101
|
Fredriksson-Ahomaa M, Sauvala M, Kurittu P, Heljanko V, Heikinheimo A, Paulsen P. Characterisation of Listeria monocytogenes Isolates from Hunted Game and Game Meat from Finland. Foods 2022; 11:foods11223679. [PMID: 36429271 PMCID: PMC9689155 DOI: 10.3390/foods11223679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is an important foodborne zoonotic bacterium. It is a heterogeneous species that can be classified into lineages, serogroups, clonal complexes, and sequence types. Only scarce information exists on the properties of L. monocytogenes from game and game meat. We characterised 75 L. monocytogenes isolates from various game sources found in Finland between 2012 and 2020. The genetic diversity, presence of virulence and antimicrobial genes were studied with whole genome sequencing. Most (89%) of the isolates belonged to phylogenetic lineage (Lin) II and serogroup (SG) IIa. SGs IVb (8%) and IIb (3%) of Lin I were sporadically identified. In total, 18 clonal complexes and 21 sequence types (STs) were obtained. The most frequent STs were ST451 (21%), ST585 (12%) and ST37 (11%) found in different sample types between 2012 and 2020. We observed 10 clusters, formed by closely related isolates with 0-10 allelic differences. Most (79%) of the virulence genes were found in all of the L. monocytogenes isolates. Only fosX and lin were found out of 46 antimicrobial resistance genes. Our results demonstrate that potentially virulent and antimicrobial-sensitive L. monocytogenes isolates associated with human listeriosis are commonly found in hunted game and game meat in Finland.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| | - Mikaela Sauvala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Microbiology Unit, Finnish Food Authority, 60100 Seinäjoki, Finland
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
102
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
103
|
Awada B, Hamie M, El Hajj R, Derbaj G, Najm R, Makhoul P, Ali DH, Abou Fayad AG, El Hajj H. HAS 1: A natural product from soil-isolated Streptomyces species with potent activity against cutaneous leishmaniasis caused by Leishmania tropica. Front Pharmacol 2022; 13:1023114. [PMID: 36299890 PMCID: PMC9589300 DOI: 10.3389/fphar.2022.1023114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 01/19/2023] Open
Abstract
Cutaneous Leishmaniasis (CL) is a neglected tropical disease, classified by the World Health Organization (WHO) as one of the most unrestrained diseases. The Syrian war and the significant displacement of refugees aggravated the spread of this ailment into several neighboring countries in the Eastern Mediterranean Region (EMR). In Syria, Leishmania tropica is identified as one of the most aggressive and endemic identified species, causing localized or generalized lesions, often chronic or relapsing. Pentavalent antimonial drugs are currently used as first line treatment against CL. Nonetheless, these drugs exhibit several limitations, including the repetitive painful injections, high cost, poor availability, and mainly systemic toxicity. Besides, the emergence of acquired parasitic resistance hinders their potency, stressing the need for new therapies to combat CL. Natural products (NPs) epitomize a valuable source in drug discovery. NPs are secondary metabolites (SMs) produced by plants, sponges, or a wide variety of organisms, including environmental microorganisms. The EMR is characterized by its immense biodiversity, yet it remains a relatively untapped area in drug discovery. NPs of the region were explored over the last 2 decades, but their discoveries lack biogeographical diversity and are limited to the Red Sea. Here, we isolated previously uncultured environmental soil-dwelling Streptomyces sp. HAS1, from Hasbaya region in southeast Lebanon. When fermented in one of our production media named INA, HAS1 produced a crude extract with significant potency against a clinical Leishmania tropica isolate. Using bio-guided fractionation, the bioactive compound was purified and the structure was elucidated by NMR and LC-HRMS. Our findings establish NPs as strong candidates for treating Leishmania tropica and further dwells on the importance of these natural sources to combat microbial infections.
Collapse
Affiliation(s)
- Bassel Awada
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Maguy Hamie
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ghada Derbaj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Rania Najm
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Perla Makhoul
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Dima Hajj Ali
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Antoine G. Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
- *Correspondence: Antoine G. Abou Fayad, ; Hiba El Hajj,
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
- *Correspondence: Antoine G. Abou Fayad, ; Hiba El Hajj,
| |
Collapse
|
104
|
Biggs SL, Jennison AV, Bergh H, Graham R, Nimmo G, Whiley D. Limited evidence of patient-to-patient transmission of Staphylococcus aureus strains between children with cystic fibrosis, Queensland, Australia. PLoS One 2022; 17:e0275256. [PMID: 36206247 PMCID: PMC9543978 DOI: 10.1371/journal.pone.0275256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Here we used whole genome sequencing (WGS) to understand strain diversity and potential for patient-to-patient transmission of Staphylococcus aureus among children with cystic fibrosis (CF) in Queensland, Australia. METHODS S. aureus isolates (n = 401) collected between January 2018 and April 2019 from 184 patients with CF (n = 318 isolates) and 76 patients without CF (n = 83 isolates) were subjected to WGS and subsequent multilocus sequence typing (MLST), and a phylogeny was constructed from core genome single nucleotide polymorphism (SNP) analysis. The subsequent data was compared with available patient information. RESULTS WGS revealed that patients with CF were essentially colonised by the same genotypes as those seen in patients without CF. Sequence types (ST) for our patients with CF were predominantly ST5 (20.1%), ST30 (7.3%), ST15 (6.3%) and ST8 (5.3%). Two Australian clones, ST93 and ST239, typically seen in skin infections and health-care settings, respectively, were notably absent from our patients with CF. Based on a SNP distance threshold of 14 SNPs, 20 cluster types involving 50/260 patients were evident; of these, 6 clusters contained only patients found to be siblings or otherwise living in the same household. Epidemiological relationships could not be determined for a remaining 14 cluster types involving 38 patients, comprising 2-7 (median 2) patients each. Multiple S. aureus genotypes were observed in 19/73 CF patients who provided more than one sample. CONCLUSION These results show that WGS is a useful tool for surveillance of S. aureus strains in children with CF and that the strains in our CF cohort were largely consistent with those circulating in patients without CF. Overall, this confirms previous findings and indicates that S. aureus acquisition in children with CF is similar to that of other patient groups, with limited evidence of potential patient-to-patient transmission within this patient group.
Collapse
Affiliation(s)
- Sharon L. Biggs
- School of Medicine, The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, Queensland, Australia
| | - Amy V. Jennison
- Public and Environmental Health, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Haakon Bergh
- Pathology Queensland Central Laboratory, Herston, Queensland, Australia
| | - Rikki Graham
- Public and Environmental Health, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Graeme Nimmo
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - David Whiley
- School of Medicine, The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, Queensland, Australia
- Pathology Queensland Central Laboratory, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
105
|
Draft Genome Sequence of Bacillus subtilis YBS29, a Potential Fish Probiotic That Prevents Motile
Aeromonas
Septicemia in Labeo rohita. Microbiol Resour Announc 2022; 11:e0091522. [PMID: 36154193 PMCID: PMC9583808 DOI: 10.1128/mra.00915-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequence of the promising fish probiotic Bacillus subtilis YBS29. This strain exhibits in vitro antimicrobial activity against Aeromonas veronii and enhances growth and disease resistance in the Indian major carp species Labeo rohita against motile Aeromonas septicemia (MAS). Its genome contains a gene cluster encoding multiple bacteriocins and lacks genes for virulence factors. These genomic features signify potential for safe use as a probiotic in aquaculture.
Collapse
|
106
|
Prevalence of Plasmid-Mediated Quinolone Resistance (PMQRs) Determinants and Whole Genome Sequence Screening of PMQR-Producing E. coli Isolated from Men Undergoing a Transrectal Prostate Biopsy. Int J Mol Sci 2022; 23:ijms23168907. [PMID: 36012180 PMCID: PMC9408980 DOI: 10.3390/ijms23168907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Fluoroquinolones (FQs) are recommended as prophylaxis for men undergoing transrectal prostate biopsy (TRUS-Bx). Recent studies suggest a significant share of FQ-resistant rectal flora in post-TRUST-Bx infections. Methods: 435 Enterobacterales isolates from 621 patients attending 12 urological departments in Poland were screened by PCR for PMQR genes. PMQR-positive isolates were tested for quinolone susceptibility and investigated by whole genome sequencing (WGS) methods. Results: In total, 32 (7.35%) E. coli strains with ciprofloxacin MIC in the range 0.125–32 mg/L harbored at least one PMQR gene. qnrS and qnrB were the most frequent genes detected in 16 and 12 isolates, respectively. WGS was performed for 28 of 32 PMQR-producing strains. A variety of serotypes and sequence types (STs) of E. coli was noticed. All strains carried at least one virulence gene. AMR genes that encoded resistance against different classes of antibiotics were identified. Additionally, five of 13 ciprofloxacin-susceptible E. coli had alterations in codon 83 of the GyrA subunits. Conclusion: This study provides information on the common presence of PMQRs among E. coli, which may explain the cause for development of post-TRUS-Bx infections. High numbers of virulence and antimicrobial resistance genes detected show a potential for analysed strains to develop infections.
