101
|
Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 2001; 41:757-74. [PMID: 11532142 DOI: 10.1046/j.1365-2958.2001.02534.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria respond to diverse growth-limiting stresses by producing a large set of general stress proteins. In Bacillus subtilis and related Gram-positive pathogens, this response is governed by the sigma(B) transcription factor. To establish the range of cellular functions associated with the general stress response, we compared the transcriptional profiles of wild and mutant strains under conditions that induce sigma(B) activity. Macroarrays representing more than 3900 annotated reading frames of the B. subtilis genome were hybridized to (33)P-labelled cDNA populations derived from (i) wild-type and sigB mutant strains that had been subjected to ethanol stress; and (ii) a strain in which sigma(B) expression was controlled by an inducible promoter. On the basis of their significant sigma(B)-dependent expression in three independent experiments, we identified 127 genes as prime candidates for members of the sigma(B) regulon. Of these genes, 30 were known previously or inferred to be sigma(B) dependent by other means. To assist in the analysis of the 97 new genes, we constructed hidden Markov models (HMM) that identified possible sigma(B) recognition sequences preceding 21 of them. To test the HMM and to provide an independent validation of the hybridization experiments, we mapped the sigma(B)-dependent messages for seven representative genes. For all seven, the 5' end of the message lay near typical sigma(B) recognition sequences, and these had been predicted correctly by the HMM for five of the seven examples. Lastly, all 127 gene products were assigned to functional groups by considering their similarity to known proteins. Notably, products with a direct protective function were in the minority. Instead, the general stress response increased relative message levels for known or predicted regulatory proteins, for transporters controlling solute influx and efflux, including potential drug efflux pumps, and for products implicated in carbon metabolism, envelope function and macromolecular turnover.
Collapse
Affiliation(s)
- C W Price
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Serrano M, Hövel S, Moran CP, Henriques AO, Völker U. Forespore-specific transcription of the lonB gene during sporulation in Bacillus subtilis. J Bacteriol 2001; 183:2995-3003. [PMID: 11325926 PMCID: PMC95198 DOI: 10.1128/jb.183.10.2995-3003.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome encodes two members of the Lon family of prokaryotic ATP-dependent proteases. One, LonA, is produced in response to temperature, osmotic, and oxidative stress and has also been implicated in preventing sigma(G) activity under nonsporulation conditions. The second is encoded by the lonB gene, which resides immediately upstream from lonA. Here we report that transcription of lonB occurs during sporulation under sigma(F) control and thus is restricted to the prespore compartment of sporulating cells. First, expression of a lonB-lacZ transcriptional fusion was abolished in strains unable to produce sigma(F) but remained unaffected upon disruption of the genes encoding the early and late mother cell regulators sigma(E) and sigma(K) or the late forespore regulator sigma(G). Second, the fluorescence of strains harboring a lonB-gfp fusion was confined to the prespore compartment and depended on sigma(F) production. Last, primer extension analysis of the lonB transcript revealed -10 and -35 sequences resembling the consensus sequence recognized by sigma(F)-containing RNA polymerase. We further show that the lonB message accumulated as a single monocistronic transcript during sporulation, synthesis of which required sigma(F) activity. Disruption of the lonB gene did not confer any discernible sporulation phenotype to otherwise wild-type cells, nor did expression of lonB from a multicopy plasmid. In contrast, expression of a fusion of the lonB promoter to the lonA gene severely reduced expression of the sigma(G)-dependent sspE gene and the frequency of sporulation. In confirmation of earlier observations, we found elevated levels of sigma(F)-dependent activity in a spoIIIE47 mutant, in which the lonB region of the chromosome is not translocated into the prespore. Expression of either lonB or the P(lonB)-lonA fusion from a plasmid in the spoIIIE47 mutant reduced sigma(F) -dependent activity to wild-type levels. The results suggest that both LonA and LonB can prevent abnormally high sigma(F) activity but that only LonA can negatively regulate sigma(G).
