101
|
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38:576-89. [PMID: 20513432 PMCID: PMC2898526 DOI: 10.1016/j.molcel.2010.05.004] [Citation(s) in RCA: 9101] [Impact Index Per Article: 606.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/02/2010] [Accepted: 05/03/2010] [Indexed: 02/06/2023]
Abstract
Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs.
Collapse
Affiliation(s)
- Sven Heinz
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Christopher Benner
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Nathanael Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Eric Bertolino
- Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th St. GCIS W522, Chicago IL 60637
| | - Yin C. Lin
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Peter Laslo
- Section of Experimental Haematology, University of Leeds, Leeds, UK LS9 7TF
| | - Jason X. Cheng
- Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th St. GCIS W522, Chicago IL 60637
| | - Cornelis Murre
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- To whom correspondence should be addressed: Office: 858-534-6011,
| | - Harinder Singh
- Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th St. GCIS W522, Chicago IL 60637
- Department of Discovery Immunology, Genentech, San Francisco, California 94080
- To whom correspondence should be addressed: Office: 858-534-6011,
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- To whom correspondence should be addressed: Office: 858-534-6011,
| |
Collapse
|
102
|
Khoueiry P, Rothbächer U, Ohtsuka Y, Daian F, Frangulian E, Roure A, Dubchak I, Lemaire P. A cis-regulatory signature in ascidians and flies, independent of transcription factor binding sites. Curr Biol 2010; 20:792-802. [PMID: 20434338 DOI: 10.1016/j.cub.2010.03.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/12/2010] [Accepted: 03/23/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transcription initiation is controlled by cis-regulatory modules. Although these modules are usually made of clusters of short transcription factor binding sites, a small minority of such clusters in the genome have cis-regulatory activity. This paradox is currently unsolved. RESULTS To identify what discriminates active from inactive clusters, we focused our attention on short topologically unconstrained clusters of two ETS and two GATA binding sites, similar to the early neural enhancer of Ciona intestinalis Otx. We first computationally identified 55 such clusters, conserved between the two Ciona genomes. In vivo assay of the activity of 19 hits identified three novel early neural enhancers, all located next to genes coexpressed with Otx. Optimization of ETS and GATA binding sites was not always sufficient to confer activity to inactive clusters. Rather, a dinucleotide sequence code associated to nucleosome depletion showed a robust correlation with enhancer potential. Identification of a large collection of Ciona regulatory regions revealed that predicted nucleosome depletion constitutes a general signature of Ciona enhancers, which is conserved between orthologous loci in the two Ciona genomes and which partitions conserved noncoding sequences into a major nucleosome-bound fraction and a minor nucleosome-free fraction with higher cis-regulatory potential. We also found this signature in a large fraction of short Drosophila cis-regulatory modules. CONCLUSION This study indicates that a sequence-based dinucleotide signature, previously associated with nucleosome depletion and independent of transcription factor binding sites, contributes to the definition of a local cis-regulatory potential in two metazoa, Ciona intestinalis and Drosophila melanogaster.
Collapse
Affiliation(s)
- Pierre Khoueiry
- Institut du Biologie de Développement de Marseille Luminy (IBDML, UMR 6216), CNRS, Université de la Méditerranée, Parc Scientifique de Luminy Case 907, F-13288, Marseille Cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
To TL, Maheshri N. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 2010; 327:1142-5. [PMID: 20185727 DOI: 10.1126/science.1178962] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcriptional positive-feedback loops are widely associated with bistability, characterized by two stable expression states that allow cells to respond to analog signals in a digital manner. Using a synthetic system in budding yeast, we show that positive feedback involving a promoter with multiple transcription factor (TF) binding sites can induce a steady-state bimodal response without cooperative binding of the TF. Deterministic models of this system do not predict bistability. Rather, the bimodal response requires a short-lived TF and stochastic fluctuations in the TF's expression. Multiple binding sites provide these fluctuations. Because many promoters possess multiple binding sites and many TFs are unstable, positive-feedback loops in gene regulatory networks may exhibit bimodal responses, but not necessarily because of deterministic bistability, as is commonly thought.
Collapse
Affiliation(s)
- Tsz-Leung To
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
104
|
Goh WS, Orlov Y, Li J, Clarke ND. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput Biol 2010; 6:e1000649. [PMID: 20098497 PMCID: PMC2799660 DOI: 10.1371/journal.pcbi.1000649] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/16/2009] [Indexed: 11/23/2022] Open
Abstract
Genome wide maps of nucleosome occupancy in yeast have recently been produced through deep sequencing of nuclease-protected DNA. These maps have been obtained from both crosslinked and uncrosslinked chromatin in vivo, and from chromatin assembled from genomic DNA and nucleosomes in vitro. Here, we analyze these maps in combination with existing ChIP-chip data, and with new ChIP-qPCR experiments reported here. We show that the apparent nucleosome density in crosslinked chromatin, when compared to uncrosslinked chromatin, is preferentially increased at transcription factor (TF) binding sites, suggesting a strategy for mapping generic transcription factor binding sites that would not require immunoprecipitation of a particular factor. We also confirm previous conclusions that the intrinsic, sequence dependent binding of nucleosomes helps determine the localization of TF binding sites. However, we find that the association between low nucleosome occupancy and TF binding is typically greater if occupancy at a site is averaged over a 600bp window, rather than using the occupancy at the binding site itself. We have also incorporated intrinsic nucleosome binding occupancies as weights in a computational model for TF binding, and by this measure as well we find better prediction if the high resolution nucleosome occupancy data is averaged over 600bp. We suggest that the intrinsic DNA binding specificity of nucleosomes plays a role in TF binding site selection not so much through the specification of precise nucleosome positions that permit or occlude binding, but rather through the creation of low occupancy regions that can accommodate competition from TFs through rearrangement of nucleosomes.