Collapse
|
107
|
Thomassen GMB, Reiche T, Tennfjord CE, Mehli L. Antibiotic Resistance Properties among Pseudomonas spp. Associated with Salmon Processing Environments. Microorganisms 2022; 10:1420. [PMID: 35889139 PMCID: PMC9319762 DOI: 10.3390/microorganisms10071420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Continuous monitoring of antimicrobial resistance in bacteria along the food chain is crucial for the assessment of human health risks. Uncritical use of antibiotics in farming over years can be one of the main reasons for increased antibiotic resistance in bacteria. In this study, we aimed to classify 222 presumptive Pseudomonas isolates originating from a salmon processing environment, and to examine the phenotypic and genotypic antibiotic resistance profiles of these isolates. Of all the analyzed isolates 68% belonged to Pseudomonas, and the most abundant species were Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas gessardii, Pseudomonas libanesis, Pseudomonas lundensis, Pseudomonas cedrina and Pseudomonas extremaustralis based on sequencing of the rpoD gene. As many as 27% of Pseudomonas isolates could not be classified to species level. Phenotypic susceptibility analysis by disc diffusion method revealed a high level of resistance towards the antibiotics ampicillin, amoxicillin, cefotaxime, ceftriaxone, imipenem, and the fish farming relevant antibiotics florfenicol and oxolinic acid among the Pseudomonas isolates. Whole genome sequencing and subsequent analysis of AMR determinants by ResFinder and CARD revealed that no isolates harbored any acquired resistance determinants, but all isolates carried variants of genes known from P. aeruginosa to be involved in multidrug efflux pump systems.
Collapse
Affiliation(s)
- Gunn Merethe Bjørge Thomassen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (T.R.); (C.E.T.)
| | | | | | - Lisbeth Mehli
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (T.R.); (C.E.T.)
| |
Collapse
|
108
|
Progressive Lameness of a Greater One-Horned Rhinoceros (Rhinoceros unicornis) Associated with a Retroperitoneal Abscess and Thrombus Caused by Streptococcus dysgalactiae Subspecies equisimilis. Animals (Basel) 2022; 12:ani12141784. [PMID: 35883332 PMCID: PMC9311503 DOI: 10.3390/ani12141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Movement disorders can have different origins and certain causes require a particular intervention management. In rhinoceroses, lesions affecting the extremities per se are typical causes. A 3-year-old, male Greater one-horned rhinoceros born in captivity developed progressive lameness, ataxia with dragging of its right, hind hoof. Prior, the animal was housed together with his dam, which was repeatedly aggressive against her offspring. Despite therapy, the symptoms aggravated and the animal died spontaneously. At necropsy, a large abscess in the abdomen under the spine and a thrombus of the artery of the right hind limb were diagnosed as the cause of lameness. The pyogenic bacterium Streptococcus dysgalactiae subspecies equisimilis was isolated from the abscess and from mucous membranes of the healthy mother. Such an unusual origin for lameness should be considered in rhinoceroses in the future. Abstract In rhinoceroses, lameness is an occasionally seen symptom primarily caused by lesions affecting the feet and interdigital space. A 3-year-old male Greater one-horned rhinoceros developed a progressive, severe movement disorder of the right hind limb with subsequent death. The pathological analysis diagnosed a severe, retroperitoneal abscess and chronic thrombosis of the right iliac artery. Streptococci detected in the abscess were further identified as Streptococcus dysgalactiae subspecies equisimilis by culture and molecular techniques. The identical isolate was also identified in a vaginal swab of the dam. The list of differential diagnoses for lameness in rhinoceroses must be expanded by processes affecting other than the extremities per se.
Collapse
|
109
|
Nonogaki R, Iijima A, Kawamura K, Kayama S, Sugai M, Yagi T, Arakawa Y, Doi Y, Suzuki M. PCR-based ORF typing of Klebsiella pneumoniae for rapid identification of global clones and transmission events. J Appl Microbiol 2022; 133:2050-2062. [PMID: 35797348 DOI: 10.1111/jam.15701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
AIMS Klebsiella pneumoniae is a major cause of healthcare-associated infections. In this study, we aimed to develop a rapid and simple genotyping method that can characterize strains causing nosocomial infections. METHODS AND RESULTS The PCR-based open reading frame (ORF) typing (POT) method consists of two multiplex PCR reactions which were designed to detect 25 ORFs specific to bacterial genetic lineages, species, antimicrobial resistant genes (blaCTX-M group-1 , blaCTX-M group-9 , blaIMP and blaKPC ), a capsular K1-specific gene, and a virulence factor gene (rmpA/A2). The electrophoresis results are then digitized. A total of 192 strains (136 clinical and 8 reference strains of K. pneumoniae, 33 clinical and 1 reference strains of K. variicola, and 14 clinical strains of K. quasipneumoniae) were classified into 95, 26, and 11 POT values, respectively. The distribution patterns of ORFs among K. pneumoniae correlated well with multilocus sequence typing (MLST). Furthermore, closely related species could be distinguished and key antimicrobial resistance and hypervirulence genes were identified as part of POT. CONCLUSIONS The POT method was developed and validated for K. pneumoniae. In comparison to MLST, the POT method is a rapid and easy genotyping method for monitoring transmission events by K. pneumoniae in clinical microbiology laboratories. SIGNIFICANCE AND IMPACT OF THE STUDY The POT method supplies clear and informative molecular typing results for K. pneumoniae. The method would facilitate molecular epidemiological analysis in infection control and hospital epidemiology investigations.
Collapse
Affiliation(s)
- Rina Nonogaki
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Anna Iijima
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kumiko Kawamura
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan.,Department of Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
110
|
Girolamini L, Pascale MR, Mazzotta M, Spiteri S, Marino F, Salaris S, Grottola A, Orsini M, Cristino S. Combining Traditional and Molecular Techniques Supports the Discovery of a Novel Legionella Species During Environmental Surveillance in a Healthcare Facility. Front Microbiol 2022; 13:900936. [PMID: 35770167 PMCID: PMC9234573 DOI: 10.3389/fmicb.2022.900936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Legionella surveillance plays a significant role not only to prevent the risk of infection but also to study the ecology of isolates, their characteristics, and how their prevalence changes in the environment. The difficulty in Legionella isolation, identification, and typing results in a low notification rate; therefore, human infection is still underestimated. In addition, during Legionella surveillance, the special attention given to Legionella pneumophila leads to an underestimation of the prevalence and risk of infection for other species. This study describes the workflow performed during environmental Legionella surveillance that resulted in the isolation of two strains, named 8cVS16 and 9fVS26, associated with the genus Legionella. Traditional and novel approaches such as standard culture technique, MALDI-TOF MS, gene sequencing, and whole-genome sequencing (WGS) analysis were combined to demonstrate that isolates belong to a novel species. The strain characteristics, the differences between macrophage infectivity potential (mip), RNA polymerase β subunit (rpoB), and reference gene sequences, the average nucleotide identity (ANI) of 90.4%, and the DNA–DNA digital hybridization (dDDH) analysis of 43% demonstrate that these isolates belong to a new Legionella species. The finding suggests that, during the culture technique, special attention should be paid to the characteristics of the isolates that are less associated with the Legionella genus in order to investigate the differences found using more sensitive methods. The characterization of the two newly discovered isolates based on morphological, biochemical, and microscopic characteristics is currently underway and will be described in another future study.
Collapse
Affiliation(s)
- Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | - Marta Mazzotta
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Simona Spiteri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Specialty, Diagnostic and Experimental Medicine, University of Bologna, Bologna, Italy
| | - Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Silvano Salaris
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonella Grottola
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
- Regional Reference Laboratory for Clinical Diagnosis of Legionellosis, Molecular Microbiology and Virology Unit, University Hospital-Policlinico Modena, Modena, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology and Genomics of Microorganisms, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Legionella Infections (ESGLI), Basel, Switzerland
- *Correspondence: Sandra Cristino
| |
Collapse
|
111
|
In-vitro activity of sulbactam-durlobactam against carbapenem-resistant Acinetobacter baumannii and mechanisms of resistance. J Glob Antimicrob Resist 2022; 30:445-450. [PMID: 35618210 DOI: 10.1016/j.jgar.2022.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Multidrug-resistant Acinetobacter baumannii, particularly strains producing OXA-type carbapenemases, have rapidly emerged in health care settings as a frequent cause of serious infections with limited treatment options. This study evaluated the in-vitro activity of sulbactam (SUL) combined with durlobactam (DUR), against a collection of carbapenemase-producing A. baumannii, and investigated the mechanisms of resistance. METHODS Susceptibility testing was performed on 100 isolates by either broth microdilution or by E-test. Isolates were screened for the insertion sequence ISAba1 upstream of the intrinsic chromosomal blaADC by PCR. Whole genome sequencing was performed on 25 SUL-DUR resistant isolates, and analyses were performed using the Center for Genomic Epidemiology platform. Target gene sequences were compared to A. baumannii ATCC 17978. RESULTS SUL-DUR exhibited excellent activity against A. baumannii isolates with susceptibility levels as follows: amikacin, 18%; colistin, 91%; cefepime, 5%; imipenem, 0%; minocycline, 46%; SUL, 3%; sulbactam-cefoperazone, 8%; SUL-DUR, 71% (based on a breakpoint at 4 mg/L). Twenty-five non-NDM-producing isolates had SUL-DUR MIC values >4 mg/L, among which 14 isolates showed substitutions in penicillin binding protein PBP3, previously shown to be associated with SUL-DUR resistance. Substitutions that have not previously been described were detected in SUL-DUR targets, namely PBP1a, PBP1b, PBP2, and PBP3. By contrast, there was no evidence of the involvement of permeability or efflux. CONCLUSIONS SUL-DUR exhibited excellent in-vitro antibacterial activity against these carbapenemase-producing A. baumannii isolates. Amongst the 25 resistant isolates we identified a number of mechanisms which may be contributing factors, in particular PBP substitutions and the production of some specific beta-lactamases.
