101
|
Liu L, Nakano MM, Lee OH, Zuber P. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 1996; 178:5144-52. [PMID: 8752331 PMCID: PMC178310 DOI: 10.1128/jb.178.17.5144-5152.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The establishment of genetic competence in Bacillus subtilis is controlled by a vast signal transduction network involving the products of genes that function in several postexponential-phase processes. Two of these proteins, SinR and DegU, serve as molecular switches that influence a cell's decision to undergo either sporulation or genetic competence development. In order to determine the roles of SinR and DegU in competence control, multicopy suppression experiments with plasmid-amplified comS, SinR, and degU genes were undertaken. Multicopy comS was found to elevate competence gene transcription and transformation efficiency in both wild-type and sinR mutant cells but not in degU mutant cells. Multicopy degU failed to suppress comS or sinR mutations. No suppression of comS or degU by multicopy sinR was observed. The expression of a comS'::'lacZ translational fusion and srf-lacZ operon fusion was examined in sinR cells and cells bearing plasmid-amplified sinR. The expression of comS'::'lacZ gene fusion was reduced by the sinR mutation, but both comS'::'lacZ and srf-lacZ were repressed by multicopy sinR. Cells bearing plasmid-amplified sinR were poorly competent. These results suggest that sinR is required for optimal comS expression but not transcription from the srf promoter and that SinR at high concentrations represses srf transcription initiation.
Collapse
Affiliation(s)
- L Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, USA
| | | | | | | |
Collapse
|
102
|
Serror P, Sonenshein AL. Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol Microbiol 1996; 20:843-52. [PMID: 8793880 DOI: 10.1111/j.1365-2958.1996.tb02522.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The product of the codY gene is required for nutritional repression of the Bacillus subtillis dipeptide permease operon (dpp), an operon expressed at early stationary phase in nutrient-rich medium. Though unrelated to any known DNA-binding protein, CodY was shown to bind specifically to the dpp promoter region. DNase I footprinting experiments revealed that the CodY-protected region encompasses the dpp transcription start site and overlaps with the region protected by another regulatory protein, AbrB. CodY and AbrB were found to compete, in vitro, for binding to the dpp promoter region. Binding of CodY was altered in mutants defective in nutritional regulation.
Collapse
Affiliation(s)
- P Serror
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
103
|
Chung JD, Conner S, Stephanopoulos G. Flow cytometric study of differentiating cultures of Bacillus subtilis. CYTOMETRY 1995; 20:324-33. [PMID: 7587720 DOI: 10.1002/cyto.990200408] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on 1) the development of a flow cytometry-based technique for detecting beta-galactosidase in differentiating cultures of Bacillus subtilis and 2) the application of this technique in the study of early developmental gene expression. The problems associated with generating detectable signals (despite the small size of B. subtilis cells) have been overcome using the fluorogenic substrate 5-octanolyaminofluorescein di-beta-D-galactopyranoside (C8-FDG). Additionally, to control for background fluorescence during the staining process, we included a control population in the C8-FDG staining mixture that consists of cells devoid of the lacZ gene prestained with another dye, PKH26. The distinct emission spectra of C8-fluorescein and PKH26 allow nonspecific C8-FDG staining in this control population to be monitored using two-color analysis. This technique has been applied in the study of developmental gene expression in sporulating cultures of B. subtilis, and it has been found that such cultures are heterogeneous, comprising two cell populations. One population is induced for expression of early sporulation genes, which is determined using lacZ fusions, whereas the other remains uninduced. These results have allowed us to understand better the patterns of gene expression exhibited by wild-type and mutant cultures early during the development process of spore formation.
Collapse
Affiliation(s)
- J D Chung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | | | |
Collapse
|
104
|
Inamine GS, Dubnau D. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol 1995; 177:3045-51. [PMID: 7768800 PMCID: PMC176991 DOI: 10.1128/jb.177.11.3045-3051.1995] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The competence-related phenotypes of mutations in each of the four open reading frames associated with the comE locus of Bacillus subtilis are described. comEA and comEC are required for transformability, whereas the products of comEB and of the overlapping comER, which is transcribed in the reverse direction, are dispensable. Loss of the comEA product decreases the binding of DNA to the competent cell surface and the internalization of DNA, in addition to exhibiting a profound effect on transformability. The comEC product is required for internalization but is dispensable for DNA binding. ComEA is shown to be an integral membrane protein, as predicted from hydropathy analysis, with its C-terminal domain outside the cytoplasmic membrane. This C-terminal domain possesses a sequence with similarity to those of several proteins known to be involved in nucleic acid transactions including UvrC and a human protein that binds to the replication origin of the Epstein-Barr virus.
Collapse
Affiliation(s)
- G S Inamine
- Public Health Research Institute, New York, New York 10016, USA
| | | |
Collapse
|
105
|
Hahn J, Roggiani M, Dubnau D. The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 1995; 177:3601-5. [PMID: 7768874 PMCID: PMC177070 DOI: 10.1128/jb.177.12.3601-3605.1995] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We show that the major role for Spo0A in the development of genetic competence is to downregulate expression of abrB. AbrB is both a negative regulator and a positive regulator of competence. The negative effects are exerted at multiple points in competence regulation. A regulatory mechanism that is independent of mecA and abrB operates on comK expression.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016, USA
| | | | | |
Collapse
|
106
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
107
|
Solomon JM, Magnuson R, Srivastava A, Grossman AD. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 1995; 9:547-58. [PMID: 7698645 DOI: 10.1101/gad.9.5.547] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Development of genetic competence in Bacillus subtilis is regulated by extracellular signaling molecules, including the ComX pheromone, a modified 9- or 10-amino-acid peptide. Here, we present characterization of a second extracellular competence stimulating factor (CSF). CSF appears to be, at least in part, a small peptide of between 520 and 720 daltons. Production of CSF requires several genes that are needed both for initiation of sporulation and development of competence (spo0H, spo0A, spo0B, and spo0F). Although both peptide factors regulate competence, two different sensing pathways mediate the response to the ComX pheromone and CSF. Analysis of double mutants indicated that ComX pheromone is on the same genetic pathway as the membrane-bound histidine protein kinase encoded by comP and that CSF is on the same genetic pathway as the oligopeptide permease encoded by spo0K. Furthermore, the cellular response to partly purified ComX pheromone requires the ComP histidine protein kinase, whereas the response to partly purified CSF requires the Spo0K oligopeptide permease. These two sensing pathways converge to activate competence genes. Both factors and their convergent sensing pathways are required for normal development of competence and might function to integrate different physiological signals.
Collapse
Affiliation(s)
- J M Solomon
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
108
|
van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, Hamoen L. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 1995; 15:455-62. [PMID: 7783616 DOI: 10.1111/j.1365-2958.1995.tb02259.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
comK is a positive autoregulatory gene occupying a central position in the competence-signal-transduction network. All regulatory routes identified in this network converge at the level of comK expression. The ComK protein is required for the transcriptional induction of comK and the late competence genes, which specify morphogenetic and structural proteins necessary for construction of the DNA-binding and uptake apparatus. In this report we demonstrate that ComK specifically binds to DNA fragments containing promoter and upstream sequences of the genes it affects (comC, comE, comF, comG and comK). Using portions of the region upstream of comC we show that the ComK-binding sequences are essential for the expression of competence. Moreover, we demonstrate that the presence of ComK stimulates the expression of comF-lacZ and comG-lacZ translational fusions in vivo in Escherichia coli. These results indicate that the gene product of comK is identical to the previously inferred competence transcription factor (CTF).
