101
|
Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy. Biochem Biophys Res Commun 2015; 463:303-8. [PMID: 26003728 DOI: 10.1016/j.bbrc.2015.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 11/27/2022]
Abstract
The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility.
Collapse
|
102
|
Gibson OR, Mee JA, Taylor L, Tuttle JA, Watt PW, Maxwell NS. Isothermic and fixed-intensity heat acclimation methods elicit equal increases in Hsp72 mRNA. Scand J Med Sci Sports 2015; 25 Suppl 1:259-68. [DOI: 10.1111/sms.12430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- O. R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - J. A. Mee
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - L. Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - J. A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups; Department of Sport Science and Physical Activity; Institute of Sport and Physical Activity Research (ISPAR); University of Bedfordshire; Brighton UK
| | - P. W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| | - N. S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME); Welkin Human Performance Laboratories; University of Brighton; Eastbourne UK
| |
Collapse
|
103
|
Bona S, Moreira AJ, Rodrigues GR, Cerski CT, da Silveira TR, Marroni CA, Marroni NP. Diethylnitrosamine-induced cirrhosis in Wistar rats: an experimental feasibility study. PROTOPLASMA 2015; 252:825-833. [PMID: 25369754 DOI: 10.1007/s00709-014-0719-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
The experimental models of the development of cirrhosis in rats require a long time. Many studies in animals have demonstrated similarities in histological pattern with human cirrhosis. Just like the relation between cirrhosis and increased lipid peroxidation (LPO), which contributes to the worsening of the disease. However, few studies have focused on the reduction of time to establish cirrhosis and evaluated the expression of heat-shock protein 70 (HSP70) in cirrhotic livers of rodents. The present study proposes the adaptation of an experimental cirrhosis model using diethylnitrosamine (DEN). Twenty-six male Wistar rats, weighing ±270 g, divided into two groups: (i) CO-control and (ii) DEN-diethylnitrosamine. The DEN group received 50 mg/kg of DEN twice a week intraperitoneally for 7 weeks. The model developed cirrhosis in 7 weeks. The liver function tests showed that the animals with DEN-induced cirrhosis had increased levels when compared to control. The histological examination showed changes in the liver architecture, with severe ductal proliferation, signs of chronic damage, cholestasis, lymphocytic infiltrate, steatosis, and extensive parenchymal loss. We also found nodular formations with homogeneous pattern, increased LPO, increased expression of iNOS, TGF beta, α-SMA, and NQO1. However, the HSP70 expression was reduced in cirrhotic animals. This study showed signs of cirrhosis in liver based on biochemical, histological, and molecular analysis. The reduced expression of HSP70 appears to be associated with increased oxidative stress, contributing to the worsening of the disease.
Collapse
Affiliation(s)
- Silvia Bona
- Postgraduate Program in Medical Sciences: Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2400, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
104
|
El Fatimy R, Miozzo F, Le Mouël A, Abane R, Schwendimann L, Sabéran-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 2015; 6:1043-61. [PMID: 25027850 PMCID: PMC4154132 DOI: 10.15252/emmm.201303311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.
Collapse
Affiliation(s)
- Rachid El Fatimy
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Federico Miozzo
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Anne Le Mouël
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Ryma Abane
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Leslie Schwendimann
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Aurélie de Thonel
- INSERM UMR 866, Dijon, France Faculty of Medicine and Pharmacy, Univ Burgundy, Dijon, France
| | - Illiasse Massaoudi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Liliana Paslaru
- Carol Davila University of Medicine and Pharmacy Fundeni Hospital, Bucharest, Romania
| | - Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Christians
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, CNRS, Villefranche-sur-mer, France Sorbonne Universités UPMC Univ Paris 06, Villefranche-sur-mer, France
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Valérie Mezger
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| |
Collapse
|
105
|
Tan K, Fujimoto M, Takii R, Takaki E, Hayashida N, Nakai A. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat Commun 2015; 6:6580. [PMID: 25762445 PMCID: PMC4558571 DOI: 10.1038/ncomms7580] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/09/2015] [Indexed: 12/13/2022] Open
Abstract
Heat-shock response is an adaptive response to proteotoxic stresses including heat shock, and is regulated by heat-shock factor 1 (HSF1) in mammals. Proteotoxic stresses challenge all subcellular compartments including the mitochondria. Therefore, there must be close connections between mitochondrial signals and the activity of HSF1. Here, we show that heat shock triggers nuclear translocation of mitochondrial SSBP1, which is involved in replication of mitochondrial DNA, in a manner dependent on the mitochondrial permeability transition pore ANT–VDAC1 complex and direct interaction with HSF1. HSF1 recruits SSBP1 to the promoters of genes encoding cytoplasmic/nuclear and mitochondrial chaperones. HSF1–SSBP1 complex then enhances their induction by facilitating the recruitment of a chromatin-remodelling factor BRG1, and supports cell survival and the maintenance of mitochondrial membrane potential against proteotoxic stresses. These results suggest that the nuclear translocation of mitochondrial SSBP1 is required for the regulation of cytoplasmic/nuclear and mitochondrial proteostasis against proteotoxic stresses. Heat shock induces proteotoxic stress, and the cellular response is mediated by heat-shock factor 1 (HSF1). Here, Tan et al. show that following heat shock, mitochondrial SSBP1 translocates to the nucleus and binds HSF1 to enhance the expression of chaperones and support the maintenance of mitochondrial function.
Collapse
Affiliation(s)
- Ke Tan
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| | - Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| | - Eiichi Takaki
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| |
Collapse
|
106
|
Assessment of the effect of laser irradiations at different wavelengths (660, 810, 980, and 1064 nm) on autophagy in a rat model of mucositis. Lasers Med Sci 2015; 30:1289-95. [PMID: 25732242 DOI: 10.1007/s10103-015-1727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
It is known that high-dose radiation has an effect on tissue healing, but tissue healing does not occur when low dose radiation is applied. To clarify this issue, we compare the treatment success of low dose radiation with programmed cell death mechanisms on wounded tissue. In this study, we aimed to investigate the interactions of low and high-dose radiation using an autophagic mechanism. We included 35 adult Wistar-Albino rats in this study. All animals were injected with 100 mg/kg of 5-fluorouracil (5-FU) on the first day and 65 mg/kg of 5-FU on the third day. The tips of 18-gauge needles were used to develop a superficial scratching on the left cheek pouch mucosa by dragging in a linear movement on third and fifth days. After mucositis formation was clinically detected, animals were divided into five groups (n = 7). Different wavelengths of laser irradiations (1064 nm, Fidelis Plus, Fotona, Slovenia; 980 nm, FOX laser, A.R.C., Germany; 810 nm, Fotona XD, Fotona, Slovenia; 660 nm, HELBO, Medizintechnik GmbH, Wels, Austria) were performed on four groups once daily for 4 days. The laser irradiation was not performed on the control group. To get the tissue from the left cheek at the end of fourth day from all animals, oval excisional biopsy was performed. Molecular analysis assessments of pathological and normal tissue taken were performed. For this purpose, the expression analysis of autophagy genes was performed. The results were evaluated by normalization and statistics analysis. We found that Ulk1, Beclin1, and Atg5 expression levels were increased in the rats when the Nd:YAG laser was applied. This increase showed that a 1064-nm laser is needed to activate the autophagic mechanism. However, in the diode applications, we found that Beclin1, Atg10, Atg5, and Atg7 expressions numerically decreased. Atg5 is responsible for the elongation of autophagosome. Becn1 is a control gene in the control mechanism of autophagy. The reduction of the expression of these genes leads us to think that it may depend on the effect of drug (5-FU) used to form model. Expressions of therapeutic genes increase to ensure hemostasis, but in our study, expressions were found to decrease. More detailed studies are needed.