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal
| | | | | | | | | |
Collapse
|
103
|
Gertz S, Engelmann S, Schmid R, Ziebandt AK, Tischer K, Scharf C, Hacker J, Hecker M. Characterization of the sigma(B) regulon in Staphylococcus aureus. J Bacteriol 2000; 182:6983-91. [PMID: 11092859 PMCID: PMC94824 DOI: 10.1128/jb.182.24.6983-6991.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2000] [Accepted: 09/20/2000] [Indexed: 01/01/2023] Open
Abstract
The sigma(B)-dependent stress regulon in gram-positive bacteria might fulfill a physiological role in stress response and virulence similar to that of the sigma(S) regulon in Escherichia coli and other gram-negative bacteria. In order to obtain evidence for the function of the sigma(B) regulon of Staphylococcus aureus, especially in virulence control, sigma(B)-dependent stress genes were identified. The two-dimensional protein pattern of wild-type cells of S. aureus COL was compared with that of an isogenic sigB mutant. By this approach, we found that the synthesis of about 27 cytoplasmic proteins seemed to be under the positive control of sigma(B). N-terminal sequencing of 18 proteins allowed the identification of their genes on the almost finished genome sequence of S. aureus COL and the analysis of the promoter structure. Transcriptional analyses of 11 of these genes confirmed their sigma(B) dependency, and moreover, about 7 additional sigma(B)-dependent genes were found which are cotranscribed with the newly detected genes, forming operons. Altogether, we identified 23 sigma(B)-dependent genes and their corresponding proteins. Among them are proteins probably involved in the generation of NADH or in membrane transport mechanisms. Furthermore, at least one clpC-homologous gene was localized on the S. aureus sequence solely transcribed by sigma(B). In contrast, a second clpC-homologous gene in S. aureus forming an operon with ctsR, yacH, and yacI was sigma(B) independently expressed.
Collapse
Affiliation(s)
- S Gertz
- Institut für Mikrobiologie und Molekularbiologie, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Derré I, Rapoport G, Msadek T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 2000; 38:335-47. [PMID: 11069659 DOI: 10.1046/j.1365-2958.2000.02124.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CtsR (class three stress gene repressor) negatively regulates the expression of class III heat shock genes (clpP, clpE and the clpC operon) by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). CtsR-dependent genes are expressed at a low level at 37 degrees C and are strongly induced under heat shock conditions. We performed a structure/function analysis of the CtsR protein, which is highly conserved among low G+C Gram-positive bacteria. Random chemical mutagenesis, in vitro cross-linking, in vivo co-expression of wild-type and mutant forms of CtsR and the construction of chimeric proteins with the DNA-binding domain of the lambda CI repressor allowed us to identify three different functional domains within CtsR: a helix-turn-helix DNA-binding domain, a dimerization domain and a putative heat-sensing domain. We provide evidence suggesting that CtsR is active as a dimer. Transcriptional analysis of a clpP'-bgaB fusion and/or Western blotting experiments using antibodies directed against the CtsR protein indicate that ClpP and ClpX are involved in CtsR degradation at 37 degrees C. This in turn leads to a low steady-state level of CtsR within the cell, as CtsR negatively autoregulates its own synthesis. This is the first example of degradation of a repressor of stress response genes by the Clp ATP-dependent protease.
Collapse
Affiliation(s)
- I Derré
- Unité de Biochimie Microbienne, URA 2172 du Centre National de la Recherche Scientifique, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
105
|
Moch C, Schrögel O, Allmansberger R. Transcription of the nfrA-ywcH operon from Bacillus subtilis is specifically induced in response to heat. J Bacteriol 2000; 182:4384-93. [PMID: 10913069 PMCID: PMC94607 DOI: 10.1128/jb.182.16.4384-4393.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NfrA protein, an oxidoreductase from the soil bacterium Bacillus subtilis, is synthesized during the stationary phase and in response to heat. Analysis of promoter mutants revealed that the nfrA gene belongs to the class III heat shock genes in B. subtilis. An approximate 10-fold induction at both the transcriptional and the translational levels was found after thermal upshock. This induction resulted from enhanced synthesis of mRNA. Genetic and Northern blot analyses revealed that nfrA and the gene downstream of nfrA are transcribed as a bicistronic transcriptional unit. The unstable full-length transcript is processed into two short transcripts encoding nfrA and ywcH. The nfrA-ywcH operon is not induced by salt stress or by ethanol. According to previously published data, the transcription of class III genes in general is activated in response to the addition of these stressors. However, this conclusion is based on experiments which lacked a valid control. Therefore, it seems possible that the transcription of all class III genes is specifically induced by heat shock.
