101
|
Doxorubicin Embedded into Nanofibrillated Bacterial Cellulose (NFBC) Produces a Promising Therapeutic Outcome for Peritoneally Metastatic Gastric Cancer in Mice Models via Intraperitoneal Direct Injection. NANOMATERIALS 2021; 11:nano11071697. [PMID: 34203462 PMCID: PMC8307241 DOI: 10.3390/nano11071697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Natural materials such as bacterial cellulose are gaining interest for their use as drug-delivery vehicles. Herein, the utility of nanofibrillated bacterial cellulose (NFBC), which is produced by culturing a cellulose-producing bacterium (Gluconacetobacter intermedius NEDO-01) in a medium supplemented with carboxymethylcellulose (CMC) that is referred to as CM-NFBC, is described. Recently, we demonstrated that intraperitoneal administration of paclitaxel (PTX)-containing CM-NFBC efficiently suppressed tumor growth in a peritoneally disseminated cancer xenograft model. In this study, to confirm the applicability of NFBC in cancer therapy, a chemotherapeutic agent, doxorubicin (DXR), embedded into CM-NFBC, was examined for its efficiency to treat a peritoneally disseminated gastric cancer via intraperitoneal administration. DXR was efficiently embedded into CM-NFBC (DXR/CM-NFBC). In an in vitro release experiment, 79.5% of DXR was released linearly into the peritoneal wash fluid over a period of 24 h. In the peritoneally disseminated gastric cancer xenograft model, intraperitoneal administration of DXR/CM-NFBC induced superior tumor growth inhibition (TGI = 85.5%) by day 35 post-tumor inoculation, compared to free DXR (TGI = 62.4%). In addition, compared with free DXR, the severe side effects that cause body weight loss were lessened via treatment with DXR/CM-NFBC. These results support the feasibility of CM-NFBC as a drug-delivery vehicle for various anticancer agents. This approach may lead to improved therapeutic outcomes for the treatment of intraperitoneally disseminated cancers.
Collapse
|
102
|
Properties of Bacterial Cellulose Produced Using White and Red Grape Bagasse as a Nutrient Source. Processes (Basel) 2021. [DOI: 10.3390/pr9071088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The purpose of the study is to investigate the possibility of using wine industry wastes, such as red and white grape bagasse, to produce bacterial cellulose (BC) instead of using a costly commercial medium. BC was produced using grape bagasse as a carbon source replacement and the sole nutrient in the medium. The BC films were evaluated for their productivity and water-holding capacity. The BC films were also investigated for their morphology using scanning electron microscopy (SEM), their viscoelastic properties using dynamic mechanical analysis (DMA), and their chemical composition using Fourier-transform infrared spectroscopy (FTIR). Although the use of grape bagasse as the sole nutrient was successful in the preparation of BC, the BC films had inferior viscoelastic properties to other produced BC films. White grape bagasse proved to be an excellent carbon substitute as the production of BC and its water-holding capacity were five times higher and the produced BC films were up to 72% more flexible than the bacterial cellulose produced using standard HS medium.
Collapse
|
103
|
Bertsch P, Etter D, Fischer P. Transient in situ measurement of kombucha biofilm growth and mechanical properties. Food Funct 2021; 12:4015-4020. [PMID: 33978026 DOI: 10.1039/d1fo00630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kombucha is a traditional beverage obtained by the fermentation of sugared tea by a symbiotic culture of bacteria and yeast which has recently re-emerged as a popular lifestyle product with potential health benefits. The characteristic feature of kombucha is the formation of a cellulosic biofilm due to the excretion of bacterial cellulose with high purity and crystallinity. Despite the growing industrial and technological interest in kombucha, current characterization techniques rely on the periodic sampling of tea broth or biofilm and ex situ analysis of its biochemical or microbial composition. Here, we use interfacial shear rheology (ISR) for the transient in situ determination of kombucha biofilm growth directly at the interface. ISR revealed that kombucha biofilm formation is a two step process with clearly distinguishable growth phases. The first phase can be attributed to the initial adsorption of bacteria at the air-water interface and shows great variability, probably due to varying bacteria content and composition. The second phase is initiated by bacterial cellulose excretion and shows astonishing reproducibility regarding onset and final mechanical properties. Hence, ISR qualifies as a new in situ characterization technique for kombucha biofilm growth and bacterial cellulose production.