Collapse
|
107
|
Abstract
Heat shock proteins are molecular chaperones with a central role in protein folding and cellular protein homeostasis. They also play major roles in the development of cancer and in recent years have emerged as promising therapeutic targets. In this review, we discuss the known molecular mechanisms of various heat shock protein families and their involvement in cancer and in particular, multiple myeloma. In addition, we address the current progress and challenges in pharmacologically targeting these proteins as anti-cancer therapeutic strategies.
Collapse
|
108
|
Bridges TM, Scheraga RG, Tulapurkar ME, Suffredini D, Liggett SB, Ramarathnam A, Potla R, Singh IS, Hasday JD. Polymorphisms in human heat shock factor-1 and analysis of potential biological consequences. Cell Stress Chaperones 2015; 20:47-59. [PMID: 25023647 PMCID: PMC4255257 DOI: 10.1007/s12192-014-0524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Abstract
The stress-activated transcription factor, heat shock factor-1 (HSF1), regulates many genes including cytoprotective heat shock proteins (HSPs). We hypothesized that polymorphisms in HSF1 may alter the level or function of HSF1 protein accounting for interindividual viability in disease susceptibility or prognosis. We searched for exomic variants in HSF1 by querying human genome databases and directly sequencing DNA from 80 anonymous genomic DNA samples. Overall, HSF1 sequence was highly conserved, with no common variations. We found 31 validated deviations from a reference sequence in the dbSNP database and an additional 5 novel variants by sequencing, with allele frequencies that were 0.06 or less. Of these 36, 2 were in 5'-untranslated region (5'UTR), 10 in 3'UTR, and 24 in the coding region. The potential effects of 5'UTR on secondary structure, protein structure/function, and 3'UTR targets of microRNAs were analyzed using RNAFold, PolyPhen-2, SIFT, and MicroSNiper. One of the 5'UTR variants was predicted to strengthen secondary structure. Eight of 3'UTR variants were predicted to modify microRNA target sequences. Eight of the coding region variants were predicted to modify HSF1 structure/function. Reducing HSF1 levels in A549 cells using short hairpin RNA (shRNA) increased sensitivity to heat-induced killing demonstrating the impact that genetic variants that reduce HSF1 levels might have. Using the pmirGLO expression system, we found that the wild-type HSF1 3'UTR suppressed translation of a firefly luciferase reporter plasmid by 65 %. Introducing two of four 3'UTR single nucleotide polymorphisms (SNPs) increased HSF1 3'UTR translational suppression by 27-44 % compared with the wild-type HSF1 3'UTR sequence while a third SNP reduced suppression by 25 %. HSF1 variants may alter HSF1 protein levels or function with potential effects on cell functions, including sensitivity to stress.
Collapse
Affiliation(s)
- Tiffany M. Bridges
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Rachel G. Scheraga
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Mohan E. Tulapurkar
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Dante Suffredini
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Stephen B. Liggett
- />Departments of Medicine and Molecular Physiology and Pharmacology, University of South Florida, Tampa, FL 22612 USA
| | - Aparna Ramarathnam
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Ratnakar Potla
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Ishwar S. Singh
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
- />Medicine and Research services of the Baltimore VA Medical Center, Baltimore, MD 21201 USA
| | - Jeffrey D. Hasday
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
- />Medicine and Research services of the Baltimore VA Medical Center, Baltimore, MD 21201 USA
| |
Collapse
|
109
|
Patel P, Julien JP, Kriz J. Early-stage treatment with Withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics 2015; 12:217-33. [PMID: 25404049 PMCID: PMC4322065 DOI: 10.1007/s13311-014-0311-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Approximately 20% of cases of familial amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Recent studies have shown that Withaferin A (WA), an inhibitor of nuclear factor-kappa B activity, was efficient in reducing disease phenotype in a TAR DNA binding protein 43 transgenic mouse model of ALS. These findings led us to test WA in mice from 2 transgenic lines expressing different ALS-linked SOD1 mutations, SOD1(G93A) and SOD1(G37R). Intraperitoneal administration of WA at a dosage of 4 mg/kg of body weight was initiated from postnatal day 40 until end stage in SOD1(G93A) mice, and from 9 months until end stage in SOD1(G37R) mice. The beneficial effects of WA in the SOD1(G93A) mice model were accompanied by an alleviation of neuroinflammation, a decrease in levels of misfolded SOD1 species in the spinal cord, and a reduction in loss of motor neurons resulting in delayed disease progression and mortality. Interestingly, WA treatment triggered robust induction of heat shock protein 25 (a mouse ortholog of heat shock protein 27), which may explain the reduced level of misfolded SOD1 species in the spinal cord of SOD1(G93A) mice and the decrease of neuronal injury responses, as revealed by real-time imaging of biophotonic SOD1(G93A) mice expressing a luciferase transgene under the control of the growth-associated protein 43 promoter. These results suggest that WA may represent a potential lead compound for drug development aiming to treat ALS.
Collapse
Affiliation(s)
- Priyanka Patel
- Research Centre of Institut Universitaire en Santé Mentale de Québec, and Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| | - Jean-Pierre Julien
- Research Centre of Institut Universitaire en Santé Mentale de Québec, and Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| | - Jasna Kriz
- Research Centre of Institut Universitaire en Santé Mentale de Québec, and Department of Psychiatry and Neuroscience, Laval University, 2601 Chemin de la Canardière, Québec, QC G1J 2G3 Canada
| |
Collapse
|
110
|
Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 2014; 25:163-174. [PMID: 25557666 DOI: 10.1016/j.cub.2014.11.040] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular mechanisms aimed at repairing protein damage and maintaining homeostasis, widely understood to be triggered by the damage itself, have recently been shown to be under cell nonautonomous control in the metazoan C. elegans. The heat shock response (HSR) is one such conserved mechanism, activated by cells upon exposure to proteotoxic conditions such as heat. Previously, we had shown that this conserved cytoprotective response is regulated by the thermosensory neuronal circuitry of C. elegans. Here, we investigate the mechanisms and physiological relevance of neuronal control. RESULTS By combining optogenetic methods with live visualization of the dynamics of the heat shock transcription factor (HSF1), we show that excitation of the AFD thermosensory neurons is sufficient to activate HSF1 in another cell, even in the absence of temperature increase. Excitation of the AFD thermosensory neurons enhances serotonin release. Serotonin release elicited by direct optogenetic stimulation of serotonergic neurons activates HSF1 and upregulates molecular chaperones through the metabotropic serotonin receptor SER-1. Consequently, excitation of serotonergic neurons alone can suppress protein misfolding in C. elegans peripheral tissue. CONCLUSIONS These studies imply that thermosensory activity coupled to serotonergic signaling is sufficient to activate the protective HSR prior to frank proteotoxic damage. The ability of neurosensory release of serotonin to control cellular stress responses and activate HSF1 has powerful implications for the treatment of protein conformation diseases.