Collapse
Affiliation(s)
- Wee Siong Goh
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Yuriy Orlov
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Jingmei Li
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Neil D. Clarke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| |
Collapse
|
105
|
Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res 2009; 37:5641-55. [PMID: 19625488 PMCID: PMC2761276 DOI: 10.1093/nar/gkp610] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 01/09/2023] Open
Abstract
Nucleosome positions on the DNA are determined by the intrinsic affinities of histone proteins to a given DNA sequence and by the ATP-dependent activities of chromatin remodeling complexes that can translocate nucleosomes with respect to the DNA. Here, we report a theoretical approach that takes into account both contributions. In the theoretical analysis two types of experiments have been considered: in vitro experiments with a single reconstituted nucleosome and in vivo genome-scale mapping of nucleosome positions. The effect of chromatin remodelers was described by iteratively redistributing the nucleosomes according to certain rules until a new steady state was reached. Three major classes of remodeler activities were identified: (i) the establishment of a regular nucleosome spacing in the vicinity of a strong positioning signal acting as a boundary, (ii) the enrichment/depletion of nucleosomes through amplification of intrinsic DNA-sequence-encoded signals and (iii) the removal of nucleosomes from high-affinity binding sites. From an analysis of data for nucleosome positions in resting and activated human CD4(+) T cells [Schones et al., Cell 132, p. 887] it was concluded that the redistribution of a nucleosome map to a new state is greatly facilitated if the remodeler complex translocates the nucleosome with a preferred directionality.
Collapse
Affiliation(s)
- Vladimir B. Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich 5/2, 220141, Minsk, Belarus
| | - Karsten Rippe
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich 5/2, 220141, Minsk, Belarus
| |
Collapse
|
106
|
Poirier MG, Oh E, Tims HS, Widom J. Dynamics and function of compact nucleosome arrays. Nat Struct Mol Biol 2009; 16:938-44. [PMID: 19701201 PMCID: PMC2748796 DOI: 10.1038/nsmb.1650] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 07/06/2009] [Indexed: 12/31/2022]
Abstract
The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.
Collapse
Affiliation(s)
- Michael G. Poirier
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - Eugene Oh
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - Hannah S. Tims
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| |
Collapse
|
107
|
Abstract
Hundreds of different factors adorn the eukaryotic genome, binding to it in large number. These DNA binding factors (DBFs) include nucleosomes, transcription factors (TFs), and other proteins and protein complexes, such as the origin recognition complex (ORC). DBFs compete with one another for binding along the genome, yet many current models of genome binding do not consider different types of DBFs together simultaneously. Additionally, binding is a stochastic process that results in a continuum of binding probabilities at any position along the genome, but many current models tend to consider positions as being either binding sites or not. Here, we present a model that allows a multitude of DBFs, each at different concentrations, to compete with one another for binding sites along the genome. The result is an "occupancy profile," a probabilistic description of the DNA occupancy of each factor at each position. We implement our model efficiently as the software package COMPETE. We demonstrate genome-wide and at specific loci how modeling nucleosome binding alters TF binding, and vice versa, and illustrate how factor concentration influences binding occupancy. Binding cooperativity between nearby TFs arises implicitly via mutual competition with nucleosomes. Our method applies not only to TFs, but also recapitulates known occupancy profiles of a well-studied replication origin with and without ORC binding. Importantly, the sequence preferences our model takes as input are derived from in vitro experiments. This ensures that the calculated occupancy profiles are the result of the forces of competition represented explicitly in our model and the inherent sequence affinities of the constituent DBFs.
Collapse
|
108
|
Segal E, Widom J. What controls nucleosome positions? Trends Genet 2009; 25:335-43. [PMID: 19596482 PMCID: PMC2810357 DOI: 10.1016/j.tig.2009.06.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | |
Collapse
|
109
|
Abstract
Complex transcriptional behaviours are encoded in the DNA sequences of gene regulatory regions. Advances in our understanding of these behaviours have been recently gained through quantitative models that describe how molecules such as transcription factors and nucleosomes interact with genomic sequences. An emerging view is that every regulatory sequence is associated with a unique binding affinity landscape for each molecule and, consequently, with a unique set of molecule-binding configurations and transcriptional outputs. We present a quantitative framework based on existing methods that unifies these ideas. This framework explains many experimental observations regarding the binding patterns of factors and nucleosomes and the dynamics of transcriptional activation. It can also be used to model more complex phenomena such as transcriptional noise and the evolution of transcriptional regulation.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500 USA
| |
Collapse
|
110
|
Raveh-Sadka T, Levo M, Segal E. Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res 2009; 19:1480-96. [PMID: 19451592 DOI: 10.1101/gr.088260.108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcriptional control is central to many cellular processes, and, consequently, much effort has been devoted to understanding its underlying mechanisms. The organization of nucleosomes along promoter regions is important for this process, since most transcription factors cannot bind nucleosomal sequences and thus compete with nucleosomes for DNA access. This competition is governed by the relative concentrations of nucleosomes and transcription factors and by their respective sequence binding preferences. However, despite its importance, a mechanistic understanding of the quantitative effects that the competition between nucleosomes and factors has on transcription is still missing. Here we use a thermodynamic framework based on fundamental principles of statistical mechanics to explore theoretically the effect that different nucleosome organizations along promoters have on the activation dynamics of promoters in response to varying concentrations of the regulating factors. We show that even simple landscapes of nucleosome organization reproduce experimental results regarding the effect of nucleosomes as general repressors and as generators of obligate binding cooperativity between factors. Our modeling framework also allows us to characterize the effects that various sequence elements of promoters have on the induction threshold and on the shape of the promoter activation curves. Finally, we show that using only sequence preferences for nucleosomes and transcription factors, our model can also predict expression behavior of real promoter sequences, thereby underscoring the importance of the interplay between nucleosomes and factors in determining expression kinetics.