Collapse
|
112
|
Taylor E, Jauneikaite E, Sriskandan S, Woodford N, Hopkins KL. Novel 16S rRNA methyltransferase RmtE3 in Acinetobacter baumannii ST79. J Med Microbiol 2022; 71. [PMID: 35588089 DOI: 10.1099/jmm.0.001531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction. The 16S rRNA methyltransferase (16S RMTase) gene armA is the most common mechanism conferring high-level aminoglycoside resistance in Acinetobacter baumannii, although rmtA, rmtB, rmtC, rmtD and rmtE have also been reported.Hypothesis/Gap statement. The occurrence of 16S RMTase genes in A. baumannii in the UK and Republic of Ireland is currently unknown.Aim. To identify the occurrence of 16S RMTase genes in A. baumannii isolates from the UK and the Republic of Ireland between 2004 and 2015.Methodology. Five hundred and fifty pan-aminoglycoside-resistant A. baumannii isolates isolated from the UK and the Republic of Ireland between 2004 and 2015 were screened by PCR to detect known 16S RMTase genes, and then whole-genome sequencing was conducted to screen for novel 16S RMTase genes.Results. A total of 96.5 % (531/550) of isolates were positive for 16S RMTase genes, with all but 1 harbouring armA (99.8 %, 530/531). The remaining isolates harboured rmtE3, a new rmtE variant. Most (89.2 %, 473/530) armA-positive isolates belonged to international clone II (ST2), and the rmtE3-positive isolate belonged to ST79. rmtE3 shared a similar genetic environment to rmtE2 but lacked an ISCR20 element found upstream of rmtE2.Conclusion. This is the first report of rmtE in A. baumannii in Europe; the potential for transmission of rmtE3 to other bacterial species requires further research.
Collapse
Affiliation(s)
- Emma Taylor
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Reference Services Division, UK Health Security Agency, London NW9 5EQ, UK
- Present address: Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Elita Jauneikaite
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- School of Public Health, Imperial College London, London W2 1PG, UK
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Reference Services Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Reference Services Division, UK Health Security Agency, London NW9 5EQ, UK
- Healthcare Associated Infections, Fungal, Antimicrobial Resistance, Antimicrobial Usage and Sepsis Division, UK Health Security Agency, London NW9 5EQ, UK
| |
Collapse
|
113
|
Ledda A, Cummins M, Shaw LP, Jauneikaite E, Cole K, Lasalle F, Barry D, Turton J, Rosmarin C, Anaraki S, Wareham D, Stoesser N, Paul J, Manuel R, Cherian BP, Didelot X. Hospital outbreak of carbapenem-resistant Enterobacterales associated with a blaOXA-48 plasmid carried mostly by Escherichia coli ST399. Microb Genom 2022; 8:000675. [PMID: 35442183 PMCID: PMC9453065 DOI: 10.1099/mgen.0.000675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A hospital outbreak of carbapenem-resistant Enterobacterales was detected by routine surveillance. Whole genome sequencing and subsequent analysis revealed a conserved promiscuous blaOXA-48 carrying plasmid as the defining factor within this outbreak. Four different species of Enterobacterales were involved in the outbreak. Escherichia coli ST399 accounted for 35 of all the 55 isolates. Comparative genomics analysis using publicly available E. coli ST399 genomes showed that the outbreak E. coli ST399 isolates formed a unique clade. We developed a mathematical model of pOXA-48-like plasmid transmission between host lineages and used it to estimate its conjugation rate, giving a lower bound of 0.23 conjugation events per lineage per year. Our analysis suggests that co-evolution between the pOXA-48-like plasmid and E. coli ST399 could have played a role in the outbreak. This is the first study to report carbapenem-resistant E. coli ST399 carrying blaOXA-48 as the main cause of a plasmid-borne outbreak within a hospital setting. Our findings suggest complementary roles for both plasmid conjugation and clonal expansion in the emergence of this outbreak.
Collapse
Affiliation(s)
- Alice Ledda
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
- *Correspondence: Alice Ledda,
| | - Martina Cummins
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Liam P. Shaw
- Department of Zoology, University of Oxford, Oxford, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- NHIR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious disease, Imperial College London, Hammersmith Campus, London, UK
| | | | - Florent Lasalle
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- Microbes and Pathogens Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Deborah Barry
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Jane Turton
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - Caryn Rosmarin
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Sudy Anaraki
- North East and North Central London Health Protection Team, Public Health England, London, UK
| | - David Wareham
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Paul
- Brighton and Sussex Medical school, Department of Global health and Infection, University of Sussex, Falmer, Brighton, UK
| | - Rohini Manuel
- Public Health Laboratory London, National Infection Service, Public Health England, London, UK
| | - Benny P. Cherian
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| |
Collapse
|
114
|
GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. J Wildl Dis 2022; 58:269-278. [PMID: 35255126 DOI: 10.7589/jwd-d-21-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.
Collapse
|
115
|
Rebelo AR, Ibfelt T, Bortolaia V, Leekitcharoenphon P, Hansen DS, Nielsen HL, Ellermann-Eriksen S, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Pedersen M, Westh H, Aarestrup FM. One Day in Denmark: Nationwide point-prevalence survey of human bacterial isolates and comparison of classical and whole-genome sequence-based species identification methods. PLoS One 2022; 17:e0261999. [PMID: 35148318 PMCID: PMC8836320 DOI: 10.1371/journal.pone.0261999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives Implementing whole-genome sequencing (WGS) technologies in clinical microbiology laboratories can increase the amount and quality of information available for healthcare practitioners. In this study, we analysed the applicability of this method and determined the distribution of bacterial species processed in clinical settings in Denmark. Methods We performed a point-prevalence study of all bacterial isolates (n = 2,009) processed and reported in the Clinical Microbiology Laboratories in Denmark in one day in January 2018. We compared species identification as performed by classical methods (MALDI-TOF) and by bioinformatics analysis (KmerFinder and rMLST) of WGS (Illumina NextSeq) data. We compared the national point-prevalence of bacterial isolates observed in clinical settings with the research attention given to those same genera in scientific literature. Results The most prevalent bacterium was Escherichia coli isolated from urine (n = 646), followed by Staphylococcus spp. from skin or soft tissues (n = 197). The distribution of bacterial species throughout the country was not homogeneous. We observed concordance of species identification for all methods in 95.7% (n = 1,919) of isolates, furthermore obtaining concordance for 99.7% (n = 1,999) at genus level. The number of scientific publications in the country did not correlate with the number of bacterial isolates of each genera analysed in this study. Conclusions WGS technologies have the potential to be applied in clinical settings for routine diagnostics purposes. This study also showed that bioinformatics databases should be continuously improved and results from local point-prevalence surveys should not be applied at national levels without previously determining possible regional variations.
Collapse
Affiliation(s)
- Ana Rita Rebelo
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
- * E-mail:
| | - Tobias Ibfelt
- Hvidovre Hospital, Department of Clinical Microbiology, Hvidovre, Denmark
| | - Valeria Bortolaia
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
| | | | | | - Hans Linde Nielsen
- Aalborg University Hospital, Department of Clinical Microbiology, Aalborg, Denmark
| | | | - Michael Kemp
- Odense University Hospital, Department of Clinical Microbiology, Odense, Denmark
| | - Bent Løwe Røder
- Slagelse Hospital, Department of Clinical Microbiology, Slagelse, Denmark
| | | | | | - John Eugenio Coia
- Sydvestjysk Hospital, Department of Clinical Microbiology, Esbjerg, Denmark
| | - Claus Østergaard
- Vejle Hospital, Department of Clinical Microbiology, Vejle, Denmark
| | - Michael Pedersen
- Hvidovre Hospital, Department of Clinical Microbiology, Hvidovre, Denmark
| | - Henrik Westh
- Hvidovre Hospital, Department of Clinical Microbiology, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
116
|
Feito J, Contente D, Ponce-Alonso M, Díaz-Formoso L, Araújo C, Peña N, Borrero J, Gómez-Sala B, del Campo R, Muñoz-Atienza E, Hernández PE, Cintas LM. Draft Genome Sequence of Lactococcus lactis Subsp. cremoris WA2-67: A Promising Nisin-Producing Probiotic Strain Isolated from the Rearing Environment of a Spanish Rainbow Trout ( Oncorhynchus mykiss, Walbaum) Farm. Microorganisms 2022; 10:521. [PMID: 35336097 PMCID: PMC8954438 DOI: 10.3390/microorganisms10030521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Probiotics are a viable alternative to traditional chemotherapy agents to control infectious diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously demonstrated several probiotic features, such as a strong antimicrobial activity against ichthyopathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids, adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic resistance determinants and genes encoding detrimental enzymatic activities and virulence factors. These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a probiotic for aquaculture.
Collapse
Affiliation(s)
- Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9, 100., 28034 Madrid, Spain; (M.P.-A.); (R.d.C.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Nuria Peña
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9, 100., 28034 Madrid, Spain; (M.P.-A.); (R.d.C.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda, Puerta de Hierro, s/n., 28040 Madrid, Spain; (J.F.); (D.C.); (L.D.-F.); (C.A.); (N.P.); (J.B.); (P.E.H.); (L.M.C.)
| |
Collapse
|
117
|
Shridhar PB, Amachawadi RG, Tokach M, Patel I, Gangiredla J, Mammel M, Nagaraja TG. Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. J Anim Sci 2022; 100:6527694. [PMID: 35150575 PMCID: PMC8908542 DOI: 10.1093/jas/skac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-5800, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506-5800, USA,Corresponding author:
| | - Mike Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-5800, USA
| | - Isha Patel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Mark Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-5800, USA
| |
Collapse
|
118
|
Kajeekul R, Insiripong S, Riwlord A, Poomchuchit S, Kerdsin A. Francisella sp., a Close Relative of Francisella orientalis, Causing Septicemia with Cholestatic Hepatitis in a Patient with Anti-Interferon-γ (IFN-γ) Autoantibodies. Trop Med Infect Dis 2022; 7:tropicalmed7020025. [PMID: 35202220 PMCID: PMC8874608 DOI: 10.3390/tropicalmed7020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Francisella is an intracellular, fastidious, Gram-negative bacterium that is difficult to identify using routine microbiological methods in the laboratory. We studied the isolation of Francisella sp. (strain IDAMR664) from the blood of a patient with anti-interferon-γ (IFN-γ) autoantibodies who presented with septicemia and cholestatic hepatitis. Analysis of the strain IDAMR664 genome sequence revealed the isolate was closely related to the strain GA01-2794 that had been isolated from a human in the USA. In addition, it was clustered with F. orientalis, a fish pathogen. The isolate contained several virulence factors and had Francisella pathogenicity island pattern no. 3.