Collapse
|
111
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
112
|
Volovik Y, Moll L, Marques F, Maman M, Bejerano-Sagie M, Cohen E. Differential Regulation of the Heat Shock Factor 1 and DAF-16 by Neuronal nhl-1 in the Nematode C. elegans. Cell Rep 2014; 9:2192-205. [DOI: 10.1016/j.celrep.2014.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022] Open
|
113
|
Shatanawi A, Lemtalsi T, Yao L, Patel C, Caldwell RB, Caldwell RW. Angiotensin II limits NO production by upregulating arginase through a p38 MAPK-ATF-2 pathway. Eur J Pharmacol 2014; 746:106-14. [PMID: 25446432 DOI: 10.1016/j.ejphar.2014.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 01/11/2023]
Abstract
Enhanced vascular arginase activity can impair endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production and uncoupling NOS function. Elevated angiotensin II (Ang II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. In this study we explored the signaling pathway leading to increased arginase expression/activity in response to Ang II in bovine aortic endothelial cells (BAEC). Our previous studies indicate involvement of p38 mitogen activated protein kinase (MAPK) in Ang II-induced arginase upregulation and reduced NO production. In this study, we further investigated the Ang II-transcriptional regulation of arginase 1 in endothelial cells. Our results indicate the involvement of ATF-2 transcription factor of the AP1 family in arginase 1 upregulation and in limiting NO production. Using small interfering RNA (siRNA) targeting ATF-2, we showed that this transcription factor is required for Ang II-induced arginase 1 gene upregulation and increased arginase 1 expression and activity, leading to reduced NO production. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay further confirmed the involvement of ATF-2. Moreover, our data indicate that p38 MAPK phosphorylates ATF-2 in response to Ang II. Collectively, our results indicate that Ang II increases endothelial arginase activity/expression through a p38 MAPK/ATF-2 pathway leading to reduced endothelial NO production. These signaling steps might be therapeutic targets for preventing vascular endothelial dysfunction associated with elevated arginase activity/expression.
Collapse
Affiliation(s)
- Alia Shatanawi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Chintan Patel
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; VA Medical Center, Augusta, GA 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
114
|
Neef DW, Jaeger AM, Gomez-Pastor R, Willmund F, Frydman J, Thiele DJ. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep 2014; 9:955-66. [PMID: 25437552 DOI: 10.1016/j.celrep.2014.09.056] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 08/26/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022] Open
Abstract
Heat shock transcription factor 1 (HSF1) is an evolutionarily conserved transcription factor that protects cells from protein-misfolding-induced stress and apoptosis. The mechanisms by which cytosolic protein misfolding leads to HSF1 activation have not been elucidated. Here, we demonstrate that HSF1 is directly regulated by TRiC/CCT, a central ATP-dependent chaperonin complex that folds cytosolic proteins. A small-molecule activator of HSF1, HSF1A, protects cells from stress-induced apoptosis, binds TRiC subunits in vivo and in vitro, and inhibits TRiC activity without perturbation of ATP hydrolysis. Genetic inactivation or depletion of the TRiC complex results in human HSF1 activation, and HSF1A inhibits the direct interaction between purified TRiC and HSF1 in vitro. These results demonstrate a direct regulatory interaction between the cytosolic chaperone machine and a critical transcription factor that protects cells from proteotoxicity, providing a mechanistic basis for signaling perturbations in protein folding to a stress-protective transcription factor.
Collapse
Affiliation(s)
- Daniel W Neef
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex M Jaeger
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Felix Willmund
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
115
|
Abstract
Heat shock factor 1 (HSF1) is an evolutionarily highly conserved transcription factor that coordinates stress-induced transcription and directs versatile physiological processes in eukaryotes. The central position of HSF1 in cellular homeostasis has been well demonstrated, mainly through its strong effect in transactivating genes that encode heat shock proteins (HSPs). However, recent genome-wide studies have revealed that HSF1 is capable of reprogramming transcription more extensively than previously assumed; it is also involved in a multitude of processes in stressed and non-stressed cells. Consequently, the importance of HSF1 in fundamental physiological events, including metabolism, gametogenesis and aging, has become apparent and its significance in pathologies, such as cancer progression, is now evident. In this Cell Science at a Glance article, we highlight recent advances in the HSF1 field, discuss the organismal control over HSF1, and present the processes that are mediated by HSF1 in the context of cell type, cell-cycle phase, physiological condition and received stimuli.
Collapse
|
116
|
Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, Nudler E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 2014; 3:e03164. [PMID: 25233275 PMCID: PMC4164936 DOI: 10.7554/elife.03164] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/14/2014] [Indexed: 01/26/2023] Open
Abstract
Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3'UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer.
Collapse
Affiliation(s)
- Maria Vera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Département de Biologie du Développement et Cellules Souches, Institut Pasteur, CNRS URA2578, Paris, France
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, United States
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Lowri A Griffiths
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Christian Muchardt
- Département de Biologie du Développement et Cellules Souches, Institut Pasteur, CNRS URA2578, Paris, France
| | - Catherine M Abbott
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, United States
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| |
Collapse
|
117
|
Elsing AN, Aspelin C, Björk JK, Bergman HA, Himanen SV, Kallio MJ, Roos-Mattjus P, Sistonen L. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. ACTA ACUST UNITED AC 2014; 206:735-49. [PMID: 25202032 PMCID: PMC4164949 DOI: 10.1083/jcb.201402002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In spite of global transcriptional inhibition, a decrease in HSF2 expression during mitosis allows for heat shock protein expression and protects cells against proteotoxicity. Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis.