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
109
|
Chung YS, Dubnau D. ComC is required for the processing and translocation of comGC, a pilin-like competence protein of Bacillus subtilis. Mol Microbiol 1995; 15:543-51. [PMID: 7783624 DOI: 10.1111/j.1365-2958.1995.tb02267.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ComGC is a cell surface-localized protein required for DNA binding during transformation in Bacillus subtilis. It resembles type IV prepilins in its N-terminal domain, particularly in the amino acid sequence surrounding the processing cleavage sites of these proteins. ComC is another protein required for DNA binding, which resembles the processing proteases that cleave type IV prepilins. We show here that ComGC is processed in competent cells and that this processing requires ComC. We also demonstrate that the PilD protein of Neisseria gonorrhoeae, a ComC homologue, can process ComGC in Escherichia coli, and that the ComC protein itself is the only B. subtilis protein needed to accomplish cleavage of ComGC in the latter organism. Based on NaOH-solubility studies, we have shown that in the absence of ComC, but in the presence of all other competence proteins, B. subtilis is incapable of correctly translocating ComGC to the outer face of the cell membrane. Finally, we show that ComGC can be cross-linked to yield a form with higher molecular mass, possibly a dimer, and present evidence suggesting that formation of the higher mass complex takes place in the membrane, prior to translocation. Formation of this complex does not require ComC or any of the comG products, other than ComGC itself.
Collapse
Affiliation(s)
- Y S Chung
- Public Health Research Institute, New York, New York 10016, USA
| | | |
Collapse
|
110
|
van Sinderen D, Kiewiet R, Venema G. Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Mol Microbiol 1995; 15:213-23. [PMID: 7746143 DOI: 10.1111/j.1365-2958.1995.tb02236.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the lack of involvement of the competence-specific, membrane-associated deoxyribonuclease (DNase) in competence development, the expression of the gene encoding this protein, nucA, was shown to be dependent on the competence signal transduction pathway, and in particular on ComK, the competence transcription factor, which was shown to bind to the DNA region upstream of nucA. The expression of nucB, specifying an extracellular DNase, which was cloned on the basis of its homology to nucA, was shown to be sporulation-specific and dependent on the gene products of spo0A and spoIIG, the latter constituting an operon responsible for the synthesis of the mother-cell-specific sigma factor sigma E. The observed differential expression of nucA and nucB demarcates the appearance of DNase activities which are either associated with the cytoplasmic membrane or secreted into the medium during different post-exponential growth-phase processes.
Collapse
Affiliation(s)
- D van Sinderen
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
111
|
Haijema BJ, Hamoen LW, Kooistra J, Venema G, van Sinderen D. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol Microbiol 1995; 15:203-11. [PMID: 7746142 DOI: 10.1111/j.1365-2958.1995.tb02235.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcription of the ATP-dependent deoxynuclease operon (addAB), as monitored by means of an addAB-lacZ transcriptional fusion, has a low, constitutive level and is initiated from a sigma A type promoter. Transcription of addAB is independent of DNA-damaging agents known to induce the SOS response in Bacillus subtilis. However, addAB transcription increased significantly during competence development. This competence-specific induction was dependent on the gene products of srfA, degU and comK, but not on that of recA. Deletion analysis of the addAB promoter region demonstrated that the competence-specific transcription induction requires DNA sequences located upstream of the addAB promoter that associated with ComK, the competence transcription factor. The latter finding indicates that a direct regulatory link exists between the establishment of the competent state and the synthesis of AddAB, required for recombination of internalized donor DNA.
Collapse
Affiliation(s)
- B J Haijema
- Groningen Biomolecular Sciences and Biotechnology Institute, Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
112
|
van Sinderen D, Venema G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 1994; 176:5762-70. [PMID: 8083168 PMCID: PMC196780 DOI: 10.1128/jb.176.18.5762-5770.1994] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The comK gene is a regulatory transcription unit which is essential for the development of genetic competence in Bacillus subtilis. The transcription of comK is under strict nutritional and growth phase-dependent control and has been shown to depend on the gene products of comA and srfA. In this report, we show that expression of comK is dependent on its own gene product as well as on the gene products of all other tested regulatory genes known to be involved in competence development (abrB, comA, comP, degU, sin, spo0A, spo0H, spo0K, and srfA). A mecA mutation is able to suppress the competence deficiency of mutations in any of these regulatory loci except for mutations in spo0A and, as we show here, in comK. Furthermore, we show that the presence of comK on a multiple copy plasmid leads to derepression of comK expression, causing an almost constitutive expression of competence in minimal medium as well as permitting competence development in complex medium. We infer from these results that the signals which trigger competence development, after having been received and processed by the various components of the competence signal transduction pathway, all converge at the level of comK expression. As soon as derepression of comK expression occurs, the positive autoregulation rapidly results in accumulation of the comK gene product, which subsequently induces competence.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
113
|
Hahn J, Kong L, Dubnau D. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J Bacteriol 1994; 176:5753-61. [PMID: 8083167 PMCID: PMC196779 DOI: 10.1128/jb.176.18.5753-5761.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
comK, which encodes the competence transcription factor, is itself transcriptionally activated at the transition from exponential growth to stationary phase in Bacillus subtilis. MecA, a negative regulator of competence, also inhibits comK transcription when overexpressed, and a mecA null mutation results in comK overexpression. Although null mutations in mecA, as well as in another gene, mecB, are known to bypass the requirements for nearly all of the competence regulatory genes, the comK requirement is not suppressed by mecA inactivation. Various competence regulatory genes (comA, srfA, degU, abrB, sin, and spo0A) are shown to be required for the expression of comK. srfA transcription is shown to occur equally in cells destined for competence and those destined not to become competent. In contrast, comK transcription is restricted to the presumptive competent cells. These and other results are combined to describe a regulatory pathway for competence.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
114
|
Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58:563-602. [PMID: 7968924 PMCID: PMC372978 DOI: 10.1128/mr.58.3.563-602.1994] [Citation(s) in RCA: 489] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been considered that transformation may be a powerful mechanism of horizontal gene transfer in natural bacterial populations. In this review the current understanding of the biology of transformation is summarized to provide the platform on which aspects of bacterial transformation in water, soil, and sediments and the habitat of pathogens are discussed. Direct and indirect evidence for gene transfer routes by transformation within species and between different species will be presented, along with data suggesting that plasmids as well as chromosomal DNA are subject to genetic exchange via transformation. Experiments exploring the prerequisites for transformation in the environment, including the production and persistence of free DNA and factors important for the uptake of DNA by cells, will be compiled, as well as possible natural barriers to transformation. The efficiency of gene transfer by transformation in bacterial habitats is possibly genetically adjusted to submaximal levels. The fact that natural transformation has been detected among bacteria from all trophic and taxonomic groups including archaebacteria suggests that transformability evolved early in phylogeny. Probable functions of DNA uptake other than gene acquisition will be discussed. The body of information presently available suggests that transformation has a great impact on bacterial population dynamics as well as on bacterial evolution and speciation.