Collapse
Affiliation(s)
- Rattagan Kajeekul
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand; (R.K.); (S.I.)
| | - Somchai Insiripong
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand; (R.K.); (S.I.)
| | - Athita Riwlord
- Clinical Microbiology Laboratory, Department of Medical Technology, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand;
| | - Suleeporn Poomchuchit
- Department of Community Health, Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
| | - Anusak Kerdsin
- Department of Community Health, Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
- Correspondence: ; Tel.: +66-42-725-023
| |
Collapse
|
119
|
Price TK, Davar K, Contreras D, Ward KW, Garner OB, Simner PJ, Yang S, Chandrasekaran S. Case Report and Genomic Analysis of Cefiderocol-Resistant Escherichia coli Clinical Isolates. Am J Clin Pathol 2022; 157:257-265. [PMID: 34542575 DOI: 10.1093/ajcp/aqab115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Cefiderocol is a novel siderophore cephalosporin with in vitro activity against multidrug-resistant (MDR), gram-negative bacteria and intrinsic structural stability to all classes of carbapenemases. We sought to identify gene variants that could affect the mechanism of action (MOA) of cefiderocol. METHODS We report a case of bacteremia in a liver transplant candidate with a strain of carbapenem-resistant Escherichia coli that was found to be resistant to cefiderocol despite no prior treatment with this antimicrobial agent. Using whole-genome sequencing, we characterized the genomic content of this E coli isolate and assessed for genetic variants between related strains that were found to be cefiderocol susceptible. RESULTS We identified several variants in genes with the potential to affect the mechanism of action of cefiderocol. CONCLUSIONS The cefiderocol resistance in the E coli isolate identified in this study is likely due to mutations in the cirA gene, an iron transporter gene.
Collapse
Affiliation(s)
- Travis K Price
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - Kusha Davar
- Division of Infectious Disease, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Deisy Contreras
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin W Ward
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
120
|
Teixeira CG, Rodrigues RDS, Yamatogi RS, Lucau-Danila A, Drider D, Nero LA, de Carvalho AF. Genomic Analyses of Weissella cibaria W25, a Potential Bacteriocin-Producing Strain Isolated from Pasture in Campos das Vertentes, Minas Gerais, Brazil. Microorganisms 2022; 10:microorganisms10020314. [PMID: 35208769 PMCID: PMC8874466 DOI: 10.3390/microorganisms10020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Weissella is a genus containing Gram-positive, heterofermentative bacteria belonging to the lactic acid bacteria (LAB) group. These bacteria are endowed with promising technological and antimicrobial attributes. Weissella cibaria W25 was isolated from a dairy environment where raw milk cheeses are produced. Therefore, we sequenced and assembled the W25 draft genome sequence, which consists of 41 contigs totaling ~2.4 Mbp, with a G + C content of 45.04%. Then we carried out a comprehensive comparative genomic analysis with W. cibaria 110, known to produce the weissellicin 110 bacteriocin, and four other non-bacteriocin-producing W. cibaria strains.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570 900, MG, Brazil; (C.G.T.); (R.d.S.R.)
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (A.L.-D.); (D.D.)
| | - Rafaela da Silva Rodrigues
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570 900, MG, Brazil; (C.G.T.); (R.d.S.R.)
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570 900, MG, Brazil;
| | - Ricardo Seiti Yamatogi
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570 900, MG, Brazil;
| | - Anca Lucau-Danila
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (A.L.-D.); (D.D.)
| | - Djamel Drider
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France; (A.L.-D.); (D.D.)
| | - Luís Augusto Nero
- InsPOA—Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa 36570 900, MG, Brazil;
- Correspondence: (L.A.N.); (A.F.d.C.)
| | - Antônio Fernandes de Carvalho
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570 900, MG, Brazil; (C.G.T.); (R.d.S.R.)
- Correspondence: (L.A.N.); (A.F.d.C.)
| |
Collapse
|
121
|
Florensa AF, Kaas RS, Clausen PTLC, Aytan-Aktug D, Aarestrup FM. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 2022; 8. [PMID: 35072601 PMCID: PMC8914360 DOI: 10.1099/mgen.0.000748] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important health threats globally. The ability to accurately identify resistant bacterial isolates and the individual antimicrobial resistance genes (ARGs) is essential for understanding the evolution and emergence of AMR and to provide appropriate treatment. The rapid developments in next-generation sequencing technologies have made this technology available to researchers and microbiologists at routine laboratories around the world. However, tools available for those with limited experience with bioinformatics are lacking, especially to enable researchers and microbiologists in low- and middle-income countries (LMICs) to perform their own studies. The CGE-tools (Center for Genomic Epidemiology) including ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) was developed to provide freely available easy to use online bioinformatic tools allowing inexperienced researchers and microbiologists to perform simple bioinformatic analyses. The main purpose was and is to provide these solutions for people involved in frontline diagnosis especially in LMICs. Since its original publication in 2012, ResFinder has undergone a number of improvements including improvement of the code and databases, inclusion of point mutations for selected bacterial species and predictions of phenotypes also for selected species. As of 28 September 2021, 820 803 analyses have been performed using ResFinder from 61 776 IP-addresses in 171 countries. ResFinder clearly fulfills a need for several people around the globe and we hope to be able to continue to provide this service free of charge in the future. We also hope and expect to provide further improvements including phenotypic predictions for additional bacterial species.
Collapse
Affiliation(s)
| | - Rolf Sommer Kaas
- National Food Institute, Technical University of Denmark, DK-2800 kgs. Lyngby, Denmark
| | | | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, DK-2800 kgs. Lyngby, Denmark
| | | |
Collapse
|
122
|
Hem S, Jarocki VM, Baker DJ, Charles IG, Drigo B, Aucote S, Donner E, Burnard D, Bauer MJ, Harris PNA, Wyrsch ER, Djordjevic SP. Genomic analysis of Elizabethkingia species from aquatic environments: Evidence for potential clinical transmission. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100083. [PMID: 34988536 PMCID: PMC8703026 DOI: 10.1016/j.crmicr.2021.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of closely related (< 50 SNV) clinical and environmental aquatic Elizabethkingia anophelis isolates. Identification of a provisional novel species Elizabethkingia umaracha. Novel blaGOB and blaB carbapenemases and extended spectrum β-lactamase blaCME alleles identified in Elizabethkingia spp. Analysis of the global phylogeny and pangenome of Elizabethkingia spp. Identification of novel ICE elements carrying uncharacterised genetic cargo in 67 / 94 (71.3%) of the aquatic environments Elizabethkingia spp.
Elizabethkingia species are ubiquitous in aquatic environments, colonize water systems in healthcare settings and are emerging opportunistic pathogens with reports surfacing in 25 countries across six continents. Elizabethkingia infections are challenging to treat, and case fatality rates are high. Chromosomal blaB, blaGOB and blaCME genes encoding carbapenemases and cephalosporinases are unique to Elizabethkingia spp. and reports of concomitant resistance to aminoglycosides, fluoroquinolones and sulfamethoxazole-trimethoprim are known. Here, we characterized whole-genome sequences of 94 Elizabethkingia isolates carrying multiple wide-spectrum metallo-β-lactamase (blaBand blaGOB) and extended-spectrum serine‑β-lactamase (blaCME) genes from Australian aquatic environments and performed comparative phylogenomic analyses against national clinical and international strains. qPCR was performed to quantify the levels of Elizabethkingia species in the source environments. Antibiotic MIC testing revealed significant resistance to carbapenems and cephalosporins but susceptibility to fluoroquinolones, tetracyclines and trimethoprim-sulfamethoxazole. Phylogenetics show that three environmental E. anophelis isolates are closely related to E. anophelis from Australian clinical isolates (∼36 SNPs), and a new species, E. umeracha sp. novel, was discovered. Genomic signatures provide insight into potentially shared origins and a capacity to transfer mobile genetic elements with both national and international isolates.