Collapse
Affiliation(s)
- Alexandra N Elsing
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Camilla Aspelin
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Johanna K Björk
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Heidi A Bergman
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Samu V Himanen
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Marko J Kallio
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland VTT Health, VTT Technical Research Centre of Finland, 20520 Turku, Finland
| | - Pia Roos-Mattjus
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
118
|
van Oosten-Hawle P, Morimoto RI. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses. ACTA ACUST UNITED AC 2014; 217:129-36. [PMID: 24353212 DOI: 10.1242/jeb.091249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of each cell within a metazoan to adapt to and survive environmental and physiological stress requires cellular stress-response mechanisms, such as the heat shock response (HSR). Recent advances reveal that cellular proteostasis and stress responses in metazoans are regulated by multiple layers of intercellular communication. This ensures that an imbalance of proteostasis that occurs within any single tissue 'at risk' is protected by a compensatory activation of a stress response in adjacent tissues that confers a community protective response. While each cell expresses the machinery for heat shock (HS) gene expression, the HSR is regulated cell non-autonomously in multicellular organisms, by neuronal signaling to the somatic tissues, and by transcellular chaperone signaling between somatic tissues and from somatic tissues to neurons. These cell non-autonomous processes ensure that the organismal HSR is orchestrated across multiple tissues and that transmission of stress signals between tissues can also override the neuronal control to reset cell- and tissue-specific proteostasis. Here, we discuss emerging concepts and insights into the complex cell non-autonomous mechanisms that control stress responses in metazoans and highlight the importance of intercellular communication for proteostasis maintenance in multicellular organisms.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
119
|
Brown AJP, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, Potrykus J, Ballou ER, Childers DS, Shahana S, Leach MD. Stress adaptation in a pathogenic fungus. ACTA ACUST UNITED AC 2014; 217:144-55. [PMID: 24353214 PMCID: PMC3867497 DOI: 10.1242/jeb.088930] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus–host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor.
Collapse
Affiliation(s)
- Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Liu DJ, Hammer D, Komlos D, Chen KY, Firestein BL, Liu AYC. SIRT1 knockdown promotes neural differentiation and attenuates the heat shock response. J Cell Physiol 2014; 229:1224-35. [PMID: 24435709 DOI: 10.1002/jcp.24556] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023]
Abstract
Neurons have a limited capacity for heat shock protein (HSP) induction and are vulnerable to the pathogenic consequence of protein misfolding and aggregation as seen in age-related neurodegenerative diseases. Sirtuin 1 (SIRT1), an NAD(+) -dependent lysine deacetylase with important biological functions, has been shown to sustain the DNA-binding state of HSF1 for HSP induction. Here we show that differentiation and maturation of embryonic cortical neurons and N2a neuroprogenitor cells is associated with decreases in SIRT1 expression and heat shock-dependent induction of HSP70 protein. Tests of a pharmacological activator and an inhibitor of SIRT1 affirm the regulatory role of SIRT1 in HSP70 induction. Protein cross-linking studies show that nuclear SIRT1 and HSF1 form a co-migrating high molecular weight complex upon stress. The use of retroviral vectors to manipulate SIRT1 expression in N2a cells show that shRNA-mediated knock down of SIRT1 causes spontaneous neurite outgrowth coincident with reduced growth rate and decreased induction of hsp70-reporter gene, whereas SIRT1 over-expression blocks the induced neural differentiation of N2a cells. Our results suggest that decreased SIRT1 expression is conducive to neuronal differentiation and this decrease contributes to the attenuated induction of HSPs in neurons.
Collapse
Affiliation(s)
- Diana J Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
122
|
Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS One 2014; 9:e96330. [PMID: 24800749 PMCID: PMC4011729 DOI: 10.1371/journal.pone.0096330] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
Heat shock factor 1 (HSF1) is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.
Collapse
|
123
|
Heider H, Boscheinen O, Scharf KD. A Heat-Stress Pulse Inactivates a 50 kDa Myelin Basic Protein Kinase in Tomato. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00725.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
124
|
Carnemolla A, Labbadia JP, Lazell H, Neueder A, Moussaoui S, Bates GP. Contesting the dogma of an age-related heat shock response impairment: implications for cardiac-specific age-related disorders. Hum Mol Genet 2014; 23:3641-56. [PMID: 24556212 PMCID: PMC4065144 DOI: 10.1093/hmg/ddu073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ageing is associated with the reduced performance of physiological processes and has been proposed as a major risk factor for disease. An age-related decline in stress response pathways has been widely documented in lower organisms. In particular, the heat shock response (HSR) becomes severely compromised with age in Caenorhabditis elegans. However, a comprehensive analysis of the consequences of ageing on the HSR in higher organisms has not been documented. We used both HS and inhibition of HSP90 to induce the HSR in wild-type mice at 3 and 22 months of age to investigate the extent to which different brain regions, and peripheral tissues can sustain HSF1 activity and HS protein (HSP) expression with age. Using chromatin immunoprecipitation, quantitative reverse transcription polymerase chain reaction, western blotting and enzyme linked immunosorbent assay (ELISA), we were unable to detect a difference in the level or kinetics of HSP expression between young and old mice in all brain regions. In contrast, we did observe an age-related reduction in chaperone levels and HSR-related proteins in the heart. This could result in a decrease in the protein folding capacity of old hearts with implications for age-related cardiac disorders.
Collapse
Affiliation(s)
- Alisia Carnemolla
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - John P Labbadia
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - Hayley Lazell
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - Andreas Neueder
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| | - Saliha Moussaoui
- Novartis Institute for Biomedical Research, Neuroscience Discovery, Basel CH-4002, Switzerland
| | - Gillian P Bates
- Department Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hosptial, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
125
|
Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl F. Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell 2014; 156:975-85. [DOI: 10.1016/j.cell.2014.01.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
126
|
Huang Y, Cai X, Zou Z, Wang S, Wang G, Wang Y, Zhang Z. Molecular cloning, characterization and expression analysis of three heat shock responsive genes from Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2014; 36:590-599. [PMID: 24309137 DOI: 10.1016/j.fsi.2013.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/17/2013] [Accepted: 11/22/2013] [Indexed: 06/02/2023]
Abstract
In this study, molecular characterization and expression of three heat shock responsive genes were analyzed as indicators to understand the mechanism of heat shock response of small abalone Haliotis diversicolor under stresses. The full length cDNA of heat shock transcriptional factor 1 (HdHSF1), heat shock factor binding protein 1(HSBP1), and heat shock protein 90 (HdHSP90) are 1548 bp, 809 bp, and 2592 bp respectively, encoding a protein of 515 aa, 75 aa, and 728 aa respectively. Real time quantitative PCR analysis revealed that these three genes are constitutively expressed in 7 selected tissues. The expression level of HdHSF1 in gills was higher than that in other tissues (p < 0.05). The highest expression level of HdHSBP1 was detected in hemocytes. The highest expression level of HdHSP90 was in the digestive tract and colleterial gland. The HdHSF1 expression level in the gills was up-regulated significantly (p < 0.05) after thermal stress and hypoxia exposure respectively. On the contrary, HdHSBP1 was down-regulated both in gills and hemocytes after thermal stress and the same as in gills after hypoxia stress. HdHSP90 expression level was also up-regulated in gills and hemocytes after both thermal and hypoxia stresses. These results indicated that these three heat shock responsive genes play important roles in response to thermal and hypoxia stress.
