medical University, Harbin, China
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ming'an Sun
- School of Life Science, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hongxia Bao
- Genomics Research Center, Haerbin Medical University, Harbin, China
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
139
|
Abstract
Salmonella virulence is largely mediated by two type III secretion systems (T3SS) that deliver effector proteins from the bacterium to a host cell; however, the secretion signal is poorly defined. Effector N termini are thought to contain the signal, but they lack homology, possess no identifiable motif, and adopt intrinsically disordered structures. Alternative studies suggest that RNA-encoded signals may also be recognized and that they can be located in the 5' untranslated leader sequence. We began our study by establishing the minimum sequence required for reporter translocation. Untranslated leader sequences predicted from 42 different Salmonella effector proteins were fused to the adenylate cyclase reporter (CyaA'), and each of them was tested for protein injection into J774 macrophages. RNA sequences derived from five effectors, gtgA, cigR, gogB, sseL, and steD, were sufficient for CyaA' translocation into host cells. To determine the mechanism of signal recognition, we identified proteins that bound specifically to the gtgA RNA. One of the unique proteins identified was Hfq. Hfq had no effect upon the translocation of full-length CigR and SteD, but injection of intact GtgA, GogB, and SseL was abolished in an hfq mutant, confirming the importance of Hfq. Our results demonstrated that the Salmonella pathogenicity island 2 (SPI-2) T3SS assembled into a functional apparatus independently of Hfq. Since particular effectors required Hfq for translocation, Hfq-RNA complexes may participate in signal recognition.
Collapse
|
140
|
Goudeau DM, Parker CT, Zhou Y, Sela S, Kroupitski Y, Brandl MT. The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine. Appl Environ Microbiol 2013; 79:250-62. [PMID: 23104408 PMCID: PMC3536078 DOI: 10.1128/aem.02290-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/20/2012] [Indexed: 11/20/2022] Open
Abstract
Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease.
Collapse
Affiliation(s)
- Danielle M. Goudeau
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Yaguang Zhou
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Shlomo Sela
- Microbial Food Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, ARO, The Volcani Center, Beth-Dagan, Israel
| | - Yulia Kroupitski
- Microbial Food Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, ARO, The Volcani Center, Beth-Dagan, Israel
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|
141
|
Bryant J, Chewapreecha C, Bentley SD. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 2012; 7:1283-1296. [PMID: 23075447 PMCID: PMC3996552 DOI: 10.2217/fmb.12.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve.
Collapse
Affiliation(s)
- Josephine Bryant
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Claire Chewapreecha
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Stephen D Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
142
|
Kawasaki K, Teramoto M, Tatsui R, Amamoto S. Lipid A 3'-O-deacylation by Salmonella outer membrane enzyme LpxR modulates the ability of lipid A to stimulate Toll-like receptor 4. Biochem Biophys Res Commun 2012; 428:343-7. [PMID: 23085233 DOI: 10.1016/j.bbrc.2012.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/12/2012] [Indexed: 12/20/2022]
Abstract
Modification of lipopolysaccharides, including the membrane anchor portion lipid A, is essential for bacterial adaptation to its host. We examined whether lipid A 3'-O-deacylation by Salmonella lipid A deacylase LpxR affected the ability of lipid A to stimulate the Toll-like receptor 4 (TLR4) and MD-2 complex. Unmodified lipid A and 3'-O-deacylated lipid A were purified from Escherichia coli and E. coli expressing recombinant LpxR, respectively. Inactive lipid A species, palmitoylated lipid A and a lipid A biosynthetic precursor lacking the myristate moiety were purified from E. coli expressing recombinant Salmonella lipid A palmitoyltransferase PagP and E. coli mutant defective in lipid A biosynthesis, respectively. Mass spectrometric analysis of the purified lipid A preparations showed a spectra of single lipid A species and gave a single band on thin layer chromatography. An NF-κB-dependent reporter activation assay was used to determine the bioactivity of the lipid A species in a cell line that expressed human TLR4 and MD-2 complex. Deacylated lipid A was less active than unmodified lipid A, suggesting that lipid A 3'-O-deacylation by LpxR is beneficial for bacteria to evade host immune surveillance: On the other hand, deacylated lipid A was more active than palmitoylated lipid A and the lipid A precursor. Taken together, these results indicated that lipid A 3'-O-deacylation by LpxR significantly reduces the bioactivity of lipid A.