Collapse
Affiliation(s)
- Pascal Bertsch
- Institute of Food Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Danai Etter
- Institute of Food Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland. and Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
| | - Peter Fischer
- Institute of Food Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
104
|
Orlovska I, Podolich O, Kukharenko O, Zaets I, Reva O, Khirunenko L, Zmejkoski D, Rogalsky S, Barh D, Tiwari S, Kumavath R, Góes-Neto A, Azevedo V, Brenig B, Ghosh P, de Vera JP, Kozyrovska N. Bacterial Cellulose Retains Robustness but Its Synthesis Declines After Exposure to a Mars-like Environment Simulated Outside the International Space Station. ASTROBIOLOGY 2021; 21:706-717. [PMID: 33646011 DOI: 10.1089/ast.2020.2332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose is a widespread macromolecule in terrestrial environments and a major architectural component of microbial biofilm. Therefore, cellulose might be considered a biosignature that indicates the presence of microbial life. We present, for the first time, characteristics of bacterial cellulose after long-term spaceflight and exposure to simuled Mars-like stressors. The pristine cellulose-based pellicle membranes from a kombucha microbial community (KMC) were exposed outside the International Space Station, and after their return to Earth, the samples were reactivated and cultured for 2.5 years to discern whether the KMC could be restored. Analyses of cellulose polymer integrity and mechanical properties of cellulose-based pellicle films, as well as the cellulose biosynthesis-related genes' structure and expression, were performed. We observed that (i) the cellulose polymer integrity was not significantly changed under Mars-like conditions; (ii) de novo cellulose production was 1.5 times decreased in exposed KMC samples; (iii) the dry cellulose yield from the reisolated Komagataeibacter oboediens was 1.7 times lower than by wild type; (iv) there was no significant change in mechanical properties of the de novo synthesized cellulose-based pellicles produced by the exposed KMCs and K. oboediens; and (v) the gene, encoding biosynthesis of cellulose (bcsA) of the K. oboediens, was downregulated, and no topological change or mutation was observed in any of the bcs operon genes, indicating that the decreased cellulose production by the space-exposed samples was probably due to epigenetic regulation. Our results suggest that the cellulose-based pellicle could be a good material with which to protect microbial communities during space journeys, and the cellulose produced by KMC members could be suitable in the fabrication of consumer goods for extraterrestrial locations.
Collapse
Affiliation(s)
- Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Danica Zmejkoski
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sergiy Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, West Bengal, India
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala Tejaswini Hills, Kerala, India
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, Göttingen, Germany
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Planetary Laboratories, Astrobiological Laboratories, Berlin, Germany
| | | |
Collapse
|
105
|
Barja F. Bacterial nanocellulose production and biomedical applications. J Biomed Res 2021; 35:310-317. [PMID: 34253695 PMCID: PMC8383174 DOI: 10.7555/jbr.35.20210036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Bacterial nanocellulose (BNC) is a homopolymer of β-1,4 linked glycose, which is synthesized by Acetobacter using simple culturing methods to allow inexpensive and environmentally friendly small- and large-scale production. Depending on the growth media and types of fermentation methods, ultra-pure cellulose can be obtained with different physio-chemical characteristics. Upon biosynthesis, bacterial cellulose is assembled in the medium into a nanostructured network of glucan polymers that are semitransparent, mechanically highly resistant, but soft and elastic, and with a high capacity to store water and exchange gasses. BNC, generally recognized as safe as well as one of the most biocompatible materials, has been found numerous medical applications in wound dressing, drug delivery systems, and implants of heart valves, blood vessels, tympanic membranes, bones, teeth, cartilages, cornea, and urinary tracts.