Collapse
Affiliation(s)
- Yitao Huang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiuhong Cai
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture in the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- Department of Natural Sciences and Mathematics, State University of New York at Cobleskill, NY 12043, USA.
| |
Collapse
|
127
|
Lin PY, Simon SM, Koh WK, Folorunso O, Umbaugh CS, Pierce A. Heat shock factor 1 over-expression protects against exposure of hydrophobic residues on mutant SOD1 and early mortality in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2013; 8:43. [PMID: 24256636 PMCID: PMC3907013 DOI: 10.1186/1750-1326-8-43] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in the Cu/Zn superoxide dismutase gene (SOD1) are responsible for 20% of familial forms of amyotrophic lateral sclerosis (ALS), and mutant SOD1 has been shown to have increased surface hydrophobicity in vitro. Mutant SOD1 may adopt a complex array of conformations with varying toxicity in vivo. We have used a novel florescence-based proteomic assay using 4,4’-bis-1-anilinonaphthalene-8-sulfonate (bisANS) to assess the surface hydrophobicity, and thereby distinguish between different conformations, of SOD1and other proteins in situ. Results Covalent bisANS labeling of spinal cord extracts revealed that alterations in surface hydrophobicity of H46R/H48Q mutations in SOD1 provoke formation of high molecular weight SOD1 species with lowered solubility, likely due to increased exposure of hydrophobic surfaces. BisANS was docked on the H46R/H48Q SOD1 structure at the disordered copper binding and electrostatic loops of mutant SOD1, but not non-mutant WT SOD1. 16 non-SOD1 proteins were also identified that exhibited altered surface hydrophobicity in the H46R/H48Q mutant mouse model of ALS, including proteins involved in energy metabolism, cytoskeleton, signaling, and protein quality control. Heat shock proteins (HSPs) were also enriched in the detergent-insoluble fractions with SOD1. Given that chaperones recognize proteins with exposed hydrophobic surfaces as substrates and the importance of protein homeostasis in ALS, we crossed SOD1 H46R/H48Q mutant mice with mice over-expressing the heat shock factor 1 (HSF1) transcription factor. Here we showed that HSF1 over-expression in H46R/H48Q ALS mice enhanced proteostasis as evidenced by increased expression of HSPs in motor neurons and astrocytes and increased solubility of mutant SOD1. HSF1 over-expression significantly reduced body weight loss, delayed ALS disease onset, decreases cases of early disease, and increased survival for the 25th percentile in an H46R/H48Q SOD1 background. HSF1 overexpression did not affect macroautophagy in the ALS background, but was associated with maintenance of carboxyl terminus of Hsp70 interacting protein (CHIP) expression which declined in H46R/H48Q mice. Conclusion Our results uncover the potential importance of changes in protein surface hydrophobicity of SOD1 and other non-SOD1 proteins in ALS, and how strategies that activate HSF1 are valid therapies for ALS and other age-associated proteinopathies.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Gandhapudi SK, Murapa P, Threlkeld ZD, Ward M, Sarge KD, Snow C, Woodward JG. Heat shock transcription factor 1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress. THE JOURNAL OF IMMUNOLOGY 2013; 191:4068-79. [PMID: 24043900 DOI: 10.4049/jimmunol.1202831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is a major transcriptional regulator of the heat shock response in eukaryotic cells. HSF1 is evoked in response to a variety of cellular stressors, including elevated temperatures, oxidative stress, and other proteotoxic stressors. Previously, we demonstrated that HSF1 is activated in naive T cells at fever range temperatures (39.5°C) and is critical for in vitro T cell proliferation at fever temperatures. In this study, we demonstrated that murine HSF1 became activated to the DNA-binding form and transactivated a large number of genes in lymphoid cells strictly as a consequence of receptor activation in the absence of apparent cellular stress. Microarray analysis comparing HSF1(+/+) and HSF1(-/-) gene expression in T cells activated at 37°C revealed a diverse set of 323 genes significantly regulated by HSF1 in nonstressed T cells. In vivo proliferation studies revealed a significant impairment of HSF1(-/-) T cell expansion under conditions mimicking a robust immune response (staphylococcal enterotoxin B-induced T cell activation). This proliferation defect due to loss of HSF1 is observed even under nonfebrile temperatures. HSF1(-/-) T cells activated at fever temperatures show a dramatic reduction in cyclin E and cyclin A proteins during the cell cycle, although the transcription of these genes was modestly affected. Finally, B cell and hematopoietic stem cell proliferation from HSF1(-/-) mice, but not HSF1(+/+) mice, were also attenuated under stressful conditions, indicating that HSF1 is critical for the cell cycle progression of lymphoid cells activated under stressful conditions.
Collapse
Affiliation(s)
- Siva K Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536
| | | | | | | | | | | | | |
Collapse
|
129
|
Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding. G3-GENES GENOMES GENETICS 2013; 3:1315-24. [PMID: 23733891 PMCID: PMC3737171 DOI: 10.1534/g3.113.006692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human heat shock transcription factor 1 (HSF1) promotes the expression of stress-responsive genes and is a critical factor for the cellular protective response to proteotoxic and other stresses. In response to stress, HSF1 undergoes a transition from a repressed cytoplasmic monomer to a homotrimer, accumulates in the nucleus, binds DNA, and activates target gene transcription. Although these steps occur as sequential and highly regulated events, our understanding of the full details of the HSF1 activation pathway remains incomplete. Here we describe a genetic screen in humanized yeast that identifies constitutively trimerized HSF1 mutants. Surprisingly, constitutively trimerized HSF1 mutants do not bind to DNA in vivo in the absence of stress and only become DNA binding competent upon stress exposure, suggesting that an additional level of regulation beyond trimerization and nuclear localization may be required for HSF1 DNA binding. Furthermore, we identified a constitutively trimerized and nuclear-localized HSF1 mutant, HSF1 L189P, located in LZ3 of the HSF1 trimerization domain, which in response to proteotoxic stress is strongly compromised for DNA binding at the Hsp70 and Hsp25 promoters but readily binds to the interleukin-6 promoter, suggesting that HSF1 DNA binding is in part regulated in a locus-dependent manner, perhaps via promoter-specific differences in chromatin architecture. Furthermore, these results implicate the LZ3 region of the HSF1 trimerization domain in a function beyond its canonical role in HSF1 trimerization.
Collapse
|
130
|
Sanghera SS, Skitzki JJ. Targeting the heat shock response in cancer: tipping the balance in transformed cells. Surg Oncol Clin N Am 2013; 22:665-84. [PMID: 24012394 DOI: 10.1016/j.soc.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of the heat shock response (HSR) as a mediator of cellular stress has created a framework for understanding how these processes may promote tumorigenesis. Furthermore, the identification of specific components of the HSR and how they are co-opted by cancer cells has led to the discovery of new therapeutic targets. A wide range of small molecule inhibitors of the HSR are in various stages of development for clinical application in patients with cancer. The introduction of these novel small molecule inhibitors offers the opportunity for synergy with existing therapies and the potential for highly targeted treatments.