Collapse
Affiliation(s)
- C Moch
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
106
|
Abstract
This paper describes the purification of thioredoxin reductase (TR) and the characterization, purification, and cloning of thioredoxin (Trx) from Helicobacter pylori. Purification, amino acid sequence analysis, and molecular cloning of the gene encoding thioredoxin revealed that it is a 12-kDa protein which possesses the conserved redox active motif CGPC. The gene encoding Trx was amplified by polymerase chain reaction and inserted into a pET expression vector and used to transform Escherichia coli. Trx was overexpressed by induction with isopropyl-1-thio-beta-D-galactopyranoside as a decahistidine fusion protein and was recovered from the cytoplasm as a soluble and active protein. The redox activity of this protein was characterized using several mammalian proteins of different architecture but all containing disulfide bonds. H. pylori thioredoxin efficiently reduced insulin, human immunoglobulins (IgG/IgA/sIgA), and soluble mucin. Subcellular fractionation analysis of H. pylori revealed that thioredoxin was associated largely with the cytoplasm and inner membrane fractions of the cell in addition to being recovered in the phosphate-buffered saline-soluble fraction of freshly harvested cells. H. pylori TR was purified to homogeneity by chromatography on DEAE-52, Cibacron blue 3GA, and 2',5'-ADP-agarose. Gel filtration revealed that the native TR had a molecular mass of 70 kDa which represented a homodimer composed of two 35-kDa subunits, as determined by SDS-polyacrylamide gel electrophoresis. H. pylori TR (NADPH-dependent) efficiently catalyzed the reduction of 5,5'-dithiobis(nitrobenzoic acid) in the presence of either native or recombinant H. pylori Trx. H. pylori Trx behaved also as a stress response element as broth grown bacteria secreted Trx in response to chemical, biological, and environmental stresses. These observations suggest that Trx may conceivably assist H. pylori in the process of colonization by inducing focal disruption of the oligomeric structure of mucin while rendering host antibody inactive through catalytic reduction.
Collapse
Affiliation(s)
- H J Windle
- Department of Clinical Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland.
| | | | | | | |
Collapse
|
107
|
Berrier C, Garrigues A, Richarme G, Ghazi A. Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel mscL. J Bacteriol 2000; 182:248-51. [PMID: 10613892 PMCID: PMC94269 DOI: 10.1128/jb.182.1.248-251.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon osmotic downshock, a few cytoplasmic proteins, including thioredoxin, elongation factor Tu (EF-Tu), and DnaK, are released from Tris-EDTA-treated Escherichia coli cells by an unknown mechanism. We have shown previously that deletion of mscL, the gene coding for the mechanosensitive channel of the plasma membrane with the highest conductance, prevents the release of thioredoxin. We confirm and extend the implication of MscL in this process by showing that the release of EF-Tu and DnaK is severely impaired in MscL-deficient strains. Release of these proteins is not observed in the absence of a Tris-EDTA treatment which disrupts the outer membrane, indicating that, in intact cells, they are transferred to the periplasm upon shock, presumably through the MscL channel.
Collapse
Affiliation(s)
- C Berrier
- Laboratoire des Biomembranes, UMR CNRS 8619, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
108
|
Cho YH, Lee EJ, Roe JH. A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol Microbiol 2000; 35:150-60. [PMID: 10632885 DOI: 10.1046/j.1365-2958.2000.01685.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces coelicolor produces at least three catalases, the expression of which varies under different conditions. We characterized a gene (catB) for developmentally controlled catalase of 779 amino acids (83408 Da), homologous to KatE of Escherichia coli and Bacillus subtilis. Expression of the catB gene increased at the stationary phase in liquid culture and after the onset of differentiation on solid culture. It was also increased by osmotic treatments. Transcription was initiated from a promoter (catBp), whose sequence (ATGCCTCG-N13-GGGTAC) resembled promoters recognized by sigmaB of B. subtilis. CatB protein underwent proteolytic cleavage of its N-terminal 95 amino acids and was secreted to the medium when cells sporulated. Disruption of the catB gene caused impairment in the formation of aerial mycelium and reduction in the synthesis of undecylprodigiosin. On the contrary, hyperproduction of actinorhodin was observed in accordance with the increase in actII-ORF4 transcription. In addition, catB mutant became hypersensitive to osmotic stresses. These results suggest that regulated synthesis of CatB protein is necessary to ensure proper differentiation as well as to protect S. coelicolor cells against osmotic stresses.