Collapse
Affiliation(s)
- Tali Raveh-Sadka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
111
|
Affiliation(s)
- Andrew S Chi
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
112
|
Abstract
Chromatin structure is central for the regulation of gene expression, but its genome-wide organization is only beginning to be understood. Here, we examine the connection between patterns of nucleosome occupancy and the capacity to modulate gene expression upon changing conditions, i.e., transcriptional plasticity. By analyzing genome-wide data of nucleosome positioning in yeast, we find that the presence of nucleosomes close to the transcription start site is associated with high transcriptional plasticity, while nucleosomes at more distant upstream positions are negatively correlated with transcriptional plasticity. Based on this, we identify two typical promoter structures associated with low or high plasticity, respectively. The first class is characterized by a relatively large nucleosome-free region close to the start site coupled with well-positioned nucleosomes further upstream, whereas the second class displays a more evenly distributed and dynamic nucleosome positioning, with high occupancy close to the start site. The two classes are further distinguished by multiple promoter features, including histone turnover, binding site locations, H2A.Z occupancy, expression noise, and expression diversity. Analysis of nucleosome positioning in human promoters reproduces the main observations. Our results suggest two distinct strategies for gene regulation by chromatin, which are selectively employed by different genes.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
113
|
Poirier MG, Bussiek M, Langowski J, Widom J. Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol 2008; 379:772-86. [PMID: 18485363 DOI: 10.1016/j.jmb.2008.04.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from approximately 3-fold decreases to approximately 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as approximately 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.
Collapse
Affiliation(s)
- Michael G Poirier
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
114
|
Chromatin decouples promoter threshold from dynamic range. Nature 2008; 453:246-50. [PMID: 18418379 DOI: 10.1038/nature06867] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/22/2008] [Indexed: 11/08/2022]
Abstract
Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.
Collapse
|
115
|
Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Mol Syst Biol 2008; 4:182. [PMID: 18414483 PMCID: PMC2387233 DOI: 10.1038/msb.2008.21] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/25/2008] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic transcription involves the synergistic interaction of many different proteins. However, the question remains how eukaryotic promoters achieve ultrasensitive or threshold responses to changes in the concentration or activity of a single transcription factor (TF). We show theoretically that by recruiting a histone-modifying enzyme, a TF binding non-cooperatively to a single site can change the balance between opposing positive feedback loops in histone modification to produce a large change in gene expression in response to a small change in concentration of the TF. This mechanism can also generate bistable promoter responses, allowing a gene to be on in some cells and off in others, despite the cells being in identical conditions. In addition, the system provides a simple means by which the activities of many TFs could be integrated at a promoter.
Collapse
|
116
|
Aguilar D, Oliva B. Topological comparison of methods for predicting transcriptional cooperativity in yeast. BMC Genomics 2008; 9:137. [PMID: 18366726 PMCID: PMC2315657 DOI: 10.1186/1471-2164-9-137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/25/2008] [Indexed: 11/10/2022] Open
Abstract
Background The cooperative interaction between transcription factors has a decisive role in the control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative transcription factors in yeast, however, are based on different rationales and provide a low overlap between their results. Because the wealth of information contained in protein interaction networks and regulatory networks has proven highly effective in elucidating functional relationships between proteins, we compared different sets of cooperative transcription factor pairs (predicted by four different computational methods) within the frame of those networks. Results Our results show that the overlap between the sets of cooperative transcription factors predicted by the different methods is low yet significant. Cooperative transcription factors predicted by all methods are closer and more clustered in the protein interaction network than expected by chance. On the other hand, members of a cooperative transcription factor pair neither seemed to regulate each other nor shared similar regulatory inputs, although they do regulate similar groups of target genes. Conclusion Despite the different definitions of transcriptional cooperativity and the different computational approaches used to characterize cooperativity between transcription factors, the analysis of their roles in the framework of the protein interaction network and the regulatory network indicates a common denominator for the predictions under study. The knowledge of the shared topological properties of cooperative transcription factor pairs in both networks can be useful not only for designing better prediction methods but also for better understanding the complexities of transcriptional control in eukaryotes.
Collapse
Affiliation(s)
- Daniel Aguilar
- Structural Bioinformatics Group (GRIB), IMIM-Universitat Pompeu Fabra, C/Doctor Aiguader, 88, Barcelona 08003, Spain.
| | | |
Collapse
|
117
|
Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol 2008; 28:2221-34. [PMID: 18212068 DOI: 10.1128/mcb.01659-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although chromatin structure is known to affect transcriptional activity, it is not clear how broadly patterns of changes in histone modifications and nucleosome occupancy affect the dynamic regulation of transcription in response to perturbations. The identity and role of chromatin remodelers that mediate some of these changes are also unclear. Here, we performed temporal genome-wide analyses of gene expression, nucleosome occupancy, and histone H4 acetylation during the response of yeast (Saccharomyces cerevisiae) to different stresses and report several findings. First, a large class of predominantly ribosomal protein genes, whose transcription was repressed during both heat shock and stationary phase, showed strikingly contrasting histone acetylation patterns. Second, the SWI/SNF complex was required for normal activation as well as repression of genes during heat shock, and loss of SWI/SNF delayed chromatin remodeling at the promoters of activated genes. Third, Snf2 was recruited to ribosomal protein genes and Hsf1 target genes, and its occupancy of this large set of genes was altered during heat shock. Our results suggest a broad and direct dual role for SWI/SNF in chromatin remodeling, during heat shock activation as well as repression, at promoters and coding regions.
