101
|
Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS One 2010; 5:e12143. [PMID: 20711347 PMCID: PMC2920830 DOI: 10.1371/journal.pone.0012143] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/19/2022] Open
Abstract
The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Δ can be partially or totally suppressed if SWR1 is not formed (swr1Δ), if it forms but cannot bind to chromatin (swc2Δ) or if it binds to chromatin but lacks histone replacement activity (swc5Δ and the ATPase-dead swr1-K727G). These results suggest that in htz1Δ the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Δ, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Δ. In addition, SWR1 causes DSBs sensitivity in htz1Δ; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.
Collapse
Affiliation(s)
| | | | | | - Félix Prado
- Department of Molecular Biology, CABIMER-CSIC, Seville, Spain
- * E-mail:
| |
Collapse
|
102
|
Ahmad A, Zhang Y, Cao XF. Decoding the epigenetic language of plant development. MOLECULAR PLANT 2010; 3:719-28. [PMID: 20663898 PMCID: PMC2910553 DOI: 10.1093/mp/ssq026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 04/29/2010] [Indexed: 05/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene expression or cellular phenotype without changes in DNA sequence. Epigenetic regulation of gene expression is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called DNA Methyltransferases and is involved in many cellular processes, such as silencing of transposable elements and pericentromeric repeats, X-chromosome inactivation and genomic imprinting, etc. Histone modifications refer to posttranslational covalent attachment of chemical groups onto histones such as phosphorylation, acetylation, and methylation, etc. Histone variants, the non-canonical histones with amino acid sequences divergent from canonical histones, can have different epigenetic impacts on the genome from canonical histones. Higher-order chromatin structures maintained or modified by chromatin remodeling proteins also play important roles in regulating gene expression. Small non-coding RNAs play various roles in the regulation of gene expression at pre- as well as posttranscriptional levels. A special issue of Molecular Plant on 'Epigenetics and Plant Development' (Volume 4, Number 2, 2009) published a variety of articles covering many aspects of epigenetic regulation of plant development. We have tried here to present a bird's-eye view of these credible efforts towards understanding the mysterious world of epigenetics. The majority of the articles are about the chromatin modifying proteins, including histone modifiers, histone variants, and chromatin remodeling proteins that regulate various developmental processes, such as flowering time, vernalization, stem cell maintenance, and response to hormonal and environmental stresses, etc. Regulation of expression of seed transcriptome, involvement of direct tandem repeat elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, and epigenetic barriers in species hybridization are described well. The last two papers are about the Pol V-mediated heterochromatin formation independent of the 24nt-siRNA and the effect of genome position and tissue type on epigenetic regulation of gene expression. These findings not only further our current understanding of epigenetic mechanisms involved in many biological phenomena, but also pave the path for the future work, by raising many new questions that are discussed in the following lines.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Yong Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xiao-Feng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. E-mail , fax 86-10-64873428, tel. 86-10-64869203
| |
Collapse
|
103
|
Halley JE, Kaplan T, Wang AY, Kobor MS, Rine J. Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory. PLoS Biol 2010; 8:e1000401. [PMID: 20582323 PMCID: PMC2889906 DOI: 10.1371/journal.pbio.1000401] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/13/2010] [Indexed: 12/23/2022] Open
Abstract
H2A.Z does not appear to have a role in GAL1 transcriptional memory, but it does have both acetylation-dependent and acetylation-independent roles in GAL1 induction and expression. H2A.Z is a histone H2A variant conserved from yeast to humans, and is found at 63% of promoters in Saccharomyces cerevisiae. This pattern of localization suggests that H2A.Z is somehow important for gene expression or regulation. H2A.Z can be acetylated at up to four lysine residues on its amino-terminal tail, and acetylated-H2A.Z is enriched in chromatin containing promoters of active genes. We investigated whether H2A.Z's role in GAL1 gene regulation and gene expression depends on H2A.Z acetylation. Our findings suggested that H2A.Z functioned both in gene regulation and in gene expression and that only its role in gene regulation depended upon its acetylation. Our findings provided an alternate explanation for results that were previously interpreted as evidence that H2A.Z plays a role in GAL1 transcriptional memory. Additionally, our findings provided new insights into the phenotypes of htz1Δ mutants: in the absence of H2A.Z, the SWR1 complex, which deposits H2A.Z into chromatin, was deleterious to the cell, and many of the phenotypes of cells lacking H2A.Z were due to the SWR1 complex's activity rather than to the absence of H2A.Z per se. These results highlight the need to reevaluate all studies on the phenotypes of cells lacking H2A.Z. Transcriptional memory is the well-documented phenomenon by which cells can “remember” prior transcriptional states. A paradigmatic example of transcriptional memory is found in the yeast Saccharomyces. S. cerevisiae remembers prior transcription of the galactose metabolism gene GAL1. When a gene is transcribed, the DNA must first be at least partially relieved of its packaging into chromatin by histone proteins. Previous research had suggested that S. cerevisiae used a chromatin modification, the incorporation of the histone variant H2A.Z into the region surrounding the GAL1 promoter, to remember the previous status of GAL1 transcription. Not all H2A.Z molecules are the same, however. For example, it has recently been discovered that H2A.Z can be acetylated on the four lysine residues in its N-terminal tail region. In an attempt to determine whether H2A.Z acetylation is required for GAL1 transcriptional memory, we unexpectedly discovered that, although both H2A.Z and H2A.Z acetylation are important for strong and rapid GAL1 induction, neither H2A.Z nor H2A.Z acetylation plays an important role in GAL1 transcriptional memory. We propose that the discrepancy between our conclusions and those in prior publications arise from the prior analysis of insufficiently short periods of GAL1 induction or from complications arising from the comparison of the phenotypes of wild-type yeast strains to those of htz1Δ mutants (carrying the null mutation of the gene encoding H2A.Z) mutants. In the current work we show that the htz1Δ mutant's phenotype does not simply reflect the absence of H2A.Z in chromatin but instead also reflects the pleiotropic effects of the Swr1 chromatin remodeling complex that is responsible for H2A.Z deposition into chromatin. In the absence of H2A.Z the Swr1 complex itself causes cell damage. In this paper we show that swr1Δ htz1Δ double mutants have substantially less severe mutant phenotypes than htz1Δ mutants. Thus, studies using the swr1Δ htz1Δ mutant offer more detailed insight into the consequences of the absence of H2A.Z in chromatin than do studies performed on single htz1Δ mutants, and our results help to clarify the role of H2A.Z in the regulation of GAL1 induction and transcriptional memory.
Collapse
Affiliation(s)
- Jeffrey E. Halley
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States
| | - Tommy Kaplan
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States
| | - Alice Y. Wang
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jasper Rine
- Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States
- * E-mail:
| |
Collapse
|
104
|
Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. EMBO J 2010; 29:2014-25. [PMID: 20473270 DOI: 10.1038/emboj.2010.85] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/12/2010] [Indexed: 11/08/2022] Open
Abstract
The chromatin-remodelling complex SNF2-related CBP activator protein (SRCAP) regulates chromatin structure in yeast by modulating the exchange of histone H2A for the H2A.Z variant. Here, we have investigated the contribution of H2A.Z-mediated chromatin remodelling to mammalian cell differentiation reprogramming. We show that the SRCAP subunit named ZNHIT1 or p18(Hamlet), which is a substrate of p38 MAPK, is recruited to the myogenin promoter at the onset of muscle differentiation, in a p38 MAPK-dependent manner. We also show that p18(Hamlet) is required for H2A.Z accumulation into this genomic region and for subsequent muscle gene transcriptional activation. Accordingly, downregulation of several subunits or the SRCAP complex impairs muscle gene expression. These results identify SRCAP/H2A.Z-mediated chromatin remodelling as a key early event in muscle differentiation-specific gene expression. We also propose a mechanism by which p38 MAPK-mediated signals are converted into chromatin structural changes, thereby facilitating transcriptional activation during mammalian cell differentiation.
