101
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
102
|
Chaikind B, Bessen JL, Thompson DB, Hu JH, Liu DR. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res 2016; 44:9758-9770. [PMID: 27515511 PMCID: PMC5175349 DOI: 10.1093/nar/gkw707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.
Collapse
Affiliation(s)
- Brian Chaikind
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - Jeffrey L Bessen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - David B Thompson
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Johnny H Hu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
103
|
Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:242-247. [PMID: 27079451 DOI: 10.1016/j.dci.2016.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Recent advances in gene editing techniques have not been exploited in farmed fishes. We established a gene targeting technique, using the CRISPR/Cas9 system in Labeo rohita, a farmed carp (known as rohu). We demonstrated that donor DNA was integrated via homologous recombination (HR) at the site of targeted double-stranded nicks created by CRISPR/Cas9 nuclease. This resulted in the successful disruption of rohu Toll-like receptor 22 (TLR22) gene, involved in innate immunity and exclusively present in teleost fishes and amphibians. The null mutant, thus, generated lacked TLR22 mRNA expression. Altogether, this is the first evidence that the CRISPR/Cas9 system is a highly efficient tool for targeted gene disruption via HR in teleosts for generating model large-bodied farmed fishes.
Collapse
Affiliation(s)
- Vemulawada Chakrapani
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Swagat Kumar Patra
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Rudra Prasanna Panda
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Kiran Dashrath Rasal
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Pallipuram Jayasankar
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Hirak Kumar Barman
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India.
| |
Collapse
|
104
|
Beaton BP, Kwon DN, Choi YJ, Kim JH, Samuel MS, Benne JA, Wells KD, Lee K, Kim JH, Prather RS. Inclusion of homologous DNA in nuclease-mediated gene targeting facilitates a higher incidence of bi-allelically modified cells. Xenotransplantation 2016; 22:379-90. [PMID: 26381494 PMCID: PMC4584494 DOI: 10.1111/xen.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent advancements in gene editing techniques have increased in number and utility. These techniques are an attractive alternative to conventional gene targeting methods via homologous recombination due to the ease of use and the high efficiency of gene editing. We have previously produced cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) knockout (KO) pigs in a Minnesota miniature pig genetic background. These pigs were generated using zinc-finger nucleases (ZFNs) in combination with donor DNA containing a total homology length of 1600 bp (800-bp homology on each arm). Our next aim was to introduce the targeted disruption of alpha-1,3-galactosyltransferase (GGTA1) in the CMAH KO genetic background and evaluate the effect of donor DNA homology length on meganuclease-mediated gene targeting. METHODS Zinc-finger nucleases from a previous CMAH KO experiment were used as a proof of concept to identify a correlation between the length of donor DNA homology and targeting efficiency. Based on those results, experiments were designed to use transcription activator-like effector nucleases (TALENs) to generate bi-allelically modified GGTA1 cells using donor DNAs carrying various lengths of homology. Donor DNA was designed to symmetrically flank the predicted cleavage sites in CMAH and GGTA1 for both ZFN and TALEN cleavage sites, respectively. For both genes, the length of total homology ranged from 60 to 1799 bp. Sialyltransferase gene expression profiles were evaluated in CMAH and GGTA1 double KO pig cells and were compared to wild-type and CMAH KO cells. RESULTS Introduction of donor DNA with ZFNs demonstrated that small amounts of homology (60 bp) could facilitate homology-directed repair during ZFN-mediated targeting of CMAH; however, donor DNA with longer amounts of homology resulted in a higher frequency of homology-directed repair. For the GGTA1 KO experiments that used TALENs and donor DNA, donor DNA alone did not result in detectable bi-allelic conversion of GGTA1. As the length of donor DNA increased, the bi-allelic disruption of GGTA1 increased from 0.5% (TALENs alone, no donor DNA present) to a maximum of 3% (TALENs and donor DNA with total homology of 1799 bp). Inclusion of homologous donor DNA in TALEN-mediated gene targeting facilitated a higher incidence of bi-allelically modified cells. Using the generated cells, we were able to demonstrate the lack of GGTA1 expression and the decrease in gene expression sialyltransferase-related genes. CONCLUSIONS The approach of using donor DNA in conjunction with a meganuclease can be used to increase the efficiency of gene targeting. The gene editing methods can be applied to other genes as well as other mammalian systems. Additionally, gene expression analysis further confirms that the CMAH/GGTA1 double KO pigs can be a valuable source for the study of pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Benjamin P Beaton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Jae-Hwan Kim
- CHA Stem Cell Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, Seoul, Korea
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
105
|
CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics 2016; 16:4-12. [DOI: 10.1093/bfgp/elw025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
106
|
Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 2016; 135:993-1010. [PMID: 27314256 DOI: 10.1007/s00439-016-1696-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.