Collapse
|
118
|
Teif VB. General transfer matrix formalism to calculate DNA-protein-drug binding in gene regulation: application to OR operator of phage lambda. Nucleic Acids Res 2007; 35:e80. [PMID: 17526526 PMCID: PMC1920246 DOI: 10.1093/nar/gkm268] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 11/24/2022] Open
Abstract
The transfer matrix methodology is proposed as a systematic tool for the statistical-mechanical description of DNA-protein-drug binding involved in gene regulation. We show that a genetic system of several cis-regulatory modules is calculable using this method, considering explicitly the site-overlapping, competitive, cooperative binding of regulatory proteins, their multilayer assembly and DNA looping. In the methodological section, the matrix models are solved for the basic types of short- and long-range interactions between DNA-bound proteins, drugs and nucleosomes. We apply the matrix method to gene regulation at the O(R) operator of phage lambda. The transfer matrix formalism allowed the description of the lambda-switch at a single-nucleotide resolution, taking into account the effects of a range of inter-protein distances. Our calculations confirm previously established roles of the contact CI-Cro-RNAP interactions. Concerning long-range interactions, we show that while the DNA loop between the O(R) and O(L) operators is important at the lysogenic CI concentrations, the interference between the adjacent promoters P(R) and P(RM) becomes more important at small CI concentrations. A large change in the expression pattern may arise in this regime due to anticooperative interactions between DNA-bound RNA polymerases. The applicability of the matrix method to more complex systems is discussed.
Collapse
Affiliation(s)
- Vladimir B Teif
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Street Kuprevich 5/2, 220141, Minsk, Belarus.
| |
Collapse
|
119
|
Tims HS, Widom J. Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods 2007; 41:296-303. [PMID: 17309840 PMCID: PMC1852467 DOI: 10.1016/j.ymeth.2007.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 01/02/2007] [Indexed: 10/23/2022] Open
Abstract
Macromolecular assemblies and machines undergo large-scale conformational changes as essential features of their normal function. Modern stopped-flow instrumentation and biotechnology combine to provide a powerful tool for characterizing the rates and natures of these conformational changes. Standard commercially available instruments provide extraordinary sensitivity and speed, allowing analysis of millisecond or longer timescale processes, with concentrations as low as a few nanomolar and volumes of just a few hundred microliters. One can now place specific dyes anywhere desired on a nucleic acid, and often on a protein as well. This ability allows the use of fluorescence resonance energy transfer experiments for detailed conformational analyses, even as the system is evolving rapidly over time following the initiation of a reaction. This approach is ideally suited for analysis of intrinsic properties of chromatin and of the machines that control chromatin assembly, disassembly, and function.
Collapse
Affiliation(s)
| | - Jonathan Widom
- Address editorial correspondence to: Jonathan Widom, Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA, Tel: 847.467.1887, Fax: 847.467.6489, e-mail:
| |
Collapse
|
120
|
Hebbar PB, Archer TK. Chromatin-dependent cooperativity between site-specific transcription factors in vivo. J Biol Chem 2006; 282:8284-91. [PMID: 17186943 PMCID: PMC2528297 DOI: 10.1074/jbc.m610554200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accessing binding sites in DNA wrapped around histones in condensed chromatin is an obstacle that transcription factors must overcome to regulate gene expression. Here we demonstrate cooperativity between two transcription factors, the glucocorticoid receptor (GR) and nuclear factor 1 (NF1) to bind the mouse mammary tumor virus promoter organized as regular chromatin in vivo. This cooperativity is not observed when the promoter is introduced transiently into cells. Using RNA interference to deplete NF1 protein levels in the cells, we confirmed that NF1 promotes binding of GR to the promoter. Furthermore, we observed a similar synergism between GR and NF1 binding on the endogenous 11beta-hydroxysteroid dehydrogenase promoter, also regulated by GR and NF1. Our results suggest that the chromatin architecture of the promoters does not permit strong association of GR in the absence of NF1. Therefore we propose that cooperativity among DNA binding factors in binding to their cognate recognition sites in chromatin may be an important feature in the regulation of gene expression.
Collapse
Affiliation(s)
| | - Trevor K. Archer
- To whom correspondence should be addressed: Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 Alexander Dr., MD D4−01, P.O Box 12233, Research Triangle Park, NC 27709. Tel.: 919−316−4565; Fax: 919−316−4566; E-mail:
| |
Collapse
|
121
|
Gershenzon NI, Trifonov EN, Ioshikhes IP. The features of Drosophila core promoters revealed by statistical analysis. BMC Genomics 2006; 7:161. [PMID: 16790048 PMCID: PMC1538597 DOI: 10.1186/1471-2164-7-161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/21/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. RESULTS Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE), and Motif Ten Element (MTE), as well as core elements discovered in Human (TFIIB Recognition Element (BRE) and Downstream Core Element (DCE)). Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE) were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s). Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. CONCLUSION We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species.
Collapse
Affiliation(s)
- Naum I Gershenzon
- Department of Biomedical Informatics, The Ohio State University, 333 West 10Avenue, Columbus OH 43210, USA
- Department of Physics, Wright State University, Dayton OH 45435, USA
| | - Edward N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | - Ilya P Ioshikhes
- Department of Biomedical Informatics, The Ohio State University, 333 West 10Avenue, Columbus OH 43210, USA
| |
Collapse
|
122
|
Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006; 34:2653-62. [PMID: 16714444 PMCID: PMC1464108 DOI: 10.1093/nar/gkl338] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Histone post-translational modifications occur, not only in the N-terminal tail domains, but also in the core domains. While modifications in the N-terminal tail function largely through the regulation of the binding of non-histone proteins to chromatin, based on their location in the nucleosome, core domain modifications may also function through distinct mechanisms involving structural alterations to the nucleosome. This article reviews the recent developments in regards to these novel histone modifications and discusses their important role in the regulation of chromatin structure.