Collapse
|
105
|
Dettmann A, Jäschke Y, Triebel I, Bogs J, Schröder I, Schüller HJ. Mediator subunits and histone methyltransferase Set2 contribute to Ino2-dependent transcriptional activation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010; 283:211-21. [PMID: 20054697 DOI: 10.1007/s00438-009-0508-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/16/2009] [Indexed: 01/30/2023]
Abstract
To activate eukaryotic genes, several pathways which modify chromatin and recruit general factors of the transcriptional machinery are utilized. We investigated the factors required for activation of yeast phospholipid biosynthetic genes, depending on activator protein Ino2 which binds to the inositol/choline-responsive element (ICRE) upstream promoter motif together with its partner protein Ino4. We used a set of 15 strains each defective for one of the non essential subunits of yeast mediator complex and identified med2, med3, med15, med18 and med19 as impaired for inositol biosynthesis. In these mutants, ICRE-dependent gene activation was reduced to 13-22% of the wild-type level. We also demonstrate synthetic growth and activation defects among mediator mutants and mutants lacking defined histone modifications (snf1, gcn5) and transcriptional coactivators (sub1). Analysis of mutants defective for histone methylation (set1, set2 and dot1) and demethylation (jhd1, jhd2, gis1, rph1 and ecm5) revealed the importance of the H3 Lys36-specific Set2 methyltransferase for ICRE-dependent gene expression. Although defined mediator subunits are critical for gene activation, we could not detect their interaction with Ino2. In contrast, Ino2 directly binds to the Set2 histone methyltransferase. Mapping of interaction domains revealed the importance of the SET core domain which was necessary and sufficient for binding Ino2.
Collapse
Affiliation(s)
- Anne Dettmann
- Institut für Genetik und Funktionelle Genomforschung, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
106
|
Yoshida T, Shimada K, Oma Y, Kalck V, Akimura K, Taddei A, Iwahashi H, Kugou K, Ohta K, Gasser SM, Harata M. Actin-related protein Arp6 influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet 2010; 6:e1000910. [PMID: 20419146 PMCID: PMC2855322 DOI: 10.1371/journal.pgen.1000910] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 03/16/2010] [Indexed: 11/19/2022] Open
Abstract
Actin-related proteins are ubiquitous components of chromatin remodelers and are conserved from yeast to man. We have examined the role of the budding yeast actin-related protein Arp6 in gene expression, both as a component of the SWR1 complex (SWR-C) and in its absence. We mapped Arp6 binding sites along four yeast chromosomes using chromatin immunoprecipitation from wild-type and swr1 deleted (swr1Delta) cells. We find that a majority of Arp6 binding sites coincide with binding sites of Swr1, the catalytic subunit of SWR-C, and with the histone H2A variant Htz1 (H2A.Z) deposited by SWR-C. However, Arp6 binding detected at centromeres, the promoters of ribosomal protein (RP) genes, and some telomeres is independent of Swr1 and Htz1 deposition. Given that RP genes and telomeres both show association with the nuclear periphery, we monitored the ability of Arp6 to mediate the localization of chromatin to nuclear pores. Arp6 binding is sufficient to shift a randomly positioned locus to nuclear periphery, even in a swr1Delta strain. Arp6 is also necessary for the pore association of its targeted RP promoters possibly through cell cycle-dependent factors. Loss of Arp6, but not Htz1, leads to an up-regulation of these RP genes. In contrast, the pore-association of GAL1 correlates with Htz1 deposition, and loss of Arp6 reduces both GAL1 activation and peripheral localization. We conclude that Arp6 functions both together with the nucleosome remodeler Swr1 and also without it, to mediate Htz1-dependent and Htz1-independent binding of chromatin domains to nuclear pores. This association is shown to have modulating effects on gene expression.
Collapse
Affiliation(s)
- Takahito Yoshida
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kazumi Akimura
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Angela Taddei
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Centre National de la Recherche Scientifique/Institut Curie-Section de Recherche, Paris, France
| | - Hitoshi Iwahashi
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazuto Kugou
- Shibata Distinguished Senior Laboratory, RIKEN Discovery Research Institute, Wako, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Ohta
- Shibata Distinguished Senior Laboratory, RIKEN Discovery Research Institute, Wako, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
107
|
Abstract
Histones wrap DNA to form nucleosome particles that compact eukaryotic genomes. Variant histones have evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, sperm packaging and other processes. 'Universal' histone variants emerged early in eukaryotic evolution and were later displaced for bulk packaging roles by the canonical histones (H2A, H2B, H3 and H4), the synthesis of which is coupled to DNA replication. Further specializations of histone variants have evolved in some lineages to perform additional tasks. Differences among histone variants in their stability, DNA wrapping, specialized domains that regulate access to DNA, and post-translational modifications, underlie the diverse functions that histones have acquired in evolution.
Collapse
|
108
|
Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:19-33. [PMID: 20131086 DOI: 10.1007/s10911-010-9167-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/08/2010] [Indexed: 02/03/2023] Open
Abstract
The role of epigenetic phenomena in cancer biology is increasingly being recognized. Here we focus on the mechanisms and enzymes involved in regulating histone methylation and acetylation, and the modulation of histone variant expression and deposition. Implications of these epigenetic marks for tumor development, progression and invasiveness are discussed with a particular emphasis on breast cancer progression.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, LBME, 118 route de Narbonne, 31062, Toulouse, France.
| | | |
Collapse
|
109
|
Straube K, Blackwell JS, Pemberton LF. Nap1 and Chz1 have Separate Htz1 Nuclear Import and Assembly Functions. Traffic 2010. [DOI: 10.1111/j.1600-0854.2009.001010.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Acetylation of H3 K56 is required for RNA polymerase II transcript elongation through heterochromatin in yeast. Mol Cell Biol 2010; 30:1467-77. [PMID: 20065036 DOI: 10.1128/mcb.01151-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Saccharomyces cerevisiae SIR proteins mediate transcriptional silencing, forming heterochromatin structures at repressed loci. Although recruitment of transcription initiation factors can occur even to promoters packed in heterochromatin, it is unclear whether heterochromatin inhibits RNA polymerase II (RNAPII) transcript elongation. To clarify this issue, we recruited SIR proteins to the coding region of an inducible gene and characterized the effects of the heterochromatic structure on transcription. Surprisingly, RNAPII is fully competent for transcription initiation and elongation at the locus, leading to significant loss of heterochromatin proteins from the region. A search for auxiliary factors required for transcript elongation through the heterochromatic locus revealed that two proteins involved in histone H3 lysine 56 acetylation, Rtt109 and Asf1, are needed for efficient transcript elongation by RNAPII. The efficiency of transcription through heterochromatin is also impaired in a strain carrying the K56R mutation in histone H3. Our results show that H3 K56 modification is required for efficient transcription of heterochromatic locus by RNAPII, and we propose that transcription-coupled incorporation of H3 acetylated K56 (acK56) into chromatin is needed for efficient opening of heterochromatic loci for transcription.
Collapse
|
111
|
Dryhurst D, Ishibashi T, Rose KL, Eirín-López JM, McDonald D, Silva-Moreno B, Veldhoen N, Helbing CC, Hendzel MJ, Shabanowitz J, Hunt DF, Ausió J. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol 2009; 7:86. [PMID: 20003410 PMCID: PMC2805615 DOI: 10.1186/1741-7007-7-86] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in vertebrates, H2A.Z-1 and H2A.Z-2, which are encoded by separate genes and differ by 3 amino acid residues. RESULTS We report that H2A.Z-1 and H2A.Z-2 are expressed across a wide range of human tissues, they are both acetylated at lysine residues within the N-terminal region and they exhibit similar, but nonidentical, distributions within chromatin. Our results suggest that H2A.Z-2 preferentially associates with H3 trimethylated at lysine 4 compared to H2A.Z-1. The phylogenetic analysis of the promoter regions of H2A.Z-1 and H2A.Z-2 indicate that they have evolved separately during vertebrate evolution. CONCLUSIONS Our biochemical, gene expression, and phylogenetic data suggest that the H2A.Z-1 and H2A.Z-2 variants function similarly yet they may have acquired a degree of functional independence.
