101
|
Ocaña-Morgner C, Reichardt P, Chopin M, Braungart S, Wahren C, Gunzer M, Jessberger R. Sphingosine 1-phosphate-induced motility and endocytosis of dendritic cells is regulated by SWAP-70 through RhoA. THE JOURNAL OF IMMUNOLOGY 2011; 186:5345-55. [PMID: 21421853 DOI: 10.4049/jimmunol.1003461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phospholipid mediator sphingosine 1-phosphate (S1P) enhances motility and endocytosis of mature dendritic cells (DCs). We show that in vitro migration of Swap-70(-/-) bone marrow-derived DCs (BMDCs) in response to S1P and S1P-induced upregulation of endocytosis are significantly reduced. S1P-stimulated movement of Swap-70(-/-) BMDCs, specifically retraction of their trailing edge, in a collagen three-dimensional environment is impaired. These in vitro observations correlate with delayed entry into lymphatic vessels and migration to lymph nodes of skin DCs in Swap-70(-/-) mice. Expression of S1P receptors (S1P(1-3)) by wild-type and Swap-70(-/-) BMDCs is similar, but Swap-70(-/-) BMDCs fail to activate RhoA and to localize Rac1 and RhoA into areas of actin polymerization after S1P stimulus. The Rho-activating G protein Gα(i) interacts with SWAP-70, which also supports the localization of Gα(13) to membrane rafts in BMDCs. LPS-matured Swap-70(-/-) BMDCs contain significantly more active RhoA than wild-type DCs. Preinhibition of Rho activation restored migration to S1P, S1P-induced upregulation of endocytosis in mature Swap-70(-/-) BMDCs, and localization of Gα(13) to membrane rafts. These data demonstrate SWAP-70 as a novel regulator of S1P signaling necessary for DC motility and endocytosis.
Collapse
Affiliation(s)
- Carlos Ocaña-Morgner
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, D-01307 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
102
|
Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 - Jekyll Hidden behind Hyde. Am J Cancer Res 2011; 1:460-481. [PMID: 21984966 PMCID: PMC3186046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/19/2011] [Indexed: 05/31/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine kinase 1 (SphK1), resulting in high (∼0.5 micromolar) steady-state plasma S1P content and steep S1P concentration gradient imposed between plasma/lymph/tissue interstitial fluid. S1P is also locally produced by activated platelets and tumor cells, in the latter case SphK1 is a downstream target of activated Ras mutant and hypoxia, and is frequently upregulated especially in advanced stages of tumors. Most if not all of the S1P actions in vertebrates are mediated through evolutionarily conserved G protein-coupled S1P receptor family. Ubiquitously expressed mammalian subtypes S1PR1, S1PR2 and S1PR3 mediate pleiotropic actions of S1P in diverse cell types, through coupling to distinctive repertoire of heterotrimeric G proteins. S1PR1 and S1PR3 mediate directed cell migration toward S1P through coupling to G(i) and activating Rac, a Rho family small G protein essential for cell migration. Indeed, S1PR1 expressed in lymphocytes directs their egress from lymph nodes into lymph and recirculation, serving as the target for downregulation by the immunosuppressant FTY720 (fingolimod). S1PR1 in endothelial cells plays an essential role in vascular maturation in embryonic stage, and mediates angiogenic and vascular protective roles of S1P which include eNOS activation and maintenance of barrier integrity. It is likely that S1PR1 and SphK1 expressed in host endothelial cells and tumor cells act in concert in a paracrine loop to contribute to tumor angiogenesis, tumor invasion and progression. In sharp contrast, S1PR2 mediates S1P inhibition of Rac at the site downstream of G(12/13)-mediated Rho activation, thus identified as the first G protein-coupled receptor that negatively regulates Rac and cell migration. S1PR2 could also mediate inhibition of Akt and cell proliferation/survival signaling via Rho-ROCK-PTEN pathway. S1PR2 expressed in tumor cells mediates inhibition of cell migration and invasion in vitro and metastasis in vivo. Moreover, S1PR2 expressed in host endothelial cells and tumor-infiltrating myeloid cells in concert mediates potent inhibition of tumor angiogenesis and tumor growth in vivo, with inhibition of VEGF expression and MMP9 activity. These recent findings provide further basis for S1P receptor subtype-specific, novel therapeutic tactics for individualized treatment of patients with cancer.
Collapse
Affiliation(s)
- Noriko Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University7-1 Nakanuma-tu, Kahoku, Ishikawa 929-1212, Japan
| | - Wa Du
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Erika Kaneko
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuo Okamoto
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
103
|
Vlachos S, Harden N. Genetic evidence for antagonism between Pak protein kinase and Rho1 small GTPase signaling in regulation of the actin cytoskeleton during Drosophila oogenesis. Genetics 2011; 187:501-12. [PMID: 21098722 PMCID: PMC3030492 DOI: 10.1534/genetics.110.120998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/18/2010] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.
Collapse
Affiliation(s)
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
104
|
Sphingosine-1-Phosphate-Specific G Protein-Coupled Receptors as Novel Therapeutic Targets for Atherosclerosis. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052545 DOI: 10.3390/ph4010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process involving complex interactions of modified lipoproteins, monocyte-derived macrophages or foam cells, lymphocytes, endothelial cells (ECs), and vascular smooth muscle cells. Sphingosine-1-phosphate (S1P), a biologically active blood-borne lipid mediator, exerts pleiotropic effects such as cell proliferation, migration and cell-cell adhesion in a variety of cell types via five members of S1P-specific high-affinity G protein-coupled receptors (S1P1-S1P5). Among them, S1P1, S1P2 and S1P3 are major receptor subtypes which are widely expressed in various tissues. Available evidence suggest that S1P and HDL-bound S1P exert atheroprotective effects including inhibition of leukocyte adhesion and stimulation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) through the activation of Gi signaling pathway via S1P3 and probably S1P1, although there is still controversy. FTY720, the phosphorylation product of which is a high-affinity agonist for all S1P receptors except S1P2 and act as an immunosuppressant by downregulating S1P1 on lymphocytes, inhibits atherosclerosis in LDL receptor-null mice and apoE-null mice through the inhibition of lymphocyte and macrophage functions and probably stimulation of EC functions, without influencing plasma lipid concentrations. In contrast to S1P1 and S1P3, S1P2 facilitates atherosclerosis by activating G12/13-Rho-Rho kinase (ROCK) in apoE-null mice. S1P2 mediates transmigration of monocytes into the arterial intima, oxidized LDL accumulation and cytokine secretion in monocyte-derived macrophages, and eNOS inhibition and cytokine secretion in ECs through Rac inhibition, NF-κB activation and 3′-specific phosphoinositide phosphatase (PTEN) stimulation downstream of G12/13-Rho-ROCK. Systemic long-term administration of a selective S1P2-blocker remarkably inhibits atherosclerosis without overt toxicity. Thus, multiple S1P receptors positively and negatively regulate atherosclerosis through multitudes of mechanisms. Considering the essential and multi-faceted role of S1P2 in atherogenesis and the impact of S1P2 inactivation on atherosclerosis, S1P2 is a particularly promising therapeutic target for atherosclerosis.
Collapse
|
105
|
Gil PR, Japtok L, Kleuser B. Sphingosine 1-phosphate mediates chemotaxis of human primary fibroblasts via the S1P-receptor subtypes S1P1 and S1P3 and Smad-signalling. Cytoskeleton (Hoboken) 2010; 67:773-83. [DOI: 10.1002/cm.20486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/26/2010] [Accepted: 09/09/2010] [Indexed: 11/09/2022]
|
106
|
Becker S, von Otte S, Robenek H, Diedrich K, Nofer JR. Follicular fluid high-density lipoprotein-associated sphingosine 1-phosphate (S1P) promotes human granulosa lutein cell migration via S1P receptor type 3 and small G-protein RAC1. Biol Reprod 2010; 84:604-12. [PMID: 20980685 DOI: 10.1095/biolreprod.110.084152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Coordinated migration and progesterone production by granulosa cells is critical to the development of the corpus luteum, but the underlying mechanisms remain obscure. Sphingosine 1-phosphate (S1P), which is associated with follicular fluid high-density lipoprotein (FF-HDL), was previously shown to regulate ovarian angiogenesis. We herein examined the effects of S1P and FF-HDL on the function of granulosa lutein cells. Both FF-HDL and S1P induced migration of primary human granulosa lutein cells (hGCs) and the granulosa lutein cell line HGL5. In addition, FF-HDL but not S1P promoted progesterone synthesis, and neither of the two compounds stimulated proliferation of granulosa lutein cells. Polymerase chain reaction and Western blot experiments demonstrated the expression of S1P receptor type 1 (S1PR1), S1PR2, S1PR3, and S1PR5 but not S1PR4 in hGCs and HGL5 cells. The FF-HDL- and S1P-induced granulosa lutein cell migration was emulated by FTY720, an agonist of S1PR1, S1PR3, S1PR4, and S1PR5, and by VPC24191, an agonist of S1PR1 and S1PR3, but not by SEW2871 and phytosphingosine 1-phosphate, agonists of S1PR1 and S1PR4, respectively. In addition, blockade of S1PR3 with CAY1044, suramine, or pertussis toxin inhibited hGC and HGL5 cell migration toward FF-HDL or S1P, while blockade of S1PR1 and S1PR2 with W146 and JTE013, respectively, had no effect. Both FF-HDL and S1P triggered activation of small G-protein RAC1 and actin polymerization in granulosa cells, and RAC1 inhibition with Clostridium difficile toxin B or NSC23766 abolished FF-HDL- and S1P-induced migration. The FF-HDL-associated S1P promotes granulosa lutein cell migration via S1PR3 and RAC1 activation. This may represent a novel mechanism contributing to the development of the corpus luteum.