Collapse
Affiliation(s)
- François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, 1211 Genève-4, Switzerland
| |
Collapse
|
106
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
107
|
Li Z, Chen SQ, Cao X, Li L, Zhu J, Yu H. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Komagataeibacter hansenii ATCC 53582. J Microbiol Biotechnol 2021; 31:429-438. [PMID: 33323677 PMCID: PMC9705897 DOI: 10.4014/jmb.2010.10054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.
Collapse
Affiliation(s)
- Zhaofeng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Si-Qian Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Xiao Cao
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China,Corresponding authors J. Zhu Phone: +86-769-22862195 Fax: +86-769-22861680 E-mail:
| | - Hongpeng Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China,H. Yu E-mail:
| |
Collapse
|
108
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
109
|
A SNP in the Cache 1 Signaling Domain of Diguanylate Cyclase STM1987 Leads to Increased In Vivo Fitness of Invasive Salmonella Strains. Infect Immun 2021; 89:IAI.00810-20. [PMID: 33468583 DOI: 10.1128/iai.00810-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3',5')-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.
Collapse
|
110
|
Simeoni RB, Mogharbel BF, Francisco JC, Miyague NI, Irioda AC, Souza CMCO, Souza D, Stricker PEF, da Rosa NN, Souza CF, Franco CRC, Sierakowski MR, Abdelwaid E, Guarita-Souza LC, Carvalho KA. Beneficial Roles of Cellulose Patch-Mediated Cell Therapy in Myocardial Infarction: A Preclinical Study. Cells 2021; 10:424. [PMID: 33671407 PMCID: PMC7922134 DOI: 10.3390/cells10020424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Biological scaffolds have become an attractive approach for repairing the infarcted myocardium and have been shown to facilitate constructive remodeling in injured tissues. This study aimed to investigate the possible utilization of bacterial cellulose (BC) membrane patches containing cocultured cells to limit myocardial postinfarction pathology. Myocardial infarction (MI) was induced by ligating the left anterior descending coronary artery in 45 Wistar rats, and patches with or without cells were attached to the hearts. After one week, the animals underwent echocardiography to assess for ejection fraction and left ventricular end-diastolic and end-systolic volumes. Following patch formation, the cocultured cells retained viability of >90% over 14 days in culture. The patch was applied to the myocardial surface of the infarcted area after staying 14 days in culture. Interestingly, the BC membrane without cellular treatment showed higher preservation of cardiac dimensions; however, we did not observe improvement in the left ventricular ejection fraction of this group compared to coculture-treated membranes. Our results demonstrated an important role for BC in supporting cells known to produce cardioprotective soluble factors and may thus provide effective future therapeutic outcomes for patients suffering from ischemic heart disease.
Collapse
Affiliation(s)
- Rossana B. Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Bassam F. Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Julio C. Francisco
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Nelson I. Miyague
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Ana C. Irioda
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Carolina M. C. O. Souza
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Daiany Souza
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Priscila E. Ferreira Stricker
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Nádia Nascimento da Rosa
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Clayton F. Souza
- Biopol, Chemistry Department, Federal University of Paraná, Avenue Cel. Francisco Heráclito dos Santos, 200, 81530-900 Curitiba, Paraná, Brazil; (C.F.S.); (M.-R.S.)