Collapse
Affiliation(s)
- Deanna Dryhurst
- Department of Biochemistry and Microbiology and The Center for Biomedical Research, University of Victoria, Petch Building, Victoria, BC, V8W 3P6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Straube K, Blackwell JS, Pemberton LF. Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions. TRAFFIC (COPENHAGEN, DENMARK) 2009; 11:185-97. [PMID: 19929865 DOI: 10.1111/j.1600-0854.2009.01010.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We analyzed the nuclear import and regulation of the yeast histone variant Htz1 (H2A.Z), and the role of histone chaperones Nap1 and Chz1 in this process. Copurification suggested that Htz1 and H2B dimerized in the cytoplasm prior to import. Like H2B, Htz1 contained a nuclear localization signal (NLS) in its N-terminus that is recognized by multiple karyopherins (also called importins), indicating multiple transport pathways into the nucleus. However, Kap114 and Kap123 appeared to play the major role in Htz1 import. We also identified a role for Nap1 in the import of Htz1/H2B heterodimers, and Nap1 formed a RanGTP-insensitive import complex with Htz1/H2B and Kap114. Nap1 was necessary for maintaining a soluble pool of Htz1, indicating that its chaperone function may be important for the dynamic exchange of histones within nucleosomes. In contrast, Chz1 was imported by a distinct import pathway, and Chz1 did not appear to interact with Htz1 in the cytoplasm. Genetic analysis indicated that NAP1 has a function in the absence of HTZ1 that is not shared with CHZ1. This provides further evidence that the histone chaperones Nap1 and Chz1 have separate Htz1-dependent and -independent functions.
Collapse
Affiliation(s)
- Korinna Straube
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
113
|
Hardy S, Jacques PÉ, Gévry N, Forest A, Fortin MÈ, Laflamme L, Gaudreau L, Robert F. The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet 2009; 5:e1000687. [PMID: 19834540 PMCID: PMC2754525 DOI: 10.1371/journal.pgen.1000687] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/16/2009] [Indexed: 01/14/2023] Open
Abstract
A role for variant histone H2A.Z in gene expression is now well established but little is known about the mechanisms by which it operates. Using a combination of ChIP–chip, knockdown and expression profiling experiments, we show that upon gene induction, human H2A.Z associates with gene promoters and helps in recruiting the transcriptional machinery. Surprisingly, we also found that H2A.Z is randomly incorporated in the genome at low levels and that active transcription antagonizes this incorporation in transcribed regions. After cessation of transcription, random H2A.Z quickly reappears on genes, demonstrating that this incorporation utilizes an active mechanism. Within facultative heterochromatin, we observe a hyper accumulation of the variant histone, which might be due to the lack of transcription in these regions. These results show how chromatin structure and transcription can antagonize each other, therefore shaping chromatin and controlling gene expression. DNA in living cells is packaged into chromatin by histones and non-histone proteins. This packaging is very dynamic, allowing the controlled access of regulatory proteins such as transcription factors to DNA. Most chromatin is packaged with so-called canonical histones; namely H2A, H2B, H3, and H4. In some regions, however, variant histones replace canonical histones, creating special chromatin regions. Here we show that the variant histone H2A.Z is dynamically recruited to promoter regions where it helps in the recruitment of RNA polymerase II, the enzyme responsible for the first step of gene expression. In addition, we show that H2A.Z also associates randomly in the genome, but these molecules are removed during the passage of RNA polymerase II. In non-transcribed regions, H2A.Z accumulates in large domains called heterochromatin. We propose that a battle between random H2A.Z deposition and RNAPII-dependent H2A.Z eviction shapes the chromatin landscape.
Collapse
Affiliation(s)
- Sara Hardy
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | | | - Nicolas Gévry
- Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Audrey Forest
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Marie-Ève Fortin
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Liette Laflamme
- Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luc Gaudreau
- Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
114
|
Lu PY, Lévesque N, Kobor MS. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and componentsThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2009; 87:799-815. [DOI: 10.1139/o09-062] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin structure is important for the compaction of eukaryotic genomes, thus chromatin modifications play a fundamental role in regulating many cellular processes. The coordinated activities of various chromatin-remodelling and -modifying complexes are crucial in maintaining distinct chromatin neighbourhoods, which in turn ensure appropriate gene expression, as well as DNA replication, repair, and recombination. SWR1-C is an ATP-dependent histone deposition complex for the histone variant H2A.Z, whereas NuA4 is a histone acetyltransferase for histones H4, H2A, and H2A.Z. Together the NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent chromatin remodelling, and histone variant incorporation. These 2 multi-protein complexes share 4 subunits and function together to regulate the circuitry of H2A.Z biology. The components and functions of both multi-protein complexes are evolutionarily conserved and play important roles in multi-cellular development and cellular differentiation in higher eukaryotes. This review will summarize recent findings about NuA4 and SWR1-C and will focus on the connection between these complexes by investigating their physical and functional interactions through eukaryotic evolution.
Collapse
Affiliation(s)
- Phoebe Y.T. Lu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
115
|
Petty EL, Collette KS, Cohen AJ, Snyder MJ, Csankovszki G. Restricting dosage compensation complex binding to the X chromosomes by H2A.Z/HTZ-1. PLoS Genet 2009; 5:e1000699. [PMID: 19851459 PMCID: PMC2760203 DOI: 10.1371/journal.pgen.1000699] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/23/2009] [Indexed: 01/15/2023] Open
Abstract
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome-specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.
Collapse
Affiliation(s)
- Emily L. Petty
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karishma S. Collette
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alysse J. Cohen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Martha J. Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
116
|
Choi J, Heo K, An W. Cooperative action of TIP48 and TIP49 in H2A.Z exchange catalyzed by acetylation of nucleosomal H2A. Nucleic Acids Res 2009; 37:5993-6007. [PMID: 19696079 PMCID: PMC2764430 DOI: 10.1093/nar/gkp660] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
H2A.Z is an evolutionarily conserved H2A variant that plays a key role in the regulation of chromatin transcription. To understand the molecular mechanism of H2A.Z exchange, we purified two distinct H2A.Z-interacting complexes termed the small and big complexes from a human cell line. The big complex contains most components of the SRCAP chromatin remodeling and TIP60 HAT complexes, whereas the small complex possesses only a subset of SRCAP and TIP60 subunits. Our exchange analysis revealed that both small and big complexes enhance the incorporation of H2A.Z-H2B dimer into the nucleosome. In addition, TIP60-mediated acetylation of nucleosomal H2A specifically facilitates the action of the small complex in the H2A.Z exchange reaction. Among factors present in the small complex, we determined that TIP48 and TIP49 play a major role in catalyzing H2A acetylation-induced H2A.Z exchange via their ATPase activities. Overall, our work uncovers the previously-unrecognized role of TIP48 and TIP49 in H2A.Z exchange and a novel epigenetic mechanism controlling this process.
Collapse
Affiliation(s)
- Jongkyu Choi
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
117
|
March-Díaz R, Reyes JC. The beauty of being a variant: H2A.Z and the SWR1 complex in plants. MOLECULAR PLANT 2009; 2:565-577. [PMID: 19825639 DOI: 10.1093/mp/ssp019] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Numerous studies have shown that the nucleosome is a dynamic structure that strongly influences gene expression. Dynamism concerns different nucleosomal characteristics, including position, posttranslational modifications, and histone composition. Thus, within the nucleosome, canonical histones can be exchanged by histone variant proteins with specific functions-a process known as 'histone replacement'. The histone variant H2A.Z has an important function in transcription and, during the last few years, its role in plant development and immune response has become evident. Compiling genetic and biochemical studies from several laboratories has revealed that plants contain a multiprotein complex, similar to the SWR1/SRCAP complex from yeast and animals, involved in H2A.Z deposition. Despite intense research in different organisms, the mechanism by which H2A.Z influences transcription is still unknown. However, recent results from Arabidopsis have shown a strong inverse correlation between H2A.Z and DNA methylation, suggesting that H2A.Z might protect genes from silencing.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain
| | - Jose C Reyes
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain.
| |
Collapse
|
118
|
Gévry N, Hardy S, Jacques PE, Laflamme L, Svotelis A, Robert F, Gaudreau L. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev 2009; 23:1522-33. [PMID: 19515975 DOI: 10.1101/gad.1787109] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERalpha) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERalpha-mediated gene expression and provide a novel link between H2A.Z-p400 and ERalpha-dependent gene regulation and enhancer function.
Collapse
Affiliation(s)
- Nicolas Gévry
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
119
|
Draker R, Cheung P. Transcriptional and epigenetic functions of histone variant H2A.Z. Biochem Cell Biol 2009; 87:19-25. [PMID: 19234520 DOI: 10.1139/o08-117] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chromatin organization of a genome ultimately dictates the gene expression profile of the cell. It is now well recognized that key mechanisms that regulate chromatin structure include post-translational modifications of histones and the incorporation of histone variants at strategic sites within the genome. H2A.Z is a variant of H2A that is localized to the 5' end of many genes and is required for proper regulation of gene expression. However, its precise function in the transcription process is not yet well defined. In this review, we discuss some of the recent findings related to this histone variant, how it associates with other histone epigenetic marks, and how post-translational modifications of H2A.Z further define its function.