Collapse
Affiliation(s)
- Sopheak Hem
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Veronica M Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich, United Kingdom.,Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, United Kingdom
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Sarah Aucote
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Delaney Burnard
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Royal Brisbane and Woman's Hospital, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Ethan R Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
123
|
Chukamnerd A, Singkhamanan K, Chongsuvivatwong V, Palittapongarnpim P, Doi Y, Pomwised R, Sakunrang C, Jeenkeawpiam K, Yingkajorn M, Chusri S, Surachat K. Whole-genome analysis of carbapenem-resistant Acinetobacter baumannii from clinical isolates in Southern Thailand. Comput Struct Biotechnol J 2022; 20:545-558. [PMID: 36284706 PMCID: PMC9582705 DOI: 10.1016/j.csbj.2021.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
The worldwide spread of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a healthcare challenge for some decades. To understand its molecular epidemiology in Southern Thailand, we conducted whole-genome sequencing (WGS) of 221 CRAB clinical isolates. A comprehensive bioinformatics analysis was performed using several tools to assemble, annotate, and identify sequence types (STs), antimicrobial resistance (AMR) genes, mobile genetic elements (MGEs), and virulence genes. ST2 was the most prevalent ST in the CRAB isolates. For the detection of AMR genes, almost all CRAB isolates carried the blaOXA-23 gene, while certain isolates harbored the blaNDM-1 or blaIMP-14 genes. Also, various AMR genes were observed in these CRAB isolates, particularly aminoglycoside resistance genes (e.g., armA, aph(6)-Id, and aph(3″)-Ib), fosfomycin resistance gene (abaF), and tetracycline resistance genes (tet(B) and tet(39)). For plasmid replicon typing, RepAci1 and RepAci7 were the predominant replicons found in the CRAB isolates. Many genes encoding for virulence factors such as the ompA, adeF, pgaA, lpxA, and bfmR genes were also identified in all CRAB isolates. In conclusion, most CRAB isolates contained a mixture of AMR genes, MGEs, and virulence genes. This study provides significant information about the genetic determinants of CRAB clinical isolates that could assist the development of strategies for improved control and treatment of these infections.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology, Fujita Health University, Aichi, Japan
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Corresponding authors at: Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand and Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
124
|
Zwe YH, Yadav M, Zhen Ten MM, Srinivasan M, Jobichen C, Sivaraman J, Li D. Bacterial Antagonism of Chromobacterium haemolyticum and Characterization of its Putative Type VI Secretion System. Res Microbiol 2021; 173:103918. [PMID: 34906677 DOI: 10.1016/j.resmic.2021.103918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
This study reports the isolation of a new Chromobacterium haemolyticum strain named WI5 from a hydroponic farming facility. WI5 exhibited remarkable bacterial antagonistic properties, eliminating Salmonella, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus (initial inoculum load ∼105 CFU/ml) in dual-species co-culture biofilms. Antagonism was strictly contact-dependent and highly influenced by nutrient availability. Next, we identified a complete suite of putative Type VI secretion system (T6SS) genes in the WI5 genome, annotated the gene locus architecture, and determined the crystal structure of hallmark T6SS tube protein Hcp1, which revealed a hexameric ring structure with an outer and inner diameter of 77 and 45Å, respectively. Structural comparison with homologs showed differences in the key loops connecting the β-strands in which the conserved residues are located, suggesting a role of these residues in the protein function. The T6SS is well-known to facilitate interbacterial competition, and the putative T6SS characterized herein might be responsible for the remarkable antagonism by C. haemolyticum WI5. Collectively, these findings shed light on the nature of bacterial antagonism and a putative key virulence determinant of C. haemolyticum, which might aid in further understanding its potential ecological role in natural habitats.
Collapse
Affiliation(s)
- Ye Htut Zwe
- Department of Food Science & Technology, 2 Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117543
| | - Manisha Yadav
- Department of Biological Sciences, 14 Science Drive 4, Faculty of Science, National University of Singapore, Singapore 117543
| | - Michelle Mei Zhen Ten
- Department of Food Science & Technology, 2 Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117543
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, 14 Science Drive 4, Faculty of Science, National University of Singapore, Singapore 117543
| | - Chacko Jobichen
- Department of Biological Sciences, 14 Science Drive 4, Faculty of Science, National University of Singapore, Singapore 117543
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, Faculty of Science, National University of Singapore, Singapore 117543
| | - Dan Li
- Department of Food Science & Technology, 2 Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117543.
| |
Collapse
|
125
|
Szarvas J, Rebelo AR, Bortolaia V, Leekitcharoenphon P, Schrøder Hansen D, Nielsen HL, Nørskov-Lauritsen N, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. Danish Whole-Genome-Sequenced Candida albicans and Candida glabrata Samples Fit into Globally Prevalent Clades. J Fungi (Basel) 2021; 7:jof7110962. [PMID: 34829249 PMCID: PMC8622182 DOI: 10.3390/jof7110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans and Candida glabrata are opportunistic fungal pathogens with increasing incidence worldwide and higher-than-expected prevalence in Denmark. We whole-genome sequenced yeast isolates collected from Danish Clinical Microbiology Laboratories to obtain an overview of the Candida population in the country. The majority of the 30 C. albicans isolates were found to belong to three globally prevalent clades, and, with one exception, the remaining isolates were also predicted to cluster with samples from other geographical locations. Similarly, most of the eight C. glabrata isolates were predicted to be prevalent subtypes. Antifungal susceptibility testing proved all C. albicans isolates to be susceptible to both azoles and echinocandins. Two C. glabrata isolates presented azole-resistant phenotypes, yet all were susceptible to echinocandins. There is no indication of causality between population structure and resistance phenotypes for either species.
Collapse
Affiliation(s)
- Judit Szarvas
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
- Correspondence:
| | - Ana Rita Rebelo
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Valeria Bortolaia
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Pimlapas Leekitcharoenphon
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9100 Aalborg, Denmark;
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, 4200 Slagelse, Denmark;
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Sydvestjysk Hospital, 6700 Esbjerg, Denmark;
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, 7100 Vejle, Denmark;
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, 2650 Hvidovre, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frank Møller Aarestrup
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| |
Collapse
|
126
|
Liang Q, Liu C, Xu R, Song M, Zhou Z, Li H, Dai W, Yang M, Yu Y, Chen H. fIDBAC: A Platform for Fast Bacterial Genome Identification and Typing. Front Microbiol 2021; 12:723577. [PMID: 34733246 PMCID: PMC8558511 DOI: 10.3389/fmicb.2021.723577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
To study the contamination of microorganisms in the food industry, pharmaceutical industry, clinical diagnosis, or bacterial taxonomy, accurate identification of species is a key starting point of further investigation. The conventional method of identification by the 16S rDNA gene or other marker gene comparison is not accurate, because it uses a tiny part of the genomic information. The average nucleotide identity calculated between two whole bacterial genomes was proven to be consistent with DNA-DNA hybridization and adopted as the gold standard of bacterial species delineation. Furthermore, there are more bacterial genomes available in public databases recently. All of those contribute to a genome era of bacterial species identification. However, wrongly labeled and low-quality bacterial genome assemblies, especially from type strains, greatly affect accurate identification. In this study, we employed a multi-step strategy to create a type-strain genome database, by removing the wrongly labeled and low-quality genome assemblies. Based on the curated database, a fast bacterial genome identification platform (fIDBAC) was developed (http://fbac.dmicrobe.cn/). The fIDBAC is aimed to provide a single, coherent, and automated workflow for species identification, strain typing, and downstream analysis, such as CDS prediction, drug resistance genes, virulence gene annotation, and phylogenetic analysis.
Collapse
Affiliation(s)
- Qian Liang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Chengzhi Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Rong Xu
- Ningbo Center for Disease Control and Prevention, Ningbo, China
| | - Minghui Song
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- China National Accreditation Service for Conformity Assessment, Beijing, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Meicheng Yang
- Shanghai Institute for Food and Drug Control, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China.,Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
127
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
128
|
Albuquerque P, Ribeiro I, Correia S, Mucha AP, Tamagnini P, Braga-Henriques A, Carvalho MDF, Mendes MV. Complete Genome Sequence of Two Deep-Sea Streptomyces Isolates from Madeira Archipelago and Evaluation of Their Biosynthetic Potential. Mar Drugs 2021; 19:md19110621. [PMID: 34822492 PMCID: PMC8622039 DOI: 10.3390/md19110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
The deep-sea constitutes a true unexplored frontier and a potential source of innovative drug scaffolds. Here, we present the genome sequence of two novel marine actinobacterial strains, MA3_2.13 and S07_1.15, isolated from deep-sea samples (sediments and sponge) and collected at Madeira archipelago (NE Atlantic Ocean; Portugal). The de novo assembly of both genomes was achieved using a hybrid strategy that combines short-reads (Illumina) and long-reads (PacBio) sequencing data. Phylogenetic analyses showed that strain MA3_2.13 is a new species of the Streptomyces genus, whereas strain S07_1.15 is closely related to the type strain of Streptomyces xinghaiensis. In silico analysis revealed that the total length of predicted biosynthetic gene clusters (BGCs) accounted for a high percentage of the MA3_2.13 genome, with several potential new metabolites identified. Strain S07_1.15 had, with a few exceptions, a predicted metabolic profile similar to S. xinghaiensis. In this work, we implemented a straightforward approach for generating high-quality genomes of new bacterial isolates and analyse in silico their potential to produce novel NPs. The inclusion of these in silico dereplication steps allows to minimize the rediscovery rates of traditional natural products screening methodologies and expedite the drug discovery process.
Collapse
Affiliation(s)
- Pedro Albuquerque
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Inês Ribeiro
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Correia
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
| | - Ana Paula Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Andreia Braga-Henriques
- OOM—Oceanic Observatory of Madeira & MARE—Marine and Environmental Sciences Centre, ARDITI—Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Caminho da Penteada, 9020-105 Funchal, Portugal;
- Regional Directorate for Fisheries, Regional Secretariat for the Sea and Fisheries, Government of the Azores, Rua Cônsul Dabney—Colónia Alemã, 9900-014 Horta, Portugal
| | - Maria de Fátima Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (I.R.); (S.C.); (A.P.M.); (M.d.F.C.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta V. Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.A.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
129
|
Thomassen GMB, Krych L, Knøchel S, Mehli L. ON-rep-seq as a rapid and cost-effective alternative to whole-genome sequencing for species-level identification and strain-level discrimination of Listeria monocytogenes contamination in a salmon processing plant. Microbiologyopen 2021; 10:e1246. [PMID: 34964295 PMCID: PMC8591450 DOI: 10.1002/mbo3.1246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Identification, source tracking, and surveillance of food pathogens are crucial factors for the food-producing industry. Over the last decade, the techniques used for this have moved from conventional enrichment methods, through species-specific detection by PCR to sequencing-based methods, whole-genome sequencing (WGS) being the ultimate method. However, using WGS requires the right infrastructure, high computational power, and bioinformatics expertise. Therefore, there is a need for faster, more cost-effective, and more user-friendly methods. A newly developed method, ON-rep-seq, combines the classical rep-PCR method with nanopore sequencing, resulting in a highly discriminating set of sequences that can be used for species identification and also strain discrimination. This study is essentially a real industry case from a salmon processing plant. Twenty Listeria monocytogenes isolates were analyzed both by ON-rep-seq and WGS to identify and differentiate putative L. monocytogenes from a routine sampling of processing equipment and products, and finally, compare the strain-level discriminatory power of ON-rep-seq to different analyzing levels delivered from the WGS data. The analyses revealed that among the isolates tested there were three different strains. The isolates of the most frequently detected strain (n = 15) were all detected in the problematic area in the processing plant. The strain level discrimination done by ON-rep-seq was in full accordance with the interpretation of WGS data. Our findings also demonstrate that ON-rep-seq may serve as a primary screening method alternative to WGS for identification and strain-level differentiation for surveillance of potential pathogens in a food-producing environment.