Collapse
Affiliation(s)
- M G Lorenz
- Genetik, Fachbereich Biologie, Carl-von-Ossietzky Universität Oldenburg, Germany
| | | |
Collapse
|
115
|
Abstract
DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented.
Collapse
|
116
|
Londoño-Vallejo JA, Dubnau D. Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J Bacteriol 1994; 176:4642-5. [PMID: 8045895 PMCID: PMC196285 DOI: 10.1128/jb.176.15.4642-4645.1994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ComFA is a membrane protein required for the uptake of transforming DNA following its binding to the Bacillus subtilis competent-cell surface. ComFA, which resembles members of the DEAD family of ATP-driven helicases, contains sequences similar to those found in many ATP-binding proteins and thought to represent the ATP-binding sites of these proteins. We have suggested that ComFA may function as a DNA translocase and/or helicase, using the energy of ATP hydrolysis to mediate the uptake of DNA. As a partial test of this hypothesis, we have introduced mutations into highly conserved glycyl and lysyl residues of the putative ATP-binding site, located, respectively, at positions 151 and 152, and determined the effects of these alterations on in vivo function. A substitution of the conserved lysyl by a glutamyl residue (K152E) and a double G151R-K152N mutation each resulted in a nearly 1,000-fold decrease in transformability, equivalent to that observed in a ComFA null mutant. A K152N mutation caused a partial loss-of-function phenotype. These effects were manifested at the level of DNA uptake; no marked effects on the final levels of DNA binding were noted. When either the K152E mutant allele or the G151R-K152N double mutant allele was combined in single copy with wild-type comFA, a dominant negative phenotype expressed on the level of DNA uptake was observed, suggesting that ComFA acts in a complex with other proteins, with additional molecules of ComFA, or with both.
Collapse
|
117
|
Londoño-Vallejo JA, Dubnau D. Membrane association and role in DNA uptake of the Bacillus subtilis PriA analogue ComF1. Mol Microbiol 1994; 13:197-205. [PMID: 7984101 DOI: 10.1111/j.1365-2958.1994.tb00415.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The late competence protein ComF1 is required for genetic transformation in Bacillus subtilis. Because of the sequence similarities of ComF1 to known ATP-dependent DNA helicases and translocases, we have hypothesized that this protein either unwinds bound double-stranded DNA or helps in the translocation of the transforming single-stranded DNA across the cell membrane. Two important implications of this hypothesis (the association of ComF1 with the membrane and its specific requirement for DNA uptake) have been tested in this report. Using cell fractionation techniques and Western blotting analysis, we show that ComF1 is located almost exclusively on the cell membrane and that it is membrane-targeted independently of other competence proteins. Moreover, ComF1 behaves like an integral membrane protein in extractability and detergent partition assays. We also show that this protein is required for the DNA-uptake step during transformation but not for DNA binding to the cell surface. DNA uptake is blocked in strains with null mutations or in-frame deletions in comF1 but also in strains that overproduce the ComF1 protein under competence conditions. This last observation suggests that ComF1 expression must be balanced with that of other competence proteins, with which it may interact to form a multisubunit complex for DNA uptake.
Collapse
|
118
|
Kong L, Dubnau D. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc Natl Acad Sci U S A 1994; 91:5793-7. [PMID: 8016067 PMCID: PMC44083 DOI: 10.1073/pnas.91.13.5793] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of competence genes in Bacillus subtilis is controlled by a signal transduction cascade which increases the expression of a competence transcription factor (CTF, encoded by comK) during the transition from exponential growth to stationary phase. The transcription of CTF (ComK) is decreased by the product of the mecA gene, and this inhibition is relieved in response to an unknown signal received from upstream in the regulatory pathway. Inactivation of either mecA or another gene, mecB, results in overproduction of ComK. We show here that the concentration of MecA protein does not vary markedly with culture medium, as a function of growth stage, or in competent and noncompetent cells. We also show that MecA can interact directly with ComK. Finally, evidence is presented suggesting that MecB functions prior to MecA in the signaling pathway. A model is discussed which involves the sequestration of ComK by MecA binding and the release of the transcription factor when an appropriate signal is relayed to MecA by MecB.
Collapse
Affiliation(s)
- L Kong
- Department of Microbiology, Public Health Research Institute, New York, NY 10016
| | | |
Collapse
|
119
|
Siranosian KJ, Grossman AD. Activation of spo0A transcription by sigma H is necessary for sporulation but not for competence in Bacillus subtilis. J Bacteriol 1994; 176:3812-5. [PMID: 8206860 PMCID: PMC205571 DOI: 10.1128/jb.176.12.3812-3815.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
spo0A and spo0H are needed for the initiation of sporulation and for the development of genetic competence in Bacillus subtilis. Transcription of spo0A initiates from two promoters, Pv and Ps. Pv is active during vegetative growth and is recognized by RNA polymerase containing sigma A. Expression from Ps increases during sporulation and depends on sigma H, the spo0H gene product. A deletion mutation, spo0A delta Ps, that removes the promoter controlled by sigma H blocked sporulation but had no detectable effect on competence. These results indicate that expression of spo0A from Ps is necessary for sporulation and that the requirement for spo0H in competence development is not due to its role in expression of spo0A.
Collapse
Affiliation(s)
- K J Siranosian
- Department of Biology, Masschusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
120
|
Dubnau D, Hahn J, Roggiani M, Piazza F, Weinrauch Y. Two-component regulators and genetic competence in Bacillus subtilis. Res Microbiol 1994; 145:403-11. [PMID: 7855426 DOI: 10.1016/0923-2508(94)90088-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, NY 10016
| | | | | | | | | |
Collapse
|
121
|
Kunst F, Msadek T, Bignon J, Rapoport G. The DegS/DegU and ComP/ComA two-component systems are part of a network controlling degradative enzyme synthesis and competence in Bacillus subtilis. Res Microbiol 1994; 145:393-402. [PMID: 7855425 DOI: 10.1016/0923-2508(94)90087-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F Kunst
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique, URA 1300, Institut Pasteur, Paris
| | | | | | | |
Collapse
|
122
|
Hulett FM, Lee J, Shi L, Sun G, Chesnut R, Sharkova E, Duggan MF, Kapp N. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J Bacteriol 1994; 176:1348-58. [PMID: 8113174 PMCID: PMC205199 DOI: 10.1128/jb.176.5.1348-1358.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacillus subtilis has an alkaline phosphatase (APase) gene family composed of at least four genes. All members of this gene family are expressed postexponentially, either in response to phosphate starvation or sporulation induction or, in some cases, in response to both. The phoA gene (formerly called phoAIV) and the phoB gene (formerly called phoAIII) products have both been isolated from phosphate-starved cells, and a mutation in either gene decreased the total APase expressed under phosphate starvation conditions. Data presented here show that a phoA phoB double mutant reduced APase production during phosphate starvation by 98%, indicating that these two genes are responsible for most of the APase activity during phosphate-limited growth. The promoter for phoA was cloned and used, with the phoB promoter, to examine phosphate regulation in B. subtilis. phoA-lacZ reporter gene assays showed that the expression of the phoA gene commences as the culture enters stationary phase as a result of limiting phosphate concentrations in the growth medium, thereby mimicking the pattern of total APase expression. Induction persists for approximately 2 h and is then turned off. phoA is transcribed from a single promoter which initiates transcription 19 bp before the translation initiation codon. PhoP and PhoR are members of the two-component signal transduction system believed to regulate gene expression in response to limiting phosphate. The expression of phoA or phoB in response to phosphate starvation was equally dependent on PhoP and PhoR for induction. lacZ-promoter fusions showed that both phoA and phoB were hyperinduced, or failed to turn off induction after 2 h, in a spo0A strain of B. subtilis. Mutations in genes which are required for phosphorylation of Spo0A, spo0B and spo0F, also resulted in phoA and phoB hyperinduction, suggesting that phosphorylation of Spo0A is required for the repression of both APases in wild-type strains. The hyperinduction of either APase gene in a spo0A strain was dependent on PhoP and PhoR. Analysis of a phoP-lacZ promoter fusion showed that the phoPR operon is hyperinduced in a spo0A mutant strain, suggesting that Spo0A approximately P represses APases by repressing phoPR transcription. We propose a model for PHO regulation in B. subtilis whereby the phoPR operon is transcribed in response to limiting phosphate concentration, resulting in activation of the PHO regulon transcription, including transcription of phoA and phoB. When the phosphate response fails to overcome the nutrient deficiency, signals for phosphorylation of Spo0A result in production of Spo0A approximately P, which represses transcription of phoPR, thereby repressing synthesis of the PHO regulon.