Collapse
|
107
|
Abstract
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305
| |
Collapse
|
108
|
Prieto J, Redondo P, Merino N, Villate M, Montoya G, Blanco FJ, Molina R. Structure of the I-SceI nuclease complexed with its dsDNA target and three catalytic metal ions. Acta Crystallogr F Struct Biol Commun 2016; 72:473-9. [PMID: 27303901 PMCID: PMC4909248 DOI: 10.1107/s2053230x16007512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/04/2016] [Indexed: 01/22/2023] Open
Abstract
Homing endonucleases are highly specific DNA-cleaving enzymes that recognize and cleave long stretches of DNA. The engineering of these enzymes provides instruments for genome modification in a wide range of fields, including gene targeting. The homing endonuclease I-SceI from the yeast Saccharomyces cerevisiae has been purified after overexpression in Escherichia coli and its crystal structure has been determined in complex with its target DNA. In order to evaluate the number of ions that are involved in the cleavage process, thus determining the catalytic mechanism, crystallization experiments were performed in the presence of Mn(2+), yielding crystals that were suitable for X-ray diffraction analysis. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 80.11, b = 80.57, c = 130.87 Å, α = β = γ = 90°. The self-rotation function and the Matthews coefficient suggested the presence of two protein-DNA complexes in the asymmetric unit. The crystals diffracted to a resolution limit of 2.9 Å using synchrotron radiation. From the anomalous data, it was determined that three cations are involved in catalysis and it was confirmed that I-SceI follows a two-metal-ion DNA-strand cleavage mechanism.
Collapse
Affiliation(s)
- Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Pilar Redondo
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Vizcaya, Edificio 800, 48160 Derio, Spain
| | - Maider Villate
- CIC bioGUNE, Parque Tecnológico de Vizcaya, Edificio 800, 48160 Derio, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Protein Structure and Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Francisco J. Blanco
- CIC bioGUNE, Parque Tecnológico de Vizcaya, Edificio 800, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation For Science, Alameda Urquijo 36-5, 48011 Bilbao, Spain
| | - Rafael Molina
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
109
|
Molina R, Besker N, Marcaida MJ, Montoya G, Prieto J, D’Abramo M. Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics. ACS Chem Biol 2016; 11:1401-7. [PMID: 26909878 DOI: 10.1021/acschembio.5b00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome these limitations is to unambiguously identify the key structural players involved in catalysis. Here, we report the E117A I-DmoI mutant crystal structure at 2.2 Å resolution that, together with the wt and Q42A/K120M constructs, is combined with computational approaches to shed light on protein cleavage activity. The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved and noncleaved DNA strands when the ions and water molecules are correctly positioned for the nucleophilic attack that initiates the cleavage reaction, in line with experimental enzymatic activity. The proposed approach paves the way for an effective, general, and reliable procedure to analyze the enzymatic activity of endonucleases from a very limited data set, i.e., structure and dynamics.
Collapse
Affiliation(s)
- Rafael Molina
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
| | - Neva Besker
- CINECA, SuperComputing Applications and Innovations, via dei Tizii 6, 00185 Rome, Italy
| | - Maria Jose Marcaida
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
- Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jesús Prieto
- Structural
Biology and Biocomputing Programme, Macromolecular Crystallography
Group, Spanish National Cancer Research Centre (CNIO), c/Melchor
Fdez. Almagro 3, 28029 Madrid, Spain
| | - Marco D’Abramo
- Department
of Chemistry, University of Rome “La Sapienza”, p.le
A. Moro, 5, 00185 Rome, Italy
| |
Collapse
|
110
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
111
|
Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome Engineering with TALE and CRISPR Systems in Neuroscience. Front Genet 2016; 7:47. [PMID: 27092173 PMCID: PMC4821859 DOI: 10.3389/fgene.2016.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.