Collapse
Affiliation(s)
| | - Lukasz Krych
- Department of Food ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Susanne Knøchel
- Department of Food ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Lisbeth Mehli
- Department of Biotechnology and Food ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
130
|
Sirag B, Khidir ES, Dumyati M, Sindi B, Alsinnari M, Faidah H, Ahmed A. Cryptococcus neoformans and Other Opportunistic Cryptococcus Species in Pigeon Dropping in Saudi Arabia: Identification and Characterization by DNA Sequencing. Front Microbiol 2021; 12:726203. [PMID: 34707582 PMCID: PMC8544600 DOI: 10.3389/fmicb.2021.726203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
The prevalent variants of Cryptococcus neoformans, and other Cryptococcus species in pigeon excreta in Western Region of Saudi Arabia were studied. Ninety pigeon dropping samples were plated directly on Niger seed agar, and suspected colonies were sequenced using Illumina MiSeq. Species identification was determined using sequence read mapping to reference genomes of the two C. neoformans variants. In addition, sequence reads were identified using the KmerFinder tool. internal transcribed spacer 2 in the rDNA was also used for fungal barcoding of none of the C. neoformans species using two fungal identification databases. Phylogeny was studied using CSI Phylogeny (Center for Genomic Epidemiology, Denmark). The C. neoformans var. grubii mitochondrion and chromosome 1 reference sequences (accession numbers NC_004336.1 and CP022321.1, respectively) were used for sequence comparison and variant calling. Fifteen Cryptococcus isolates were isolated, 11 were identified as C. neoformans var. grubii, and 4 were found to be other opportunistic Cryptococcus species. Phylogeny analysis of C. neoformans var. grubii isolates showed a high degree of similarity between the C. neoformans isolates especially at the mitochondrial genome level. This study supports the fact that pathogenic and opportunistic Cryptococcus species are prevalent in domestic bird excreta which is an easy source of infection in the susceptible population.
Collapse
Affiliation(s)
- Bashir Sirag
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - El-Shiekh Khidir
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Dumyati
- Department of Medicine, National Guard Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Basam Sindi
- Department of Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Mahir Alsinnari
- Department of Anesthesia, Al Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdalla Ahmed
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
131
|
Ngbede EO, Adekanmbi F, Poudel A, Kalalah A, Kelly P, Yang Y, Adamu AM, Daniel ST, Adikwu AA, Akwuobu CA, Abba PO, Mamfe LM, Maurice NA, Adah MI, Lockyear O, Butaye P, Wang C. Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Front Microbiol 2021; 12:740348. [PMID: 34690985 PMCID: PMC8528161 DOI: 10.3389/fmicb.2021.740348] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Resistance to last resort drugs such as carbapenem and colistin is a serious global health threat. This study investigated carbapenem and colistin resistance in 583 non-duplicate Enterobacteriaceae isolates utilizing phenotypic methods and whole genome sequencing (WGS). Of the 583 isolates recovered from humans, animals and the environment in Nigeria, 18.9% (110/583) were resistant to at least one carbapenem (meropenem, ertapenem, and imipenem) and 9.1% (53/583) exhibited concurrent carbapenem-colistin resistance. The minimum inhibitory concentrations of carbapenem and colistin were 2–32 μg/mL and 8 to >64 μg/mL, respectively. No carbapenem resistant isolates produced carbapenemase nor harbored any known carbapenemase producing genes. WGS supported that concurrent carbapenem-colistin resistance was mediated by novel and previously described alterations in chromosomal efflux regulatory genes, particularly mgrB (M1V) ompC (M1_V24del) ompK37 (I70M, I128M) ramR (M1V), and marR (M1V). In addition, alterations/mutations were detected in the etpA, arnT, ccrB, pmrB in colistin resistant bacteria and ompK36 in carbapenem resistant bacteria. The bacterial isolates were distributed into 37 sequence types and characterized by the presence of internationally recognized high-risk clones. The results indicate that humans and animals in Nigeria may serve as reservoirs and vehicles for the global spread of the isolates. Further studies on antimicrobial resistance in African countries are warranted.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Folasade Adekanmbi
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Anil Poudel
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Anwar Kalalah
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Patrick Kelly
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Yi Yang
- Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Andrew M Adamu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Salem T Daniel
- Department of Microbiology, College of Sciences, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Alex A Adikwu
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Chinedu A Akwuobu
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Paul O Abba
- Department of Medical Microbiology and Parasitology, Benue State University Teaching Hospital, Makurdi, Nigeria
| | - Levi M Mamfe
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Nanven A Maurice
- Department of Diagnostics and Extension, National Veterinary Research Institute, Vom, Nigeria
| | - Mohammed I Adah
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
| | - Olivia Lockyear
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Patrick Butaye
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
132
|
Draft Genome Sequences of Multidrug-Resistant Shigella Strains Isolated from Diarrheal Patients in Bangladesh. Microbiol Resour Announc 2021; 10:e0085421. [PMID: 34672712 PMCID: PMC8530036 DOI: 10.1128/mra.00854-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Shigella strains has impaired the efficacy of first-line antimicrobials and exacerbated diarrhea-associated morbidity and mortality worldwide. We report the draft genome sequences of 11 MDR Shigella strains isolated from the stool specimens of diarrheal patients in Bangladesh.
Collapse
|
133
|
Draft Genome Sequence of NDM-Encoding Klebsiella pneumoniae Isolated from Feral Swine. Microbiol Resour Announc 2021; 10:e0080821. [PMID: 34647798 PMCID: PMC8515893 DOI: 10.1128/mra.00808-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-producing Enterobacteriaceae pose a great threat to public health globally. Most known NDM-producing Enterobacteriaceae are associated with human hospital or community infections. Here, we report the draft genome sequence of an NDM-1-encoding Klebsiella pneumoniae strain isolated from feral swine (Sus scrofa) captured in Florida, USA.
Collapse
|
134
|
Choi H, Hwang M, Chatterjee P, Jinadatha C, Navarathna DH. Rare Lelliottia nimipressuralis from a wound infection case report using whole genome sequencing-based bacterial identification. Diagn Microbiol Infect Dis 2021; 101:115538. [PMID: 34619568 DOI: 10.1016/j.diagmicrobio.2021.115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022]
Abstract
Identification of clinical bacterial isolates is an essential first step to provide guidelines for treatment of pathogenic bacterial infection. Infection occurred in a laceration along the medial aspect of left upper arm of a 71-year-old female. Conventional biochemical testing and MALDI-TOF MS identification failed to correctly identify a bacterial isolate. Using whole genome sequencing, the isolate was identified as Lelliottia nimipressuralis. WGS can overcome the limitations of conventional phenotypic and molecular identification methods and successfully identified a rare pathogen. This case is the first report of a human infection of L. nimipressuralis.
Collapse
Affiliation(s)
- Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX, USA; Department of Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Dhammika H Navarathna
- Department of Pathology and Laboratory Medicine Services, Central Texas Veterans Health Care System, Temple, TX, USA.
| |
Collapse
|
135
|
Panzenhagen P, Portes AB, dos Santos AMP, Duque SDS, Conte Junior CA. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes (Basel) 2021; 12:1538. [PMID: 34680933 PMCID: PMC8535712 DOI: 10.3390/genes12101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is responsible for 80% of human campylobacteriosis and is the leading cause of gastroenteritis globally. The relevant public health risks of C. jejuni are caused by particular virulence genes encompassing its virulome. We analyzed 40,371 publicly available genomes of C. jejuni deposited in the NCBI Pathogen Detection Database, combining their epidemiologic metadata with an in silico bioinformatics analysis to increase our current comprehension of their virulome from a global perspective. The collection presented a virulome composed of 126 identified virulence factors that were grouped in three clusters representing the accessory, the softcore, and the essential core genes according to their prevalence within the genomes. The multilocus sequence type distribution in the genomes was also investigated. An unexpected low prevalence of the full-length flagellin flaA and flaB locus of C. jejuni genomes was revealed, and an essential core virulence gene repertoire prevalent in more than 99.99% of genomes was identified. Altogether, this is a pioneer study regarding Campylobacter jejuni that has compiled a significant amount of data about the Multilocus Sequence Type and virulence factors concerning their global prevalence and distribution over this database.
Collapse
Affiliation(s)
- Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
136
|
Findlay J, Poirel L, Kessler J, Kronenberg A, Nordmann P. New Delhi Metallo-β-Lactamase-Producing Enterobacterales Bacteria, Switzerland, 2019-2020. Emerg Infect Dis 2021; 27:2628-2637. [PMID: 34545787 PMCID: PMC8462332 DOI: 10.3201/eid2710.211265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) bacteria are a critical global health concern; New Delhi metallo-β-lactamase (NDM) enzymes account for >25% of all CPE found in Switzerland. We characterized NDM-positive CPE submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance during a 2-year period (January 2019–December 2020) phenotypically and by using whole-genome sequencing. Most isolates were either Klebsiella pneumoniae (59/141) or Escherichia coli (52/141), and >50% were obtained from screening swabs. Among the 108 sequenced isolates, NDM-1 was the most prevalent variant, occurring in 56 isolates, mostly K. pneumoniae (34/56); the next most prevalent was NDM-5, which occurred in 49 isolates, mostly E. coli (40/49). Fourteen isolates coproduced a second carbapenemase, predominantly an OXA-48-like enzyme, and almost one third of isolates produced a 16S rRNA methylase conferring panresistance to aminoglycosides. We identified successful plasmids and global lineages as major factors contributing to the increasing prevalence of NDMs in Switzerland.