Collapse
Affiliation(s)
- F M Hulett
- Department of Biological Sciences, University of Illinois at Chicago 60607-7020
| | | | | | | | | | | | | | | |
Collapse
|
123
|
van Sinderen D, ten Berge A, Hayema BJ, Hamoen L, Venema G. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol Microbiol 1994; 11:695-703. [PMID: 8196543 DOI: 10.1111/j.1365-2958.1994.tb00347.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transformation-deficient strain E26, isolated as a pHV60 insertion mutant, was used to isolate comK, a novel transcription unit required for genetic competence in Bacillus subtilis. Mutational analysis and sequence determination showed that comK contained one open reading frame (ORF), which could encode a protein of 192 amino acid residues with a predicted molecular weight of 22,500. An integrated copy of comK not only complemented the competence deficiency of a comK deletion mutant, but also that of strains E26 and FB93. Expression of comK occurred exclusively in glucose-based minimal medium during the transition to stationary growth phase. Furthermore, the expression of late competence genes appeared to be dependent on the gene product of comK, the expression of which in turn depended on the presence of a functional comL (or srfA) transcription unit. These epistatic interactions indicate that comK is a competence locus occupying an intermediate position in the competence signal transduction network. Primer extension analysis showed that comK has one major transcription start site, preceded by a sequence resembling the consensus promoter used by the sigma A form of RNA polymerase.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
124
|
O'Reilly M, Woodson K, Dowds BC, Devine KM. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. Mol Microbiol 1994; 11:87-98. [PMID: 7511775 DOI: 10.1111/j.1365-2958.1994.tb00292.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A method is described here that can be used to identify operons whose expression is controlled by any particular regulator protein. This method was used to identify operons whose expression is negatively regulated by Spo0A in Bacillus subtilis. Twenty-eight strains were identified, each of which contains an operon-lacZ transcriptional fusion, negatively regulated, either directly or indirectly, by Spo0A. In one of these strains (CSA8), the lacZ gene is fused to the argC-F operon positioned at 100 degrees on the B. subtilis chromosome. The regulated expression of this operon by Spo0A-P is mediated indirectly through the transition state regulator AbrB and is manifest only during growth on solid medium. In a second strain (CSA15), the lacZ gene is fused to an operon encoding a transport system which displays features characteristic of the ABC group of transporters, and which has a very high level of identity to the ribose transport system from Escherichia coli. Expression of the ribose transport operon is directed by a single SigA-type promoter. Transcription from this promoter is repressed by the phosphorylated form of Spo0A during the late-exponential/transition phase of the growth cycle and this control is not mediated through the transition-state regulator, AbrB.
Collapse
Affiliation(s)
- M O'Reilly
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
125
|
Hahn J, Inamine G, Kozlov Y, Dubnau D. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol 1993; 10:99-111. [PMID: 7968523 DOI: 10.1111/j.1365-2958.1993.tb00907.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding and transport of DNA by competent Bacillus subtilis requires the assembly of a specialized apparatus. We present here the characterization of comE, an operon under competence control that is required for both DNA binding to the competent cell surface, and for uptake. comE contains three open reading frames (ORF1-3) read in the forward direction, preceded by a long untranslated leader sequence and an apparent E sigma A promoter. A minor promoter also is responsible for transcription of ORF2 and -3. A transcript containing a single ORF is produced in the reverse direction. The reverse ORF overlaps ORF1 and the untranslated comE leader. The comE transcript is present at a very low level during growth and at an elevated level in stationary-phase cells. Conversely, the reverse transcript is present during exponential growth and disappears during stationary phase. The reverse ORF resembles prokaryotic and eukaryotic pyrroline-5'-carboxylate reductases, while ORF2 is similar to several dCMP deaminases. ORF1 and ORF3 are predicted to be integral membrane proteins. The latter is specifically required for DNA uptake but not for binding.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | | | | | |
Collapse
|
126
|
Cheo DL, Bayles KW, Yasbin RE. Elucidation of regulatory elements that control damage induction and competence induction of the Bacillus subtilis SOS system. J Bacteriol 1993; 175:5907-15. [PMID: 7690748 PMCID: PMC206671 DOI: 10.1128/jb.175.18.5907-5915.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel consensus sequence (GAAC-N4-GTTC) has been identified within the promoter regions of DNA damage-inducible (din) genes from Bacillus subtilis. This sequence has been proposed to function as an operator site that is required for regulation of the SOS system of B. subtilis. To test this hypothesis, a deletion analysis of the dinA and recA promoter regions was utilized. A single consensus sequence is sufficient and necessary for damage-inducible regulation of the dinA and recA promoters. Deletion of the consensus sequences upstream of these promoters derepressed their expression under uninduced conditions. In addition, this deletion analysis has further defined sequences upstream of the recA promoter that are required for expression of the recA gene in cells that have differentiated to the state of natural competence. Northern (RNA) hybridization and S1 nuclease protection experiments have demonstrated that the damage-inducible and competence-inducible recA-specific transcripts initiate from a single promoter. Mutations within the comA, srfA, and degU loci each completely abolish the competence-inducible expression of the recA gene.