Collapse
Affiliation(s)
- Han B Lee
- Neurobiology of Disease Graduate Program, Mayo Graduate School Rochester, MN, USA
| | - Brynn N Sundberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Ashley N Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Karl J Clark
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolRochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
112
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
113
|
Unniyampurath U, Pilankatta R, Krishnan MN. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi? Int J Mol Sci 2016; 17:291. [PMID: 26927085 PMCID: PMC4813155 DOI: 10.3390/ijms17030291] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term.
Collapse
Affiliation(s)
- Unnikrishnan Unniyampurath
- Program on Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Nileshwar 671328, India.
| | - Manoj N Krishnan
- Program on Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
114
|
Merkert S, Martin U. Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells. Stem Cell Res 2016; 16:377-86. [PMID: 26921872 DOI: 10.1016/j.scr.2016.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Within the last years numerous publications successfully applied sequence specific designer nucleases for genome editing in human PSCs. However, despite this abundance of reports together with the rapid development and improvement accomplished with the technology, it is still difficult to choose the optimal methodology for a specific application of interest. With focus on the most suitable approach for specific applications, we present a practical guidance for successful gene editing in human PSCs using designer nucleases. We discuss experimental considerations, limitations and critical aspects which will guide the investigator for successful implementation of this technology.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Cluster of Excellence, Hannover Medical School, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Cluster of Excellence, Hannover Medical School, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
115
|
|
116
|
Abstract
Genome editing is the process of precisely modifying the nucleotide sequence of the genome. It has provided a powerful approach to research questions but, with the development of a new set of tools, it is now possible to achieve frequencies of genome editing that are high enough to be useful therapeutically. Genome editing is being developed to treat not only monogenic diseases but also infectious diseases and diseases that have both a genetic and an environmental component.
Collapse
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Stanford University, Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
117
|
Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015; 34:44-59. [PMID: 26707540 DOI: 10.1016/j.ymben.2015.12.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/29/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.
Collapse
Affiliation(s)
- Tadas Jakočiūnas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|
118
|
Abstract
The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California 94305;
| |
Collapse
|
119
|
Kaulich M, Dowdy SF. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Nucleic Acid Ther 2015; 25:287-96. [PMID: 26540648 DOI: 10.1089/nat.2015.0545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Altering endogenous genes in cells is an integral tool of modern cell biology. The ease-of-use of the CRISPR/Cas9 system to introduce genomic DNA breaks at specific sites in vivo has led to its rapid and wide adoption. In the absence of a DNA template, the lesion is repaired by nonhomologous end joining resolving as internal deletions. However, in the presence of a homologous DNA template, homology-directed repair occurs with variable efficiencies. Recent work has demonstrated that highly efficient gene targeting can be induced by combining CRISPR/Cas9 targeting of genomic loci with recombinant adeno-associated virus (rAAV) to provide a single-stranded homologous DNA template. Here we review the current state of CRISPR/Cas-based gene editing and provide a practical guide to applying the CRISPR/Cas and rAAV system for highly efficient, time- and cost-effective gene targeting.
Collapse
Affiliation(s)
- Manuel Kaulich
- Department of Cellular and Molecular Medicine, University of California , San Diego, La Jolla, California
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, University of California , San Diego, La Jolla, California
| |
Collapse
|
120
|
Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. J Mol Biol 2015; 428:963-89. [PMID: 26506267 DOI: 10.1016/j.jmb.2015.10.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut at off-target sites with mutagenic consequences. Therefore, issues such as efficacy, specificity and delivery are likely to drive selection of reagents for particular purposes. Human therapeutic applications of these technologies will ultimately depend on risk versus benefit analysis and informed consent.