Collapse
Affiliation(s)
| | - Mark R. Parthun
- To whom correspondence should be addressed. Tel: +1 614 292 6215; Fax: +1 614 292 4118;
| |
Collapse
|
123
|
Ligr M, Siddharthan R, Cross FR, Siggia ED. Gene expression from random libraries of yeast promoters. Genetics 2006; 172:2113-22. [PMID: 16415362 PMCID: PMC1456374 DOI: 10.1534/genetics.105.052688] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomewide techniques to assay gene expression and transcription factor binding are in widespread use, but are far from providing predictive rules for the function of regulatory DNA. To investigate more intensively the grammar rules for active regulatory sequence, we made libraries from random ligations of a very restricted set of sequences. Working with the yeast Saccharomyces cerevisiae, we developed a novel screen based on the sensitivity of ascospores lacking dityrosine to treatment with lytic enzymes. We tested two separate libraries built by random ligation of a single type of activator site either for a well-characterized sporulation factor, Ndt80, or for a new sporulation-specific regulatory site that we identified and several neutral spacer elements. This selective system achieved up to 1:10(4) enrichment of the artificial sequences that were active during sporulation, allowing a high-throughput analysis of large libraries of synthetic promoters. This is not practical with methods involving direct screening for expression, such as those based on fluorescent reporters. There were very few false positives, since active promoters always passed the screen when retested. The survival rate of our libraries containing roughly equal numbers of spacers and activators was a few percent that of libraries made from activators alone. The sequences of approximately 100 examples of active and inactive promoters could not be distinguished by simple binary rules; instead, the best model for the data was a linear regression fit of a quantitative measure of gene activity to multiple features of the regulatory sequence.
Collapse
Affiliation(s)
- Martin Ligr
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
124
|
Granek JA, Clarke ND. Explicit equilibrium modeling of transcription-factor binding and gene regulation. Genome Biol 2005; 6:R87. [PMID: 16207358 PMCID: PMC1257470 DOI: 10.1186/gb-2005-6-10-r87] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/17/2005] [Accepted: 08/30/2005] [Indexed: 12/02/2022] Open
Abstract
A computational model, GOMER, is presented that predicts transcription-factor binding and incorporates effects of cooperativity and competition. We have developed a computational model that predicts the probability of transcription factor binding to any site in the genome. GOMER (generalizable occupancy model of expression regulation) calculates binding probabilities on the basis of position weight matrices, and incorporates the effects of cooperativity and competition by explicit calculation of coupled binding equilibria. GOMER can be used to test hypotheses regarding gene regulation that build upon this physically principled prediction of protein-DNA binding.
Collapse
Affiliation(s)
- Joshua A Granek
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, North Wolfe Street, Baltimore, MD 21205, USA
- National Evolutionary Synthesis Center, Broad Street, Durham, NC 27705, USA
| | - Neil D Clarke
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, North Wolfe Street, Baltimore, MD 21205, USA
- Genome Institute of Singapore, Biopolis Street, Singapore 138672, Republic of Singapore
| |
Collapse
|
125
|
Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Kuhlman T, Phillips R. Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev 2005; 15:125-35. [PMID: 15797195 PMCID: PMC3462814 DOI: 10.1016/j.gde.2005.02.006] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the increasing amount of experimental data on gene expression and regulation, there is a growing need for quantitative models to describe the data and relate them to their respective context. Thermodynamic models provide a useful framework for the quantitative analysis of bacterial transcription regulation. This framework can facilitate the quantification of vastly different forms of gene expression from several well-characterized bacterial promoters that are regulated by one or two species of transcription factors; it is useful because it requires only a few parameters. As such, it provides a compact description useful for higher-level studies (e.g. of genetic networks) without the need to invoke the biochemical details of every component. Moreover, it can be used to generate hypotheses on the likely mechanisms of transcriptional control.
Collapse
|
126
|
Cairns BR. Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr Opin Genet Dev 2005; 15:185-90. [PMID: 15797201 DOI: 10.1016/j.gde.2005.01.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chromatin remodeling complexes all have an ATPase subunit important for nucleosome remodeling, but are diversified and specialized by additional associated proteins. Remodelers have well-established roles in a wide range of chromosomal processes, including transcriptional regulation and chromatin assembly. Recent work, however, has revealed remarkable new functions for remodelers, such as histone variant deposition, cohesin function, and RNA transcript elongation and termination. Remodeler complexes are tailored both compositionally and mechanistically to perform particular chromatin functions.
Collapse
Affiliation(s)
- Bradley R Cairns
- Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|
127
|
Franco N, Lamartine J, Frouin V, Le Minter P, Petat C, Leplat JJ, Libert F, Gidrol X, Martin MT. Low-Dose Exposure to γ Rays Induces Specific Gene Regulations in Normal Human Keratinocytes. Radiat Res 2005; 163:623-35. [PMID: 15913394 DOI: 10.1667/rr3391] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin is the organ most exposed to various environmental aggressors, including ionizing radiation. Low-dose and low-dose-rate exposures to gamma rays account for most occupational, medical or environmental irradiations. To examine whether this type of exposure triggers specific molecular responses, cultured primary keratinocytes isolated from adult normal skin were irradiated with single acute doses of 1 cGy or 2 Gy. DNA microarrays containing 10,500 probes were used to assess transcriptional changes over a time course between 3 and 72 h postirradiation. Keratinocytes were studied at a differentiated stage to mimic the response of cells from the suprabasal layers of the epidermis. A major finding of this study was the identification of an important number of low-dose-specific genes (140), most of which were modulated at 48 h. Clustering analysis also revealed low-dose-specific profiles. One of these clusters (17 known genes) was further analyzed using Gibbs sampling algorithm, which led to the identification of 7 putative promoter sequences. These results show for the first time that low-dose ionizing radiation is able to induce specific transcriptional responses in human keratinocytes. Our findings support the potential usefulness of microarrays in biological dosimetry studies after low-dose exposures.
Collapse
Affiliation(s)
- Noreli Franco
- Service de Génomique Fonctionnelle, CEA, 91057, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Mol Cell 2005; 18:735-48. [PMID: 15949447 DOI: 10.1016/j.molcel.2005.05.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/27/2005] [Accepted: 05/05/2005] [Indexed: 01/16/2023]
Abstract
In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.