Collapse
Affiliation(s)
- Y H Cho
- Department of Microbiology, College of Natural Sciences and Research Center for Molecular Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
109
|
Jobin MP, Garmyn D, Diviès C, Guzzo J. The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J Bacteriol 1999; 181:6634-41. [PMID: 10542163 PMCID: PMC94126 DOI: 10.1128/jb.181.21.6634-6641.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 08/23/1999] [Indexed: 11/20/2022] Open
Abstract
Using degenerated primers from conserved regions of previously studied clpX gene products, we cloned the clpX gene of the malolactic bacterium Oenococcus oeni. The clpX gene was sequenced, and the deduced protein of 413 amino acids (predicted molecular mass of 45,650 Da) was highly similar to previously analyzed clpX gene products from other organisms. An open reading frame located upstream of the clpX gene was identified as the tig gene by similarity of its predicted product to other bacterial trigger factors. ClpX was purified by using a maltose binding protein fusion system and was shown to possess an ATPase activity. Northern analyses indicated the presence of two independent 1.6-kb monocistronic clpX and tig mRNAs and also showed an increase in clpX mRNA amount after a temperature shift from 30 to 42 degrees C. The clpX transcript is abundant in the early exponential growth phase and progressively declines to undetectable levels in the stationary phase. Thus, unlike hsp18, the gene encoding one of the major small heat shock proteins of Oenococcus oeni, clpX expression is related to the exponential growth phase and requires de novo protein synthesis. Primer extension analysis identified the 5' end of clpX mRNA which is located 408 nucleotides upstream of a putative AUA start codon. The putative transcription start site allowed identification of a predicted promoter sequence with a high similarity to the consensus sequence found in the housekeeping gene promoter of gram-positive bacteria as well as Escherichia coli.
Collapse
Affiliation(s)
- M P Jobin
- Laboratoire de Microbiologie U.A.-INRA, ENSBANA, 21000 Dijon, France
| | | | | | | |
Collapse
|
110
|
Cloning of a novel gene encoding human thioredoxin-like protein. CHINESE SCIENCE BULLETIN-CHINESE 1999. [DOI: 10.1007/bf03183487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Petersohn A, Bernhardt J, Gerth U, Höper D, Koburger T, Völker U, Hecker M. Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J Bacteriol 1999; 181:5718-24. [PMID: 10482513 PMCID: PMC94092 DOI: 10.1128/jb.181.18.5718-5724.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A consensus-directed search for sigma(B) promoters was used to locate potential candidates for new sigma(B)-dependent genes in Bacillus subtilis. Screening of those candidates by oligonucleotide hybridizations with total RNA from exponentially growing or ethanol-stressed cells of the wild type as well as a sigB mutant revealed 22 genes that required sigma(B) for induction by ethanol. Although almost 50% of the proteins encoded by the newly discovered sigma(B)-dependent stress genes seem to be membrane localized, biochemical functions have so far not been defined for any of the gene products. Allocation of the genes to the sigma(B)-dependent stress regulon may indicate a potential function in the establishment of a multiple stress resistance. AldY and YhdF show similarities to NAD(P)-dependent dehydrogenases and YdbP to thioredoxins, supporting our suggestion that sigma(B)-dependent proteins may be involved in the maintenance of the intracellular redox balance after stress.
Collapse
Affiliation(s)
- A Petersohn
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
112
|
Derré I, Rapoport G, Devine K, Rose M, Msadek T. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 1999; 32:581-93. [PMID: 10320580 DOI: 10.1046/j.1365-2958.1999.01374.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Clp ATPases, which include the ubiquitous HSP100 family, are classified according to their structural features and sequence similarities. During the course of the Bacillus subtilis genome sequencing project, we identified a gene encoding a new member of the HSP100 family. We designated this protein ClpE, as it is the prototype of a novel subfamily among the Clp ATPases, and have identified homologues in several bacteria, including Listeria monocytogenes, Enterococcus faecalis, Streptococcus pyogenes, Streptococcus pneumoniae, Lactobacillus sakei and Clostridium acetobutylicum. A unique feature of these Hsp100-type Clp ATPases is their amino-terminal zinc finger motif. Unlike the other class III genes of B. subtilis (clpC and clpP ), clpE does not appear to be required for stress tolerance. Transcriptional analysis revealed two sigmaA-type promoters, expression from which was shown to be inducible by heat shock and puromycin treatment. Investigation of the regulatory mechanism controlling clpE expression indicates that this gene is controlled by CtsR and is thus a member of the class III heat shock genes of B. subtilis. CtsR negatively regulates clpE expression by binding to the promoter region, in which five CtsR binding sites were identified through DNase I footprinting and sequence analysis.