Collapse
Affiliation(s)
- Steffi Becker
- Department of Obstetrics and Gynecology, University of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
107
|
Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K. Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 2010; 1:298-306. [PMID: 21537463 PMCID: PMC3083935 DOI: 10.4331/wjbc.v1.i10.298] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 02/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a blood-borne lipid mediator with pleiotropic biological activities. S1P acts via the specific cell surface G-protein-coupled receptors, S1P1-5. S1P1 and S1P2 were originally identified from vascular endothelial cells (ECs) and smooth muscle cells, respectively. Emerging evidence shows that S1P plays crucial roles in the regulation of vascular functions, including vascular formation, barrier protection and vascular tone via S1P1, S1P2 and S1P3. In particular, S1P regulates vascular formation through multiple mechanisms; S1P exerts both positive and negative effects on angiogenesis and vascular maturation. The positive and negative effects of S1P are mediated by S1P1 and S1P2, respectively. These effects of S1P1 and S1P2 are probably mediated by the S1P receptors expressed in multiple cell types including ECs and bone-marrow-derived cells. The receptor-subtype-specific, distinct effects of S1P favor the development of novel therapeutic tactics for antitumor angiogenesis in cancer and therapeutic angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Yoh Takuwa
- Yoh Takuwa, Wa Du, Xun Qi, Yasuo Okamoto, Noriko Takuwa, Kazuaki Yoshioka, Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
Fibrous connective tissues provide mechanical support and frameworks for other tissues of the body and play an integral role in normal tissue physiology and pathology. Three-dimensional collagen matrices exhibit mechanical and structural features that resemble fibrous connective tissue and have become an important model system to study cell behavior in a tissue-like environment. This review focuses on motile and mechanical interactions between cells—especially fibroblasts—and collagen matrices. We describe several matrix contraction models, the interactions between fibroblasts and collagen fibrils at global and subcellular levels, unique features of mechanical feedback between cells and the matrix, and the impact of the cell-matrix tension state on cell morphology and mechanical behavior. We develop a conceptual framework to explain the balance between cell migration and collagen translocation including the concept of promigratory and procontractile growth factor environments. Finally, we review the significance of these concepts for the physiology of wound repair.
Collapse
Affiliation(s)
- Frederick Grinnell
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
109
|
Wang F, Okamoto Y, Inoki I, Yoshioka K, Du W, Qi X, Takuwa N, Gonda K, Yamamoto Y, Ohkawa R, Nishiuchi T, Sugimoto N, Yatomi Y, Mitsumori K, Asano M, Kinoshita M, Takuwa Y. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest 2010; 120:3979-95. [PMID: 20978351 DOI: 10.1172/jci42315] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 09/01/2010] [Indexed: 01/24/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that has pleiotropic effects in a variety of cell types including ECs, SMCs, and macrophages, all of which are central to the development of atherosclerosis. It may therefore exert stimulatory and inhibitory effects on atherosclerosis. Here, we investigated the role of the S1P receptor S1PR2 in atherosclerosis by analyzing S1pr2-/- mice with an Apoe-/- background. S1PR2 was expressed in macrophages, ECs, and SMCs in atherosclerotic aortas. In S1pr2-/-Apoe-/- mice fed a high-cholesterol diet for 4 months, the area of the atherosclerotic plaque was markedly decreased, with reduced macrophage density, increased SMC density, increased eNOS phosphorylation, and downregulation of proinflammatory cytokines compared with S1pr2+/+Apoe-/- mice. Bone marrow chimera experiments indicated a major role for macrophage S1PR2 in atherogenesis. S1pr2-/-Apoe-/- macrophages showed diminished Rho/Rho kinase/NF-κB (ROCK/NF-κB) activity. Consequently, they also displayed reduced cytokine expression, reduced oxidized LDL uptake, and stimulated cholesterol efflux associated with decreased scavenger receptor expression and increased cholesterol efflux transporter expression. S1pr2-/-Apoe-/- ECs also showed reduced ROCK and NF-κB activities, with decreased MCP-1 expression and elevated eNOS phosphorylation. Pharmacologic S1PR2 blockade in S1pr2+/+Apoe-/- mice diminished the atherosclerotic plaque area in aortas and modified LDL accumulation in macrophages. We conclude therefore that S1PR2 plays a critical role in atherogenesis and may serve as a novel therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Physiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Medlin MD, Staus DP, Dubash AD, Taylor JM, Mack CP. Sphingosine 1-phosphate receptor 2 signals through leukemia-associated RhoGEF (LARG), to promote smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2010; 30:1779-86. [PMID: 20702813 DOI: 10.1161/atvbaha.110.209395] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The goals of this study were to identify the signaling pathway by which sphingosine 1-phosphate (S1P) activates RhoA in smooth muscle cells (SMC) and to evaluate the contribution of this pathway to the regulation of SMC phenotype. METHODS AND RESULTS Using a combination of receptor-specific agonists and antagonists we identified S1P receptor 2 (S1PR2) as the major S1P receptor subtype that regulates SMC differentiation marker gene expression. Based on the known coupling properties of S1PR2 and our demonstration that overexpression of Galpha(12) or Galpha(13) increased SMC-specific promoter activity, we next tested whether the effects of S1P in SMC were mediated by the regulator of G protein-signaling-Rho guanine exchange factors (RGS-RhoGEFs) (leukemia-associated RhoGEF [LARG], PDZ-RhoGEF [PRG], RhoGEF [p115]). Although each of the RGS-RhoGEFs enhanced actin polymerization, myocardin-related transcription factor-A nuclear localization, and SMC-specific promoter activity when overexpressed in 10T1/2 cells, LARG exhibited the most robust effect and was the only RGS-RhoGEF activated by S1P in SMC. Importantly, siRNA-mediated depletion of LARG significantly inhibited the activation of RhoA and SMC differentiation marker gene expression by S1P. Knockdown of LARG had no effect on SMC proliferation but promoted SMC migration as measured by scratch wound and transwell assays. CONCLUSIONS These data indicate that S1PR2-dependent activation of RhoA in SMC is mediated by LARG and that this signaling mechanism promotes the differentiated SMC phenotype.