Collapse
Affiliation(s)
- D L Cheo
- Department of Biological Sciences, University of Maryland, Baltimore 21228
| | | | | |
Collapse
|
127
|
Londoño-Vallejo JA, Dubnau D. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 1993; 9:119-31. [PMID: 8412657 DOI: 10.1111/j.1365-2958.1993.tb01674.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have sequenced and genetically characterized comF, a Bacillus subtilis competence locus, previously identified by Tn917 transposon insertion mutagenesis. Expression of the locus, in which three open reading frames (ORFs) were found, is driven by a single sigma A-like promoter in front of comFORF1 and is dependent on early regulatory competence genes and only expressed in competence medium. The predicted amino acid sequences of two of the ORFs showed similarities to known proteins in the GenBank and SwissProt databases: ComFORF1 is similar to an extensive family of ATP-dependent RNA/DNA helicases with closer similarity to the DEAD protein subfamily and to the PriA protein in Escherichia coli. The latter is a DNA translocase/helicase required for primosome assembly at the replication fork of phage phi X174. ComFORF3 is 22% identical to Com101, a protein required for genetic competence in Haemophilus influenzae, a naturally competent Gram-negative bacterium. In-frame comFORF1 deletions were 1000-fold deficient in transformability compared to the wild-type, whereas disruptions of the other two ORFs were only five- to 10-fold lower. These observations allow us to hypothesize that the ComFORF1 late gene product plays an essential role during the binding and uptake events involved in Bacillus subtilis transformation.
Collapse
|
128
|
Kong L, Siranosian KJ, Grossman AD, Dubnau D. Sequence and properties of mecA, a negative regulator of genetic competence in Bacillus subtilis. Mol Microbiol 1993; 9:365-73. [PMID: 8412687 DOI: 10.1111/j.1365-2958.1993.tb01697.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development of competence in Bacillus subtilis is regulated by growth conditions and several regulatory genes. In complex media competence development is poor, and there is little or no expression of late competence genes. mec mutations permit competence development and late competence gene expression in complex media, and bypass the requirements for many of the competence regulatory genes. In this paper we describe the cloning and characterization of mecA. The mecA gene product acts negatively in the development of competence. Null mutations in mecA allowed expression of a late competence gene comG, under conditions where it is not normally expressed, including in complex media and in cells mutant for several competence regulatory genes. Overexpression of MecA from a multicopy plasmid resulted in inhibition of comG transcription. The DNA sequence of mecA was determined and the predicted gene product showed no significant similarity to any protein in the database. Expression of a mecA-lacZ translational fusion was constitutive during growth and did not vary significantly in the different media tested. The role of mecA in competence development and other stationary phase phenomena is discussed.
Collapse
Affiliation(s)
- L Kong
- Public Health Research Institute, New York, New York 10016
| | | | | | | |
Collapse
|
129
|
Jensen KK, Sharkova E, Duggan MF, Qi Y, Koide A, Hoch JA, Hulett FM. Bacillus subtilis transcription regulator, Spo0A, decreases alkaline phosphatase levels induced by phosphate starvation. J Bacteriol 1993; 175:3749-56. [PMID: 8509330 PMCID: PMC204791 DOI: 10.1128/jb.175.12.3749-3756.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alkaline phosphatase (APase) is induced as a culture enters stationary phase because of limiting phosphate. The results presented here show that expression of APase is regulated both negatively and positively. PhoP, a homolog of a family of bacterial transcription factors, and PhoR, a homolog of bacterial histidine protein kinases, are required for induction of APases when phosphate becomes limiting. The induction period lasts 2 to 3 h, after which the rate of APase accumulation is decreased. Mutant strains defective in the Spo0A transcription factor failed to decrease APase production. The consequent hyperinduction of APase in a spo0A strain was dependent on phoP and phoR. spo0B and spo0F strains also overexpressed APase, suggesting that phosphorylated Spo0A is required for repression of APase. An abrB mutant allele in the presence of the mutant spo0A allele in these strains did not significantly change the APase hyperinduction phenotype, demonstrating that Spo0A repression of abrB expression is not the mechanism by which Spo0A-P regulates APase expression. Our previous report that spo0A mutants do not express APases is in conflict with the present data. We show here that the previously used mutants and a number of commonly used spo0 strains, all of which have an APase deficiency phenotype, contain a previously unrecognized mutation in phoR.
Collapse
Affiliation(s)
- K K Jensen
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | | | | | | | | | |
Collapse
|
130
|
D'Souza C, Nakano MM, Corbell N, Zuber P. Amino-acylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis. J Bacteriol 1993; 175:3502-10. [PMID: 8501054 PMCID: PMC204750 DOI: 10.1128/jb.175.11.3502-3510.1993] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The part of the srfA operon of Bacillus subtilis that contains the region required for competence development is composed of the first four amino acid-activating domains which are responsible for the incorporation of Glu, Leu, D-Leu, and Val into the peptide moiety of the lipopeptide surfactin. Ser-to-Ala substitutions were made in the amino-acylation site of each domain, and their effects on surfactin production and competence development were examined. All of the mutations conferred a surfactin-negative phenotype, supporting the finding that the conserved Ser in the amino-acylation site is required for peptide synthesis. However, none of the mutations affected significantly competence development or the expression of a lacZ fusion to the late competence operon comG. This, coupled with recent findings that only the fourth, Val-activating, domain is required for competence, suggests that some activity, other than amino-acylation and perhaps unrelated to peptide synthesis, possessed by the fourth domain is involved in the role of srfA in regulating competence development.
Collapse
Affiliation(s)
- C D'Souza
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | | | |
Collapse
|
131
|
Abstract
The sigB operon of Bacillus subtilis encodes sigma B plus three additional proteins (RsbV, RsbW, and RsbX) that regulate sigma B activity. Using an anti-sigma B monoclonal antibody to monitor the levels of sigma B protein, PSPAC to control the expression of the sigB operon, and a ctc-lacZ reporter system to monitor sigma B activity, we observed that the rsbV and rsbW products control sigma B activity at the ctc promoter independently of their effects on sigma B levels. In contrast, RsbX was found to have no effect on expression of ctc when the sigB operon was controlled by PSPAC. The data are consistent with RsbV and RsbW being regulators of sigma B activity and RsbX acting primarily as a negative regulator of sigB operon expression. Evidence that stationary-phase induction of the sigma B-dependent ctc promoter is accomplished by a reduction in RsbW-dependent inhibition of sigma B activity is also presented. In addition, Western blot (immunoblot) analyses of sigB operon expression demonstrated that sigma B accumulation is coupled to the synthesis of its primary inhibitor (RsbW). This finding is consistent with RsbW and sigma B being present within the cell in equivalent amounts, a circumstance that would permit RsbW to directly influence sigma B activity by a direct protein-protein interaction.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
132
|
Bai U, Mandic-Mulec I, Smith I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev 1993; 7:139-48. [PMID: 8422983 DOI: 10.1101/gad.7.1.139] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
SinR, a 111-amino-acid DNA-binding protein, is a pleiotropic regulator of several late growth processes in Bacillus subtilis. It acts as a developmental switch, positively regulating genes for competence and motility and repressing aprE and stage II sporulation genes. It is encoded by the second gene in a two gene operon, but previous results have also indicated that these two genes are differently regulated. We show in this discussion that the product of sinI, the first open reading frame (ORF) of this operon, interferes with the function of SinR. In vivo experiments have demonstrated that overexpression of sinI results in phenotypes that are observed in cells with a null mutation of sinR. A chromosomal in-frame deletion of sinI gives rise to a phenotype associated with higher levels of SinR. Thus, SinI acts as an antagonist to SinR. In vitro experiments have shown that the interaction between these two proteins is a direct one. SinI prevents SinR from binding to its target sequence on aprE, and the two proteins form a complex that can be immunoprecipitated with antibodies to either SinR or SinI.