Collapse
Affiliation(s)
- I Derré
- Unité de Biochimie Microbienne, URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
113
|
Abstract
The expression of eubacterial heat shock genes is efficiently controlled at the transcriptional level by both positive and negative mechanisms. Positive control operates by the use of alternative sigma factors that target RNA polymerase to heat shock gene promoters. Alternatively, bacteria apply repressor-dependent mechanisms, in which transcription of heat shock genes is initiated from a classical housekeeping promoter and cis-acting DNA elements are used in concert with a cognate repressor protein to limit transcription under physiological conditions. Eight examples of negative regulation will be presented, among them the widespread CIRCE/HrcA system and the control by HspR in Streptomyces. Both mechanisms are designed to permit simple feedback control at the level of gene expression. Many bacteria have established sophisticated regulatory networks, often combining positive and negative mechanisms, in order to allow fine-tuned heat shock gene expression in an environmentally responsive way.
Collapse
Affiliation(s)
- F Narberhaus
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland.
| |
Collapse
|
114
|
Derré I, Rapoport G, Msadek T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 1999; 31:117-31. [PMID: 9987115 DOI: 10.1046/j.1365-2958.1999.01152.x] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
clpP and clpC of Bacillus subtillis encode subunits of the Clp ATP-dependent protease and are required for stress survival, including growth at high temperature. They play essential roles in stationary phase adaptive responses such as the competence and sporulation developmental pathways, and belong to the so-called class III group of heat shock genes, whose mode of regulation is unknown and whose expression is induced by heat shock or general stress conditions. The product of ctsR, the first gene of the clpC operon, has now been shown to act as a repressor of both clpP and clpC, as well as clpE, which encodes a novel member of the Hsp100 Clp ATPase family. The CtsR protein was purified and shown to bind specifically to the promoter regions of all three clp genes. Random mutagenesis, DNasel footprinting and DNA sequence deletions and comparisons were used to define a consensus CtsR recognition sequence as a directly repeated heptad upstream from the three clp genes. This target sequence was also found upstream from clp and other heat shock genes of several Gram-positive bacteria, including Listeria monocytogenes, Streptococcus salivarius, S. pneumoniae, S. pyogenes, S. thermophilus, Enterococcus faecalis, Staphylococcus aureus, Leuconostoc oenos, Lactobacillus sake, Lactococcus lactis and Clostridium acetobutylicum. CtsR homologues were also identified in several of these bacteria, indicating that heat shock regulation by CtsR is highly conserved in Gram-positive bacteria.
Collapse
Affiliation(s)
- I Derré
- URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
115
|
Garbisu C, Carlson D, Adamkiewicz M, Yee BC, Wong JH, Resto E, Leighton T, Buchanan BB. Morphological and biochemical responses of Bacillus subtilis to selenite stress. Biofactors 1999; 10:311-9. [PMID: 10619698 DOI: 10.1002/biof.5520100401] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When introduced into a chemically defined minimal medium supplemented with 1 mM sodium selenite (79 ppm Se(o)), Bacillus subtilis was found to undergo a series of morphological and biochemical adaptations. The morphological changes included the formation of "round bodies" associated with the detoxification of selenite to elemental selenium. Round bodies observed transiently were not apparent during balanced growth of cells adapted previously to selenite-containing medium. Under balanced growth conditions, cell structures similar to "round bodies", could be produced by treating cells with lysozyme. The selenite-induced structural alterations in cells were accompanied by an increase in the content of thioredoxin and the associated enzyme, NADP-thioredoxin reductase. The results suggest that the biovalence transformation of high levels of selenite may involve a dithiol system.