Collapse
Affiliation(s)
- Ryan Draker
- Department of Medical Biophysics, University of Toronto, 610 University Ave., Toronto, ONM5G2M9, Canada
| | | |
Collapse
|
120
|
Svotelis A, Gévry N, Gaudreau L. Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 2009; 87:179-88. [PMID: 19234533 DOI: 10.1139/o08-138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian genome is organized into a structure of DNA and proteins known as chromatin. In general, chromatin presents a barrier to gene expression that is regulated by several pathways, namely by the incorporation of histone variants into the nucleosome. In yeast, H2A.Z is an H2A histone variant that is incorporated into nucleosomes as an H2A.Z/H2B dimer by the Swr1 complex and by the SRCAP and p400/Tip60 complexes in mammalian cells. H2A.Z has been associated with the poising of genes for transcriptional activation in the yeast model system, and is essential for development in higher eukaryotes. Recent studies in our laboratory have demonstrated a p400-dependent deposition of H2A.Z at the promoter of p21WAF1/CIP1, a consequence that prevents the activation of the gene by p53, thereby inhibiting p53-dependent replicative senescence, a form of cell-cycle arrest crucial in the prevention of carcinogenic transformation of cells. Moreover, H2A.Z is overexpressed in several different types of cancers, and its overexpression has been associated functionally with the proliferation state of cells. Therefore, we suggest that H2A.Z is an important regulator of gene expression, and its deregulation may lead to the increased proliferation of mammalian cells.
Collapse
Affiliation(s)
- Amy Svotelis
- Departement de biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | | | | |
Collapse
|
121
|
Role of the histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and regulated expression of oleate-responsive genes. Mol Cell Biol 2009; 29:2346-58. [PMID: 19273605 DOI: 10.1128/mcb.01233-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The histone variant H2A.Z (Htz1p) has been implicated in transcriptional regulation in numerous organisms, including Saccharomyces cerevisiae. Genome-wide transcriptome profiling and chromatin immunoprecipitation studies identified a role for Htz1p in the rapid and robust activation of many oleate-responsive genes encoding peroxisomal proteins, in particular POT1, POX1, FOX2, and CTA1. The Swr1p-, Gcn5p-, and Chz1p-dependent association of Htz1p with these promoters in their repressed states appears to establish an epigenetic marker for the rapid and strong expression of these highly inducible promoters. Isw2p also plays a role in establishing the nucleosome state of these promoters and associates stably in the absence of Htz1p. An analysis of the nucleosome dynamics and Htz1p association with these promoters suggests a complex mechanism in which Htz1p-containing nucleosomes at fatty acid-responsive promoters are disassembled upon initial exposure to oleic acid leading to the loss of Htz1p from the promoter. These nucleosomes reassemble at later stages of gene expression. While these new nucleosomes do not incorporate Htz1p, the initial presence of Htz1p appears to mark the promoter for sustained gene expression and the recruitment of TATA-binding protein.
Collapse
|
122
|
Gervais AL, Gaudreau L. Discriminating nucleosomes containing histone H2A.Z or H2A based on genetic and epigenetic information. BMC Mol Biol 2009; 10:18. [PMID: 19261190 PMCID: PMC2660331 DOI: 10.1186/1471-2199-10-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/04/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nucleosomes are nucleoproteic complexes, formed of eight histone molecules and DNA, and they are responsible for the compaction of the eukaryotic genome. Their presence on DNA influences many cellular processes, such as transcription, DNA replication, and DNA repair. The evolutionarily conserved histone variant H2A.Z alters nucleosome stability and is highly enriched at gene promoters. Its localization to specific genomic loci in human cells is presumed to depend either on the underlying DNA sequence or on a certain epigenetic modification pattern. RESULTS We analyzed the differences in histone post-translational modifications and DNA sequences near nucleosomes that do or do not contain H2A.Z. We show that both the epigenetic context and underlying sequences can be used to classify nucleosomal regions, with highly significant accuracy, as likely to either contain H2A.Z or canonical histone H2A. Furthermore, our models accurately recapitulate the observed nucleosome occupancy near the transcriptional start sites of human promoters. CONCLUSION We conclude that both genetic and epigenetic features are likely to participate in targeting H2A.Z to distinct chromatin loci.
Collapse
Affiliation(s)
- Alain L Gervais
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | |
Collapse
|
123
|
Altaf M, Auger A, Covic M, Côté J. Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol 2009; 87:35-50. [PMID: 19234522 DOI: 10.1139/o08-140] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The organization of the eukaryotic genome into chromatin makes it inaccessible to the factors required for gene transcription and DNA replication, recombination, and repair. In addition to histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, which play key roles in regulating many nuclear processes by altering the chromatin structure, cells have developed a mechanism of modulating chromatin structure by incorporating histone variants. These variants are incorporated into specific regions of the genome throughout the cell cycle. H2A.Z, which is an evolutionarily conserved H2A variant, performs several seemingly unrelated and even contrary functions. Another H2A variant, H2A.X, plays a very important role in the cellular response to DNA damage. This review summarizes the recent developments in our understanding of the role of H2A.Z and H2A.X in the regulation of chromatin structure and function, focusing on their functional links with chromatin modifying and remodeling complexes.
Collapse
Affiliation(s)
- Mohammed Altaf
- Laval University Cancer Research Center, Hotel-Dieu de Quebec, Quebec City, QCG1R2J6, Canada
| | | | | | | |
Collapse
|
124
|
Meagher RB, Kandasamy MK, McKinney EC, Roy E. Chapter 5. Nuclear actin-related proteins in epigenetic control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:157-215. [PMID: 19766970 PMCID: PMC2800988 DOI: 10.1016/s1937-6448(09)77005-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear actin-related proteins (ARPs) share overall structure and low-level sequence homology with conventional actin. They are indispensable subunits of macromolecular machines that control chromatin remodeling and modification leading to dynamic changes in DNA structure, transcription, and DNA repair. Cellular, genetic, and biochemical studies suggest that the nuclear ARPs are essential to the epigenetic control of the cell cycle and cell proliferation in all eukaryotes, while in plants and animals they also exert epigenetic controls over most stages of multicellular development including organ initiation, the switch to reproductive development, and senescence and programmed cell death. A theme emerging from plants and animals is that in addition to their role in controlling the general compaction of DNA and gene silencing, isoforms of nuclear ARP-containing chromatin complexes have evolved to exert dynamic epigenetic control over gene expression and different phases of multicellular development. Herein, we explore this theme by examining nuclear ARP phylogeny, activities of ARP-containing chromatin remodeling complexes that lead to epigenetic control, expanding developmental roles assigned to several animal and plant ARP-containing complexes, the evidence that thousands of ARP complex isoforms may have evolved in concert with multicellular development, and ARPs in human disease.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, Davison Life Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
125
|
Whittle CM, McClinic KN, Ercan S, Zhang X, Green RD, Kelly WG, Lieb JD. The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet 2008; 4:e1000187. [PMID: 18787694 PMCID: PMC2522285 DOI: 10.1371/journal.pgen.1000187] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 08/04/2008] [Indexed: 12/29/2022] Open
Abstract
In all eukaryotes, histone variants are incorporated into a subset of nucleosomes to create functionally specialized regions of chromatin. One such variant, H2A.Z, replaces histone H2A and is required for development and viability in all animals tested to date. However, the function of H2A.Z in development remains unclear. Here, we use ChIP-chip, genetic mutation, RNAi, and immunofluorescence microscopy to interrogate the function of H2A.Z (HTZ-1) during embryogenesis in Caenorhabditis elegans, a key model of metazoan development. We find that HTZ-1 is expressed in every cell of the developing embryo and is essential for normal development. The sites of HTZ-1 incorporation during embryogenesis reveal a genome wrought by developmental processes. HTZ-1 is incorporated upstream of 23% of C. elegans genes. While these genes tend to be required for development and occupied by RNA polymerase II, HTZ-1 incorporation does not specify a stereotypic transcription program. The data also provide evidence for unexpectedly widespread independent regulation of genes within operons during development; in 37% of operons, HTZ-1 is incorporated upstream of internally encoded genes. Fewer sites of HTZ-1 incorporation occur on the X chromosome relative to autosomes, which our data suggest is due to a paucity of developmentally important genes on X, rather than a direct function for HTZ-1 in dosage compensation. Our experiments indicate that HTZ-1 functions in establishing or maintaining an essential chromatin state at promoters regulated dynamically during C. elegans embryogenesis.