Collapse
Affiliation(s)
- Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe 610-0395, Japan.
| | | | | | | |
Collapse
|
143
|
FRUIT, a scar-free system for targeted chromosomal mutagenesis, epitope tagging, and promoter replacement in Escherichia coli and Salmonella enterica. PLoS One 2012; 7:e44841. [PMID: 23028641 PMCID: PMC3459970 DOI: 10.1371/journal.pone.0044841] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022] Open
Abstract
Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of “scar” DNA into the chromosome. Here, we describe a rapid, efficient, PCR-based recombineering method, FRUIT, that can be used to introduce scar-free point mutations, deletions, epitope tags, and promoters into the genomes of enteric bacteria. The efficiency of FRUIT is far higher than that of the most widely-used recombineering method for Escherichia coli. We have used FRUIT to introduce point mutations and epitope tags into the chromosomes of E. coli K-12, Enterotoxigenic E. coli, and Salmonella enterica. We have also used FRUIT to introduce constitutive and inducible promoters into the chromosome of E. coli K-12. Thus, FRUIT is a versatile, efficient recombineering approach that can be applied in multiple species of enteric bacteria.
Collapse
|
144
|
A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination. PLoS One 2012; 7:e45245. [PMID: 23028876 PMCID: PMC3445477 DOI: 10.1371/journal.pone.0045245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/16/2012] [Indexed: 12/20/2022] Open
Abstract
CD18 expressing phagocytes associated with the gastro-intestinal (GI) epithelium can shuttle Salmonella directly into the bloodstream within a few minutes following microbial ingestion. We have previously demonstrated that Salmonella controls the CD18 pathway to deeper tissue, manipulating the migratory properties of infected cells as an unappreciated component of its pathogenesis. We have observed that one type III effector, SrfH (also called SseI) that Salmonella secretes into infected phagocytes manipulates the host protein TRIP6 to stimulate their migration. Paradoxically, SrfH was shown in another study to subvert a different host protein, IQGAP1, in a manner that inhibits the productive motility of such cells, perhaps to avoid interactions with T cells. Here, we resolve the discrepancy. We report that one naturally occurring allele of srfH promotes the migration of infected phagocytes into the bloodstream, while another naturally occurring allele that differs by only a single nucleotide polymorphism (SNP) does not. This SNP determines if the protein contains an aspartic acid or a glycine residue at position 103 and may determine if SrfH binds TRIP6. SrfH Gly103 is a rare allele, but is present in the highly invasive strain Salmonella enterica serovar Typhimurium UK-1 (stands for universal killer). It is also present in the genome of the only sequenced strain belonging to the emerging pandemic Salmonella enterica serovar 4, [5],12,i:-, which is frequently associated with septicemia. Finally, we present evidence that suggests that Gifsy-2, the bacteriophage upon which srfH resides, is present in a clinical isolate of the human-specific pathogen, Salmonella enterica serovar Typhi. These observations may have interesting implications for our understanding of Salmonella pathogenesis.
Collapse
|
145
|
Liu J, Guo JT, Li YG, Johnston RN, Liu GR, Liu SL. The type VI secretion system gene cluster ofSalmonella typhimurium: Required for full virulence in mice. J Basic Microbiol 2012; 53:600-7. [DOI: 10.1002/jobm.201200047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/06/2012] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ji-Tao Guo
- Department of Microbiology; Peking University Health Science Center; Beijing; China
| | - Yong-Guo Li
- Genetic Diagnosis Center of First Affiliated Hospital; Harbin Medical University; Harbin; China
| | - Randal N. Johnston
- Department of Biochemistry and Molecular Biology; University of Calgary; Calgary; Canada
| | | | | |
Collapse
|
146
|
Georgi C, Buerger J, Hillen W, Berens C. Promoter strength driving TetR determines the regulatory properties of Tet-controlled expression systems. PLoS One 2012; 7:e41620. [PMID: 22848546 PMCID: PMC3407185 DOI: 10.1371/journal.pone.0041620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Bacteria frequently rely on transcription repressors and activators to alter gene expression patterns in response to changes in the surrounding environment. Tet repressor (TetR) is a paradigm transcription factor that senses the environmental state by binding small molecule effectors, the tetracyclines. However, recently isolated peptides that act as inducers of TetR after having been fused to the C-terminus of a carrier protein, suggest that TetR can also regulate gene expression in a signal-transduction pathway. For this shift in regulatory mechanism to be successful, induction of TetR must be sensitive enough to respond to an inducing protein expressed at its endogenous level. To determine this regulatory parameter, a synthetic Tet-regulated system was introduced into the human pathogen Salmonella enterica serovar Typhimurium and tested for inducibility by a peptide. Reporter gene expression was detected if the peptide-containing carrier protein Thioredoxin 1 was strongly overproduced, but not if it was expressed at a level similar to the physiological level of Thioredoxin 1. This was attributed to high steady-state amounts of TetR which was expressed by the promoter of the chloramphenicol acetyl transferase gene (P(cat)). Reducing P(cat) strength either by directed or by random mutagenesis of its -10 element concomitantly reduced the intracellular amounts of TetR. Sensitive and quantitative induction of TetR by an inducing peptide, when it was fused to Thioredoxin 1 at its native locus in the genome, was only obtained with weak P(cat) promoter variants containing GC-rich -10 elements. A second important observation was that reducing the TetR steady-state level did not impair repression. This permits flexible adjustment of an inducible system's sensitivity simply by altering the expression level of the transcription factor. These two new layers of expression control will improve the quality and, thus, the applicability of the Tet and other regulatory systems.