Collapse
Affiliation(s)
- U Bai
- Department of Microbiology, New York University Medical Center, New York 10016
| | | | | |
Collapse
|
133
|
Cataldi A, Fouet A, Mock M. Regulation of pag gene expression inBacillus anthracis: use of a pag-lacZ transcriptional fusion. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05495.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
134
|
Cheung AL, Koomey JM, Butler CA, Projan SJ, Fischetti VA. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci U S A 1992; 89:6462-6. [PMID: 1321441 PMCID: PMC49521 DOI: 10.1073/pnas.89.14.6462] [Citation(s) in RCA: 276] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A single insertion of transposon Tn917LTV1 into the chromosome of a Staphylococcus aureus clinical isolate, strain DB, resulted in a pleiotropic effect on the expression of a number of extracellular and cell-wall-associated proteins. Detailed comparison of phenotypes associated with the mutant, 11D2, and the parent, DB, indicated that the chromosomal locus inactivated as a result of transposon mutagenesis differs from the S. aureus accessory gene regulator locus (agr). In particular, the expression of alpha-hemolysin, which is not detectable in Agr- mutants, was enhanced in mutant 11D2, while it remained at a low level in strain DB. Likewise, protease activity was significantly enhanced in 11D2 compared with DB. In addition, most of the cell-bound proteins were expressed at lower levels in the mutant than the parent strain. This pattern is contrary to that found in switching from Agr+ to Agr- phenotypes. Southern blot hybridization with an agr probe indicated that the inactivated chromosomal locus is distinct from agr. Transduction experiments demonstrated that the phenotypes associated with mutant 11D2 could be transferred to the parental strain DB as well as to RN450, an S. aureus strain with a genetic background similar to strain 8325-4. This locus on the S. aureus chromosome, possibly regulatory in nature, has been designated sar for staphylococcal accessory regulator.
Collapse
Affiliation(s)
- A L Cheung
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
135
|
Gholamhoseinian A, Shen Z, Wu JJ, Piggot P. Regulation of transcription of the cell division gene ftsA during sporulation of Bacillus subtilis. J Bacteriol 1992; 174:4647-56. [PMID: 1624452 PMCID: PMC206260 DOI: 10.1128/jb.174.14.4647-4656.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Three distinct 5' ends of ftsA mRNA were identified by S1 mapping and by primer extension analysis. These are thought to represent three transcription start sites. The transcripts from the downstream and upstream sites were detected throughout growth. The transcript from the middle site was not detected during exponential growth but was detected within 30 min of the start of sporulation, when it was the predominant transcript. Insertion of a cat cassette in the middle promoter, ftsAp2 (p2), did not affect vegetative growth but prevented postexponential symmetrical division and spore formation. Transcription from p2 was dependent on RNA polymerase containing sigma H, and promoter p2 resembled the consensus sigma H promoter. Transcription from p2 did not require expression of the spo0A, spo0B, spo0E, spo0F, or spo0K loci. Northern (RNA) blot analysis indicated that ftsA is cotranscribed with the adjacent ftsZ gene. Multiple promoters provide a mechanism by which essential vegetative genes can be subjected to sporulation control independent of control during vegetative growth. In the case of ftsA,Z, the promoters provide a mechanism to permit septum formation in conditions of nutrient depletion that might be expected to shut down the vegetative division machinery.
Collapse
Affiliation(s)
- A Gholamhoseinian
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | | | |
Collapse
|
136
|
Raymond-Denise A, Guillen N. Expression of the Bacillus subtilis dinR and recA genes after DNA damage and during competence. J Bacteriol 1992; 174:3171-6. [PMID: 1577687 PMCID: PMC205983 DOI: 10.1128/jb.174.10.3171-3176.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Bacillus subtilis dinR gene product is homologous to the LexA protein of Escherichia coli and regulates the expression of dinR and dinC. Using transcriptional fusions in the dinR and the recA genes, we have investigated the epistatic relationship between these two genes during the SOS response induced either by DNA damage or by competence. The results show that after DNA damage, induction of the expression of both recA and dinR is dependent on the activity of the DinR and RecA proteins. A RecA-dependent activity on DinR is proposed as the initial event in the induction of the SOS network. In contrast, the competence-related induction of dinR and recA appears to involve two distinct mechanisms. While one mechanism corresponds to the classical regulation of the SOS response, the other appears to involve an activating factor. Moreover, this factor is active in cells in which competence is prevented by a mutation in the regulatory gene comA.
Collapse
Affiliation(s)
- A Raymond-Denise
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U199, Institut Pasteur, Paris, France
| | | |
Collapse
|
137
|
Benson AK, Haldenwang WG. Characterization of a regulatory network that controls sigma B expression in Bacillus subtilis. J Bacteriol 1992; 174:749-57. [PMID: 1732211 PMCID: PMC206151 DOI: 10.1128/jb.174.3.749-757.1992] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sigB operon of Bacillus subtilis encodes sigma B and three additional open reading frames (orfV, orfW, and orfX). Having previously mapped several mutations that alter the induction pattern of a sigma B-dependent promoter (ctc) to regions of cloned B. subtilis DNA which contain these three open reading frames, we directly tested the regulatory potential of orfV, orfW, and orfX by creating null alleles of each of these genes and examining the effects of the mutations, either singly or in pairs, on transcription of ctc and the sigB operon. Using lacZ reporter gene fusions and Northern (RNA) blot analyses, we have determined that all three genes modulate the activation of the sigma B-dependent promoters at both the sigB operon and ctc. Our data are consistent with the three gene products participating in a single pathway of negative control. orfW and orfX single-mutant strains have high levels of sigB and ctc transcription. sigB and ctc transcription in an orfV strain is similar to that found in mutant strains which lack sigma B itself. The orfV mutation is dominant to orfX but recessive to orfW. These results suggest that OrfW is the primary inhibitor of sigma B-dependent transcription and that OrfV is capable of counteracting the negative control of OrfW but is prevented from doing this by the orfX gene product.
Collapse
Affiliation(s)
- A K Benson
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| | | |
Collapse
|
138
|
Nakano MM, Zuber P. The primary role of comA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J Bacteriol 1991; 173:7269-74. [PMID: 1938921 PMCID: PMC209234 DOI: 10.1128/jb.173.22.7269-7274.1991] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The establishment of genetic competence in Bacillus subtilis requires the genes of the competence regulon which function in the binding, processing, and transport of DNA. Their expression is governed by multiple regulatory pathways that are composed of the comA, comP, sin, abrB, spo0H, spo0K, spo0A, degU, and srfA gene products. Among these, srfA is thought to occupy an intermediate position in one of the pathways that controls late competence gene expression. The full expression of srfA requires the gene products of comP, comA, and spo0K. To determine the role of these genes in the regulation of competence development, the expression of the srfA operon was placed under control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter Pspac and the expression of the Pspac-srfA construct was examined in mutants blocked in early competence. By monitoring the IPTG-induced expression of Pspac-srfA with a srfA-lacZ operon fusion, it was observed that srfA expression was no longer dependent on the products of comP, comA, and spo0K. Production of the lipopeptide antibiotic surfactin in Pspac-srfA-bearing cells was induced in the presence of IPTG and was independent of ComP and ComA. Competence development was induced by IPTG and was independent of comP, comA, and spo0K in cells carrying Pspac-srfA. These results suggest that the ComP-ComA signal transduction pathway as well as Spo0K is required for the expression of srfA in the regulatory cascade of competence development. Studies of Pspac-srfA also examined the involvement of srfA in the growth stage-specific and nutritional regulation of a late competence gene.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|
139
|
Raymond-Denise A, Guillen N. Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J Bacteriol 1991; 173:7084-91. [PMID: 1657879 PMCID: PMC209213 DOI: 10.1128/jb.173.22.7084-7091.1991] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A Bacillus subtilis strain deficient in homologous recombination was isolated from a library of Tn917lac insertion mutants. The interrupted locus consists of an open reading frame encoding a 22,823-dalton polypeptide. Analysis of the deduced amino acid sequence revealed 34% identity and 47.3% similarity with the LexA protein from Escherichia coli. The gene was designated dinR. It is located between the recA and thyA genetic markers, at 162 degrees on the B. subtilis chromosome. The dinR gene was shown to be expressed during the entire B. subtilis cellular cycle with at least a threefold increase when cells develop competence. In addition, the use of a merodiploid strain, in which a copy of the wild-type dinR gene coexists with a dinR-lacZ transcriptional fusion, demonstrated that dinR is an SOS gene and that the SOS-induced expression of dinR occurred only when a wild-type copy of dinR was present. In addition, DinR seems to regulate the expression of dinC, another SOS gene.