Collapse
Affiliation(s)
- Christina M. Whittle
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karissa N. McClinic
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia, United States of America
| | - Sevinc Ercan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xinmin Zhang
- Nimblegen Systems, Inc., Madison, Wisconsin, United States of America
| | - Roland D. Green
- Nimblegen Systems, Inc., Madison, Wisconsin, United States of America
| | - William G. Kelly
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
126
|
Wyrick JJ, Parra MA. The role of histone H2A and H2B post-translational modifications in transcription: a genomic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:37-44. [PMID: 18675384 DOI: 10.1016/j.bbagrm.2008.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/03/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022]
Abstract
In eukaryotic cells, the genome is packaged with histones H2A, H2B, H3, and H4 to form nucleosomes. Each of the histone proteins is extensively post-translationally modified, particularly in the flexible N-terminal histone tail domains. Curiously, while post-translational modifications in histone H3 and H4 have been extensively studied, relatively little is known about post-translational modifications in the N-terminal domains of histone H2A and H2B. In this review, we will summarize current knowledge of post-translational modifications in the N-terminal domains of histone H2A and H2B, and the histone variant H2AZ. We will examine the distribution of these modifications in genomic chromatin, and the function of these modifications in transcription.
Collapse
Affiliation(s)
- John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| | | |
Collapse
|
127
|
Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol 2008; 4:188. [PMID: 18414489 PMCID: PMC2394496 DOI: 10.1038/msb.2008.25] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 03/13/2008] [Indexed: 12/21/2022] Open
Abstract
We demonstrate an integrated approach to the study of a transcriptional regulatory cascade involved in the progression of breast cancer and we identify a protein associated with disease progression. Using chromatin immunoprecipitation and genome tiling arrays, whole genome mapping of transcription factor-binding sites was combined with gene expression profiling to identify genes involved in the proliferative response to estrogen (E2). Using RNA interference, selected ERα and c-MYC gene targets were knocked down to identify mediators of E2-stimulated cell proliferation. Tissue microarray screening revealed that high expression of an epigenetic factor, the E2-inducible histone variant H2A.Z, is significantly associated with lymph node metastasis and decreased breast cancer survival. Detection of H2A.Z levels independently increased the prognostic power of biomarkers currently in clinical use. This integrated approach has accelerated the identification of a molecule linked to breast cancer progression, has implications for diagnostic and therapeutic interventions, and can be applied to a wide range of cancers.
Collapse
|
128
|
Zlatanova J, Thakar A. H2A.Z: view from the top. Structure 2008; 16:166-79. [PMID: 18275809 DOI: 10.1016/j.str.2007.12.008] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/26/2007] [Accepted: 12/12/2007] [Indexed: 12/22/2022]
Abstract
For a couple of decades the chromatin field has endured undeserved neglect. Indeed, what could be so exciting about a monotonous repeating structure whose purpose in life was to package DNA? Chromatin glamour is triumphantly back, due to the realization that chromatin is a major player in the regulation of gene expression and other nuclear processes that occur on the DNA template. The dynamics of the structure that regulates transcription is itself regulated by a variety of complex processes, including histone postsynthetic modifications, chromatin remodeling, and the use of nonallelic histone variants. This review is an attempt to understand the mechanisms of action of the evolutionarily conserved variant H2A.Z, a player with a variety of seemingly unrelated, even contrary, functions. This attempt was prompted by the recent avalanche of genome-wide studies that provide insights that were unthinkable until very recently.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
129
|
Arimbasseri AG, Bhargava P. Chromatin structure and expression of a gene transcribed by RNA polymerase III are independent of H2A.Z deposition. Mol Cell Biol 2008; 28:2598-607. [PMID: 18268003 PMCID: PMC2293117 DOI: 10.1128/mcb.01953-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/04/2007] [Accepted: 02/04/2008] [Indexed: 01/09/2023] Open
Abstract
The genes transcribed by RNA polymerase III (Pol III) generally have intragenic promoter elements. One of them, the yeast U6 snRNA (SNR6) gene is activated in vitro by a positioned nucleosome between its intragenic box A and extragenic, downstream box B separated by approximately 200 bp. We demonstrate here that the in vivo chromatin structure of the gene region is characterized by the presence of an array of positioned nucleosomes, with only one of them in the 5' end of the gene having a regulatory role. A positioned nucleosome present between boxes A and B in vivo does not move when the gene is repressed due to nutritional deprivation. In contrast, the upstream nucleosome which covers the TATA box under repressed conditions is shifted approximately 50 bp further upstream by the ATP-dependent chromatin remodeler RSC upon activation. It is marked with the histone variant H2A.Z and H4K16 acetylation in active state. In the absence of H2A.Z, the chromatin structure of the gene does not change, suggesting that H2A.Z is not required for establishing the active chromatin structure. These results show that the chromatin structure directly participates in regulation of a Pol III-transcribed gene under different states of its activity in vivo.
Collapse
|
130
|
Lemieux K, Larochelle M, Gaudreau L. Variant histone H2A.Z, but not the HMG proteins Nhp6a/b, is essential for the recruitment of Swi/Snf, Mediator, and SAGA to the yeast GAL1 UAS(G). Biochem Biophys Res Commun 2008; 369:1103-7. [PMID: 18331823 DOI: 10.1016/j.bbrc.2008.02.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Chromatin architecture is very important for the regulation of transcriptional activation. Here, we investigated the role of two different chromatin components, the histone variant H2A.Z and HMG proteins Nhp6a/b, in regulating GAL1 gene expression. We have shown that recruitment of the Mediator complex is significantly affected in the absence of H2A.Z. Furthermore, H2A.Z is also required to fully recruit the SAGA and Swi/Snf complexes to the yeast GAL1-10 UAS(G). On the other hand, the HMG protein Nhp6a/b is not required to recruit the aforementioned components to the GAL1 promoter. The Nhp6 protein has been shown to interact with nucleosomes, and we show that its distribution is unaffected in the absence of H2A.Z. Our results suggest that the incorporation of the histone variant H2A.Z, but not the HMG proteins Nhp6a/b, in promoter regions creates a specialized chromatin domain that is required for pre-initiation complex assembly at the GAL1 locus.
Collapse
Affiliation(s)
- Karine Lemieux
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Que., Canada
| | | | | |
Collapse
|
131
|
Lázaro A, Gómez-Zambrano A, López-González L, Piñeiro M, Jarillo JA. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:653-66. [PMID: 18296430 DOI: 10.1093/jxb/erm332] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mutations affecting the Arabidopsis SWC6 gene encoding a putative orthologue of a component of the SWR1 chromatin remodelling complex in plants have been characterized. swc6 mutations cause early flowering, shortened inflorescence internodes, and altered leaf and flower development. These phenotypic defects resemble those of the photoperiod independent early flowering 1 (pie1) and early in short days 1 (esd1) mutants, also affected in homologues of the SWR1 complex subunits. SWC6 is a ubiquitously expressed nuclear HIT-Zn finger-containing protein, with the highest levels found in pollen. Double mutant analyses suggest that swc6 abolishes the FLC-mediated late-flowering phenotype of plants carrying active alleles of FRI and of mutants of the autonomous pathway. It was found that SWC6 is required for the expression of the FLC repressor to levels that inhibit flowering. However, the effect of swc6 in an flc null background and the down-regulation of other FLC-like/MAF genes in swc6 mutants suggest that flowering inhibition mediated by SWC6 occurs through both FLC- and FLC-like gene-dependent pathways. Both genetic and physical interactions between SWC6 and ESD1 have been demonstrated, suggesting that both proteins act in the same complex. Using chromatin immunoprecipitation, it has been determined that SWC6, as previously shown for ESD1, is required for both histone H3 acetylation and H3K4 trimethylation of the FLC chromatin. Altogether, these results suggest that SWC6 and ESD1 are part of an Arabidopsis SWR1 chromatin remodelling complex involved in the regulation of diverse aspects of plant development, including floral repression through the activation of FLC and FLC-like genes.