Collapse
Affiliation(s)
- Matt D Medlin
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
111
|
König K, Diehl L, Rommerscheidt-Fuss U, Golletz C, Quast T, Kahl P, Kolanus W, Knolle P, Buettner R, Heukamp LC. Four-and-a-Half LIM Domain Protein 2 Is a Novel Regulator of Sphingosine 1-Phosphate Receptor 1 in CCL19-Induced Dendritic Cell Migration. THE JOURNAL OF IMMUNOLOGY 2010; 185:1466-75. [DOI: 10.4049/jimmunol.0903449] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
112
|
Yoshida Y, Nakada M, Sugimoto N, Harada T, Hayashi Y, Kita D, Uchiyama N, Hayashi Y, Yachie A, Takuwa Y, Hamada JI. Sphingosine-1-phosphate receptor type 1 regulates glioma cell proliferation and correlates with patient survival. Int J Cancer 2010; 126:2341-52. [PMID: 19810093 DOI: 10.1002/ijc.24933] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of G protein-coupled receptors consisting of 5 members termed S1P(1-5), and it regulates cellular proliferation, migration and survival. We investigated the expression and role of S1P receptors in glioma. Human glioma expressed S1P(1), S1P(2), S1P(3), and S1P(5) by quantitative real-time PCR analysis. Expression of the S1P(1) was significantly lower in glioblastoma than in the normal brain (p < 0.01) and diffuse astrocytoma (p < 0.05). Immunoblotting showed that normal brain expressed more S1P(1) protein than did glioblastoma. Immunohistochemistry showed that S1P(1) was localized predominantly in the astrocytes in the normal brain, but no staining was observed in glioblastoma. Downregulation of S1P(1) expression correlated with poor survival of patients with glioblastoma (p < 0.05). S1P(1) small interfering RNA promoted cell proliferation in high-expressor glioma cell lines (T98G, G112). Cell proliferation was promoted by the pertussis toxin, which deactivates G(i/o) type of G proteins; the S1P(1) is exclusively coupled to these proteins. Forced expression of the S1P(1) in low-expressor cell lines (U87, U251) resulted in decreased cell growth and led to suppressed tumor growth in transplanted gliomas in vivo. Furthermore, we found a significant association between the S1P(1) expression and early growth response-1, a transcriptional factor that exhibits tumor suppression in glioblastoma cells (p < 0.05). These data indicate that the downregulation of S1P(1) expression enhances the malignancy of glioblastoma by increasing cell proliferation and correlates with the shorter survival of patients with glioblastoma.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A, Takeda S, Hasegawa T, Sasamori J, Konno T, Hayashi K, Watanabe Y, Mori K, Sato Y, Takahashi A, Mochizuki N, Takakura N. Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 2010; 77:704-13. [PMID: 20097776 DOI: 10.1124/mol.109.061481] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Sphingosine 1-phosphate (S1P) induces diverse biological responses in various tissues by activating specific G protein-coupled receptors (S1P(1)-S1P(5) receptors). The biological signaling regulated by S1P(3) receptor has not been fully elucidated because of the lack of an S1P(3) receptor-specific antagonist or agonist. We developed a novel S1P(3) receptor antagonist, 1-(4-chlorophenylhydrazono)-1-(4-chlorophenylamino)-3,3-dimethyl- 2-butanone (TY-52156), and show here that the S1P-induced decrease in coronary flow (CF) is mediated by the S1P(3) receptor. In functional studies, TY-52156 showed submicromolar potency and a high degree of selectivity for S1P(3) receptor. TY-52156, but not an S1P(1) receptor antagonist [(R)-phosphoric acid mono-[2-amino-2-(3-octyl-phenylcarbamoyl)-ethyl] ester; VPC23019] or S1P(2) receptor antagonist [1-[1,3-dimethyl-4-(2-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-4-(3,5-dichloro-4-pyridinyl)-semicarbazide; JTE013], inhibited the decrease in CF induced by S1P in isolated perfused rat hearts. We further investigated the effect of TY-52156 on both the S1P-induced increase in intracellular calcium ([Ca(2+)](i)) and Rho activation that are responsible for the contraction of human coronary artery smooth muscle cells. TY-52156 inhibited both the S1P-induced increase in [Ca(2+)](i) and Rho activation. In contrast, VPC23019 and JTE013 inhibited only the increase in [Ca(2+)](i) and Rho activation, respectively. We further confirmed that TY-52156 inhibited FTY-720-induced S1P(3) receptor-mediated bradycardia in vivo. These results clearly show that TY-52156 is both sensitive and useful as an S1P(3) receptor-specific antagonist and reveal that S1P induces vasoconstriction by directly activating S1P(3) receptor and through a subsequent increase in [Ca(2+)](i) and Rho activation in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Akira Murakami
- Drug Research Department, Tokyo Research Laboratories, TOA EIYO Ltd., 2-293-3 Amanuma, Omiya, Saitama 330-0834, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Borensztajn K, Peppelenbosch MP, Spek CA. Coagulation Factor Xa inhibits cancer cell migration via LIMK1-mediated cofilin inactivation. Thromb Res 2010; 125:e323-8. [PMID: 20347121 DOI: 10.1016/j.thromres.2010.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/19/2010] [Accepted: 02/26/2010] [Indexed: 01/21/2023]
Abstract
Previously, we showed that activated coagulation factor X (FXa) inhibits migration of breast, lung and colon cancer cells. We showed that the effect of FXa on migration was protease-activated receptor (PAR)-1-dependent, but the subsequent cellular signaling routes remained elusive. In the current manuscript, we show that both the Rho/ROCK and Src/FAK/paxillin pathways are required for FXa-mediated inhibition of breast cancer cell migration. FXa induced pronounced stress fiber formation that was partially inhibited by pre-treatment with specific ROCK or Src inhibitors. Downstream of Rho/ROCK and Src/FAK/paxillin, FXa induced myosin light chain phosphorylation and LIMK1 activation resulting in cofilin inactivation. Knocking-down LIMK1 expression abolished FXa-induced inhibition of cell invasion. Our results reveal that FXa-mediated sustained cofilin inactivation leads to stabilization of actin filaments incompatible with migration. Overall we confirm that, beyond its role in blood coagulation, FXa plays a key role in cell migration and we unravel a new mechanism of PAR-1-mediated inhibition of migration via Rho and Src dependent pathways.
Collapse
Affiliation(s)
- Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9, NL-1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
115
|
Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, Kimura T, Kurose H, Tomura H, Okajima F. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. Mol Biol Cell 2010; 20:5156-65. [PMID: 19864456 DOI: 10.1091/mbc.e09-08-0692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The clarification of mechanisms that negatively regulate the invasive behavior of human glioma cells is of great importance in order to find new methods of treatment. In this study, we have focused on the negative regulation of lysophosphatidic acid (LPA)-induced migration in glioma cells. Using small interference RNA and dominant-negative gene strategies in addition to pharmacological tools, we found that isoproterenol (ISO) and sphingosine-1-phosphate (S1P) negatively but differently regulate the LPA-induced migration. ISO-induced suppression of the migration of glioma cells occurs via beta(2)-adrenergic receptor/cAMP/Epac/Rap1B/inhibition of Rac, whereas S1P has been shown to suppress the migration of the cells through S1P(2) receptor/Rho-mediated down-regulation of Rac1. The expression of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is required for the inhibitory ISO-induced and Rap1B-mediated actions on the migration, Rac1 activation, and Akt activation in response to LPA. Thus, the PTEN-mediated down-regulation of phosphatidylinositol 3-kinase activity may be involved in the regulation of Rap1B-dependent inhibition of Rac1 activity. These findings suggest that there are at least two distinct inhibitory pathways, which are mediated by the S1P(2) receptor and beta(2)-adrenergic receptor, to control the migratory, hence invasive, behavior of glioma cells.
Collapse
Affiliation(s)
- Enkhzol Malchinkhuu
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Michaud J, Im DS, Hla T. Inhibitory Role of Sphingosine 1-Phosphate Receptor 2 in Macrophage Recruitment during Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1475-1483. [PMID: 20042570 PMCID: PMC3068864 DOI: 10.4049/jimmunol.0901586] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Macrophage recruitment to sites of inflammation is an essential step in host defense. However, the mechanisms preventing excessive accumulation of macrophages remain relatively unknown. The lysophospholipid sphingosine 1-phosphate (S1P) promotes T and B cell egress from lymphoid organs by acting on S1P receptor 1 (S1P1R). More recently, S1P5R was shown to regulate NK cell mobilization during inflammation, raising the possibility that S1P regulates the trafficking of other leukocyte lineages. In this study, we show that S1P2R inhibits macrophage migration in vitro and that S1P2R-deficient mice have enhanced macrophage recruitment during thioglycollate peritonitis. We identify the signaling mechanisms used by S1P2R in macrophages, involving the second messenger cAMP and inhibition of Akt phosphorylation. In addition, we show that the phosphoinositide phosphatase and tensin homolog deleted on chromosome 10, which has been suggested to mediate S1P2R effects in other cell types, does not mediate S1P2R inhibition in macrophages. Our results suggest that S1P serves as a negative regulator of macrophage recruitment by inhibiting migration in these cells and identify an additional facet to the regulation of leukocyte trafficking by S1P.