Collapse
Affiliation(s)
- Sartaj S Sanghera
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
131
|
Herbomel G, Kloster-Landsberg M, Folco EG, Col E, Usson Y, Vourc’h C, Delon A, Souchier C. Dynamics of the full length and mutated heat shock factor 1 in human cells. PLoS One 2013; 8:e67566. [PMID: 23861773 PMCID: PMC3704536 DOI: 10.1371/journal.pone.0067566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/23/2013] [Indexed: 11/24/2022] Open
Abstract
Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III) sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs). nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS) and Fluorescence Recovery After Photobleaching (FRAP). In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE) and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specific interactions of HSF1 with DNA.
Collapse
Affiliation(s)
- Gaëtan Herbomel
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | | | - Eric G. Folco
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Edwige Col
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Yves Usson
- University Grenoble I, CNRS, TIMC-IMAG UMR5525, La Tronche, France
| | - Claire Vourc’h
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
| | - Antoine Delon
- University Grenoble 1, CNRS, LIPhy UMR 5588, St Martin d’Hères, France
| | - Catherine Souchier
- INSERM, University Grenoble 1, IAB CRI U823 team 10, La Tronche, France
- * E-mail:
| |
Collapse
|
132
|
Rhoads RP, Baumgard LH, Suagee JK, Sanders SR. Nutritional interventions to alleviate the negative consequences of heat stress. Adv Nutr 2013; 4:267-76. [PMID: 23674792 PMCID: PMC3650495 DOI: 10.3945/an.112.003376] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed.
Collapse
Affiliation(s)
- Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
133
|
Wang Y, Huang J, Xia P, He J, Wang C, Ju Z, Li J, Li R, Zhong J, Li Q. Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle. Mol Biol Rep 2013; 40:3877-82. [DOI: 10.1007/s11033-012-1977-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 10/01/2012] [Indexed: 11/25/2022]
|
134
|
Heat shock proteins and regulatory T cells. Autoimmune Dis 2013; 2013:813256. [PMID: 23573417 PMCID: PMC3612443 DOI: 10.1155/2013/813256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/04/2012] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are important molecules required for ideal protein function. Extensive research on the functional properties of HSPs indicates that HSPs may be implicated in a wide range of physiological functions including immune function. In the immune system, HSPs are involved in cell proliferation, differentiation, cytokine release, and apoptosis. Therefore, the ability of the immune system, in particular immune cells, to function optimally and in unison with other physiological systems is in part dependent on signaling transduction processes, including bidirectional communication with HSPs. Regulatory T cells (Tregs) are important T cells with suppressive functions and impairments in their function have been associated with a number of autoimmune disorders. The purpose of this paper is to examine the relationship between HSPs and Tregs. The interrelationship between cells and proteins may be important in cellular functions necessary for cell survival and expansion during diseased state.
Collapse
|
135
|
Morton EA, Lamitina T. Caenorhabditis elegans HSF-1 is an essential nuclear protein that forms stress granule-like structures following heat shock. Aging Cell 2013; 12:112-20. [PMID: 23107491 DOI: 10.1111/acel.12024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2012] [Indexed: 01/06/2023] Open
Abstract
The heat shock transcription factor (HSF) is a conserved regulator of heat shock-inducible gene expression. Organismal roles for HSF in physiological processes such as development, aging, and immunity have been defined largely through studies of the single Caenorhabditis elegans HSF homolog, hsf-1. However, the molecular and cell biological properties of hsf-1 in C. elegans are incompletely understood. We generated animals expressing physiological levels of an HSF-1::GFP fusion protein and examined its function, localization, and regulation in vivo. HSF-1::GFP was functional, as measured by its ability to rescue phenotypes associated with two hsf-1 mutant alleles. Rescue of hsf-1 development phenotypes was abolished in a DNA-binding-deficient mutant, demonstrating that the transcriptional targets of hsf-1 are critical to its function even in the absence of stress. Under nonstress conditions, HSF-1::GFP was found primarily in the nucleus. Following heat shock, HSF-1::GFP rapidly and reversibly redistributed into dynamic, subnuclear structures that share many properties with human nuclear stress granules, including colocalization with markers of active transcription. Rapid formation of HSF-1 stress granules required HSF-1 DNA-binding activity, and the threshold for stress granule formation was altered by growth temperature. HSF-1 stress granule formation was not induced by inhibition of IGF signaling, a pathway previously suggested to function upstream of hsf-1. Our findings suggest that development, stress, and aging pathways may regulate HSF-1 function in distinct ways, and that HSF-1 nuclear stress granule formation is an evolutionarily conserved aspect of HSF-1 regulation in vivo.
Collapse
Affiliation(s)
- Elizabeth A Morton
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
136
|
Bedulina DS, Evgen'ev MB, Timofeyev MA, Protopopova MV, Garbuz DG, Pavlichenko VV, Luckenbach T, Shatilina ZM, Axenov-Gribanov DV, Gurkov AN, Sokolova IM, Zatsepina OG. Expression patterns and organization of thehsp70genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneusandE. verrucosus) from Lake Baikal. Mol Ecol 2013; 22:1416-30. [DOI: 10.1111/mec.12136] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Affiliation(s)
- D. S. Bedulina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. B. Evgen'ev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya str. 3 Pushchino 142290 Russia
| | - M. A. Timofeyev
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. V. Protopopova
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - D. G. Garbuz
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| | - V. V. Pavlichenko
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - T. Luckenbach
- UFZ Helmholtz Centre for Environmental Research; Department of Bioanalytical Ecotoxicology; Permoserstr.15 Leipzig 04318 Germany
| | - Z. M. Shatilina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - D. V. Axenov-Gribanov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - A. N. Gurkov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - I. M. Sokolova
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Blvd. Charlotte NC 28223 USA
| | - O. G. Zatsepina
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| |
Collapse
|
137
|
Furusawa Y, Tabuchi Y, Takasaki I, Wada S, Ohtsuka K, Kondo T. Gene networks involved in apoptosis induced by hyperthermia in human lymphoma U937 cells. Cell Biol Int 2013; 33:1253-62. [DOI: 10.1016/j.cellbi.2009.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/22/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
|
138
|
Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:31-65. [PMID: 23582201 DOI: 10.1016/b978-0-12-410523-2.00002-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.