Collapse
Affiliation(s)
- Christiane Georgi
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Buerger
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
147
|
A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:123076. [PMID: 22900174 PMCID: PMC3410353 DOI: 10.1155/2012/123076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022]
Abstract
Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and phagosome-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of 25% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB and PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein locations for Salmonella and a framework for further investigations using computational modeling.
Collapse
|
148
|
Luo Y, Kong Q, Yang J, Mitra A, Golden G, Wanda SY, Roland KL, Jensen RV, Ernst PB, Curtiss R. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1. PLoS One 2012; 7:e40645. [PMID: 22792393 PMCID: PMC3391293 DOI: 10.1371/journal.pone.0040645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/13/2012] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1) is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.
Collapse
Affiliation(s)
- Yingqin Luo
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Qingke Kong
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Arindam Mitra
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Peter B. Ernst
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
149
|
Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 2012; 85:142-51. [PMID: 22646234 DOI: 10.1111/j.1365-2958.2012.08099.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mutations in rpoB (RNA polymerase β-subunit) can cause high-level resistance to rifampicin, an important first-line drug against tuberculosis. Most rifampicin-resistant (Rif(R)) mutants selected in vitro have reduced fitness, and resistant clinical isolates of M. tuberculosis frequently carry multiple mutations in RNA polymerase genes. This supports a role for compensatory evolution in global epidemics of drug-resistant tuberculosis but the significance of secondary mutations outside rpoB has not been demonstrated or quantified. Using Salmonella as a model organism, and a previously characterized Rif(R) mutation (rpoB R529C) as a starting point, independent lineages were evolved with selection for improved growth in the presence and absence of rifampicin. Compensatory mutations were identified in every lineage and were distributed between rpoA, rpoB and rpoC. Resistance was maintained in all strains showing that increased fitness by compensatory mutation was more likely than reversion. Genetic reconstructions demonstrated that the secondary mutations were responsible for increasing growth rate. Many of the compensatory mutations in rpoA and rpoC individually caused small but significant reductions in susceptibility to rifampicin, and some compensatory mutations in rpoB individually caused high-level resistance. These findings show that mutations in different components of RNA polymerase are responsible for fitness compensation of a Rif(R) mutant.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | | | | | | |
Collapse
|
150
|
Matsuura M, Kawasaki K, Kawahara K, Mitsuyama M. Evasion of human innate immunity without antagonizing TLR4 by mutant Salmonella enterica serovar Typhimurium having penta-acylated lipid A. Innate Immun 2012; 18:764-73. [PMID: 22419537 DOI: 10.1177/1753425912440599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modification of a lipid A moiety in Gram-negative bacterial LPS to a less acylated form is thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. The contribution of less-acylated lipid A to interactions of whole bacterial cells with host cells (especially in humans) remains unclear. Mutant strains of Salmonella enterica serovar Typhimurium with fewer acylated groups were generated. The major lipid A form in wild-type (WT) and the mutant KCS237 strain is hexa-acylated; in mutant strains KCS311 and KCS324 it is penta-acylated; and in KCS369 it is tetra-acylated. WT and KCS237 formalin-killed and live bacteria, as well as their LPS, strongly stimulated production of pro-inflammatory cytokines in human U937 cells; this stimulation was suppressed by TLR4 suppressors. LPS of other mutants produced no agonistic activity, but strong antagonistic activity, while their formalin-killed and live bacteria preparations had weak agonistic and no antagonistic activity. Moreover, these less-acylated mutants had increased resistance to phagocytosis by U937 cells. Our results indicate that a decrease of one acyl group (from six to five) is enough to allow Salmonella to evade human innate immunity and that the antagonistic activity of less-acylated lipid A is not utilized for this evasion.
Collapse
Affiliation(s)
- Motohiro Matsuura
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | |
Collapse
|