Collapse
Affiliation(s)
- C Garbisu
- Department of Plant Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Chan PF, Foster SJ, Ingham E, Clements MO. The Staphylococcus aureus alternative sigma factor sigmaB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 1998; 180:6082-9. [PMID: 9829915 PMCID: PMC107691 DOI: 10.1128/jb.180.23.6082-6089.1998] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of sigmaB, an alternative sigma factor of Staphylococcus aureus, has been characterized in response to environmental stress, starvation-survival and recovery, and pathogenicity. sigmaB was mainly expressed during the stationary phase of growth and was repressed by 1 M sodium chloride. A sigB insertionally inactivated mutant was created. In stress resistance studies, sigmaB was shown to be involved in recovery from heat shock at 54 degreesC and in acid and hydrogen peroxide resistance but not in resistance to ethanol or osmotic shock. Interestingly, S. aureus acquired increased acid resistance when preincubated at a sublethal pH 4 prior to exposure to a lethal pH 2. This acid-adaptive response resulting in tolerance was mediated via sigB. However, sigmaB was not vital for the starvation-survival or recovery mechanisms. sigmaB does not have a major role in the expression of the global regulator of virulence determinant biosynthesis, staphylococcal accessory regulator (sarA), the production of a number of representative virulence factors, and pathogenicity in a mouse subcutaneous abscess model. However, SarA upregulates sigB expression in a growth-phase-dependent manner. Thus, sigmaB expression is linked to the processes controlling virulence determinant production. The role of sigmaB as a major regulator of the stress response, but not of starvation-survival, is discussed.
Collapse
Affiliation(s)
- P F Chan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
117
|
Krüger E, Hecker M. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 1998; 180:6681-8. [PMID: 9852015 PMCID: PMC107774 DOI: 10.1128/jb.180.24.6681-6688.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis clpC operon is regulated by two stress induction pathways relying on either sigmaB or a class III stress induction mechanism acting at a sigmaA-like promoter. When the clpC operon was placed under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible Pspac promoter, dramatic repression of the natural clpC promoters fused to a lacZ reporter gene was noticed after IPTG induction. This result strongly indicated negative regulation of the clpC operon by one of its gene products. Indeed, the negative regulator could be identified which is encoded by the first gene of the clpC operon, ctsR, containing a predicted helix-turn-helix DNA-binding motif. Deletion of ctsR abolished the negative regulation and resulted in high expression of both the clpC operon and the clpP gene under nonstressed conditions. Nevertheless, a further increase in clpC and clpP mRNA levels was observed after heat shock, even in the absence of sigmaB, suggesting a second induction mechanism at the vegetative promoter. Two-dimensional gel analysis and mRNA studies showed that the expression of other class III stress genes was at least partially influenced by the ctsR deletion. Studies with different clpC promoter fragments either fused to the reporter gene bgaB or used in gel mobility shift experiments with the purified CtsR protein revealed a possible target region where the repressor seemed to bind in vivo and in vitro. Our data demonstrate that the CtsR protein acts as a global repressor of the clpC operon, as well as other class III heat shock genes, by preventing unstressed transcription from either the sigmaB- or sigmaA-dependent promoter and might be inactivated or dissociate under inducing stress conditions.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
| | | |
Collapse
|
118
|
Paget MS, Kang JG, Roe JH, Buttner MJ. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J 1998; 17:5776-82. [PMID: 9755177 PMCID: PMC1170905 DOI: 10.1093/emboj/17.19.5776] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified an RNA polymerase sigma factor, sigmaR, that is part of a system that senses and responds to thiol oxidation in the Gram-positive, antibiotic-producing bacterium Streptomyces coelicolor A3(2). Deletion of the gene (sigR) encoding sigmaR caused sensitivity to the thiol-specific oxidant diamide and to the redox cycling compounds menadione and plumbagin. This correlated with reduced levels of disulfide reductase activity and an inability to induce this activity on exposure to diamide. The trxBA operon, encoding thioredoxin reductase and thioredoxin, was found to be under the direct control of sigmaR. trxBA is transcribed from two promoters, trxBp1 and trxBp2, separated by 5-6 bp. trxBp1 is transiently induced at least 50-fold in response to diamide treatment in a sigR-dependent manner. Purified sigmaR directed transcription from trxBp1 in vitro, indicating that trxBp1 is a target for sigmaR. Transcription of sigR itself initiates at two promoters, sigRp1 and sigRp2, which are separated by 173 bp. The sigRp2 transcript was undetectable in a sigR-null mutant, and purified sigmaR could direct transcription from sigRp2 in vitro, indicating that sigR is positively autoregulated. Transcription from sigRp2 was also transiently induced (70-fold) following treatment with diamide. We propose a model in which sigmaR induces expression of the thioredoxin system in response to cytoplasmic disulfide bond formation. Upon reestablishment of normal thiol levels, sigmaR activity is switched off, resulting in down-regulation of trxBA and sigR. We present evidence that the sigmaR system also functions in the actinomycete pathogen Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- M S Paget