Collapse
|
137
|
Piccirilli A, Cherubini S, Azzini AM, Tacconelli E, Lo Cascio G, Maccacaro L, Bazaj A, Naso L, Amicosante G, Perilli M. Whole-Genome Sequencing (WGS) of Carbapenem-Resistant K. pneumoniae Isolated in Long-Term Care Facilities in the Northern Italian Region. Microorganisms 2021; 9:microorganisms9091985. [PMID: 34576880 PMCID: PMC8465262 DOI: 10.3390/microorganisms9091985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
K. pneumoniae (KPN) is one of the widest spread bacteria in which combined resistance to several antimicrobial groups is frequent. The most common β-lactamases found in K. pneumoniae are class A carbapenemases, both chromosomal-encoded (i.e., NMCA, IMI-1) and plasmid-encoded (i.e., GES-enzymes, IMI-2), VIM, IMP, NDM, OXA-48, and extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes. In the present study, a total of 68 carbapenem-resistant KPN were collected from twelve long-term care facilities (LTCFs) in the Northern Italian region. The whole-genome sequencing (WGS) of each KPN strain was determined using a MiSeq Illumina sequencing platform and analysed by a bacterial analysis pipeline (BAP) tool. The WGS analysis showed the prevalence of ST307, ST512, and ST37 as major lineages diffused among the twelve LTCFs. The other lineages found were: ST11, ST16, ST35, ST253, ST273, ST321, ST416, ST1519, ST2623, and ST3227. The blaKPC-2, blaKPC-3, blaKPC-9, blaSHV-11, blaSHV-28, blaCTX-M-15, blaOXA-1, blaOXA-9, blaOXA-23, qnrS1, qnrB19, qnrB66, aac(6′)-Ib-cr, and fosA were the resistance genes widespread in most LTCFs. In this study, we demonstrated the spreading of thirteen KPN lineages among the LTCFs. Additionally, KPC carbapenemases are the most widespread β-lactamase.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | - Anna Maria Azzini
- Infectious Disease Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.T.)
| | - Evelina Tacconelli
- Infectious Disease Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.T.)
| | - Giuliana Lo Cascio
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
- Microbiology and Virology Unit, AUSL Piacenza, 29121 Piacenza, Italy
| | - Laura Maccacaro
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Alda Bazaj
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Laura Naso
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | | | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
- Correspondence:
| |
Collapse
|
138
|
Oliveira M, Leonardo IC, Nunes M, Silva AF, Barreto Crespo MT. Environmental and Pathogenic Carbapenem Resistant Bacteria Isolated from a Wastewater Treatment Plant Harbour Distinct Antibiotic Resistance Mechanisms. Antibiotics (Basel) 2021; 10:antibiotics10091118. [PMID: 34572700 PMCID: PMC8472606 DOI: 10.3390/antibiotics10091118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Wastewater treatment plants are important reservoirs and sources for the dissemination of antibiotic resistance into the environment. Here, two different groups of carbapenem resistant bacteria-the potentially environmental and the potentially pathogenic-were isolated from both the wastewater influent and discharged effluent of a full-scale wastewater treatment plant and characterized by whole genome sequencing and antibiotic susceptibility testing. Among the potentially environmental isolates, there was no detection of any acquired antibiotic resistance genes, which supports the idea that their resistance mechanisms are mainly intrinsic. On the contrary, the potentially pathogenic isolates presented a broad diversity of acquired antibiotic resistance genes towards different antibiotic classes, especially β-lactams, aminoglycosides, and fluoroquinolones. All these bacteria showed multiple β-lactamase-encoding genes, some with carbapenemase activity, such as the blaKPC-type genes found in the Enterobacteriaceae isolates. The antibiotic susceptibility testing assays performed on these isolates also revealed that all had a multi-resistance phenotype, which indicates that the acquired resistance is their major antibiotic resistance mechanism. In conclusion, the two bacterial groups have distinct resistance mechanisms, which suggest that the antibiotic resistance in the environment can be a more complex problematic than that generally assumed.
Collapse
Affiliation(s)
- Micaela Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.O.); (I.C.L.); (M.T.B.C.)
| | - Inês Carvalho Leonardo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.O.); (I.C.L.); (M.T.B.C.)
| | - Mónica Nunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.O.); (I.C.L.); (M.T.B.C.)
- Correspondence:
| | - Ana Filipa Silva
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark;
| | - Maria Teresa Barreto Crespo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.O.); (I.C.L.); (M.T.B.C.)
| |
Collapse
|
139
|
Cortés-Ortíz IA, Mendieta-Condado E, Escobar-Escamilla N, Juárez-Gómez JC, Garcés-Ayala F, Rodriguez AA, Bravata-Alcántara JC, Gutiérrez-Muñoz VH, Bello-López JM, Ramírez–González JE. Multidrug-resistant Raoultella ornithinolytica misidentified as Klebsiella oxytoca carrying blaOXA β-lactamases: antimicrobial profile and genomic characterization. Arch Microbiol 2021; 203:5755-5761. [DOI: 10.1007/s00203-021-02515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
|
140
|
Crestani C, Forde TL, Lycett SJ, Holmes MA, Fasth C, Persson-Waller K, Zadoks RN. The fall and rise of group B Streptococcus in dairy cattle: reintroduction due to human-to-cattle host jumps? Microb Genom 2021; 7. [PMID: 34486971 PMCID: PMC8715428 DOI: 10.1099/mgen.0.000648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is a major neonatal and opportunistic bacterial pathogen of humans and an important cause of mastitis in dairy cattle with significant impacts on food security. Following the introduction of mastitis control programmes in the 1950s, GBS was nearly eradicated from the dairy industry in northern Europe, followed by re-emergence in the 21st century. Here, we sought to explain this re-emergence based on short and long read sequencing of historical (1953–1978; n=44) and contemporary (1997–2012; n=76) bovine GBS isolates. Our data show that a globally distributed bovine-associated lineage of GBS was commonly detected among historical isolates but never among contemporary isolates. By contrast, tetracycline resistance, which is present in all major GBS clones adapted to humans, was commonly and uniquely detected in contemporary bovine isolates. These observations provide evidence for strain replacement and suggest a human origin of newly emerged strains. Three novel GBS plasmids were identified, including two showing >98 % sequence similarity with plasmids from Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis, which co-exist with GBS in the human oropharynx. Our findings support introduction of GBS into the dairy population due to human-to-cattle jumps on multiple occasions and demonstrate that reverse zoonotic transmission can erase successes of animal disease control campaigns.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1QH, UK
| | - Taya L Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1QH, UK
| | - Samantha J Lycett
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Charlotta Fasth
- National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | | | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1QH, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK.,School of Veterinary Science, University of Sydney, Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
141
|
Antimicrobial Resistance and Comparative Genome Analysis of Klebsiella pneumoniae Strains Isolated in Egypt. Microorganisms 2021; 9:microorganisms9091880. [PMID: 34576775 PMCID: PMC8465295 DOI: 10.3390/microorganisms9091880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen in both developing and industrialised countries that can causes a variety of human infections, such as pneumonia, urinary tract infections and bacteremia. Like many Gram-negative bacteria, it is becoming resistant to many frontline antibiotics, such as carbapenem and cephalosporin antibiotics. In Egypt, K. pneumoniae is increasingly recognised as an emerging pathogen, with high levels of antibiotic resistance. However, few Egyptian K. pneumoniae strains have been sequenced and characterised. Hence, here, we present the genome sequence of a multidrug resistant K. pneumoniae strain, KPE16, which was isolated from a child in Assiut, Egypt. We report that it carries multiple antimicrobial resistance genes, including a blaNDM-1 carbapenemase and extended spectrum β-lactamase genes (i.e., blaSHV-40, blaTEM-1B, blaOXA-9 and blaCTX-M-15). By comparing this strain with other Egyptian isolates, we identified common plasmids, resistance genes and virulence determinants. Our analysis suggests that some of the resistance plasmids that we have identified are circulating in K. pneumoniae strains in Egypt, and are likely a source of antibiotic resistance throughout the world.
Collapse
|
142
|
Kenzaka T, Shinkura Y, Kayama S, Yu L, Kawakami S, Sugai M, Kawasaki S. Infective Endocarditis Caused by Extended-Spectrum Beta-Lactamase-Producing Escherichia coli: A Case Report. Infect Drug Resist 2021; 14:3357-3362. [PMID: 34471362 PMCID: PMC8403558 DOI: 10.2147/idr.s321443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) reportedly accounts for >20% of E. coli infections and 2.0% of infective endocarditis cases. Nonetheless, there is a global paucity of reports on infective endocarditis caused by ESBL-EC. Case An 83-year-old Japanese man who underwent mitral annuloplasty for mitral valve prolapse 5 years ago developed a fever of 38.5°C. The patient was hospitalized the first time for pyelonephritis and bacteremia due to ESBL-EC and treated successfully with the antimicrobial meropenem for 14 days. Two days after discharge, however, the patient was re-admitted with bacteremia due to ESBL-EC. He was treated successfully with the antimicrobial cefmetazole for 14 days. The patient was admitted to our institution for a third time due to bacteremia again, a day after discharge following meropenem antibiotic therapy. Transesophageal echocardiography showed vegetation in the anterior mitral valve annulus. Magnetic resonance imaging of the head showed septic cerebral embolism. The patient was diagnosed with infective endocarditis due to ESBL-EC and underwent mitral valve replacement. After 6 weeks of antibiotic therapy with meropenem and tobramycin, the patient recovered completely. The causative E. coli strain MS6396 was identified as the E. coli clone ST131 by multilocus sequence typing and confirmed the presence of blaCTX-M-27 ESBL gene. Conclusion Only six cases of infective endocarditis associated with ESBL-EC have been reported in the past. Moreover, this is the first report of a patient with infective endocarditis bacteriologically or genetically analyzed for ESBL-EC. In future, factors that may cause infective endocarditis in ESBL-EC infections may be clarified through more thorough bacteriological/genetic analyses of ESBL-EC.