Collapse
Affiliation(s)
- A Raymond-Denise
- Unité de Pathogénie Microbienne Moléculaire, U199 Institut National de la Santé et de la Recherche Médicale, Institut Pasteur, Paris, France
| | | |
Collapse
|
140
|
Hahn J, Dubnau D. Growth stage signal transduction and the requirements for srfA induction in development of competence. J Bacteriol 1991; 173:7275-82. [PMID: 1938922 PMCID: PMC209235 DOI: 10.1128/jb.173.22.7275-7282.1991] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
srfA is an operon needed for the development of genetic competence in Bacillus subtilis. This operon is normally expressed at a low level during growth, and its transcription increases sharply just before the transition to stationary phase. The genetic requirements for the full expression of srfA were previously examined in several laboratories and shown to include spo0A, spo0H, spo0K, comQ, and comA. In the present study these results were confirmed with an isogenic set of strains. We have also shown that comP is needed for srfA expression but that other regulatory genes required for competence (degU, sin, and abrB) are not needed for the expression of srfA. We have used the expression of srfA under control of the regulatable Pspac promoter to study the kinetics of competence development and to determine whether the genes ordinarily required for expression of srfA are needed for any additional roles during the development of competence. When expression of srfA was driven from Pspac, competence was expressed constitutively throughout growth. Furthermore, when srfA was expressed from Pspac, the spo0K, comQ, comP, and comA determinants were no longer required for the expression of competence. We conclude therefore that the multiple signals which trigger the initiation of competence development in relation to growth stage are ordinarily received prior to the increase in srfA expression. We propose that these signals are mediated by the products of spo0K, comQ, comP, and comA, resulting in the phosphorylation of ComA by ComP. This in turn would enable ComA to function as a positive transcription factor for srfA, leading to the elaboration of the srfA product(s) and the consequent initiation of competence. We also propose that this is the major, and possibly the only, role for the spo0K, comQ, comP, and comA products during competence development.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
141
|
Vandenesch F, Kornblum J, Novick RP. A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. J Bacteriol 1991; 173:6313-20. [PMID: 1717437 PMCID: PMC208961 DOI: 10.1128/jb.173.20.6313-6320.1991] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus exoprotein expression is controlled by a global regulon known as agr. This system activates transcription of some target genes and represses transcription of others. Target genes expressed postexponentially such as alpha-hemolysin (hla) are activated by agr; target genes expressed during exponential phase such as protein A (spa) are repressed by agr. A unique feature of the agr system is that this transcriptional regulation is mediated by a 517-nucleotide transcript, RNAIII. While it is clear that agr differentially regulates the expression of exponential and postexponential exoproteins, the precise role of agr in the temporal control of these events has not yet been explored. In this report, we examine the effects of expressing RNAIII, the agr regulator, under the control of the inducible beta-lactamase (bla) promoter at different times in the growth cycle. We confirm previous results showing that agr is required for postexponential-phase expression of hla and further show that a separate postexponential-phase signal independent of agr function is also needed for activation of hla transcription. We also show that in an agr mutant transcription of spa occurs throughout the growth cycle, is inhibited immediately upon induction of RNAIII, and is thus indifferent to the postexponential signal required for hla activation.
Collapse
Affiliation(s)
- F Vandenesch
- Department of Plasmid Biology, Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
142
|
Abstract
Genetic competence may be defined as a physiological state enabling a bacterial culture to bind and take up high-molecular-weight exogenous DNA (transformation). In Bacillus subtilis, competence develops postexponentially and only in certain media. In addition, only a minority of the cells in a competent culture become competent, and these are physiologically distinct. Thus, competence is subject to three regulatory modalities: growth stage specific, nutritionally responsive, and cell type specific. This review summarizes the present state of knowledge concerning competence in B. subtilis. The study of genes required for transformability has permitted their classification into two broad categories. Late competence genes are expressed under competence control and specify products required for the binding, uptake, and processing of transforming DNA. Regulatory genes specify products that are needed for the expression of the late genes. Several of the late competence gene products have been shown to be membrane localized, and others are predicted to be membrane associated on the basis of amino acid sequence data. Several of these predicted protein sequences show a striking resemblance to gene products that are involved in the export and/or assembly of extracellular proteins and structures in gram-negative organisms. This observation is consistent with the idea that the late products are directly involved in transport of DNA and is equally consistent with the notion that they play a morphogenetic role in the assembly of a transport apparatus. The competence regulatory apparatus constitutes an elaborate signal transduction system that senses and interprets environmental information and passes this information to the competence-specific transcriptional machinery. Many of the regulatory gene products have been identified and partially characterized, and their interactions have been studied genetically and in some cases biochemically as well. These include several histidine kinase and response regulator members of the bacterial two-component signal transduction machinery, as well as a number of known transcriptionally active proteins. Results of genetic studies are consistent with the notion that the regulatory proteins interact in a hierarchical way to make up a regulatory pathway, and it is possible to propose a provisional scheme for the organization of this pathway. It is remarkable that almost all of the regulatory gene products appear to play roles in the control of various forms of postexponential expression in addition to competence, e.g., sporulation, degradative-enzyme production, motility, and antibiotic production. This has led to the notion of a signal transduction network which transduces environmental information to determine the levels and timing of expression of the ultimate products characteristic of each of these systems.
Collapse
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| |
Collapse
|
143
|
Weinrauch Y, Msadek T, Kunst F, Dubnau D. Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 1991; 173:5685-93. [PMID: 1715859 PMCID: PMC208298 DOI: 10.1128/jb.173.18.5685-5693.1991] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sequence and properties of the comQ gene are described. comQ was predicted to encode a 34,209-Da protein, and the product of comQ was shown to be required for the development of genetic competence. The apparent transcriptional initiation and termination sites of comQ were mapped, and the location of a likely E sigma A promoter was inferred. The expression of comQ was maximal early in growth and declined as the cells approached the stationary phase. This expression was not dependent on any of the competence regulatory genes tested (comA, comP, sin, abrB, degU, and spo0A). Disruption of comQ in the chromosome prevented the development of competence as well as the transcription of comG, a late competence operon. This disruption also decreased the expression of srfA, a regulatory operon needed for the expression of competence. These and other results suggest a role for ComQ early in the hierarchy of competence regulatory genes, probably as a component of a signal transduction system.