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
119
|
Hecker M, Völker U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol 1998; 29:1129-36. [PMID: 9767581 DOI: 10.1046/j.1365-2958.1998.00977.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bacillus subtilis cells respond almost immediately to different stress conditions by increasing the production of general stress proteins (GSPs). The genes encoding the majority of the GSPs that are induced by heat, ethanol, salt stress or by starvation for glucose, oxygen or phosphate belong to the sigmaB-dependent general stress regulon. Despite a good understanding of the complex regulation of the activity of sigmaB and knowledge of a very large number of general stress genes controlled by sigmaB, first insights into the physiological role of this nonspecific stress response have been obtained only very recently. To explore the physiological role of this reguIon, we and others identified sigmaB-dependent general stress genes and compared the stress tolerance of wild-type cells with mutants lacking sigmaB or general stress proteins. The proteins encoded by sigmaB-dependent general stress genes can be divided into at least five functional groups that most probably provide growth-restricted B. subtilis cells with a multiple stress resistance in anticipation of future stress. In particular, sigB mutants are impaired in non-specific resistance to oxidative stress, which requires the sigmaB-dependent dps gene encoding a DNA-protecting protein. Protection against oxidative damage of membranes, proteins or DNA could be the most essential component of sigmaB mediated general stress resistance in growth-arrested aerobic gram-positive bacteria. Other general stress genes have both a sigmaB-dependent induction pathway and a second sigmaB-independent mechanism of stress induction, thereby partially compensating for a sigmaB deficiency in a sigB mutant. In contrast to sigB mutants, null mutations in genes encoding those proteins, such as cIpP or cIpC, cause extreme sensitivity to salt or heat.
Collapse
Affiliation(s)
- M Hecker
- Ernst-Moritz-Arndt-Universität Greifwald, Institut für Mikrobiologie und Molekularbiologie, Greifswald, Germany.
| | | |
Collapse
|
120
|
Völker U, Andersen KK, Antelmann H, Devine KM, Hecker M. One of two osmC homologs in Bacillus subtilis is part of the sigmaB-dependent general stress regulon. J Bacteriol 1998; 180:4212-8. [PMID: 9696771 PMCID: PMC107419 DOI: 10.1128/jb.180.16.4212-4218.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present the identification and analysis of two Bacillus subtilis genes, yklA and ykzA, which are homologous to the partially RpoS-controlled osmC gene from Escherichia coli. The yklA gene is expressed at higher levels in minimal medium than in rich medium and is driven by a putative vegetative promoter. Expression of ykzA is not medium dependent but increases dramatically when cells are exposed to stress and starvation. This stress-induced increase in ykzA expression is absolutely dependent on the alternative sigma factor sigmaB, which controls a large stationary-phase and stress regulon. ykzA is therefore another example of a gene common to the RpoS and sigmaB stress regulons of E. coli and B. subtilis, respectively. The composite complex expression pattern of the two B. subtilis genes is very similar to the expression profile of osmC in E. coli.
Collapse
Affiliation(s)
- U Völker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany.
| | | | | | | | | |
Collapse
|
121
|
Gaidenko TA, Price CW. General stress transcription factor sigmaB and sporulation transcription factor sigmaH each contribute to survival of Bacillus subtilis under extreme growth conditions. J Bacteriol 1998; 180:3730-3. [PMID: 9658024 PMCID: PMC107349 DOI: 10.1128/jb.180.14.3730-3733.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The general stress response of the bacterium Bacillus subtilis is controlled by the sigmaB transcription factor. Here we show that loss of sigmaB reduces stationary-phase viability 10-fold in either alkaline or acidic media and reduces cell yield in media containing ethanol. We further show that loss of the developmental transcription factor sigmaH also has a marked effect on stationary-phase viability under these conditions and that this effect is independent from the simple loss of sporulation ability.