Collapse
Affiliation(s)
- Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
121
|
Liu R, Bassalo MC, Zeitoun RI, Gill RT. Genome scale engineering techniques for metabolic engineering. Metab Eng 2015; 32:143-154. [PMID: 26453944 DOI: 10.1016/j.ymben.2015.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/15/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
Abstract
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.
Collapse
Affiliation(s)
- Rongming Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Marcelo C Bassalo
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Ramsey I Zeitoun
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
122
|
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. PLANT PHYSIOLOGY 2015; 169:931-45. [PMID: 26269544 PMCID: PMC4587463 DOI: 10.1104/pp.15.00793] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 05/04/2023]
Abstract
Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)-guide RNA technology are reported in maize. DNA vectors expressing maize codon-optimized Streptococcus pyogenes Cas9 endonuclease and single guide RNAs were cointroduced with or without DNA repair templates into maize immature embryos by biolistic transformation targeting five different genomic regions: upstream of the liguleless1 (LIG1) gene, male fertility genes (Ms26 and Ms45), and acetolactate synthase (ALS) genes (ALS1 and ALS2). Mutations were subsequently identified at all sites targeted, and plants containing biallelic multiplex mutations at LIG1, Ms26, and Ms45 were recovered. Biolistic delivery of guide RNAs (as RNA molecules) directly into immature embryo cells containing preintegrated Cas9 also resulted in targeted mutations. Editing the ALS2 gene using either single-stranded oligonucleotides or double-stranded DNA vectors as repair templates yielded chlorsulfuron-resistant plants. Double-strand breaks generated by RNA-guided Cas9 endonuclease also stimulated insertion of a trait gene at a site near LIG1 by homology-directed repair. Progeny showed expected Mendelian segregation of mutations, edits, and targeted gene insertions. The examples reported in this study demonstrate the utility of Cas9-guide RNA technology as a plant genome editing tool to enhance plant breeding and crop research needed to meet growing agriculture demands of the future.
Collapse
Affiliation(s)
- Sergei Svitashev
- Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131
| | - Joshua K Young
- Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131
| | | | - Huirong Gao
- Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131
| | - S Carl Falco
- Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131
| | - A Mark Cigan
- Trait Enabling Technologies, DuPont Pioneer, Johnston, Iowa 50131
| |
Collapse
|
123
|
Hotta A, Yamanaka S. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annu Rev Genet 2015; 49:47-70. [PMID: 26407033 DOI: 10.1146/annurev-genet-112414-054926] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.
Collapse
Affiliation(s)
- Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8501, Japan; .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8501, Japan; .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158
| |
Collapse
|
124
|
Molina R, Redondo P, López-Méndez B, Villate M, Merino N, Blanco FJ, Valton J, Grizot S, Duchateau P, Prieto J, Montoya G. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification. J Biol Chem 2015; 290:28727-36. [PMID: 26363068 DOI: 10.1074/jbc.m115.678342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 01/24/2023] Open
Abstract
Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca(2+)) and catalytic ions (Mg(2+)). We have also analyzed the metal dependence of DNA cleavage using Mg(2+) ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates.