Collapse
Affiliation(s)
- Y Weinrauch
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | | | |
Collapse
|
144
|
Larson TG, Goodgal SH. Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae. J Bacteriol 1991; 173:4683-91. [PMID: 1856167 PMCID: PMC208145 DOI: 10.1128/jb.173.15.4683-4691.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A 2.8-kb EcoRI-BglII fragment cloned from the wild-type Haemophilus influenzae Rd chromosome is shown to increase the transformability of the Com-101 mutant through trans complementation. Deletion and sequence analyses indicate that the active region of the clone carries a 687-bp open reading frame. A 0.3-kb insertion in the corresponding EcoRI-BglII fragment of the Com-101 chromosome is shown to be a partial (331-bp) duplication of this open reading frame. The wild-type sequence produces a peptide of a size that is consistent with the sequence data when this sequence is expressed in Escherichia coli with a T7 promoter-based transcription vector. RNA hybridization analysis using a DNA probe derived from the open reading frame suggests that the sequence is transiently expressed during competence development. On the basis of these observations, it is proposed that the open reading frame corresponds to the com101A gene.
Collapse
Affiliation(s)
- T G Larson
- Graduate Group in Biochemistry, University of Pennsylvania, School of Medicine, Philadelphia 19104
| | | |
Collapse
|
145
|
|
146
|
Msadek T, Kunst F, Klier A, Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J Bacteriol 1991; 173:2366-77. [PMID: 1901055 PMCID: PMC207789 DOI: 10.1128/jb.173.7.2366-2377.1991] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Production of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis is regulated at the transcriptional level by a signal transduction pathway which includes the DegS-DegU two-component system and at least two additional regulatory genes, degQ and degR, encoding polypeptides of 46 and 60 amino acids, respectively. Expression of degQ was shown to be controlled by DegS-DegU. This expression is decreased in the presence of glucose and increased under any of the following conditions: growth with poor carbon sources, amino acid deprivation, phosphate starvation, and growth in the presence of decoyinine, a specific inhibitor of GMP synthetase. In addition, expression of degQ is shown to be positively regulated by the ComP-ComA two-component system. Separate targets for regulation of degQ gene expression by DegS-DegU and ComP-ComA were located by deletion analysis between positions -393 and -186 and between positions -78 and -40, respectively. Regulation of degQ expression by amino acid deprivation was shown to be dependent upon ComA. Regulation by phosphate starvation, catabolite repression, and decoyinine was independent of the two-component systems and shown to involve sequences downstream from position -78. The ComP-ComA and DegS-DegU two-component systems seem to be closely related, sharing several target genes in common, such as late competence genes, as well as the degQ regulatory gene. Sequence analysis of the degQ region revealed the beginning of an open reading frame directly downstream from degQ. Disruption of this gene, designated comQ, suggests that it also controls expression of degQ and is required for development of genetic competence.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 1300, Institute Pasteur, Paris, France
| | | | | | | |
Collapse
|
147
|
Anthamatten D, Hennecke H. The regulatory status of the fixL- and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:38-48. [PMID: 2000090 DOI: 10.1007/bf00282640] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cloning, sequencing and mutational analysis of the Bradyrhizobium japonicum symbiotic nitrogen fixation genes fixL and fixJ are reported here. The two genes were adjacent and probably formed an operon, fixLJ. The predicted FixL and FixJ proteins, members of the two-component sensor/regulator family, were homologous over almost their entire lengths to the corresponding Rhizobium meliloti proteins (approx. 50% identity). Downstream of the B. japonicum fixJ gene was found an open reading frame with 138 codons (ORF138) whose product shared 36% homology with the N-terminal part of FixJ. Deletion and insertion mutations within fixL and fixJ led to a loss of approximately 90% wild-type symbiotic nitrogen fixation (Fix) activity, whereas an ORF138 mutant was Fix+. In fixL, fixJ and ORF138 mutant backgrounds, the aerobic expression of the fixR-nifA operon was not affected. NifA itself did not regulate the expression of the fixJ gene. Thus, the B. japonicum FixL and FixJ proteins were neither involved in the regulation of aerobic nifA gene expression nor in the anaerobic NifA-dependent autoregulation of the fixRnifA operon, rather they appeared to control symbiotically important genes other than those whose expression was dependent on the NifA protein. The fixL and fixJ mutant strains were unable to grow anaerobically with nitrate as the terminal electron acceptor. Therefore, some of the FixJ-dependent genes in B. japonicum may be concerned with anaerobic respiration.
Collapse
Affiliation(s)
- D Anthamatten
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
148
|
Abstract
Genetic competence develops as a global response of Bacillus subtilis to the onset of stationary phase, in glucose-minimal salts-based media. The onset of competence is accompanied by the expression of several late gene products that are required for the binding, processing and uptake of transforming DNA. A number of regulatory genes have been identified that are needed for the appropriate synthesis of the late gene products. The regulatory gene products include a number of known transcription factors, as well as several members of the bacterial two-component regulatory system. Genetic analysis has suggested a scheme for the flow of regulatory information signalling the onset of competence. Most of these regulatory products appear to be involved in the response to nutritional status, while the components responsible for growth stage and cell-type-specific control remain unknown. The general implications of this scheme for post-exponential expression are discussed.
Collapse
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| |
Collapse
|
149
|
van Sinderen D, Withoff S, Boels H, Venema G. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:396-404. [PMID: 2125113 DOI: 10.1007/bf00262434] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using the transformation-deficient mutant M465, which was previously isolated by means of insertional mutagenesis with plasmid pHV60, a transcription unit comL required for genetic competence of Bacillus subtilis was identified. A chromosomal DNA fragment flanking the inserted pHV60 was isolated and used to screen two different libraries of B. subtilis DNA in phage lambda EMBL4 and lambda EMBL12, respectively. With the aid of six recombinant phages that hybridize with this chromosomal fragment a restriction map of about 23 kb of B. subtilis chromosomal DNA was constructed. Using small adjoining pieces of this chromosomal DNA in Campbell integrations, the size of the transcription unit involved in competence development could be delimited to about 15 kb. By insertion of a promoterless lacZ gene into comL, the transcriptional regulation of comL was analysed and epistatic interactions among various other com genes were determined. The results of these experiments indicated that comL is optimally expressed in glucose-based minimal medium when the culture enters the stationary phase of growth and that the expression of late competence genes is dependent on previous transcription of comL, which in turn is dependent on the gene products of comA and comB.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
150
|
Abstract
The secondary RNA polymerase sigma factor sigma H is essential for endospore development in Bacillus subtilis. However, only a few promoters that are used by RNA polymerase containing sigma H (E sigma H) have been identified. We used in vitro transcription of random cloned fragments of B. subtilis chromosomal DNA to identify a promoter that is used by E sigma H. This promoter is active before the onset of sporulation.
Collapse
Affiliation(s)
- H L Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | |
Collapse
|