Collapse
Affiliation(s)
- T A Gaidenko
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
122
|
Mogk A, Völker A, Engelmann S, Hecker M, Schumann W, Völker U. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J Bacteriol 1998; 180:2895-900. [PMID: 9603878 PMCID: PMC107255 DOI: 10.1128/jb.180.11.2895-2900.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1997] [Accepted: 03/24/1998] [Indexed: 02/07/2023] Open
Abstract
The chaperone-encoding groESL and dnaK operons constitute the CIRCE regulon of Bacillus subtilis. Both operons are under negative control of the repressor protein HrcA, which interacts with the CIRCE operator and whose activity is modulated by the GroESL chaperone machine. In this report, we demonstrate that induction of the CIRCE regulon can also be accomplished by ethanol stress and puromycin. Introduction of the hrcA gene and a transcriptional fusion under the control of the CIRCE operator into Escherichia coli allowed induction of this fusion by heat shock, ethanol stress, and overproduction of GroESL substrates. The expression level of this hrcA-bgaB fusion inversely correlated with the amount of GroE machinery present in the cells. Therefore, all inducing conditions seem to lead to induction via titration of the GroE chaperonins by the increased level of nonnative proteins formed. Puromycin treatment failed to induce the sigmaB-dependent general stress regulon, indicating that nonnative proteins in general do not trigger this response. Reconstitution of HrcA-dependent heat shock regulation of B. subtilis in E. coli and complementation of E. coli groESL mutants by B. subtilis groESL indicate that the GroE chaperonin systems of the two bacterial species are functionally exchangeable.
Collapse
Affiliation(s)
- A Mogk
- Institut für Genetik, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Gerth U, Krüger E, Derré I, Msadek T, Hecker M. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 1998; 28:787-802. [PMID: 9643546 DOI: 10.1046/j.1365-2958.1998.00840.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Bacillus subtilis clpP gene, encoding the proteolytic component of the Clp or Ti protease, was cloned and sequenced. The amount of clpP-specific mRNA increased after heat shock, salt and ethanol stress, as well as after treatment with puromycin. Two transcriptional start sites upstream of the clpP structural gene were identified, preceded by sequences resembling the consensus sequences of promoters recognized by sigmaA and sigmaB transcriptional factors of the B. subtilis RNA polymerase respectively. Transcription initiation occurred predominantly at the putative sigmaA-dependent promoter in exponentially growing cells and was induced under stress conditions. After exposure to stress, initiation of transcription also increased at the sigmaB-dependent promoter, but to a lesser extent, indicating that clpP belongs to a double promoter-controlled subgroup of class III general stress genes in B. subtilis. In a sigB mutant strain, clpP remained heat and stress inducible at the sigmaA-dependent promoter. BgaB-reporter gene fusions, carrying either the sigmaA- or the sigmaB-dependent promoter, showed a higher bgaB induction at the sigmaA-dependent promoter, whereas a significantly lower level of induction was measured at the sigmaB-dependent promoter. The sigmaA-dependent promoter appeared to be crucial for the heat-inducible transcription of clpP. A CIRCE (controlling inverted repeat of chaperone expression) element, the characteristic regulation target of class I heat shock genes such as dnaK and groESL, was not found between the transcriptional and translational start sites. Mutants lacking either the proteolytic component ClpP or the regulatory ATPase component ClpX were phenotypically distinct from the wild type. Both mutants produced chains of elongated cells and exhibited severely impaired growth under stress conditions and starvation. Comparison of two-dimensional protein gels from wild-type cells with those from clpP and clpX mutant cells revealed several changes in the protein pattern. Several proteins, such as GroEL, PpiB, PykA, SucD, YhfP, YqkF, YugJ and YvyD, which were found preferentially in higher amounts in both clpP and clpX mutants, might be potential substrates for the ClpXP protease.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacillus subtilis/enzymology
- Bacillus subtilis/genetics
- Bacillus subtilis/growth & development
- Bacillus subtilis/ultrastructure
- Base Sequence
- Binding Sites
- Chromosome Mapping
- DNA, Bacterial
- Electrophoresis, Gel, Two-Dimensional
- Endopeptidase Clp
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genes, Reporter
- Heat-Shock Response
- Humans
- Molecular Chaperones
- Molecular Sequence Data
- Mutagenesis
- Peptide Chain Initiation, Translational
- Promoter Regions, Genetic
- Sequence Homology, Amino Acid
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Stimulation, Chemical
- Transcription, Genetic
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- U Gerth
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | |
Collapse
|