Collapse
Affiliation(s)
- Jason Michaud
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Dong-Soon Im
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
- Laboratory of Pharmacology, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Timothy Hla
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
117
|
Du W, Takuwa N, Yoshioka K, Okamoto Y, Gonda K, Sugihara K, Fukamizu A, Asano M, Takuwa Y. S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res 2010; 70:772-81. [PMID: 20068174 DOI: 10.1158/0008-5472.can-09-2722] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingosine-1-phosphate (S1P) has been implicated in tumor angiogenesis by acting through the G(i)-coupled chemotactic receptor S1P(1). Here, we report that the distinct receptor S1P(2) is responsible for mediating the G(12/13)/Rho-dependent inhibitory effects of S1P on Akt, Rac, and cell migration, thereby negatively regulating tumor angiogenesis and tumor growth. By using S1P(2)(LacZ/+) mice, we found that S1P(2) was expressed in both tumor and normal blood vessels in many organs, in both endothelial cells (EC) and vascular smooth muscle cells, as well as in tumor-associated, CD11b-positive bone marrow-derived cells (BMDC). Lewis lung carcinoma or B16 melanoma cells implanted in S1P(2)-deficient (S1P(2)(-/-)) mice displayed accelerated tumor growth and angiogenesis with enhanced association of vascular smooth muscle cells and pericytes. S1P(2)(-/-) ECs exhibited enhanced Rac activity, Akt phosphorylation, cell migration, proliferation, and tube formation in vitro. Coinjection of S1P(2)(-/-) ECs and tumor cells into wild-type mice also produced a relative enhancement of tumor growth and angiogenesis in vivo. S1P(2)(-/-) mice were also more efficient at recruiting CD11b-positive BMDCs into tumors compared with wild-type siblings. Bone marrow chimera experiments revealed that S1P(2) acted in BMDCs to promote tumor growth and angiogenesis. Our results indicate that, in contrast to endothelial S1P(1), which stimulates tumor angiogenesis, S1P(2) on ECs and BMDCs mediates a potent inhibition of tumor angiogenesis, suggesting a novel therapeutic tactic for anticancer treatment.
Collapse
Affiliation(s)
- Wa Du
- Department of Physiology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Chen K, Obinata H, Izumi T. Detection of G protein-coupled receptor-mediated cellular response involved in cytoskeletal rearrangement using surface plasmon resonance. Biosens Bioelectron 2009; 25:1675-80. [PMID: 20044245 DOI: 10.1016/j.bios.2009.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
G protein-coupled receptors (GPCRs) form a superfamily of cell surface receptors that play fundamental roles in physiology and pathophysiology. Although GPCRs have been the most successful targets for drug discovery, there still remain many orphan GPCRs, which provides opportunities for development of novel drugs. Here, we introduce a new method for evaluation of GPCR activation utilizing a surface plasmon resonance (SPR) sensor. Cells expressing GPCRs were cultured directly on an SPR sensor chip and stimulated with GPCR ligands, resulting in SPR responses that were dependent on the type of G alpha subunits coupling with receptors. Namely G(i)- and/or G(12/13)-coupled receptors evoked SPR responses but G(s)- or G(q)-coupled ones did not. Analyses on the intracellular signal pathways revealed that small G protein Rho/Rac-mediated actin rearrangement plays an important role in the signal transduction pathways leading to the SPR responses. An SPR response was also evoked by insulin-like growth factor-1, which stimulates Rac-dependent stress fiber formation via its receptor-tyrosine kinase. Thus, this method provides a unique opportunity for real-time monitoring of cellular responses involved in cytoskeletal rearrangements, and may be useful in ligand/drug discovery for certain types of receptor, such as G(i)- and G(12/13)-coupled receptors.
Collapse
Affiliation(s)
- Kexin Chen
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | |
Collapse
|
119
|
Rhee S, Ho CH, Grinnell F. Promigratory and procontractile growth factor environments differentially regulate cell morphogenesis. Exp Cell Res 2009; 316:232-44. [PMID: 19796636 DOI: 10.1016/j.yexcr.2009.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/28/2009] [Accepted: 09/22/2009] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) cell-matrix cultures provide a useful model to analyze and dissect the structural, functional, and mechanical aspects of cell-matrix interactions and motile behavior important for cell and tissue morphogenesis. In the current studies we tested the effects of serum and physiological growth factors on the morphogenetic behavior of human fibroblasts cultured on the surfaces of 3D collagen matrices. Fibroblasts in medium containing serum contracted into clusters, whereas cells in medium containing platelet-derived growth factor (PDGF) were observed to migrate as individuals. The clustering activity of serum appeared to depend on lysophosphatidic acid, required cell contraction based on inhibition by blocking Rho kinase or myosin II, and was reversed upon switching to PDGF. Oncogenic Ras transformed human fibroblasts did not exhibit serum-stimulated cell clustering. Our findings emphasize the importance of cell-specific promigratory and procontractile growth factor environments in the differential regulation of cell motile function and cell morphogenesis.
Collapse
Affiliation(s)
- Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | | | | |
Collapse
|
120
|
Daum G, Grabski A, Reidy MA. Sphingosine 1-phosphate: a regulator of arterial lesions. Arterioscler Thromb Vasc Biol 2009; 29:1439-43. [PMID: 19592471 DOI: 10.1161/atvbaha.108.175240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid that is critical in the development of blood vessels, and in the adult regulates vascular functions including vascular tone, endothelial integrity, and angiogenesis. Further, S1P may regulate arterial lesions in disease and after injury by controlling leukocyte recruitment and smooth muscle cell functions.
Collapse
Affiliation(s)
- G Daum
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
121
|
Skoura A, Hla T. Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc Res 2009; 82:221-8. [PMID: 19287048 DOI: 10.1093/cvr/cvp088] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is now recognized as a lipid mediator that acts via G-protein-coupled receptors. S1P receptors couple to various heterotrimeric G-proteins and regulate downstream targets and ultimately cell behaviour. The prototypical S1P1 receptor is known to couple to Gi and regulates angiogenesis, vascular development, and immune cell trafficking. In this review, we focus our attention on the S1P2 receptor, which has a unique G-protein-coupling property in that it preferentially activates the G(12/13) pathway. Recent studies indicate that the S1P2 receptor regulates critical intracellular signalling pathways, such as Rho GTPase, the phosphatase PTEN, and VE-cadherin-based adherens junctions. Analysis of mutant mice has revealed the critical role of this receptor in inner ear physiology, heart and vascular development, vascular remodelling, and vascular tone, permeability, and angiogenesis in vertebrates. These studies suggest that selective modulation of S1P2 receptor function by pharmacological tools may be useful in a variety of pathological conditions.
Collapse
Affiliation(s)
- Athanasia Skoura
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, USA
| | | |
Collapse
|
122
|
Imasawa T, Kitamura H, Ohkawa R, Satoh Y, Miyashita A, Yatomi Y. Unbalanced expression of sphingosine 1-phosphate receptors in diabetic nephropathy. ACTA ACUST UNITED AC 2009; 62:53-60. [PMID: 19261455 DOI: 10.1016/j.etp.2009.02.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/25/2008] [Accepted: 02/02/2009] [Indexed: 11/30/2022]
Abstract
Sphingosine 1-phosphate (Sph-1-P) regulates vascular homeostasis through its receptors like S1P1 and S1P2. While S1P1 works to protect vasculature, S1P2 works antagonistically against it. Therefore, the balance of S1P1 and S1P2 determines the regulation of vascular permeability. In diabetic nephropathy, one of the typical pathological changes is endothelial injury possibly as a result of changes in vascular permeability. Therefore, we hypothesized that the balance of S1P1 and S1P2 expression becomes inappropriate in glomeruli of diabetic nephropathy. To verify the hypothesis, five SD rats with diabetes induced by streptozotocin injection and six control rats injected with only the vehicle were analyzed one year after injection. The glomeruli of the diabetic rats exhibited endothelial injuries. The analysis by real-time PCR revealed that the ratio of S1P2/S1P1 mRNA in the renal cortex of the diabetic rats was significantly higher than that in the non-diabetic control group. Immunohistochemistry revealed that S1P1 was expressed by endothelial and mesangial cells, while S1P2 was mainly expressed by mesangial cells in glomeruli. Furthermore, the ratio of the staining intensity of S1P2 to that of S1P1 in the glomeruli was significantly higher in the diabetic rats. The number of cells expressing PDGF-B, which enhances S1P2 expression, was also higher in the glomeruli of the diabetic rats than in the controls. In conclusion, Sph-1-P signals are preferentially transmitted through S1P2, rather than S1P1, in the glomeruli of rats with diabetic nephropathy. Such unbalanced delivery of the Sph-1-P signals might be involved in the pathogenesis of endothelial injuries.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Internal Medicine, Division of Immunopathology, Clinical Research Center, Chiba-East National Hospital, 673, Nitona-cho, Chyuoh, Chiba-City, Chiba 260-8712, Japan.
| | | | | | | | | | | |
Collapse
|
123
|
Gellings Lowe N, Swaney JS, Moreno KM, Sabbadini RA. Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts. Cardiovasc Res 2009; 82:303-12. [PMID: 19228708 DOI: 10.1093/cvr/cvp056] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS Following injury, fibroblasts transform into myofibroblasts and produce extracellular matrix (ECM). Excess production of ECM associated with cardiac fibrosis severely inhibits cardiac function. Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, regulates the function of numerous cell types. In this study, we determined the role of S1P in promoting pro-fibrotic actions of cardiac fibroblasts (CFs). METHODS AND RESULTS S1P-mediated effects on myofibroblast transformation, collagen production, and cross-talk with transforming growth factor-beta (TGF-beta) using mouse CF were examined. S1P increased alpha-smooth muscle actin (a myofibroblast marker) and collagen expression in a S1P2 receptor- and Rho kinase-dependent manner. TGF-beta increased sphingosine kinase 1 (SphK1; the enzyme responsible for S1P production) expression and activity. TGF-beta-stimulated collagen production was inhibited by SphK1 or S1P2 siRNA, a SphK inhibitor, and an anti-S1P monoclonal antibody. CONCLUSION These findings suggest that TGF-beta-stimulated collagen production in CF involves 'inside-out' S1P signalling whereby S1P produced intracellularly by SphK1 can be released and act in an autocrine/paracrine fashion to activate S1P2 and increase collagen production.