Collapse
Affiliation(s)
- Rafael Molina
- From the Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, C/Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Pilar Redondo
- From the Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, C/Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Blanca López-Méndez
- the Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Maider Villate
- the Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160 Derio, Spain
| | - Nekane Merino
- the Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160 Derio, Spain
| | - Francisco J Blanco
- the Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160 Derio, Spain, IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain, and
| | - Julien Valton
- CELLECTIS S. A., 8 rue de la croix Jarry, 75013 Paris, France
| | | | | | - Jesús Prieto
- From the Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, C/Melchor Fernández Almagro 3, 28029 Madrid, Spain,
| | - Guillermo Montoya
- From the Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group, C/Melchor Fernández Almagro 3, 28029 Madrid, Spain, the Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark,
| |
Collapse
|
125
|
Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 2015; 99:10575-85. [DOI: 10.1007/s00253-015-6931-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022]
|
126
|
Ouedraogo JP, Arentshorst M, Nikolaev I, Barends S, Ram AFJ. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei. Appl Microbiol Biotechnol 2015; 99:10083-95. [PMID: 26272087 PMCID: PMC4643118 DOI: 10.1007/s00253-015-6829-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Targeted integration of expression cassettes for enzyme production in industrial microorganisms is desirable especially when enzyme variants are screened for improved enzymatic properties. However, currently used methods for targeted integration are inefficient and result in low transformation frequencies. In this study, we expressed the Saccharomyces cerevisiae I-SceI meganuclease to generate double-strand breaks at a defined locus in the Trichoderma reesei genome. We showed that the double-strand DNA breaks mediated by I-SceI can be efficiently repaired when an exogenous DNA cassette flanked by regions homologous to the I-SceI landing locus was added during transformation. Transformation efficiencies increased approximately sixfold compared to control transformation. Analysis of the transformants obtained via I-SceI-mediated gene targeting showed that about two thirds of the transformants resulted from a homologous recombination event at the predetermined locus. Counter selection of the transformants for the loss of the pyrG marker upon integration of the DNA cassette showed that almost all of the clones contained the cassette at the predetermined locus. Analysis of independently obtained transformants using targeted integration of a glucoamylase expression cassette demonstrated that glucoamylase production among the transformants was high and showing limited variation. In conclusion, the gene targeting system developed in this study significantly increases transformation efficiency as well as homologous recombination efficiency and omits the use of Δku70 strains. It is also suitable for high-throughput screening of enzyme variants or gene libraries in T. reesei.
Collapse
Affiliation(s)
- Jean Paul Ouedraogo
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Kluyver Centre for Genomics of Industrial Fermentation, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Kluyver Centre for Genomics of Industrial Fermentation, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Igor Nikolaev
- Dupont Industrial Biosciences, Archimedesweg 30, 2333 CN, Leiden, The Netherlands
| | - Sharief Barends
- Dupont Industrial Biosciences, Archimedesweg 30, 2333 CN, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Kluyver Centre for Genomics of Industrial Fermentation, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
127
|
Dreyer AK, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, Siler U, Reichenbach J, Grez M, Moritz T, Schambach A, Cathomen T. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 2015; 69:191-200. [PMID: 26295532 DOI: 10.1016/j.biomaterials.2015.07.057] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
X-linked chronic granulomatous disease (X-CGD) is an inherited disorder of the immune system. It is characterized by a defect in the production of reactive oxygen species (ROS) in phagocytic cells due to mutations in the NOX2 locus, which encodes gp91phox. Because the success of retroviral gene therapy for X-CGD has been hampered by insertional activation of proto-oncogenes, targeting the insertion of a gp91phox transgene into potential safe harbor sites, such as AAVS1, may represent a valid alternative. To conceptually evaluate this strategy, we generated X-CGD patient-derived induced pluripotent stem cells (iPSCs), which recapitulate the cellular disease phenotype upon granulocytic differentiation. We examined AAVS1-specific zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for their efficacy to target the insertion of a myelo-specific gp91phox cassette to AAVS1. Probably due to their lower cytotoxicity, TALENs were more efficient than ZFNs in generating correctly targeted iPSC colonies, but all corrected iPSC clones showed no signs of mutations at the top-ten predicted off-target sites of both nucleases. Upon differentiation of the corrected X-CGD iPSCs, gp91phox mRNA levels were highly up-regulated and the derived granulocytes exhibited restored ROS production that induced neutrophil extracellular trap (NET) formation. In conclusion, we demonstrate that TALEN-mediated integration of a myelo-specific gp91phox transgene into AAVS1 of patient-derived iPSCs represents a safe and efficient way to generate autologous, functionally corrected granulocytes.
