101
|
The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses 2015; 7:1871-901. [PMID: 25866902 PMCID: PMC4411681 DOI: 10.3390/v7041871] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.
Collapse
|
102
|
Wendzicki JA, Moore PS, Chang Y. Large T and small T antigens of Merkel cell polyomavirus. Curr Opin Virol 2015; 11:38-43. [PMID: 25681708 DOI: 10.1016/j.coviro.2015.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
Merkel cell polyomavirus (MCV) is the etiological agent of Merkel cell carcinoma (MCC), a rare and highly lethal human skin cancer. A natural component of skin flora, MCV becomes tumorigenic only after integration into the host DNA together with specific mutations to the viral genome. Research on MCV large T (LT) and small T (sT) antigens, the only viral products expressed in MCC, shows that these major oncoproteins not only possess biochemical functions found in common with other polyomavirus T antigens, but also demonstrate new cellular targets not described in previous polyomavirus models. This review provides a map of the relevant functional motifs and domains in MCV T antigens that have been identified, highlighting their roles in tumorigenesis.
Collapse
Affiliation(s)
- Justin A Wendzicki
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
103
|
Berrios C, Jung J, Primi B, Wang M, Pedamallu C, Duke F, Marcelus C, Cheng J, Garcea RL, Meyerson M, DeCaprio JA. Malawi polyomavirus is a prevalent human virus that interacts with known tumor suppressors. J Virol 2015; 89:857-62. [PMID: 25320321 PMCID: PMC4301141 DOI: 10.1128/jvi.02328-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/24/2022] Open
Abstract
Malawi polyomavirus (MWPyV) is a recently identified human polyomavirus. Serology for MWPyV VP1 indicates that infection frequently occurs in childhood and reaches a prevalence of 75% in adults. The MWPyV small T antigen (ST) binds protein phosphatase 2A (PP2A), and the large T antigen (LT) binds pRb, p107, p130, and p53. However, the MWPyV LT was less stable than the simian virus 40 (SV40) LT and was unable to promote the growth of normal cells. This report confirms that MWPyV is a widespread human virus expressing T antigens with low transforming potential.
Collapse
Affiliation(s)
- Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, USA
| | - Joonil Jung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Blake Primi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA The BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Michael Wang
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Chandrasekhar Pedamallu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Fujiko Duke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christina Marcelus
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA The BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA Program in Virology, Harvard University Graduate School of Arts and Sciences, Division of Medical Sciences, Boston, Massachusetts, USA Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
104
|
Samimi M, Gardair C, Nicol JTJ, Arnold F, Touzé A, Coursaget P. Merkel cell polyomavirus in merkel cell carcinoma: clinical and therapeutic perspectives. Semin Oncol 2014; 42:347-58. [PMID: 25843739 DOI: 10.1053/j.seminoncol.2014.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and often aggressive cutaneous cancer with a poor prognosis. The incidence of this cancer increases with age, immunodeficiency and sun exposure. Merkel cell polyomavirus (MCPyV), a new human polyomavirus identified in 2008, is detected in the majority of the MCCs and there is a growing body of evidence that healthy human skin harbors resident or transient MCPyV. A causal link between MCPyV and MCC has been evidenced and this is the first polyomavirus to be clearly implicated as a causal agent underlying a human cancer, and MCPyV was recently classified as a 2A carcinogen. MCC is thus a rare tumor caused by a very common viral skin infection. The aim of this review is to provide a basic overview of the epidemiological, clinical, and pathological characteristics of MCC, to present the current knowledge on MCPyV polyomavirus and its causal association with MCC development, and to describe the therapeutic implications of this causal link.
Collapse
Affiliation(s)
- Mahtab Samimi
- Université François Rabelais, Tours, France; CHRU de Tours-Hôpital Trousseau, Service de Dermatologie, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Charlotte Gardair
- CHRU de Tours-Hôpital Trousseau, Service d׳Anatomie et Cytologie Pathologiques, Tours, France
| | - Jérome T J Nicol
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Francoise Arnold
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | - Antoine Touzé
- Université François Rabelais, Tours, France; Unité Mixte de Recherche INRA-Univerity of Tours N°1282, Tours, France
| | | |
Collapse
|
105
|
Li J, Diaz J, Wang X, Tsang SH, You J. Phosphorylation of Merkel cell polyomavirus large tumor antigen at serine 816 by ATM kinase induces apoptosis in host cells. J Biol Chem 2014; 290:1874-84. [PMID: 25480786 DOI: 10.1074/jbc.m114.594895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain.