Collapse
Affiliation(s)
- Nicole Gellings Lowe
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182-4614, USA
| | | | | | | |
Collapse
|
124
|
Suzuki N, Hajicek N, Kozasa T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 2009; 17:55-70. [PMID: 19212140 DOI: 10.1159/000186690] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/10/2008] [Indexed: 12/12/2022] Open
Abstract
Accumulating data indicate that G12 subfamily (Galpha12/13)-mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. It has been demonstrated that Galpha12/13-mediated signals form networks with other signaling proteins at various levels, from cell surface receptors to transcription factors, to regulate cellular responses. Galpha12/13 have slow rates of nucleotide exchange and GTP hydrolysis, and specifically target RhoGEFs containing an amino-terminal RGS homology domain (RH-RhoGEFs), which uniquely function both as a GAP and an effector for Galpha12/13. In this review, we will focus on the mechanisms regulating the Galpha12/13 signaling system, particularly the Galpha12/13-RH-RhoGEF-Rho pathway, which can regulate a wide variety of cellular functions from migration to transformation.
Collapse
Affiliation(s)
- Nobuchika Suzuki
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
125
|
Li MH, Sanchez T, Yamase H, Hla T, Oo ML, Pappalardo A, Lynch KR, Lin CY, Ferrer F. S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. Cancer Lett 2009; 276:171-9. [PMID: 19131156 DOI: 10.1016/j.canlet.2008.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/19/2008] [Accepted: 11/07/2008] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is an important regulator of cellular functions via interaction with its receptors S1P(1-5). To date, nothing is known about the S1P receptor expression and the effects of S1P signaling in Wilms tumor. In this study, we found ubiquitous expression of S1P receptors in Wilms tumor specimens and cell lines. We demonstrated that S1P(1) acted as a promigratory modulator by employing S1P(1) antagonist VPC44116, S1P(1) siRNA and adenoviral transduction in Wilms tumor cells. Further, we clarified that S1P(1)-mediated migration occurred via Gi coupling and activation of PI3K and Rac1. In addition, S1P stimulated WiT49 cell invasion through S1P(1)/Gi signaling pathway. We consider that targeting S1P(1) may be a point of therapeutic intervention in Wilms tumor.
Collapse
Affiliation(s)
- Mei-Hong Li
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Komachi M, Tomura H, Malchinkhuu E, Tobo M, Mogi C, Yamada T, Kimura T, Kuwabara A, Ohta H, Im DS, Kurose H, Takeyoshi I, Sato K, Okajima F. LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis 2009; 30:457-65. [PMID: 19129242 DOI: 10.1093/carcin/bgp011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malignant ascites from pancreatic cancer patients has been reported to stimulate migration of pancreatic cancer cells through lysophosphatidic acid (LPA) and LPA(1) receptors. Indeed, ascites- and LPA-induced migration was inhibited by Ki16425, an LPA(1) and LPA(3) antagonist, in Panc-1 cells. Unexpectedly, however, in the presence of Ki16425, ascites and LPA inhibited cell migration in response to epidermal growth factor (EGF). The inhibitory migratory response to ascites and LPA was also observed in the cells treated with pertussis toxin (PTX), a G(i) protein inhibitor, and attenuated by a small interfering RNA (siRNA) specific to the LPA(2) receptor. The inhibitory LPA action was reversed by the regulators of G-protein signaling domain of p115RhoGEF, dominant-negative RhoA or C3 toxin. Indeed, LPA activated RhoA, which was attenuated by the siRNA against the LPA(2) receptor. Moreover, LP-105, an LPA(2) agonist, also inhibited EGF-induced migration in the PTX-treated cells. A similar inhibitory migration response through LPA(2) receptors was also observed in YAPC-PD, BxPC-3, CFPAC-1 and PK-1 pancreatic cancer cell lines. LPA also inhibited the invasion of Panc-1 cells in the PTX-treated cells in the in vitro Matrigel invasion assay. We conclude that LPA(2) receptors are coupled to the G(12/13) protein/Rho-signaling pathway, leading to the inhibition of EGF-induced migration and invasion of pancreatic cancer cells.
Collapse
Affiliation(s)
- Mayumi Komachi
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University, 975 W. Walnut St., IB355A, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
128
|
Okajima F, Sato K, Kimura T. Anti-atherogenic actions of high-density lipoprotein through sphingosine 1-phosphate receptors and scavenger receptor class B type I. Endocr J 2009; 56:317-34. [PMID: 18753704 DOI: 10.1507/endocrj.k08e-228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma high-density lipoprotein (HDL) is a potent anti-atherogenic factor, a critical role of which is thought to be reverse cholesterol transport through the lipoprotein-associated apolipoprotein A-I (apoA-I). HDL also carries a potent bioactive lipid mediator, sphingosine 1-phophate (S1P), which exerts diverse physiological and pathophysiological actions in a variety of biological systems, including the cardiovascular system. In addition, HDL-associated apoA-I is known to stimulate intracellular signaling pathways unrelated to transporter activity. Mounting evidence indicates that multiple antiatherogenic or anti-inflammatory actions of HDL independent of cholesterol metabolism are mediated by the lipoprotein-associated S1P through S1P receptors and by apoA-I through scavenger receptor class B type I.
Collapse
Affiliation(s)
- Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | |
Collapse
|
129
|
Abstract
One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.
Collapse
|
130
|
Lee JF, Gordon S, Estrada R, Wang L, Siow DL, Wattenberg BW, Lominadze D, Lee MJ. Balance of S1P1 and S1P2 signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. Am J Physiol Heart Circ Physiol 2008; 296:H33-42. [PMID: 19011048 DOI: 10.1152/ajpheart.00097.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sphingosine-1-phosphate (S1P) regulates various molecular and cellular events in cultured endothelial cells, such as cytoskeletal restructuring, cell-extracellular matrix interactions, and intercellular junction interactions. We utilized the venular leakage model of the cremaster muscle vascular bed in Sprague-Dawley rats to investigate the role of S1P signaling in regulation of microvascular permeability. S1P signaling is mediated by the S1P family of G protein-coupled receptors (S1P(1-5) receptors). S1P(1) and S1P(2) receptors, which transduce stimulatory and inhibitory signaling, respectively, are expressed in the endothelium of the cremaster muscle vasculature. S1P administration alone via the carotid artery was unable to protect against histamine-induced venular leakage of the cremaster muscle vascular bed in Sprague-Dawley rats. However, activation of S1P(1)-mediated signaling by SEW2871 and FTY720, two agonists of S1P(1), significantly inhibited histamine-induced microvascular leakage. Treatment with VPC 23019 to antagonize S1P(1)-regulated signaling greatly potentiated histamine-induced venular leakage. After inhibition of S1P(2) signaling by JTE-013, a specific antagonist of S1P(2), S1P was able to protect microvascular permeability in vivo. Moreover, endothelial tight junctions and barrier function were regulated by S1P(1)- and S1P(2)-mediated signaling in a concerted manner in cultured endothelial cells. These data suggest that the balance between S1P(1) and S1P(2) signaling regulates the homeostasis of microvascular permeability in the peripheral circulation and, thus, may affect total peripheral vascular resistance.