Collapse
Affiliation(s)
- Ana Lázaro
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro de Biotecnologia y Genómica de Plantas (INIA-UAU), Ctra. de A Coruña, Km 7,5, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
132
|
Ramaswamy A, Ioshikhes I. Global dynamics of newly constructed oligonucleosomes of conventional and variant H2A.Z histone. BMC STRUCTURAL BIOLOGY 2007; 7:76. [PMID: 17996059 PMCID: PMC2216022 DOI: 10.1186/1472-6807-7-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 11/08/2007] [Indexed: 11/16/2022]
Abstract
Background Complexes of nucleosomes, which often occur in the gene promoter areas, are one of the fundamental levels of chromatin organization and thus are important for transcription regulation. Investigating the dynamic structure of a single nucleosome as well as nucleosome complexes is important for understanding transcription within chromatin. In a previous work, we highlighted the influence of histone variants on the functional dynamics of a single nucleosome using normal mode analysis developed by Bahar et al. The present work further analyzes the dynamics of nucleosome complexes (nucleosome oligomers or oligonucleosomes) such as dimer, trimer and tetramer (beads on a string model) with conventional core histones as well as with the H2A.Z histone variant using normal mode analysis. Results The global dynamics of oligonucleosomes reveal larger amplitude of motion within the nucleosomes that contain the H2A.Z variant with in-planar and out-of-planar fluctuations as the common mode of relaxation. The docking region of H2A.Z and the L1:L1 interactions between H2A.Z monomers of nucleosome (that are responsible for the highly stable nucleosome containing variant H2A.Z-histone) are highly dynamic throughout the first two dynamic modes. Conclusion Dissection of the dynamics of oligonucleosomes discloses in-plane as well as out-of-plane fluctuations as the common mode of relaxation throughout the global motions. The dynamics of individual nucleosomes and the combination of the relaxation mechanisms expressed by the individual nucleosome are quite interesting and highly dependent on the number of nucleosome fragments present in the complexes. Distortions generated by the non-planar dynamics influence the DNA conformation, and hence the histone-DNA interactions significantly alter the dynamics of the DNA. The variant H2A.Z histone is a major source of weaker intra- and inter-molecular correlations resulting in more disordered motions.
Collapse
Affiliation(s)
- Amutha Ramaswamy
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
133
|
Hooper J, Maurice D, Argent-Katwala MJG, Weston K. Myb proteins regulate expression of histone variant H2A.Z during thymocyte development. Immunology 2007; 123:282-9. [PMID: 17931383 DOI: 10.1111/j.1365-2567.2007.02697.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The c-myb gene encodes a transcription factor required for the normal development of T cells in the thymus, and for subsequent peripheral T-cell activation and survival. However, the profile of genes known to be transcriptionally regulated by c-Myb in T cells does not adequately explain the pleiotrophic nature of the effects of c-Myb. We present here a detailed molecular characterization of the regulation of a novel target gene, the histone variant H2A.Z. We show that c-Myb is able to bind to and activate the H2A.Z promoter in T cells both in vitro and in vivo, and present evidence that perturbation of Myb activity during T-cell development results in reduced H2A.Z expression. As H2A.Z is absolutely required for the early stages of mammalian development, and plays essential roles in the regulation of chromatin structure in gene promoters in yeast, its regulation by c-Myb is likely to be of some importance during T-cell development.
Collapse
Affiliation(s)
- Joel Hooper
- Institute of Cancer Research, CRUK Centre for Cell and Molecular Biology, London, UK
| | | | | | | |
Collapse
|
134
|
Gévry N, Chan HM, Laflamme L, Livingston DM, Gaudreau L. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev 2007; 21:1869-81. [PMID: 17671089 PMCID: PMC1935026 DOI: 10.1101/gad.1545707] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In yeast cells, H2A.Z regulates transcription and is globally associated within a few nucleosomes of the initiator regions of numerous promoters. H2A.Z is deposited at these loci by an ATP-dependent complex, Swr1.com. Here we show that H2A.Z suppresses the p53 --> p21 transcription and senescence responses. Upon DNA damage, H2A.Z is first evicted from the p21 promoter, followed by the recruitment of the Tip60 histone acetyltransferase to activate p21 transcription. p400, a human Swr1 homolog, is required for the localization of H2A.Z, and largely colocalizes with H2A.Z at multiple promoters investigated. Notably, the presence of sequence-specific transcription factors, such as p53 and Myc, provides positioning cues that direct the location of H2A.Z-containing nucleosomes within these promoters. Collectively, this study strongly suggests that certain sequence-specific transcription factors regulate transcription, in part, by preferentially positioning histone variant H2A.Z within chromatin. This H2A.Z-centered process is part of an epigenetic process for modulating gene expression.
Collapse
Affiliation(s)
- Nicolas Gévry
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Ho Man Chan
- Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Liette Laflamme
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - David M. Livingston
- Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts 02115, USA
- E-MAIL ; FAX (617) 632-4381
| | - Luc Gaudreau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Corresponding authors.E-MAIL ; FAX (819) 821-8049
| |
Collapse
|
135
|
Actin-related proteins in chromatin-level control of the cell cycle and developmental transitions. Trends Cell Biol 2007; 17:325-32. [PMID: 17643304 DOI: 10.1016/j.tcb.2007.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/10/2007] [Accepted: 06/26/2007] [Indexed: 11/18/2022]
Abstract
Regulating developmental transitions, cell proliferation and cell death through differential gene expression is essential to the ontogeny of all multicellular organisms. Chromatin remodeling is an active process that is necessary for managing the genome-wide suppression of gene activities resulting from DNA compaction. Recent data in plants suggest a general theme, whereby chromatin remodeling complexes containing nuclear actin-related proteins (ARPs) potentiate the activities of crucial regulatory genes involved in plant growth and development, in addition to their basal activities on a much larger set of genes.
Collapse
|
136
|
Wong MM, Cox LK, Chrivia JC. The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 2007; 282:26132-9. [PMID: 17617668 DOI: 10.1074/jbc.m703418200] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies in Saccharomyces cerevisiae indicate the histone variant H2A.Z is deposited at promoters by the chromatin remodeling protein Swr1 and plays a critical role in the regulation of transcription. In higher eukaryotes, however, little is known about the distribution, method of deposition, and function of H2A.Z at promoters. Using biochemical studies, we demonstrated previously that SRCAP (SNF-2-related CREB-binding protein activator protein), the human ortholog of Swr1, could catalyze deposition of H2A.Z into nucleosomes. To address whether SRCAP directs H2A.Z deposition in vivo, promoters targeted by SRCAP were identified by a chromatin immunoprecipitation (ChIP)-on-chip assay. ChIP assays on a subset of these promoters confirmed the presence of SRCAP on inactive and active promoters. The highest levels of SRCAP were observed on the active SP-1, G3BP, and FAD synthetase promoters. Detailed analyses of these promoters indicate sites of SRCAP binding overlap or occur adjacent to the sites of H2A.Z deposition. Knockdown of SRCAP levels using siRNA resulted in loss of SRCAP at these promoters, decreased deposition of H2A.Z and acetylated H2A.Z, and a decrease in levels of SP-1, G3BP, and FAD synthetase mRNA. Thus, these studies provide the first evidence that SRCAP is recruited to promoters and is critical for the deposition of H2A.Z.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | | | |
Collapse
|
137
|
Gligoris T, Thireos G, Tzamarias D. The Tup1 corepressor directs Htz1 deposition at a specific promoter nucleosome marking the GAL1 gene for rapid activation. Mol Cell Biol 2007; 27:4198-205. [PMID: 17387147 PMCID: PMC1900012 DOI: 10.1128/mcb.00238-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SWR1 complex (SWR1-C)-dependent deposition of the histone variant Htz1 on promoter nucleosomes is typical of Saccharomyces cerevisiae genes whose expression is frequently reprogrammed. Although this epigenetic marking is of significant physiological importance, the determinants of Htz1 deposition, the conditions that set off SWR1-C occupancy, and the implications of Htz1 in transcriptional initiation are issues that remain unresolved. In this report, we addressed these questions by investigating the GAL1 promoter. We show that Htz1 is required for efficient Mediator recruitment and transcription only when the GAL1 promoter is under the influence of the Tup1 corepressor. In fact, we show that it is Tup1 that specifies Htz1 deposition for the promoter nucleosome covering the transcription start site. This deposition occurs rapidly following transcriptional repression, and it correlates with a Tup1-independent transient recruitment of the SWR1 complex. We propose that Tup1 cooperates with SWR1-C and specifies Htz1 deposition at GAL1, thereby marking the promoter for rapid neutralization from its repressive effects.