Collapse
Affiliation(s)
- Jing Li
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Jason Diaz
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Xin Wang
- the Department of Molecular Genetics, Lerner Research Institute, Cleveland, Ohio 44295
| | - Sabrina H Tsang
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jianxin You
- the Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
106
|
Erstad DJ, Cusack JC. Mutational analysis of merkel cell carcinoma. Cancers (Basel) 2014; 6:2116-36. [PMID: 25329450 PMCID: PMC4276959 DOI: 10.3390/cancers6042116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge.
Collapse
Affiliation(s)
- Derek J Erstad
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | - James C Cusack
- Division of Surgical Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
107
|
Houben R, Angermeyer S, Haferkamp S, Aue A, Goebeler M, Schrama D, Hesbacher S. Characterization of functional domains in the Merkel cell polyoma virus Large T antigen. Int J Cancer 2014; 136:E290-300. [PMID: 25208506 DOI: 10.1002/ijc.29200] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/30/2014] [Accepted: 08/19/2014] [Indexed: 12/31/2022]
Abstract
Merkel cell polyomavirus (MCPyV)--positive Merkel cell carcinoma (MCC) tumor cell growth is dependent on the expression of a viral Large T antigen (LT) with an intact retinoblastoma protein (RB)-binding site. This RB-binding domain in MCPyV-LT is--in contrast to other polyomavirus LTs (e.g., SV40)--embedded between two large MCPyV unique regions (MUR1 and MUR2). To identify elements of the MCPyV-LT necessary for tumor cell growth, we analyzed the rescue activity of LT variants following knockdown of the endogenous LT in MCC cells. These experiments demonstrate that nuclear localization is essential for LT function, but that a motif previously described to be a nuclear localization sequence is neither required for nuclear accumulation of truncated MCPyV-LT nor for promotion of MCC cell proliferation. Furthermore, large parts of the MURs distal to the RB binding domain as well as ALTO--a second protein encoded by an alternative reading frame in the MCPyV-LT mRNA--are completely dispensable for MCPyV-driven tumor cell proliferation. Notably, even MCPyV-LTs in which the entire MURs have been removed are still able to promote MCC cellular growth although rescue activity is reduced which may be due to MUR1 being required for stable LT expression in MCC cells. Finally, we provide evidence implying that--while binding to Vam6p is not essential--HSC-70 interaction is significantly involved in mediating MCPyV-LT function in MCC cells including growth promotion and induction of E2F target genes.
Collapse
Affiliation(s)
- Roland Houben
- Department of Dermatology, University Hospital, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
108
|
Cao X, Kong CM, Mathi KM, Lim YP, Cacheux-Rataboul V, Wang X. The use of transformed IMR90 cell model to identify the potential extra-telomeric effects of hTERT in cell migration and DNA damage response. BMC BIOCHEMISTRY 2014; 15:17. [PMID: 25098897 PMCID: PMC4126993 DOI: 10.1186/1471-2091-15-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/29/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomesase, is responsible for telomere maintenance and its reactivation is implicated in almost 90% human cancers. Recent evidences show that hTERT is essential for neoplastic transformation independent of its canonical function. However, the roles of hTERT in the process remain elusive. In the current work, we explore the extra-telomeric role of hTERT in the neoplastic transformation of fibroblast IMR90. RESULTS Here we established transformed IMR90 cells by co-expression of three oncogenic factors, namely, H-Ras, SV40 Large-T antigen and hTERT (RSH). The RSH-transformed cells acquired hallmarks of cancer, such as they can grow under anchorage independent conditions; self-sufficient in growth signals; attenuated response to apoptosis; and possessed recurrent chromosomal abnormalities. Furthermore, the RSH-transformed cells showed enhanced migration capability which was also observed in IMR90 cells expressing hTERT alone, indicating that hTERT plays a role in cell migration, and thus possibly contribute to their metastatic potential during tumor transformation. This notion was further supported by our microarray analysis. In addition, we found that Ku70 were exclusively upregulated in both RSH-transformed IMR90 cells and hTERT-overexpressing IMR90 cells, suggesting the potential role of hTERT in DNA damage response (DDR). CONCLUSIONS Collectively, our study revealed the extra-telomeric effects of hTERT in cell migration and DDR during neoplastic transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueying Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 1, 5 Science Drive 2, Singapore 117545, Singapore.
| |
Collapse
|
109
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|