Collapse
Affiliation(s)
- Jen-Fu Lee
- Gheens Center on Aging, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Roelofsen T, Akkers R, Beumer W, Apotheker M, Steeghs I, van de Ven J, Gelderblom C, Garritsen A, Dechering K. Sphingosine-1-phosphate acts as a developmental stage specific inhibitor of platelet-derived growth factor-induced chemotaxis of osteoblasts. J Cell Biochem 2008; 105:1128-38. [DOI: 10.1002/jcb.21915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
132
|
The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 2008; 8:753-63. [PMID: 18787560 DOI: 10.1038/nri2400] [Citation(s) in RCA: 519] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active metabolite of plasma-membrane sphingolipids that is essential for immune-cell trafficking. Its concentration is increased in many inflammatory conditions, such as asthma and autoimmunity. Much of the immune function of S1P results from the engagement of a family of G-protein-coupled receptors (S1PR1-S1PR5). Recent findings on the role of S1P in immunosurveillance, the discovery of regulatory mechanisms in S1P-mediated immune-cell trafficking and new advances in understanding the mechanism by which S1P affects immune-cell function indicate that the alliance between S1P and its receptors has a fundamental role in immunity.
Collapse
|
133
|
Lee Z, Cheng CT, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen CK, Fang X. Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 2008; 19:5435-45. [PMID: 18843048 DOI: 10.1091/mbc.e08-03-0316] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a ligand of multiple G protein-coupled receptors. The LPA(1-3) receptors are members of the endothelial cell differentiation gene (Edg) family. LPA(4)/p2y9/GPR23, a member of the purinergic receptor family, and recently identified LPA(5)/GPR92 and p2y5 are structurally distant from the canonical Edg LPA receptors. Here we report targeted disruption of lpa(4) in mice. Although LPA(4)-deficient mice displayed no apparent abnormalities, LPA(4)-deficient mouse embryonic fibroblasts (MEFs) were hypersensitive to LPA-induced cell migration. Consistent with negative modulation of the phosphatidylinositol 3 kinase pathway by LPA(4), LPA(4) deficiency potentiated Akt and Rac but decreased Rho activation induced by LPA. Reconstitution of LPA(4) converted LPA(4)-negative cells into a less motile phenotype. In support of the biological relevance of these observations, ectopic expression of LPA(4) strongly inhibited migration and invasion of human cancer cells. When coexpressed with LPA(1) in B103 neuroblastoma cells devoid of endogenous LPA receptors, LPA(4) attenuated LPA(1)-driven migration and invasion, indicating functional antagonism between the two subtypes of LPA receptors. These results provide genetic and biochemical evidence that LPA(4) is a suppressor of LPA-dependent cell migration and invasion in contrast to the motility-stimulating Edg LPA receptors.
Collapse
Affiliation(s)
- Zendra Lee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Worzfeld T, Wettschureck N, Offermanns S. G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci 2008; 29:582-9. [PMID: 18814923 DOI: 10.1016/j.tips.2008.08.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 01/10/2023]
Abstract
The human genome encodes hundreds of G-protein-coupled receptors. Their intracellular effects, however, are mediated by only four families of heterotrimeric G proteins: G(s), G(i)/G(o), G(q)/G(11) and G(12)/G(13). Progress in the knowledge about the G(12)/G(13) family has somewhat lagged behind because their downstream effectors remained unknown for several years, and tools to specifically interfere with G(12)/G(13)-mediated signalling were, therefore, missing. However, with the identification of G(12)/G(13)-regulated signalling pathways and the recent application of new techniques, such as conditional gene inactivation, RNA interference or expression of inhibitory proteins, new insights into the in vivo functions of this G-protein family have been gained. It has become clear that this pathway regulates cellular proliferation, movement and morphology in many different organs and that it is centrally involved in various diseases including cancer and cardiovascular disorders. Here, we focus on recent progress made in the analyses of the in vivo functions of mammalian G(12)/G(13)-mediated signalling.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
135
|
Wang D, Zhao Z, Caperell-Grant A, Yang G, Mok SC, Liu J, Bigsby RM, Xu Y. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells. Mol Cancer Ther 2008; 7:1993-2002. [PMID: 18645009 DOI: 10.1158/1535-7163.mct-08-0088] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial ovarian cancer (EOC) arises from the epithelial layer covering the surface of ovaries and i.p. metastasis is commonly observed at diagnosis. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule, is potentially involved in EOC tumorigenesis. We have found that S1P is elevated in human EOC ascites. We show that physiologically relevant concentrations of S1P stimulate migration and invasion of EOC cells but inhibit migration of human ovarian surface epithelial (HOSE) cells. In addition, S1P inhibits lysophosphatidic acid (LPA)-induced cell migration in HOSE but not in EOC cells. We have provided the first line of evidence that the expression levels of S1P receptor subtypes are not the only determinants for how cells respond to S1P. Although S1P(1) is expressed and functional in HOSE cells, the inhibitory effect mediated by S1P(2) is dominant in those cells. The cellular preexisting stress fibers are also important determinants for the migratory response to S1P. Differential S1P-induced morphology changes are noted in EOC and HOSE cells. Preexisting stress fibers in HOSE cells are further enhanced by S1P treatment, resulting in the negative migratory response to S1P. By contrast, EOC cells lost stress fibers and S1P treatment induces filopodium-like structures at cell edges, which correlates with increased cell motility. In addition, inhibition of the protein kinase C pathway is likely to be involved in the inhibitory effect of S1P on LPA-induced cell migration in HOSE cells. These findings are important for the development of new therapeutics targeting S1P and LPA in EOC.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Obstetrics and Gynecology, Indiana University, 975 West Walnut Street IB355A, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Estrada R, Zeng Q, Lu H, Sarojini H, Lee JF, Mathis SP, Sanchez T, Wang E, Kontos CD, Lin CY, Hla T, Haribabu B, Lee MJ. Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in senescent endothelial cells. J Biol Chem 2008; 283:30363-75. [PMID: 18765664 DOI: 10.1074/jbc.m804392200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cells (ECs) have a finite lifespan when cultured in vitro and eventually enter an irreversible growth arrest state called "cellular senescence." It has been shown that sphingolipids may be involved in senescence; however, the molecular links involved are poorly understood. In this study, we investigated the signaling and functions of sphingosine 1-phosphate (S1P), a serum-borne bioactive sphingolipid, in ECs of different in vitro ages. We observed that S1P-regulated responses are significantly inhibited and the S1P(1-3) receptor subtypes are markedly increased in senescent ECs. Increased expression of S1P(1) and S1P(2) was also observed in the lesion regions of atherosclerotic endothelium, where senescent ECs have been identified in vivo. S1P-induced Akt and ERK1/2 activation were comparable between ECs of different in vitro ages; however, PTEN (phosphatase and tensin homolog deleted on chromosome 10) activity was significantly elevated and Rac activation was inhibited in senescent ECs. Rac activation and senescent-associated impairments were restored in senescent ECs by the expression of dominant-negative PTEN and by knocking down S1P(2) receptors. Furthermore, the senescent-associated impairments were induced in young ECs by the expression of S1P(2) to a level similar to that of in vitro senescence. These results indicate that the impairment of function in senescent ECs in culture is mediated by an increase in S1P signaling through S1P(2)-mediated activation of the lipid phosphatase PTEN.
Collapse
Affiliation(s)
- Rosendo Estrada
- Gheens Center on Aging, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kimura A, Ohmori T, Kashiwakura Y, Ohkawa R, Madoiwa S, Mimuro J, Shimazaki K, Hoshino Y, Yatomi Y, Sakata Y. Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke 2008; 39:3411-7. [PMID: 18757288 DOI: 10.1161/strokeaha.108.514612] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE We have previously shown that the sphingosine 1-phosphate (S1P)/S1P receptor-1 (S1P(1)R) axis contributes to the migration of transplanted neural progenitor cells (NPCs) toward areas of spinal cord injury. In the current study, we examined a strategy to increase endogenous NPC migration toward the injured central nervous system to modify S1PR. METHODS S1P concentration in the ischemic brain was measured in a mouse thrombosis model of the middle cerebral artery. NPC migration in vitro was assessed by a Boyden chamber assay. Endogenous NPC migration toward the insult was evaluated after ventricular administration of the S1P(2)R antagonist JTE-013. RESULTS The concentration of S1P in the brain was increased after ischemia and was maximal 14 days after the insult. The increase in S1P in the infarcted brain was primarily caused by accumulation of microglia at the insult. Mouse NPCs mainly expressed S1P(1)R and S1P(2)R as S1PRs, and S1P significantly induced the migration of NPCs in vitro through activation of S1P(1)R. However, an S1P(1)R agonist failed to have any synergistic effect on S1P-mediated NPC migration, whereas pharmacologic or genetic inhibition of S1P(2)R by JTE-013 or short hairpin RNA expression enhanced S1P-mediated NPC migration but did not affect proliferation and differentiation. Interestingly, administration of JTE-013 into a brain ventricle significantly enhanced endogenous NPC migration toward the area of ischemia. CONCLUSIONS Our findings suggest that S1P is a chemoattractant for NPCs released from an infarcted area and regulation of S1P(2)R function further enhances the migration of NPCs toward a brain infarction.