Collapse
Affiliation(s)
- Thomas Gligoris
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, University of Crete, P.O. Box 1527, Vassilika Vouton, 711 10 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
138
|
Abstract
The nucleosome, fundamental unit of chromatin, is composed of four basic histones, H2A, H2B, H3 and H4, around which DNA is wrapped. In order to have access to DNA, cells must modify the structure of chromatin by different known mechanisms. One such mechanism is by replacing canonical histones in the nucleosome with variants, which can confer special functions to chromatin. H2A.Z is an evolutionary conserved variant of H2A that has both a positive and a negative role on gene transcription. The mechanisms by which H2A.Z acts are still poorly understood. However, recent reports have shed some light on this subject. H2A.Z is found associated with almost 2/3 of the promoters of genes in yeast, suggesting that this histone could have a global role on gene expression by poising chromatin for activation. We review here recent literature and discuss different aspects of the biology of this histone variant.
Collapse
Affiliation(s)
- Benoît Guillemette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500, Boulevard de l'Université, Sherbrooke (Québec) J1K 2R1, Canada
| | | |
Collapse
|
139
|
Deal RB, Topp CN, McKinney EC, Meagher RB. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. THE PLANT CELL 2007; 19:74-83. [PMID: 17220196 PMCID: PMC1820970 DOI: 10.1105/tpc.106.048447] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The histone variant H2A.Z has been implicated in numerous chromatin-mediated processes, including transcriptional activation, euchromatin maintenance, and heterochromatin formation. In yeast and humans, H2A.Z is deposited into chromatin by a conserved protein complex known as SWR1 and SRCAP, respectively. Here, we show that mutations in the Arabidopsis thaliana homologs of two components of this complex, ACTIN-RELATED PROTEIN6 (ARP6) and PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), produce similar developmental phenotypes and result in the misregulation of a common set of genes. Using H2A.Z-specific antibodies, we demonstrate that ARP6 and PIE1 are required for the deposition of H2A.Z at multiple loci, including the FLOWERING LOCUS C (FLC) gene, a central repressor of the transition to flowering. Loss of H2A.Z from chromatin in arp6 and pie1 mutants results in reduced FLC expression and premature flowering, indicating that this histone variant is required for high-level expression of FLC. In addition to defining a novel mechanism for the regulation of FLC expression, these results support the existence of a SWR1-like complex in Arabidopsis and show that H2A.Z can potentiate transcriptional activation in plants. The finding that H2A.Z remains associated with chromatin throughout mitosis suggests that it may serve an epigenetic memory function by marking active genes and poising silenced genes for reactivation.
Collapse
Affiliation(s)
- Roger B Deal
- Department of Genetics, University of Georgia, Athens, Georgia 30602. USA
| | | | | | | |
Collapse
|
140
|
LI S, LIU H. Functions of histone H2A variants. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00385.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Larochelle M, Drouin S, Robert F, Turcotte B. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 2006; 26:6690-701. [PMID: 16914749 PMCID: PMC1592823 DOI: 10.1128/mcb.02450-05] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, zinc cluster protein Pdr1 can form homodimers as well as heterodimers with Pdr3 and Stb5, suggesting that different combinations of these proteins may regulate the expression of different genes. To gain insight into the interplay among these regulators, we performed genome-wide location analysis (chromatin immunoprecipitation with hybridization to DNA microarrays) and gene expression profiling. Unexpectedly, we observed that Stb5 shares only a few target genes with Pdr1 or Pdr3 in rich medium. Interestingly, upon oxidative stress, Stb5 binds and regulates the expression of most genes of the pentose phosphate pathway as well as of genes involved in the production of NADPH, a metabolite required for oxidative stress resistance. Importantly, deletion of STB5 results in sensitivity to diamide and hydrogen peroxide. Our data suggest that Stb5 acts both as an activator and as a repressor in the presence of oxidative stress. Furthermore, we show that Stb5 activation is not mediated by known regulators of the oxidative stress response. Integrity of the pentose phosphate pathway is required for the activation of Stb5 target genes but is not necessary for the increased DNA binding of Stb5 in the presence of diamide. These data suggest that Stb5 is a key player in the control of NADPH production for resistance to oxidative stress.
Collapse
Affiliation(s)
- Marc Larochelle
- Department of Medicine, Room H7.83, Royal Victoria Hospital, McGill University, 687 Pine Ave. West, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
142
|
Poirier R, Lemaire I, Lemaire S. Characterization, localization and possible anti-inflammatory function of rat histone H4 mRNA variants. FEBS J 2006; 273:4360-73. [PMID: 16939626 DOI: 10.1111/j.1742-4658.2006.05444.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two histone H4 mRNA variants, H4-v.1 and histogranin mRNAs, were detected in the rat genome and measured in various tissues and isolated alveolar macrophages. Medium to high levels of both mRNAs were present in the liver, adrenal glands, thymus, bone marrow and alveolar macrophages. H4-v.1 cDNA contained an open reading frame that coded for unmodified whole histone H4, whereas histogranin cDNA lacked the first ATG codon and contained an open reading frame that coded for modified (Thr89) H4-(84-102). The two genes displayed a sequence homologous (> 80%) to the open reading frame of core H4 somatic (H4s) and H4 germinal (H4g) and their variant nature was supported by the absence of histone consensus palindromic and purine-rich sequences in the proximal 3'UTR, and the presence of a polyadenylation signal in the distal 3'UTR and of specific upstream transcription factor-binding sites. H4-v.1 and histogranin transcripts, but not H4s transcript, were selectively induced by lipopolysaccharide and/or interferon gamma in alveolar macrophages. In vitro transcription/translation experiments with H4-v.1 and histogranin cDNA pCMV constructs produced peptides with the molecular mass (2 kDa) of the alternative histone H4 translation product which, like synthetic H4-(86-100) and [Thr89]H4-(86-100) or rat histogranin, inhibited lipopolysaccharide-induced prostaglandin E(2) release from rat alveolar macrophages. The synthetic peptides also inhibited the secretion of the CXC chemokine interleukin-8 (GRO/CINC-1) in response to lipopolysaccharide. The presence of H4-v.1 and histogranin mRNAs in tissues wherein immune reactions take place and the inhibitory effects of their translation products on prostaglandin E(2) and interkeukin-8 secretion by activated alveolar macrophages suggest an anti-inflammatory function.
Collapse
Affiliation(s)
- René Poirier
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | | | | |
Collapse
|
143
|
Guillemette B, Gaudreau L. Reuniting the contrasting functions of H2A.ZThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:528-35. [PMID: 16936825 DOI: 10.1139/o06-077] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that cells modify chromatin to set transcriptionally active or inactive regions. Such control of chromatin structure is essential for proper development of organisms. In addition to the growing number of histone post-translational modifications, cells can exchange canonical histones with different variants that can directly or indirectly change chromatin structure. Moreover, enzymatic complexes that can exchange specific histone variants within the nucleosome have now been identified. One such variant, H2A.Z, has recently been the focus of many studies. H2A.Z is highly conserved in evolution and has many different functions, while defining both active and inactive chromatin in different contexts. Advanced molecular techniques, such as genome-wide binding assays (chromatin immunoprecipitation on chip) have recently given researchers many clues as to how H2A.Z is targeted to chromatin and how it affects nuclear functions. We wish to review the recent literature and summarize our understanding of the mechanisms and functions of H2A.Z.