Collapse
Affiliation(s)
- Edward A Sekinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
129
|
Chen L, Widom J. Mechanism of Transcriptional Silencing in Yeast. Cell 2005; 120:37-48. [PMID: 15652480 DOI: 10.1016/j.cell.2004.11.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 09/30/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
Transcriptional silencing is a phenomenon in which the transcription of a gene by RNA polymerase II or III is repressed or not, dependent only on the gene's chromosomal location. Two prevailing models exist for silencing: (1) steric hindrance in silenced chromatin inhibits the binding of upstream activator proteins or polymerase or (2) silencing primarily blocks steps downstream of transcription preinitiation complex formation. Here, we test these models quantitatively for the case of SIR2-dependent silencing in budding yeast, using foreign and endogenous reporter proteins, at transgenic and endogenous loci. Our results contradict both models and show instead that transcriptional silencing at several URA3 transgenes, and at the naturally silenced endogenous HMRa and HMLalpha mating type genes, acts downstream of gene activator protein binding to strongly reduce the occupancy of TFIIB, RNA polymerase II, and TFIIE at the silenced promoters.
Collapse
Affiliation(s)
- Lingyi Chen
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
130
|
Yarragudi A, Miyake T, Li R, Morse RH. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:9152-64. [PMID: 15456886 PMCID: PMC517901 DOI: 10.1128/mcb.24.20.9152-9164.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autonomously replicating sequence binding factor 1 (ABF1) and repressor/activator protein 1 (RAP1) from budding yeast are multifunctional, site-specific DNA-binding proteins, with roles in gene activation and repression, replication, and telomere structure and function. Previously we have shown that RAP1 can prevent nucleosome positioning in the vicinity of its binding site and have provided evidence that this ability to create a local region of "open" chromatin contributes to RAP1 function at the HIS4 promoter by facilitating binding and activation by GCN4. Here we examine and directly compare to that of RAP1 the ability of ABF1 to create a region of open chromatin near its binding site and to contribute to activated transcription at the HIS4, ADE5,7, and HIS7 promoters. ABF1 behaves similarly to RAP1 in these assays, but it shows some subtle differences from RAP1 in the character of the open chromatin region near its binding site. Furthermore, although the two factors can similarly enhance activated transcription at the promoters tested, RAP1 binding is continuously required for this enhancement, but ABF1 binding is not. These results indicate that ABF1 and RAP1 achieve functional similarity in part via mechanistically distinct pathways.
Collapse
|
131
|
Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL. Global nucleosome occupancy in yeast. Genome Biol 2004; 5:R62. [PMID: 15345046 PMCID: PMC522869 DOI: 10.1186/gb-2004-5-9-r62] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 07/16/2004] [Accepted: 08/04/2004] [Indexed: 11/18/2022] Open
Abstract
A genome-wide study of nucleosome occupancy at yeast promoters shows that promoters that regulate active genes, contain multiple conserved motifs, or contain Rap1 binding sites tend to be depleted of nucleosomes. Background Although eukaryotic genomes are generally thought to be entirely chromatin-associated, the activated PHO5 promoter in yeast is largely devoid of nucleosomes. We systematically evaluated nucleosome occupancy in yeast promoters by immunoprecipitating nucleosomal DNA and quantifying enrichment by microarrays. Results Nucleosome depletion is observed in promoters that regulate active genes and/or contain multiple evolutionarily conserved motifs that recruit transcription factors. The Rap1 consensus was the only binding motif identified in a completely unbiased search of nucleosome-depleted promoters. Nucleosome depletion in the vicinity of Rap1 consensus sites in ribosomal protein gene promoters was also observed by real-time PCR and micrococcal nuclease digestion. Nucleosome occupancy in these regions was increased by the small molecule rapamycin or, in the case of the RPS11B promoter, by removing the Rap1 consensus sites. Conclusions The presence of transcription factor-binding motifs is an important determinant of nucleosome depletion. Most motifs are associated with marked depletion only when they appear in combination, consistent with a model in which transcription factors act collaboratively to exclude nucleosomes and gain access to target sites in the DNA. In contrast, Rap1-binding sites cause marked depletion under steady-state conditions. We speculate that nucleosome depletion enables Rap1 to define chromatin domains and alter them in response to environmental cues.
Collapse
Affiliation(s)
- Bradley E Bernstein
- Department of Chemistry and Chemical Biology, Bauer Center for Genomics Research, and Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chih Long Liu
- Department of Chemistry and Chemical Biology, Bauer Center for Genomics Research, and Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Emily L Humphrey
- Department of Chemistry and Chemical Biology, Bauer Center for Genomics Research, and Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ethan O Perlstein
- Department of Chemistry and Chemical Biology, Bauer Center for Genomics Research, and Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Bauer Center for Genomics Research, and Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
132
|
Li YJ, Fu XH, Liu DP, Liang CC. Opening the chromatin for transcription. Int J Biochem Cell Biol 2004; 36:1411-23. [PMID: 15147721 DOI: 10.1016/j.biocel.2003.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 11/05/2003] [Indexed: 10/26/2022]
Abstract
Eukaryotic genomes are packaged into a dynamic hierarchy chromatin structure. In such a particular context, the transition from a repressed compacted chromatin to a rather extended fiber is necessary for transcription. The chromatin opening includes three events, the initial factor getting access to nucleosome DNA, local chromatin opening mediated by activator/coactivator, and transcription associated with extensive chromatin opening. Chromatin dynamics, which is DNA sequence dependent, and also occurs in condensed fiber, provides the opportunity for activators binding to DNA. Coactivators recruited by the activator open the chromatin locally. However, it appears that genes adopt distinct chromatin opening mechanisms according to whether the gene is induced expression, developmental and tissue-specific expression, or constitutive expression. In contrast to transcription initiation-related local chromatin opening, large scale of chromatin opening is associated with a functional enhancer as well as high transcription rate. How the transcription initiated from an enhancer or enhancer like modules, i.e. intergenic transcription, conducts the extensive chromatin opening is discussed. A model for long-range interaction that non-coding transcripts from enhancers may promote efficient communication with promoters is proposed.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, R514, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China.
| | | | | | | |
Collapse
|
133
|
Angelov D, Lenouvel F, Hans F, Müller CW, Bouvet P, Bednar J, Moudrianakis EN, Cadet J, Dimitrov S. The histone octamer is invisible when NF-kappaB binds to the nucleosome. J Biol Chem 2004; 279:42374-82. [PMID: 15269206 DOI: 10.1074/jbc.m407235200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NF-kappaB is involved in the transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-kappaB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-kappaB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-kappaB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-kappaB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-kappaB p50-nucleosome complex exhibits, however, local structural alterations within the NF-kappaB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-kappaB p50-DNA complex. Our data suggest that NF-kappaB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-kappaB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.