Collapse
Affiliation(s)
- Anne-Kathrin Dreyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Doris Steinemann
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara Timm
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital, 8032 Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Swiss Center for Regenerative Medicine, Zurich Centre for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Institute for Cell and Gene Therapy, University Medical Center Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|
128
|
Jiang W, Marraffini LA. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annu Rev Microbiol 2015. [PMID: 26209264 DOI: 10.1146/annurev-micro-091014-104441] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prokaryotic CRISPR-Cas loci encode proteins that function as an adaptive immune system against infectious viruses and plasmids. Immunity is mediated by Cas nucleases and small RNA guides, which specify a cleavage site within the genome of the invader. In type II CRISPR-Cas systems, the RNA-guided Cas9 nuclease cleaves the DNA. Cas9 can be reprogrammed to create double-strand DNA breaks in the genomes of a variety of organisms, from bacteria to human cells. Repair of Cas9 lesions by homologous recombination or nonhomologous end joining mechanisms can lead to the introduction of specific nucleotide substitutions or indel mutations, respectively. Furthermore, a nuclease-null Cas9 has been developed to regulate endogenous gene expression and to label genomic loci in living cells. Targeted genome editing and gene regulation mediated by Cas9 are easy to program, scale, and multiplex, allowing researchers to decipher the causal link between genetic and phenotypic variation. In this review, we describe the most notable applications of Cas9 in basic biology, translational medicine, synthetic biology, biotechnology, and other fields.
Collapse
Affiliation(s)
- Wenyan Jiang
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065;
| | | |
Collapse
|
129
|
Hatada S, Subramanian A, Mandefro B, Ren S, Kim HW, Tang J, Funari V, Baloh RH, Sareen D, Arumugaswami V, Svendsen CN. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:998-1010. [PMID: 26185257 DOI: 10.5966/sctm.2015-0050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. SIGNIFICANCE The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells.
Collapse
Affiliation(s)
- Seigo Hatada
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aparna Subramanian
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Berhan Mandefro
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Songyang Ren
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ho Won Kim
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jie Tang
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vincent Funari
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vaithilingaraja Arumugaswami
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- Board of Governors, Regenerative Medicine Institute, Department of Biomedical Sciences, iPSC Core, The David and Janet Polak Foundation Stem Cell Core Laboratory, Genomics Core Facility, Department of Surgery, and Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
130
|
Abstract
The prokaryotic type II CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) system is rapidly revolutionizing the field of genetic engineering, allowing researchers to alter the genomes of a large range of organisms with relative ease. Experimental approaches based on this versatile technology have the potential to transform the field of cancer genetics. Here, we review current approaches for functional studies of cancer genes that are based on CRISPR-Cas, with emphasis on their applicability for the development of next-generation models of human cancer.
Collapse
Affiliation(s)
- Francisco J. Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Corresponding author. Communication can be sent to
| |
Collapse
|
131
|
Moyer TC, Holland AJ. Generation of a conditional analog-sensitive kinase in human cells using CRISPR/Cas9-mediated genome engineering. Methods Cell Biol 2015; 129:19-36. [PMID: 26175431 DOI: 10.1016/bs.mcb.2015.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research.
Collapse
Affiliation(s)
- Tyler C Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
132
|
Abstract
Recent advances in the development of genome editing technologies based on programmable nucleases have substantially improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress toward developing programmable nuclease-based therapies as well as future prospects and challenges.
Collapse
Affiliation(s)
- David Benjamin Turitz Cox
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Randall Jeffrey Platt
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Feng Zhang
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
133
|
Abstract
Molecular scissors (MS), incl. Zinc Finger Nucleases (ZFN), Transcription-activator like endoncleases (TALENS) and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, MS can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different MS has been shown in different organisms, including insects, amphibians, plants, nematodes, and mammals, including humans. Recently, another novel class of molecular scissors was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN, especially by its easy design. MS can be successfully employed for improving the understanding of complex physiological systems, producing transgenic animals, incl. creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on molecular scissors, their underlying mechanism and focuses on new opportunities for generating genetically modified farm animals.