Collapse
|
139
|
Abstract
Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. This is achieved by ocular photoreception relaying signals to the suprachiasmatic nucleus (SCN) in the hypothalamus. Signals from the SCN cause the synchronization of independent circadian clocks throughout the body to appropriate phases. Signals that can entrain these peripheral clocks include humoral signals, metabolic factors, and body temperature. At the level of individual tissues, thousands of genes are brought to unique phases through the actions of a local transcription/translation-based feedback oscillator and systemic cues. In this molecular clock, the proteins CLOCK and BMAL1 cause the transcription of genes which ultimately feedback and inhibit CLOCK and BMAL1 transcriptional activity. Finally, there are also other molecular circadian oscillators which can act independently of the transcription-based clock in all species which have been tested.
Collapse
Affiliation(s)
- Ethan D Buhr
- Department of Ophthalmology, University of Washington, 1959 NE Pacific St, 356485 BB-857 HSB, Seattle, WA 98195, USA
| | | |
Collapse
|
140
|
Choi YJ, Om JY, Kim NH, Chang JE, Park JH, Kim JY, Lee HJ, Kim SS, Chun W. Heat shock transcription factor-1 suppresses apoptotic cell death and ROS generation in 3-nitropropionic acid-stimulated striatal cells. Mol Cell Biochem 2012; 375:59-67. [PMID: 23225230 DOI: 10.1007/s11010-012-1528-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/23/2012] [Indexed: 12/25/2022]
Abstract
Striatal neuronal cell death is one of the pathological features of Huntington's disease (HD). Overexpression of some heat shock proteins (HSPs) has been reported to suppress the aggregate formation of mutant huntingtin and concurrent cell death. Heat shock transcription factor-1 (HSF 1), a major transcription factor of HSPs, has also been reported to be increased in HD models. However, the exact role of HSF 1 in the pathogenesis of HD has not been clearly elucidated. 3-Nitropropionic acid (3NP), an irreversible inhibitor of the mitochondrial complex II, induces selective damage to the striatum in animals and produces clinical features of HD. To investigate roles of HSF 1 on 3NP-induced oxidative stress, HSF 1 was transiently overexpressed in striatal cells. Expression of HSF 1 significantly attenuated 3NP-induced apoptotic striatal cell death and resulted in increased expression of HSP 70. Furthermore, expression of HSF 1 significantly attenuated 3NP-induced intracellular reactive oxygen species (ROS) generation. Taken together, the present study clearly demonstrates that HSF 1 attenuates 3NP-induced apoptotic striatal cell death and ROS generation, possibly through HSP70 expression, suggesting that HSF 1 might be a valuable therapeutic target in the treatment of HD.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chunchon, Kangwon 200-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Lam KK, Cheng PY, Lee YM, Liu YP, Ding C, Liu WH, Yen MH. The role of heat shock protein 70 in the protective effect of YC-1 on heat stroke rats. Eur J Pharmacol 2012; 699:67-73. [PMID: 23219797 DOI: 10.1016/j.ejphar.2012.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 01/30/2023]
Abstract
Heat stroke is a life-threatening illness characterized by an elevated core body temperature. Despite adequate lowering of the body temperature and support treatment of multiple organ-system function, heat stroke is often fatal. 3-(5'-Hydoxymethyl-2'-furyl)-1-benzyl-indazol (YC-1) been identified as an activator of soluble guanylate cyclase. To evaluate whether YC-1 protects multiple organ dysfunctions and improves survival during heat stroke and its mechanism. Male Sprague-Dawley rats untreated or treated with either YC-1 or quercetin (heat shock protein (Hsp) 70 inhibitor) were exposures to heat as a model of heat stroke. The mean arterial pressure (MAP), heart rate, rectal temperature (Tco), survival time, and plasma biochemical data, intracellular Hsp70 and heat shock factor-1 expression were measured. The value of MAP, heart rate and Tco of untreated heat stroke (HS) group were all significantly lower than that of normothermal (NT) group. Biochemical markers evidenced that liver and kidney injuries of HS group were significantly higher than that of NT groups. YC-1 (20mg/kg) pretreatment with heat stroke (YC-1+HS) group, the MAP and heart rate were return to normal, and the biochemical markers were all significantly recovered to normal. The survival time of HS group, NT group and YC-1+HS group were 21, 480, and 445 min, respectively. The expression of Hsp70 and HSF-1 in liver and renal of YC-1+HS group was significantly higher than that of HS group. All of the protective effects of YC-1 were all significantly suppressed when pretreated with quercetin (400mg/kg). Results indicate that YC-1 may improve survival due to induce Hsp70 overexpression.
Collapse
Affiliation(s)
- Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical University, Taipei 114, Taiwan
| | | | | | | | | | | | | |
Collapse
|
142
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
143
|
Velichko AK, Petrova NV, Kantidze OL, Razin SV. Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 2012; 23:3450-60. [PMID: 22787276 PMCID: PMC3431931 DOI: 10.1091/mbc.e11-12-1009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The data presented here suggest that in an asynchronous cell culture, heat shock might affect DNA integrity both directly and via arrest of replication fork progression and that the phosphorylation of histone H2AX has a protective effect on the arrested replication forks in addition to its known DNA damage signaling function. Heat shock (HS) is one of the better-studied exogenous stress factors. However, little is known about its effects on DNA integrity and the DNA replication process. In this study, we show that in G1 and G2 cells, HS induces a countable number of double-stranded breaks (DSBs) in the DNA that are marked by γH2AX. In contrast, in S-phase cells, HS does not induce DSBs but instead causes an arrest or deceleration of the progression of the replication forks in a temperature-dependent manner. This response also provoked phosphorylation of H2AX, which appeared at the sites of replication. Moreover, the phosphorylation of H2AX at or close to the replication fork rescued the fork from total collapse. Collectively our data suggest that in an asynchronous cell culture, HS might affect DNA integrity both directly and via arrest of replication fork progression and that the phosphorylation of H2AX has a protective effect on the arrested replication forks in addition to its known DNA damage signaling function.
Collapse
Affiliation(s)
- Artem K Velichko
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
144
|
Krishnamurthy K, Kanagasabai R, Druhan LJ, Ilangovan G. Heat shock protein 25-enriched plasma transfusion preconditions the heart against doxorubicin-induced dilated cardiomyopathy in mice. J Pharmacol Exp Ther 2012; 341:829-39. [PMID: 22438470 PMCID: PMC3362880 DOI: 10.1124/jpet.112.192245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/20/2012] [Indexed: 01/10/2023] Open
Abstract
Extracellular heat shock proteins (eHsps) in the circulation have recently been found to activate both apoptotic and protective signaling in the heart. However, the role of eHsps in doxorubicin (Dox)-induced heart failure has not yet been studied. The objective of the present study was to determine how Dox affects circulating eHsp25 in blood plasma and how eHsp25 affects Dox-induced dilated cardiomyopathy. Wild-type mice [HSF-1(+/+)] were pretreated with 100 μl of heterozygous heat shock factor-1 [HSF-1(+/-)] mouse plasma (which contained 4-fold higher eHsp25 compared with wild-type mice), HSF-1(+/+) plasma, or saline, before treatment with Dox (6 mg/kg). After 4 weeks of this treatment protocol, HSF-1(+/-) plasma-pretreated mice showed increased eHsp25 in plasma and improved cardiac function (percentage of fractional shortening 37.3 ± 2.1 versus 26.4 ± 4.0) and better life span (31 ± 2 versus 22 ± 3 days) compared with the HSF-1(+/+) plasma or saline-pretreated mice. Preincubation of isolated adult cardiomyocytes with HSF-1(+/-) plasma or recombinant human Hsp27 (rhHsp27) significantly reduced Dox-induced activation of nuclear factor-κB and cytokine release and delayed cardiomyocyte death. Moreover, when cardiomyocytes were incubated with fluorescence-tagged rhHsp27, a saturation in binding was observed, suggesting that eHsp25 can bind to surface receptors. Competitive assays with a Toll-like receptor 2 (TLR2) antibody reduced the rhHSP27 binding, indicating that Hsp25 interacts with TLR2. In conclusion, transfusion of Hsp25-enriched blood plasma protected the heart from Dox-induced cardiotoxicity. Hsp25 antagonized Dox binding to the TLR2 receptor on cardiomyocytes.