Collapse
Affiliation(s)
- Benoît Guillemette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | | |
Collapse
|
144
|
Thambirajah AA, Dryhurst D, Ishibashi T, Li A, Maffey AH, Ausió J. H2A.Z Stabilizes Chromatin in a Way That Is Dependent on Core Histone Acetylation. J Biol Chem 2006; 281:20036-44. [PMID: 16707487 DOI: 10.1074/jbc.m601975200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional and structural chromatin roles of H2A.Z are still controversial. This work represents a further attempt to resolve the current functional and structural dichotomy by characterizing chromatin structures containing native H2A.Z. We have analyzed the role of this variant in mediating the stability of the histone octamer in solution using gel-filtration chromatography at different pH. It was found that decreasing the pH from neutral to acidic conditions destabilized the histone complex. Furthermore, it was shown that the H2A.Z-H2B dimer had a reduced stability. Sedimentation velocity analysis of nucleosome core particles (NCPs) reconstituted from native H2A.Z-containing octamers indicated that these particles exhibit a very similar behavior to that of native NCPs consisting of canonical H2A. Sucrose gradient fractionation of native NCPs under different ionic strengths indicated that H2A.Z had a subtle tendency to fractionate with more stabilized populations. An extensive analysis of the salt-dependent dissociation of histones from hydroxyapatite-adsorbed chromatin revealed that, whereas H2A.Z co-elutes with H3-H4, hyperacetylation of histones (by treatment of chicken MSB cells with sodium butyrate) resulted in a significant fraction of this variant eluting with the canonical H2A. These studies also showed that the late elution of this variant (correlated to enhanced binding stability) was independent of the chromatin size and of the presence or absence of linker histones.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
145
|
Ramaswamy A, Bahar I, Ioshikhes I. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants. Proteins 2006; 58:683-96. [PMID: 15624215 DOI: 10.1002/prot.20357] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study provides insights on the dominant mechanisms of motions of the nucleosome core particle and the changes in its functional dynamics in response to histone variants. Comparative analysis of the global dynamics of nucleosomes with native and variant H2A histones, using normal mode analysis revealed that the dynamics of the nucleosome is highly symmetric, and its interaction with the nucleosomal DNA plays a vital role in its regulation. The collective dynamics of nucleosomes are predicted to be dominated by two types of large-scale motions: (1) a global stretching-compression of nucleosome along the dyad axis by which the nucleosome undergoes a breathing motion with a massive distortion of nucleosomal DNA, modulated by histone-DNA interactions; and (2) the flipping (or bending) of both the sides of the nucleosome in an out-of-plane fashion with respect to the dyad axis, originated by the highly dynamic N-termini of H3 and (H2A.Z-H2B) dimer in agreement with the experimentally observed perturbed dynamics of the particular N-terminus under physiological conditions. In general, the nucleosomes with variant histones exhibit higher mobilities and weaker correlations between internal motions compared to the nucleosome containing ordinary histones. The differences are more pronounced at the L1 and L2 loops of the respective monomers H2B and H2A, and at the N-termini of the monomers H3 and H4, all of which closely interact with the wrapping DNA.
Collapse
Affiliation(s)
- Amutha Ramaswamy
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
146
|
Chen IY, Lypowy J, Pain J, Sayed D, Grinberg S, Alcendor RR, Sadoshima J, Abdellatif M. Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha. J Biol Chem 2006; 281:19369-77. [PMID: 16687393 DOI: 10.1074/jbc.m601443200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have shown that the histone variant H2A.z is up-regulated during cardiac hypertrophy. Upon its knock-down with RNA interference, hypertrophy and the underlying increase in growth-related genes, protein synthesis, and cell size were down-regulated. During attempts to understand the mode of regulation of H2A.z, we found that overexpression of silent information regulator 2alpha (Sir2alpha) specifically induced down-regulation of H2A.z via NAD-dependent activity. This effect was reversed by the proteasome inhibitor epoxomicin, suggesting a Sir2alpha-mediated ubiquitin/proteasome-dependent mechanism for degradation of H2A.z. An increase in Sir2alpha also resulted in a dose-dependent reduction of the response to hypertrophic stimuli, whereas its inhibition resulted in enhanced hypertrophy and apoptosis. We have shown that Sir2alpha directly deacetylates H2A.z. Mutagenesis proved that lysines 4, 7, 11, and 13 do not play a role in the stability of H2A.z, whereas Lys-15 was indispensable. Meanwhile, Lys-115 and conserved, ubiquitinatable Lys-121 are critical for Sir2alpha-mediated degradation. Fusion of the C terminus of H2A.z (amino acids 115-127) to H2A.x or green fluorescence protein conferred Sir2alpha-inducible degradation to the former protein only. Because H2A.x and H2A.z have conserved N-tails, this implied that both the C and N termini are critical for mediating the effect of Sir2alpha. In short, the results suggest that H2A.z is required for cardiac hypertrophy, where its stability and the extent of cell growth and apoptosis are moderated by Sir2alpha. We also propose that Sir2alpha is involved in deacetylation of H2A.z, which results in ubiquitination of Lys-115 and Lys-121 and its degradation via a ubiquitin/proteasome-dependent pathway.
Collapse
Affiliation(s)
- Ieng-Yi Chen
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Millar CB, Xu F, Zhang K, Grunstein M. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 2006; 20:711-22. [PMID: 16543223 PMCID: PMC1413291 DOI: 10.1101/gad.1395506] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone variants and their post-translational modifications help regulate chromosomal functions. Htz1 is an evolutionarily conserved H2A variant found at several promoters in the yeast Saccharomyces cerevisiae. In this study, we undertook a genome-wide analysis of Htz1 and its modifications in yeast. Using mass spectrometric analysis, we determined that Htz1 is acetylated at Lys 3, Lys 8, Lys 10, and Lys 14 within its N-terminal tail, with K14 being the most abundant acetylated site. ChIP and microarray analysis were then used to compare the location of Htz1-K14 acetylation to that of Htz1 genome-wide. The data presented here demonstrate that while Htz1 is associated preferentially with the promoters of repressed genes, K14 acetylation is enriched at the promoters of active genes, and requires two known histone acetyltransferases, Gcn5 and Esa1. In support of our genome-wide analysis, we found that the acetylatable lysines of Htz1 are required for its full deposition during nucleosome reassembly upon repression of PHO5. Since the majority of Htz1 acetylation is seen at active promoters, where nucleosomes are known to be disassembled, our data argue for a dynamic process in which reassembly of Htz1 is regulated by its acetylation at promoters during transcription.
Collapse
Affiliation(s)
- Catherine B Millar
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
148
|
Dilworth DJ, Tackett AJ, Rogers RS, Yi EC, Christmas RH, Smith JJ, Siegel AF, Chait BT, Wozniak RW, Aitchison JD. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. ACTA ACUST UNITED AC 2006; 171:955-65. [PMID: 16365162 PMCID: PMC2171315 DOI: 10.1083/jcb.200509061] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.
Collapse
|
149
|
Raisner RM, Madhani HD. Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr Opin Genet Dev 2006; 16:119-24. [PMID: 16503125 DOI: 10.1016/j.gde.2006.02.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 02/13/2006] [Indexed: 11/20/2022]
Abstract
Although many histone variants are specific to higher eukaryotes, the H2A variant H2A.Z has been conserved during eukaryotic evolution. Genetic studies have demonstrated roles for H2A.Z in antagonizing gene-silencing, chromosome stability and gene activation. Biochemical work has identified a conserved chromatin-remodeling complex responsible for H2A.Z deposition. Recent studies have shown that two H2A.Z nucleosomes flank a nucleosome-free region containing the transcription initiation site in promoters of both active and inactive genes in Saccharomyces cerevisiae. This chromatin pattern is generated through the action of a DNA deposition signal and a specific pattern of histone tail acetylation.
Collapse
Affiliation(s)
- Ryan M Raisner
- Department of Biochemistry and Biophysics, University of California, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | |
Collapse
|
150
|
Dhillon N, Oki M, Szyjka SJ, Aparicio OM, Kamakaka RT. H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol 2006; 26:489-501. [PMID: 16382141 PMCID: PMC1346916 DOI: 10.1128/mcb.26.2.489-501.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone H2A variants are highly conserved proteins found ubiquitously in nature and thought to perform specialized functions in the cell. Studies in yeast on the histone H2A variant H2A.Z have shown a role for this protein in transcription as well as chromosome segregation. Our studies have focused on understanding the role of H2A.Z during cell cycle progression. We found that htz1delta cells were delayed in DNA replication and progression through the cell cycle. Furthermore, cells lacking H2A.Z required the S-phase checkpoint pathway for survival. We also found that H2A.Z localized to the promoters of cyclin genes, and cells lacking H2A.Z were delayed in the induction of these cyclin genes. Several different models are proposed to explain these observations.
Collapse
Affiliation(s)
- Namrita Dhillon
- Unit on Chromatin and Transcription, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T, Rm. 106, 18 Library Dr., Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|