Collapse
|
134
|
Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res 2015; 24:381-96. [DOI: 10.1007/s11248-015-9862-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
135
|
Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN). Chromosome Res 2015; 23:7-15. [DOI: 10.1007/s10577-014-9451-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
136
|
Abstract
The tools for genome engineering have become very powerful and accessible over the last several years. CRISPR/Cas nucleases, TALENs and ZFNs can all be designed to produce highly specific double-strand breaks in chromosomal DNA. These breaks are processed by cellular DNA repair machinery leading to localized mutations and to intentional sequence replacements. Because these repair processes are common to essentially all organisms, the targetable nucleases have been applied successfully to a wide range of animals, plants, and cultured cells. In each case, the mode of delivery of the nuclease, the efficiency of cleavage and the repair outcome depend on the biology of the particular system being addressed. These reagents are being used to introduce favorable characteristics into organisms of economic significance, and the prospects for enhancing human gene therapy appear very bright.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, School of Medicine, University of Utah, Emma Eccles Jones Medical Research Building, Rm 4520, 15N. Medical Drive East, Salt Lake City, UT, 84112-5650, USA,
| |
Collapse
|
137
|
Abstract
The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Department of Chemistry, University of California, Berkeley, CA 94720, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany. Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden. Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
138
|
Genome editing in mouse spermatogonial stem/progenitor cells using engineered nucleases. PLoS One 2014; 9:e112652. [PMID: 25409432 PMCID: PMC4237364 DOI: 10.1371/journal.pone.0112652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 01/09/2023] Open
Abstract
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse "GS" (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.
Collapse
|
139
|
Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014; 5:43. [PMID: 25699168 PMCID: PMC4332929 DOI: 10.1186/2041-9139-5-43] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 12/26/2022] Open
Abstract
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
Collapse
Affiliation(s)
- Anna F Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; BMIC graduate programme and Université Claude Bernard - Lyon 1, Lyon, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
140
|
Wilson CJ. Rational protein design: developing next‐generation biological therapeutics and nanobiotechnological tools. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:330-41. [DOI: 10.1002/wnan.1310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Corey J. Wilson
- Department of Chemical and Environmental EngineeringYale UniversityNew HavenCTUSA
- Department of Molecular Biochemistry and BiophysicsYale UniversityNew HavenCTUSA
- Department of Biomedical EngineeringYale UniversityNew HavenCTUSA
| |
Collapse
|
141
|
High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces. Genetics 2014; 198:859-66. [PMID: 25209147 DOI: 10.1534/genetics.114.170118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus.
Collapse
|
142
|
Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 2014; 42:10903-14. [PMID: 25200087 PMCID: PMC4176183 DOI: 10.1093/nar/gku806] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022] Open
Abstract
The Cas9/sgRNA of the CRISPR/Cas system has emerged as a robust technology for targeted gene editing in various organisms, including plants, where Cas9/sgRNA-mediated small deletions/insertions at single cleavage sites have been reported in transient and stable transformations, although genetic transmission of edits has been reported only in Arabidopsis and rice. Large chromosomal excision between two remote nuclease-targeted loci has been reported only in a few non-plant species. Here we report in rice Cas9/sgRNA-induced large chromosomal segment deletions, the inheritance of genome edits in multiple generations and construction of a set of facile vectors for high-efficiency, multiplex gene targeting. Four sugar efflux transporter genes were modified in rice at high efficiency; the most efficient system yielding 87-100% editing in T0 transgenic plants, all with di-allelic edits. Furthermore, genetic crosses segregating Cas9/sgRNA transgenes away from edited genes yielded several genome-edited but transgene-free rice plants. We also demonstrated proof-of-efficiency of Cas9/sgRNAs in producing large chromosomal deletions (115-245 kb) involving three different clusters of genes in rice protoplasts and verification of deletions of two clusters in regenerated T0 generation plants. Together, these data demonstrate the power of our Cas9/sgRNA platform for targeted gene/genome editing in rice and other crops, enabling both basic research and agricultural applications.