Collapse
Affiliation(s)
- Karthikeyan Krishnamurthy
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
145
|
Volovik Y, Maman M, Dubnikov T, Bejerano-Sagie M, Joyce D, Kapernick EA, Cohen E, Dillin A. Temporal requirements of heat shock factor-1 for longevity assurance. Aging Cell 2012; 11:491-9. [PMID: 22360389 DOI: 10.1111/j.1474-9726.2012.00811.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reducing the activity of the insulin/IGF-1 signaling pathway (IIS) modifies development, elevates stress resistance, protects from toxic protein aggregation (proteotoxicity), and extends lifespan (LS) of worms, flies, and mice. In the nematode Caenorhabditis elegans, LS extension by IIS reduction is entirely dependent upon the activity of the transcription factors DAF-16 and the heat shock factor-1 (HSF-1). While DAF-16 determines LS exclusively during early adulthood, it is required for proteotoxicity protection also during late adulthood. In contrast, HSF-1 protects from proteotoxicity during larval development. Despite the critical requirement for HSF-1 for LS extension, the temporal requirements for this transcription factor as a LS determinant are unknown. To establish the temporal requirements of HSF-1 for longevity assurance, we conditionally knocked down hsf-1 during larval development and adulthood of C. elegans and found that unlike daf-16, hsf-1 is foremost required for LS determination during early larval development, required for a lesser extent during early adulthood and has small effect on longevity also during late adulthood. Our findings indicate that early developmental events affect LS and suggest that HSF-1 sets during development of the conditions that enable DAF-16 to promote longevity during reproductive adulthood. This study proposes a novel link between HSF-1 and the longevity functions of the IIS.
Collapse
Affiliation(s)
- Yuli Volovik
- Biochemistry and Molecular Biology, the Institute for Medical Research Israel - Canada (IMRIC), the Hebrew University-Hadassah Faculty of Medicine, Ein-Karem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Ahmed K, Furusawa Y, Tabuchi Y, Emam HF, Piao JL, Hassan MA, Yamamoto T, Kondo T, Kadowaki M. Chemical inducers of heat shock proteins derived from medicinal plants and cytoprotective genes response. Int J Hyperthermia 2012; 28:1-8. [PMID: 22235779 DOI: 10.3109/02656736.2011.627408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins, the so-called stress or heat shock proteins (HSPs). HSPs are known to function as molecular chaperones which are involved in the therapeutic approach of many diseases. Therefore in the current study we searched nontoxic chaperone inducers in chemical compounds isolated from medicinal plants. Screening of 80 compounds for their Hsp70-inducing activity in human lymphoma U937 cells was performed by western blotting. Five compounds showed significant Hsp70 up-regulation among them shikonin was most potent. Shikonin was able to induce Hsp70 at 0.1 µM after 3 h without activation of heat shock transcription factor 1 (HSF-1). It also induces significant reactive oxygen species generation. The expression level of genes responsive to shikonin was studied using global-scale microarrays and computational gene expression analysis tools. Significant increase in the nuclear factor erythroid 2-related factor 2 (Nrf2, NFEL2L2) -mediated oxidative stress response was observed that leads to the activation of HSP. The results of gene chip analysis were further confirmed by real-time qPCR assay. In short, the detailed mechanisms of Hsp70 induction by shikonin is not fully understood, Nrf2 and its target genes might be involved in the Hsp70 up-regulation in U937 cells.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Schwede A, Kramer S, Carrington M. How do trypanosomes change gene expression in response to the environment? PROTOPLASMA 2012; 249:223-238. [PMID: 21594757 PMCID: PMC3305869 DOI: 10.1007/s00709-011-0282-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 05/30/2023]
Abstract
All organisms are able to modulate gene expression in response to internal and external stimuli. Trypanosomes represent a group that diverged early during the radiation of eukaryotes and do not utilise regulated initiation of transcription by RNA polymerase II. Here, the mechanisms present in trypanosomes to alter gene expression in response to stress and change of host environment are discussed and contrasted with those operating in yeast and cultured mammalian cells.
Collapse
Affiliation(s)
- Angela Schwede
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| |
Collapse
|
148
|
Wang SJ, Chen HW, Yang RC. Pre-existent Hsp72 contributes to glutamine-induced hepatic hsp72 gene activation during heat shock recovery period in rat. Mol Nutr Food Res 2012; 56:410-6. [DOI: 10.1002/mnfr.201100555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 10/11/2011] [Indexed: 11/08/2022]
|
149
|
Doubrovin M, Che JT, Serganova I, Moroz E, Solit DB, Ageyeva L, Kochetkova T, Pillarsetti N, Finn R, Rosen N, Blasberg RG. Monitoring the induction of heat shock factor 1/heat shock protein 70 expression following 17-allylamino-demethoxygeldanamycin treatment by positron emission tomography and optical reporter gene imaging. Mol Imaging 2012; 11:67-76. [PMID: 22418029 PMCID: PMC5400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1). This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs), including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET) reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]). We developed a dual imaging reporter (pQHNIG70) for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10-1,000 nM) induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.
Collapse
Affiliation(s)
- Mikhail Doubrovin
- Department of Neurology, Memorial Hospital,Sloan-KetteringInstitute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Doubrovin M, Che JT, Serganova I, Moroz E, Solit DB, Ageyeva L, Kochetkova T, Pillarsetti N, Finn R, Rosen N, Blasberg RG. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mikhail Doubrovin
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jian T. Che
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Inna Serganova
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ekaterina Moroz
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - David B. Solit
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lyudmila Ageyeva
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Tatiana Kochetkova
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nagavarakishore Pillarsetti
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald Finn
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Neal Rosen
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald G. Blasberg
- From the Departments of Neurology and Radiology, Memorial Hospital; and Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|