Collapse
Affiliation(s)
- Dimitar Angelov
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Li G, Widom J. Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 2004; 11:763-9. [PMID: 15258568 DOI: 10.1038/nsmb801] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 05/12/2004] [Indexed: 12/19/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded, creating obstacles for polymerase, regulatory, remodeling, repair and recombination complexes, which require access to the wrapped DNA. How such complexes recognize and gain access to their DNA target sites is not known. Here we report the direct detection of a dynamic equilibrium conformational transition in nucleosomes that greatly increases the distance between the end of the nucleosomal DNA and the histone core. We quantified the equilibrium constant for this transition under physiological conditions. As predicted by these findings, addition of LexA protein to nucleosomes containing the LexA target site drives this conformational equilibrium toward the unwrapped, accessible state, simultaneously allowing stable LexA binding. This inherent property of nucleosomes allows any protein, whether an energy-dependent machine or a passive binder, to gain access even to buried stretches of nucleosomal DNA.
Collapse
Affiliation(s)
- Gu Li
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
135
|
Banerjee N, Zhang MQ. Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res 2004; 31:7024-31. [PMID: 14627835 PMCID: PMC290262 DOI: 10.1093/nar/gkg894] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription regulation in eukaryotes is known to occur through the coordinated action of multiple transcription factors (TFs). Recently, a few genome-wide transcription studies have begun to explore the combinatorial nature of TF interactions. We propose a novel approach that reveals how multiple TFs cooperate to regulate transcription in the yeast cell cycle. Our method integrates genome-wide gene expression data and chromatin immunoprecipitation (ChIP-chip) data to discover more biologically relevant synergistic interactions between different TFs and their target genes than previous studies. Given any pair of TFs A and B, we define a novel measure of cooperativity between the two TFs based on the expression patterns of sets of target genes of only A, only B, and both A and B. If the cooperativity measure is significant then there is reason to postulate that the presence of both TFs is needed to influence gene expression. Our results indicate that many cooperative TFs that were previously characterized experimentally indeed have high values of cooperativity measures in our analysis. In addition, we propose several novel, experimentally testable predictions of cooperative TFs that play a role in the cell cycle and other biological processes. Many of them hold interesting clues for cross talk between the cell cycle and other processes including metabolism, stress response and pseudohyphal differentiation. Finally, we have created a web tool where researchers can explore the exhaustive list of cooperative TFs and survey the graphical representation of the target genes' expression profiles. The interface includes a tool to dynamically draw a TF cooperativity network of 113 TFs with user-defined significance levels. This study is an example of how systematic combination of diverse data types along with new functional genomic approaches can provide a rigorous platform to map TF interactions more efficiently.
Collapse
Affiliation(s)
- Nilanjana Banerjee
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
136
|
Bi X, Yu Q, Sandmeier JJ, Zou Y. Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol Cell Biol 2004; 24:2118-31. [PMID: 14966290 PMCID: PMC350542 DOI: 10.1128/mcb.24.5.2118-2131.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic genome is divided into chromosomal domains of distinct gene activities. Transcriptionally silent chromatin tends to encroach upon active chromatin. Barrier elements that can block the spread of silent chromatin have been documented, but the mechanisms of their function are not resolved. We show that the prokaryotic LexA protein can function as a barrier to the propagation of transcriptionally silent chromatin in yeast. The barrier function of LexA correlates with its ability to disrupt local chromatin structure. In accord with this, (CCGNN)(n) and poly(dA-dT), both of which do not favor nucleosome formation, can also act as efficient boundaries of silent chromatin. Moreover, we show that a Rap1p-binding barrier element also disrupts chromatin structure. These results demonstrate that nucleosome exclusion is one of the mechanisms for the establishment of boundaries of silent chromatin domains.
Collapse
Affiliation(s)
- Xin Bi
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | | | | | | |
Collapse
|
137
|
Vitolo JM, Yang Z, Basavappa R, Hayes JJ. Structural features of transcription factor IIIA bound to a nucleosome in solution. Mol Cell Biol 2004; 24:697-707. [PMID: 14701742 PMCID: PMC343799 DOI: 10.1128/mcb.24.2.697-707.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Assembly of a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene into a nucleosome greatly restricts binding of the 5S gene-specific transcription factor IIIA (TFIIIA) to the 5S internal promoter. However, TFIIIA binds with high affinity to 5S nucleosomes lacking the N-terminal tail domains of the core histones or to nucleosomes in which these domains are hyperacetylated. The degree to which tail acetylation or removal improves TFIIIA binding cannot be simply explained by a commensurate change in the general accessibility of nucleosomal DNA. In order to investigate the molecular basis of how TFIIIA binds to the nucleosome and to ascertain if binding involves all nine zinc fingers and/or displacement of histone-DNA interactions, we examined the TFIIIA-nucleosome complex by hydroxyl radical footprinting and site-directed protein-DNA cross-linking. Our data reveal that the first six fingers of TFIIIA bind and displace approximately 20 bp of histone-DNA interactions at the periphery of the nucleosome, while binding of fingers 7 to 9 appears to overlap with histone-DNA interactions. Molecular modeling based on these results and the crystal structures of a nucleosome core and a TFIIIA-DNA cocomplex yields a precise picture of the ternary complex and a potentially important intermediate in the transition from naïve chromatin structure to productive polymerase III transcription complex.