Collapse
Affiliation(s)
- Huanbin Zhou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Bo Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Donald P Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
143
|
Zhang Y, Vanoli F, LaRocque JR, Krawczyk PM, Jasin M. Biallelic targeting of expressed genes in mouse embryonic stem cells using the Cas9 system. Methods 2014; 69:171-178. [PMID: 24929070 PMCID: PMC4405113 DOI: 10.1016/j.ymeth.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022] Open
Abstract
Gene targeting - homologous recombination between transfected DNA and a chromosomal locus - is greatly stimulated by a DNA break in the target locus. Recently, the RNA-guided Cas9 endonuclease, involved in bacterial adaptive immunity, has been modified to function in mammalian cells. Unlike other site-specific endonucleases whose specificity resides within a protein, the specificity of Cas9-mediated DNA cleavage is determined by a guide RNA (gRNA) containing an ∼20 nucleotide locus-specific RNA sequence, representing a major advance for versatile site-specific cleavage of the genome without protein engineering. This article provides a detailed method using the Cas9 system to target expressed genes in mouse embryonic stem cells. In this method, a promoterless marker flanked by short homology arms to the target locus is transfected into cells together with Cas9 and gRNA expression vectors. Importantly, biallelic gene knockout is obtained at high frequency by only one round of targeting using a single marker.
Collapse
Affiliation(s)
- Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Jeannine R LaRocque
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
- Department of Human Science, Georgetown University Medical Center, 3700 Reservoir Rd. NW, Washington, DC 20057, USA
| | - Przemek M Krawczyk
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
144
|
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157:1262-1278. [PMID: 24906146 DOI: 10.1016/j.cell.2014.05.010] [Citation(s) in RCA: 3877] [Impact Index Per Article: 352.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/16/2022]
Abstract
Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.
Collapse
Affiliation(s)
- Patrick D Hsu
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
145
|
Abstract
Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.
Collapse
|
146
|
RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms. Genetics 2014; 195:303-8. [PMID: 24089463 DOI: 10.1534/genetics.113.155093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
147
|
|
148
|
Lentiviral protein transduction with genome-modifying HIV-1 integrase-I-PpoI fusion proteins: studies on specificity and cytotoxicity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:379340. [PMID: 24860818 PMCID: PMC4016911 DOI: 10.1155/2014/379340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/12/2014] [Indexed: 01/14/2023]
Abstract
Rare-cutting endonucleases, such as the I-PpoI, can be used for the induction of double strand breaks (DSBs) in genome editing and targeted integration based on homologous recombination. For therapeutic approaches, the specificity and the pattern of off-target effects are of high importance in these techniques. For its applications, the endonuclease needs to be transported into the target cell nucleus, where the mechanism of transport may affect its function. Here, we have studied the lentiviral protein transduction of the integrase (IN)-PpoI fusion protein using the cis-packaging method. In genome-wide interaction studies, IN-fusion proteins were verified to bind their target sequence containing 28S ribosomal RNA (rRNA) genes with a 100-fold enrichment, despite the well-documented behavior of IN to be tethered into various genomic areas by host-cell factors. In addition, to estimate the applicability of the method, DSB-induced cytotoxic effects with different vector endonuclease configurations were studied in a panel of cells. Varying the amount and activity of endonuclease enabled the adjustment of ratio between the induced DSBs and transported DNA. In cell studies, certain cancerous cell lines were especially prone to DSBs in rRNA genes, which led us to test the protein transduction in a tumour environment in an in vivo study. In summary, the results highlight the potential of lentiviral vectors (LVVs) for the nuclear delivery of endonucleases.
Collapse
|
149
|
Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 2014; 9:e95611. [PMID: 24748175 PMCID: PMC3991675 DOI: 10.1371/journal.pone.0095611] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/28/2014] [Indexed: 12/22/2022] Open
Abstract
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100% efficacy, deleting the repeat tract. Induction of the same TALEN in homozygous yeast diploids leads to contractions of both repeats to a final length of 3–13 triplets, with 100% efficacy in cells that survived the double-strand breaks. Whole-genome sequencing of surviving yeast cells shows that the TALEN does not increase mutation rate. No other CAG/CTG repeat of the yeast genome showed any length alteration or mutation. No large genomic rearrangement such as aneuploidy, segmental duplication or translocation was detected. It is the first demonstration that induction of a TALEN in an eukaryotic cell leads to shortening of trinucleotide repeat tracts to lengths below pathological thresholds in humans, with 100% efficacy and very high specificity.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
- * E-mail:
| | - David Viterbo
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Valentine Mosbach
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Lauriane Castelain
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| |
Collapse
|
150
|
|