Collapse
Affiliation(s)
- Atsushi Kimura
- Department of Orthopedic Surgery, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Filamin A links sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 at lamellipodia to orchestrate cell migration. Mol Cell Biol 2008; 28:5687-97. [PMID: 18644866 DOI: 10.1128/mcb.00465-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) catalyzes the phosphorylation of sphingosine to produce the potent lipid mediator sphingosine-1-phosphate (S1P), which plays a critical role in cell motility via its cell surface receptors. Here, we have identified filamin A (FLNa), an actin-cross-linking protein involved in cell movement, as a bona fide SphK1-interacting protein. Heregulin stimulated SphK1 activity only in FLNa-expressing A7 melanoma cells but not in FLNa-deficient cells and induced its translocation and colocalization with FLNa at lamellipodia. SphK1 was required for heregulin-induced migration, lamellipodia formation, activation of PAK1, and subsequent FLNa phosphorylation. S1P directly stimulated PAK1 kinase, suggesting that it may be a target of intracellularly generated S1P. Heregulin also induced colocalization of S1P(1) (promotility S1P receptor) but not S1P(2), with SphK1 and FLNa at membrane ruffles. Moreover, an S1P(1) antagonist inhibited the lamellipodia formation induced by heregulin. Hence, FLNa links SphK1 and S1P(1) to locally influence the dynamics of actin cytoskeletal structures by orchestrating the concerted actions of the triumvirate of SphK1, FLNa, and PAK1, each of which requires and/or regulates the actions of the others, at lamellipodia to promote cell movement.
Collapse
|
139
|
Wamhoff BR, Lynch KR, Macdonald TL, Owens GK. Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2008; 28:1454-61. [PMID: 18535287 DOI: 10.1161/atvbaha.107.159392] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of sphingosine-1-phosphate (S1P) receptors in acute vascular injury and smooth muscle cell (SMC) phenotypic modulation is not completely resolved. METHODS AND RESULTS S1P receptor antagonists were used to test the hypothesis that specific S1P receptor subtypes differentially regulate SMC phenotypic modulation. In response to acute balloon injury of the rat carotid artery, S1P1/S1P3 receptor mRNA levels were transiently increased at 48 hours whereas S1P2 receptor expression was decreased. S1P2 expression was reinduced and increased at 7 to 10 days postinjury. Daily intraperitoneal injection of the S1P1/S1P3 antagonist VPC44116 decreased neointimal hyperplasia by approximately 50%. In vitro, pharmacological inhibition of S1P1/S1P3 receptors with VPC25239 attenuated S1P-induced proliferation of rat aortic SMCs. Conversely, inhibition of S1P2 with JTE013 potentiated S1P-induced proliferation. Inhibition of S1P1/S1P3 resulted in S1P-induced activation of the SMC differentiation marker genes SMalpha-actin and SMMHC, whereas inhibition of S1P2 attenuated this response. S1P2-dependent activation of SMalpha-actin and SMMHC was shown to be mediated by L-type voltage-gated Ca(2+) channels and subsequent RhoA/Rho kinase-dependent SRF enrichment of CArG box promoter regions. CONCLUSIONS Results provide evidence that S1P1/S1P3 receptors promote, whereas S1P2 receptors antagonize, SMC proliferation and phenotypic modulation in vitro in response to S1P, or in vivo after vascular injury.
Collapse
Affiliation(s)
- Brian R Wamhoff
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22901, USA.
| | | | | | | |
Collapse
|
140
|
Takabe K, Paugh SW, Milstien S, Spiegel S. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60:181-95. [PMID: 18552276 PMCID: PMC2695666 DOI: 10.1124/pr.107.07113] [Citation(s) in RCA: 565] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
141
|
Tölle M, Pawlak A, Schuchardt M, Kawamura A, Tietge UJ, Lorkowski S, Keul P, Assmann G, Chun J, Levkau B, van der Giet M, Nofer JR. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol 2008; 28:1542-8. [PMID: 18483405 DOI: 10.1161/atvbaha.107.161042] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE High-density lipoprotein (HDL) levels are inversely proportional to the risk of atherosclerosis, but mechanisms of HDL atheroprotection remain unclear. Monocyte chemoatractant protein-1 (MCP-1) constitutes an early component of inflammatory response in atherosclerosis. Here we investigated the influence of HDL on MCP-1 production in vascular smooth muscle cells (VSMCs) and rat aortic explants. METHODS AND RESULTS HDL inhibited the thrombin-induced production of MCP-1 in a concentration-dependent manner. The HDL-dependent inhibition of MCP-1 production was accompanied by the suppression of reactive oxygen species (ROS), which regulate the MCP-1 production in VSMCs. HDL inhibited NAD(P)H oxidase, the preponderant source of ROS in the vasculature, and prevented the activation of Rac1, which precedes NAD(P)H-oxidase activation. The HDL capacity to inhibit MCP-1 production, ROS generation, and NAD(P)H-oxidase activation was emulated by sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), two lysosphingolipids present in HDL, but not by apolipoprotein A-I. HDL-, S1P-, and SPC-induced inhibition of MCP-1 production was attenuated in VSMCs pretreated with VPC23019, an antagonist of lysosphingolipid receptors S1P(1) and S1P(3), but not by JTE013, an antagonist of S1P(2). In addition, HDL, S1P, and SPC failed to inhibit MCP1 production and ROS generation in aortas from S1P(3)- and SR-B1-deficient mice. CONCLUSIONS HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent ROS generation and MCP-1 production in a process that requires coordinate signaling through S1P(3) and SR-B1 receptors.
Collapse
Affiliation(s)
- Markus Tölle
- Charite - Campus Benjamin Franklin, Medizinische Klinik, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Takashima SI, Sugimoto N, Takuwa N, Okamoto Y, Yoshioka K, Takamura M, Takata S, Kaneko S, Takuwa Y. G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase. Cardiovasc Res 2008; 79:689-97. [PMID: 18480127 DOI: 10.1093/cvr/cvn118] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS The lysophospholipid mediator sphingosine-1-phosphate (S1P) activates G protein-coupled receptors (GPCRs) to induce potent inhibition of platelet-derived growth factor (PDGF)-induced Rac activation and, thereby, chemotaxis in rat vascular smooth muscle cells (VSMCs). We explored the heterotrimeric G protein and the downstream mechanism that mediated S1P inhibition of Rac and cell migration in VSMCs. METHODS AND RESULTS S1P inhibition of PDGF-induced cell migration and Rac activation in VSMCs was abolished by the selective S1P(2) receptor antagonist JTE-013. The C-terminal peptides of Galpha subunits (Galpha-CTs) act as specific inhibitors of respective G protein-GPCR coupling. Adenovirus-mediated expression of Galpha(12)-CT, Galpha(13)-CT, and Galpha(q)-CT, but not that of Galpha(s)-CT or LacZ or pertussis toxin treatment, abrogated S1P inhibition of PDGF-induced Rac activation and migration, indicating that both G(12/13) and G(q) classes are necessary for the S1P inhibition. The expression of Galpha(q)-CT as well as Galpha(12)-CT and Galpha(13)-CT also abolished S1P-induced Rho stimulation. C3 toxin, but not a Rho kinase inhibitor or a dominant negative form of Rho kinase, abolished S1P inhibition of PDGF-induced Rac activation and cell migration. The angiotensin II receptor AT(1), which robustly couples to G(q), did not mediate either Rho activation or inhibition of PDGF-induced Rac activation or migration, suggesting that activation of G(q) alone was not sufficient for Rho activation and resultant Rac inhibition. However, the AT(1) receptor fused to Galpha(12) was able to induce not only Rho stimulation but also inhibition of PDGF-induced Rac activation and migration. Phospholipase C inhibition did not affect S1P-induced Rho activation, and protein kinase C activation by a phorbol ester did not mimic S1P action, suggesting that S1P inhibition of migration or Rac was not dependent on the phospholipase C pathway. CONCLUSION These observations together suggest that S1P(2) mediates inhibition of Rac and migration through the coordinated action of G(12/13) and G(q) for Rho activation in VSMCs.