Collapse
Affiliation(s)
- Joseph M Vitolo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14625, USA
| | | | | | | |
Collapse
|
138
|
Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T. Sin mutations alter inherent nucleosome mobility. EMBO J 2004; 23:343-53. [PMID: 14726954 PMCID: PMC1271755 DOI: 10.1038/sj.emboj.7600047] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/26/2003] [Indexed: 11/09/2022] Open
Abstract
Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chantal Rencurel
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Helder Ferreira
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola Wiechens
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tom Owen-Hughes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Tel.: +44 1382 345796; Fax: +44 1382 348072; E-mail:
| |
Collapse
|
139
|
Ragab A, Travers A. HMG-D and histone H1 alter the local accessibility of nucleosomal DNA. Nucleic Acids Res 2004; 31:7083-9. [PMID: 14654683 PMCID: PMC291865 DOI: 10.1093/nar/gkg923] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.
Collapse
Affiliation(s)
- Anan Ragab
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
140
|
Ishii H, Sen R, Pazin MJ. Combinatorial control of DNase I-hypersensitive site formation and erasure by immunoglobulin heavy chain enhancer-binding proteins. J Biol Chem 2003; 279:7331-8. [PMID: 14660676 DOI: 10.1074/jbc.m308973200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNase I-hypersensitive sites in cellular chromatin are usually believed to be nucleosome-free regions generated by transcription factor binding. Using a cell-free system we show that hypersensitivity does not simply correlate with the number of DNA-bound proteins. Specifically, the leucine zipper containing basic helix-loop-helix protein TFE3 was sufficient to induce a DNase I-hypersensitive site at the immunoglobulin heavy chain micro enhancer in vitro. TFE3 enhanced binding of an ETS protein PU.1 to the enhancer. However, PU.1 binding erased the DNase I-hypersensitive site without abolishing TFE3 binding. Furthermore, TFE3 binding enhanced transcription in the presence and absence of a hypersensitive site, whereas endonuclease accessibility correlated strictly with DNase I hypersensitivity. We infer that chromatin constraints for transcription and nuclease sensitivity can differ.
Collapse
Affiliation(s)
- Haruhiko Ishii
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
141
|
Chiang DY, Moses AM, Kellis M, Lander ES, Eisen MB. Phylogenetically and spatially conserved word pairs associated with gene-expression changes in yeasts. Genome Biol 2003; 4:R43. [PMID: 12844359 PMCID: PMC193630 DOI: 10.1186/gb-2003-4-7-r43] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 04/28/2003] [Accepted: 05/15/2003] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Transcriptional regulation in eukaryotes often involves multiple transcription factors binding to the same transcription control region, and to understand the regulatory content of eukaryotic genomes it is necessary to consider the co-occurrence and spatial relationships of individual binding sites. The determination of conserved sequences (often known as phylogenetic footprinting) has identified individual transcription factor binding sites. We extend this concept of functional conservation to higher-order features of transcription control regions. RESULTS We used the genome sequences of four yeast species of the genus Saccharomyces to identify sequences potentially involved in multifactorial control of gene expression. We found 989 potential regulatory 'templates': pairs of hexameric sequences that are jointly conserved in transcription regulatory regions and also exhibit non-random relative spacing. Many of the individual sequences in these templates correspond to known transcription factor binding sites, and the sets of genes containing a particular template in their transcription control regions tend to be differentially expressed in conditions where the corresponding transcription factors are known to be active. The incorporation of word pairs to define sequence features yields more specific predictions of average expression profiles and more informative regression models for genome-wide expression data than considering sequence conservation alone. CONCLUSIONS The incorporation of both joint conservation and spacing constraints of sequence pairs predicts groups of target genes that are specific for common patterns of gene expression. Our work suggests that positional information, especially the relative spacing between transcription factor binding sites, may represent a common organizing principle of transcription control regions.
Collapse
Affiliation(s)
- Derek Y Chiang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Alan M Moses
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Manolis Kellis
- Whitehead/MIT Center for Genome Research, Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S Lander
- Whitehead/MIT Center for Genome Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Eisen
- Department of Genome Sciences, Life Sciences Division, Ernest Orlando Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Center for Integrative Genomics and Division of Genetics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
142
|
Buchler NE, Gerland U, Hwa T. On schemes of combinatorial transcription logic. Proc Natl Acad Sci U S A 2003; 100:5136-41. [PMID: 12702751 PMCID: PMC404558 DOI: 10.1073/pnas.0930314100] [Citation(s) in RCA: 445] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Indexed: 11/18/2022] Open
Abstract
Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system. Using a quantitative model of bacterial transcription and invoking only specific protein-DNA interaction and weak glue-like interaction between regulatory proteins, we show explicit schemes to implement regulatory logic functions of increasing complexity by appropriately selecting the strengths and arranging the relative positions of the relevant protein-binding DNA sequences in the cis-regulatory region. The architectures that emerge are naturally modular and evolvable. Our results suggest that the transcription regulatory apparatus is a "programmable" computing machine, belonging formally to the class of Boltzmann machines. Crucial to our results is the ability to regulate gene expression at a distance. In bacteria, this can be achieved for isolated genes via DNA looping controlled by the dimerization of DNA-bound proteins. However, if adopted extensively in the genome, long-distance interaction can cause unintentional intergenic cross talk, a detrimental side effect difficult to overcome by the known bacterial transcription-regulation systems. This may be a key factor limiting the genome-wide adoption of complex transcription control in bacteria. Implications of our findings for combinatorial transcription control in eukaryotes are discussed.
Collapse
Affiliation(s)
- Nicolas E Buchler
- Department of Physics and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92093-0319, USA
| | | | | |
Collapse
|