Collapse
Affiliation(s)
- Tsuneaki Kenzaka
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tanba, Japan.,Division of Community Medicine and Career Development, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuto Shinkura
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tanba, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Antimicrobial Resistance, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Satoru Kawasaki
- Department of Internal Medicine, Hyogo Prefectural Tamba Medical Center, Tanba, Japan
| |
Collapse
|
143
|
Garner CD, Brazelton de Cardenas J, Suganda S, Hayden RT. Accuracy of Broad-Panel PCR-Based Bacterial Identification for Blood Cultures in a Pediatric Oncology Population. Microbiol Spectr 2021; 9:e0022121. [PMID: 34232100 PMCID: PMC8552719 DOI: 10.1128/spectrum.00221-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/05/2021] [Indexed: 11/20/2022] Open
Abstract
Bloodstream infections are a major cause of morbidity and mortality and result in significant costs to health care systems. Rapid identification of the causative agent of bloodstream infections is critical for patient treatment and improved outcomes. Multiplex PCR systems that provide bacterial identification directly from the blood culture bottle allow for earlier detection of pathogens. The GenMark Dx ePlex blood culture identification (BCID) panels have an expanded number of targets for both identification and genotypic markers of antimicrobial resistance. The performance of the ePlex BCID Gram-negative (GN) and Gram-positive (GP) panels were evaluated in a predominantly pediatric oncology population. A total of 112 blood cultures were tested by the ePlex BCID GN and GP panels and results were compared to those from standard-of-care testing. Accuracy for on-panel organisms was 89% (CI, 76% to 95%) for the Gram-positive panel, with four misidentifications and one not detected, and 93% (CI, 82% to 98%) for the Gram-negative panel, with two misidentifications and one not detected. The results showed good overall performance of these panels for rapid, accurate detection of bloodstream pathogens in this high-risk population. IMPORTANCE Bloodstream infections are a major cause of morbidity and mortality and result in significant costs to health care systems. Rapid identification of the causative agent of bloodstream infections is critical for patient treatment and improved outcomes. Multiplex PCR systems that provide bacterial identification directly from the blood culture bottle allow for earlier characterization of pathogens. The GenMark Dx ePlex blood culture identification (BCID) panels, recently cleared by the FDA, have an expanded number of targets for both identification and resistance, much larger than other, automated, broad-panel PCR assays. The performance of the ePlex BCID Gram-negative and Gram-positive panels was evaluated in a predominantly pediatric oncology population, providing a unique look at its performance in a high-risk group, where rapid diagnostic information for bloodstream infections could be of particular value for clinical care providers.
Collapse
Affiliation(s)
- C. D. Garner
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - S. Suganda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - R. T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
144
|
Abstract
The draft genome sequence of Clostridium tertium WC0709, a gut bacterium able to use mucin in pure culture as the sole carbon and nitrogen source, is presented here. The genome sequence of C. tertium will provide valuable references for comparative genome analysis and for studying the relationship with the host.
Collapse
|
145
|
Draft Genome Sequence of Serratia rubidaea, a Potential Opportunistic Pathogen Isolated from Food in Italy. Microbiol Resour Announc 2021; 10:e0070721. [PMID: 34323601 PMCID: PMC8320446 DOI: 10.1128/mra.00707-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia rubidaea has emerged in recent years as an opportunistic nosocomial pathogen. Here, we present the draft genome sequence of an isolate derived from an industrial meat food product purchased in a large-scale retail store that revealed fluoroquinolone, β-lactam, and aminoglycoside resistance genes and two different host-unspecific prophages.
Collapse
|
146
|
Reply to Fabre et al. Comment on "Tanmoy et al. CRISPR-Cas Diversity in Clinical Salmonella enterica Serovar Typhi Isolates from South Asian Countries. Genes 2020, 11, 1365". Genes (Basel) 2021; 12:genes12081147. [PMID: 34440321 PMCID: PMC8392857 DOI: 10.3390/genes12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
|
147
|
Genomic evolution of antimicrobial resistance in Escherichia coli. Sci Rep 2021; 11:15108. [PMID: 34301966 PMCID: PMC8302606 DOI: 10.1038/s41598-021-93970-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.
Collapse
|
148
|
Ballash GA, Albers AL, Mollenkopf DF, Sechrist E, Adams RJ, Wittum TE. Antimicrobial resistant bacteria recovered from retail ground meat products in the US include a Raoultella ornithinolytica co-harboring bla KPC-2 and bla NDM-5. Sci Rep 2021; 11:14041. [PMID: 34234222 PMCID: PMC8263791 DOI: 10.1038/s41598-021-93362-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Retail beef and pork, including processed products, can serve as vehicles for the zoonotic foodborne transmission of pathogens and antimicrobial resistant bacteria. However, processed and seasoned products like sausages, are not often included in research and surveillance programs. The objective of this study was to investigate retail ground beef and pork, including processed products, for the presence of common foodborne pathogens and antimicrobial resistant bacteria. We purchased 763 packages of fresh and fully cooked retail meat products during 29 visits to 17 grocery stores representing seven major grocery chains located in west and central Ohio. Each package of meat was evaluated for contamination with methicillin-resistant Staphylococcus aureus (MRSA), Salmonella spp., Enterobacteriaceae expressing extended-spectrum cephalosporin resistance, and carbapenemase-producing organisms (CPO). Only 3 of the 144 (2.1%) packages of fully cooked meat products contained any of these organisms, 1 with an extended-spectrum β-lactamase-producing (ESBL) Enterobacteriaceae and 2 with CPO. Among the 619 fresh meat products, we found that 85 (13.7%) packages were contaminated with MRSA, 19 (3.1%) with Salmonella, 136 (22.0%) with Enterobacteriaceae expressing an AmpC (blaCMY) resistance genotype, 25 (4.0%) with Enterobacteriaceae expressing an ESBL (blaCTX-M) resistance genotype, and 31 (5.0%) with CPO, primarily environmental organisms expressing intrinsic carbapenem resistance. However, one CPO, a Raoultella ornithinolytica, isolated from pork sausage co-harbored both blaKPC-2 and blaNDM-5 on IncN and IncX3 plasmids, respectively. Our findings suggest that fresh retail meat, including processed products can be important vehicles for the transmission of foodborne pathogens and antimicrobial resistant bacteria, including those with epidemic carbapenemase-producing genotypes.
Collapse
Affiliation(s)
- Gregory A Ballash
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy L Albers
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Dixie F Mollenkopf
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Emily Sechrist
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Rachael J Adams
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas E Wittum
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
149
|
Dong X, Chao Y, Zhou Y, Zhou R, Zhang W, Fischetti VA, Wang X, Feng Y, Li J. The global emergence of a novel Streptococcus suis clade associated with human infections. EMBO Mol Med 2021; 13:e13810. [PMID: 34137500 PMCID: PMC8261479 DOI: 10.15252/emmm.202013810] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis, a ubiquitous bacterial colonizer in pigs, has recently extended host range to humans, leading to a global surge of deadly human infections and three large outbreaks since 1998. To better understand the mechanisms for the emergence of cross-species transmission and virulence in human, we have sequenced 366 S. suis human and pig isolates from 2005 to 2016 and performed a large-scale phylogenomic analysis on 1,634 isolates from 14 countries over 36 years. We show the formation of a novel human-associated clade (HAC) diversified from swine S. suis isolates. Phylogeographic analysis identified Europe as the origin of HAC, coinciding with the exportation of European swine breeds between 1960s and 1970s. HAC is composed of three sub-lineages and contains several healthy-pig isolates that display high virulence in experimental infections, suggesting healthy-pig carriers as a potential source for human infection. New HAC-specific genes are identified as promising markers for pathogen detection and surveillance. Our discovery of a human-associated S. suis clade provides insights into the evolution of this emerging human pathogen and extend our understanding of S. suis epidemics worldwide.
Collapse
Affiliation(s)
- Xingxing Dong
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National R&D Center for Se‐rich Agricultural Products ProcessingHubei Engineering Research Center for Deep Processing of Green Se‐rich Agricultural ProductsSchool of Modern Industry for Selenium Science and EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH)CAS Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
| | - Yang Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| | - Rui Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Wei Zhang
- College of Veterinary MedicineNanjing Agricultural UniversityNanjingChina
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and ImmunologyThe Rockefeller UniversityNew YorkNYUSA
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ye Feng
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jinquan Li
- Key Laboratory of Environment Correlative DietologyInterdisciplinary Sciences InstituteCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Laboratory of Bacterial Pathogenesis and ImmunologyThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
150
|
Singh R, Kusalik A, Dillon JAR. Bioinformatics tools used for whole-genome sequencing analysis of Neisseria gonorrhoeae: a literature review. Brief Funct Genomics 2021; 21:78-89. [PMID: 34170311 DOI: 10.1093/bfgp/elab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing (WGS) data are well established for the investigation of gonococcal transmission, antimicrobial resistance prediction, population structure determination and population dynamics. A variety of bioinformatics tools, repositories, services and platforms have been applied to manage and analyze Neisseria gonorrhoeae WGS datasets. This review provides an overview of the various bioinformatics approaches and resources used in 105 published studies (as of 30 April 2021). The challenges in the analysis of N. gonorrhoeae WGS datasets, as well as future bioinformatics requirements, are also discussed.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology
| | - Anthony Kusalik
- Department of Computer Science at the University of Saskatchewan
| | - Jo-Anne R Dillon
- Department of Biochemistry Microbiology and Immunology, College of Medicine, c/o Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| |
Collapse
|