Collapse
Affiliation(s)
- Shin-Ichiro Takashima
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N. Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:483-8. [PMID: 18472021 DOI: 10.1016/j.bbalip.2008.04.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/04/2008] [Accepted: 04/04/2008] [Indexed: 02/06/2023]
Abstract
The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P1, S1P2 and S1P3. S1P1 expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular integrity by contributing to eNOS activation, inhibiting vascular permeability and inducing endothelial cell chemotaxis via Gi-coupled mechanisms. By contrast, S1P2, is expressed in high levels on vascular smooth muscle cells (VSMCs) and certain types of tumor cells, inhibiting Rac and cell migration via a G(12/13)-and Rho-dependent mechanism. In rat neointimal VSMCs, S1P1 is upregulated to mediate local production of platelet-derived growth factor, which is a key player in vascular remodeling. S1P3 expressed on endothelial cells also mediates chemotaxis toward S1P and vasorelaxation via NO production in certain vascular bed, playing protective roles for vascular integrity. S1P3 expressed on VSMCs and cardiac sinoatrial node cells mediates vasopressor and negative chronotropic effect, respectively. In addition, S1P3, together with S1P2 and SPHK1, is suggested to play a protective role against acute myocardial ischemia. However, our recent work indicates that overexpressed SPHK1 is involved in cardiomyocyte degeneration and fibrosis in vivo, in part through S1P activation of the S1P3 signaling. We also demonstrated that exogenously administered S1P accelerates neovascularization and blood flow recovery in ischemic limbs, suggesting its usefulness for angiogenic therapy. These results provide evidence for S1P receptor subtype-specific pharmacological intervention as a novel therapeutic approach to cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| | | | | | | |
Collapse
|
144
|
Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 2008; 28:4142-51. [PMID: 18426913 DOI: 10.1128/mcb.01465-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.
Collapse
|
145
|
Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a "come-and-get-me" signal. FASEB J 2008; 22:2629-38. [PMID: 18362204 DOI: 10.1096/fj.08-107169] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates myriad important cellular processes, including growth, survival, cytoskeleton rearrangements, motility, and immunity. Here we report that treatment of Jurkat and U937 leukemia cells with the pan-sphingosine kinase (SphK) inhibitor N,N-dimethylsphingosine to block S1P formation surprisingly caused a large increase in expression of SphK1 concomitant with induction of apoptosis. Another SphK inhibitor, D,L-threo-dihydrosphingosine, also induced apoptosis and produced dramatic increases in SphK1 expression. However, up-regulation of SphK1 was not a specific effect of its inhibition but rather was a consequence of apoptotic stress. The chemotherapeutic drug doxorubicin, a potent inducer of apoptosis in these cells, also stimulated SphK1 expression and activity and promoted S1P secretion. The caspase inhibitor ZVAD reduced not only doxorubicin-induced lethality but also the increased expression of SphK1 and secretion of S1P. Apoptotic cells secrete chemotactic factors to attract phagocytic cells, and we found that S1P potently stimulated chemotaxis of monocytic THP-1 and U937 cells and primary monocytes and macrophages. Collectively, our data suggest that apoptotic cells may up-regulate SphK1 to produce and secrete S1P that serves as a "come-and-get-me" signal for scavenger cells to engulf them in order to prevent necrosis.
Collapse
Affiliation(s)
- David R Gude
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, VCU School of Medicine, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Stradner MH, Hermann J, Angerer H, Setznagl D, Sunk IG, Windhager R, Graninger WB. Spingosine-1-phosphate stimulates proliferation and counteracts interleukin-1 induced nitric oxide formation in articular chondrocytes. Osteoarthritis Cartilage 2008; 16:305-11. [PMID: 17703957 DOI: 10.1016/j.joca.2007.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/25/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sphingosine-1-phosphate (S1P) is a messenger molecule, with important functions in inflammation and wound healing. The present study was performed to elucidate a possible role of S1P signaling in articular chondrocytes. METHODS Human and bovine primary chondrocytes were cultured in monolayer. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect S1P receptor mRNA. Proliferation of S1P stimulated chondrocytes was measured by 3H-thymidine uptake. Supernatants of cultured bovine chondrocytes stimulated with S1P alone or in combination with interleukin-1beta (IL-1beta) were tested for nitric oxide (NO) formation and expression of inducible nitric oxide synthase (iNOS). Matrixmetalloprotease-13 (MMP-13) and aggrecanase-1 (ADAMTS-4) were evaluated using real-time PCR. Glycosaminoglycan (GAG) loss from bovine cartilage explants was evaluated using the dimethylene blue method. RESULTS S1P1, S1P2 and S1P3 but not S1P4 and S1P5 receptor mRNA were detected in human and bovine chondrocytes. S1P dose dependently induced proliferation in bovine and human chondrocytes. S1P significantly reduced NO formation and iNOS mRNA and protein expression, both in un-stimulated and IL-1beta stimulated bovine chondrocytes. Furthermore, S1P dose dependently inhibited IL-1beta induced expression of ADAMTS-4 and MMP-13 and diminished IL-1beta mediated GAG depletion from cartilage explants. CONCLUSION These results suggest that S1P provides an anti-catabolic signal in articular chondrocytes.
Collapse
Affiliation(s)
- M H Stradner
- Department of Internal Medicine, Division of Rheumatology, Medical University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
147
|
Jiang H, Rhee S, Ho CH, Grinnell F. Distinguishing fibroblast promigratory and procontractile growth factor environments in 3-D collagen matrices. FASEB J 2008; 22:2151-60. [PMID: 18272655 DOI: 10.1096/fj.07-097014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding growth factor function during wound repair is necessary for the development of therapeutic interventions to improve healing outcomes. In the current study, we compare the effects of serum and purified growth factors on human fibroblast function in three different collagen matrix models: cell migration in nested matrices, floating matrix contraction, and stressed-released matrix contraction. The results of these studies indicate that platelet-derived growth factor (PDGF) is unique in its capacity to promote cell migration. Serum, lysophosphatidic acid, sphingosine-1-phophate (S1P), and endothelin-1 promote stressed-released matrix contraction but not cell migration. In addition, we found that S1P inhibits fibroblast migration and treatment of serum to remove lipid growth factors or treatment of cells to interfere with S1P(2) receptor function increases serum promigratory activity. Our findings suggest that different sets of growth factors generate promigratory and procontractile tissue environments for fibroblasts and that the balance between PDGF and S1P is a key determinant of fibroblast promigratory activity.
Collapse
Affiliation(s)
- Hongmei Jiang
- Department of Cell Biology, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
148
|
Wong K, Van Keymeulen A, Bourne HR. PDZRhoGEF and myosin II localize RhoA activity to the back of polarizing neutrophil-like cells. ACTA ACUST UNITED AC 2008; 179:1141-8. [PMID: 18086913 PMCID: PMC2140022 DOI: 10.1083/jcb.200706167] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoattractants such as formyl-Met-Leu-Phe (fMLP) induce neutrophils to polarize by triggering divergent pathways that promote formation of a protrusive front and contracting back and sides. RhoA, a Rho GTPase, stimulates assembly of actomyosin contractile complexes at the sides and back. We show here, in differentiated HL60 cells, that PDZRhoGEF (PRG), a guanine nucleotide exchange factor (GEF) for RhoA, mediates RhoA-dependent responses and determines their spatial distribution. As with RNAi knock-down of PRG, a GEF-deleted PRG mutant blocks fMLP-dependent RhoA activation and causes neutrophils to exhibit multiple fronts and long tails. Similarly, inhibition of RhoA, a Rho-dependent protein kinase (ROCK), or myosin II produces the same morphologies. PRG inhibition reduces or mislocalizes monophosphorylated myosin light chains in fMLP-stimulated cells, and myosin II ATPase inhibition reciprocally disrupts normal localization of PRG. We propose a cooperative reinforcing mechanism at the back of cells, in which PRG, RhoA, ROCK, myosin II, and actomyosin spatially cooperate to consolidate attractant-induced contractility and ensure robust cell polarity.
Collapse
Affiliation(s)
- Kit Wong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
149
|
Tanaka R, Muraki K, Ohya S, Itoh Y, Hatano N, Imaizumi Y. Cell-Culture–Dependent Change of Ca2+ Response of Rat Aortic Myocytes to Sphingosine-1-Phosphate. J Pharmacol Sci 2008; 107:434-42. [DOI: 10.1254/jphs.08029fp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
150
|
Singh IN, Hall ED. Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 2008; 86:1419-33. [DOI: 10.1002/jnr.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|