- Chemistry Undergraduate Program, School of Education and Humanities of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil
| | - Celia R. Cavichiolo Franco
- Molecular Biology Department, Federal University of Paraná, Avenue Cel. Francisco Heráclito dos Santos, 100, 81530-900 Curitiba, Paraná, Brazil;
| | - Maria-Rita Sierakowski
- Biopol, Chemistry Department, Federal University of Paraná, Avenue Cel. Francisco Heráclito dos Santos, 200, 81530-900 Curitiba, Paraná, Brazil; (C.F.S.); (M.-R.S.)
| | - Eltyeb Abdelwaid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14–725, Chicago, IL 60611, USA;
| | - Luiz C. Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Katherine A.T. Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| |
Collapse
|
111
|
Drozd R, Szymańska M, Żywicka A, Kowalska U, Rakoczy R, Kordas M, Konopacki M, Junka AF, Fijałkowski K. Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of Komagataeibacter xylinus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
112
|
Dhar P, Sugimura K, Yoshioka M, Yoshinaga A, Kamitakahara H. Synthesis-property-performance relationships of multifunctional bacterial cellulose composites fermented in situ alkali lignin medium. Carbohydr Polym 2021; 252:117114. [PMID: 33183586 DOI: 10.1016/j.carbpol.2020.117114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 11/15/2022]
Abstract
This work demonstrates a unique approach of utilizing alkali lignin (AL), as smart additive to in situ BC fermentation in which it concurrently acts as promoter to microbial growth as well as reinforcing filler for fabrication of multifunctional composites. Traditionally, BC fermentation is accompanied by inhibitor formation with sudden drop in pH leading to low yield and biomass growth. AL due to its antioxidant nature prevents formation of gluconic acid as byproduct, at ∼0.25 wt.% AL based on inhibitory byproduct kinetics. Interestingly, AL self-assembles to form primary and secondary structures in BC pores, resulting in simultaneous improvement in thermal stability as well as toughness. The BC/AL films show strong UV-blocking capacity with prolonged radical scavenging activity and preventing browning of freshly cut apples making it suitable as food packaging. Therefore, present work opens up new avenues for fabrication of high-performance BC-based composites through selection of smart materials which can simultaneously improve BC bioprocessing.
Collapse
Affiliation(s)
- Prodyut Dhar
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kazuki Sugimura
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mariko Yoshioka
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Arata Yoshinaga
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kamitakahara
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
113
|
Uto T, Ikeda Y, Sunagawa N, Tajima K, Yao M, Yui T. Molecular Dynamics Simulation of Cellulose Synthase Subunit D Octamer with Cellulose Chains from Acetic Acid Bacteria: Insight into Dynamic Behaviors and Thermodynamics on Substrate Recognition. J Chem Theory Comput 2021; 17:488-496. [PMID: 33382615 DOI: 10.1021/acs.jctc.0c01027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study reports the building of a computerized model and molecular dynamics (MD) simulation of cellulose synthase subunit D octamer (CesD) from Komagataeibacter hansenii. CesD was complexed with four cellulose chains having DP = 12 (G12) by model building, which revealed unexpected S-shaped pathways with bending regions. Combined conventional and accelerated MD simulations of CesD complex models were carried out, while the pyranose ring conformations of the glucose residues were restrained to avoid undesirable deviations of the ring conformation from the 4C1 form. The N-terminal regions and parts of the secondary structures of CesD established appreciable contacts with the G12 chains. Hybrid quantum mechanical (QM) and molecular mechanical (MM) simulations of the CesD complex model were performed. Glucose residues located at the pathway bends exhibited reversible changes to the ring conformation into either skewed or boat forms, which might be related to the function of CesD in regulating microfibril production.
Collapse
Affiliation(s)
- Takuya Uto
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| | - Yuki Ikeda
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| | - Naoki Sunagawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Toshifumi Yui
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| |
Collapse
|
114
|
Structure of the Bacterial Cellulose Ribbon and Its Assembly-Guiding Cytoskeleton by Electron Cryotomography. J Bacteriol 2021; 203:JB.00371-20. [PMID: 33199282 PMCID: PMC7811197 DOI: 10.1128/jb.00371-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
This work’s relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus Gluconacetobacter secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused-ion-beam milling of native bacterial biofilms to image cellulose-synthesizing Gluconacetobacter hansenii and Gluconacetobacter xylinus bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several micrometers in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, which we have named the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We found that this structure is not present in other cellulose-synthesizing bacterial species, Agrobacterium tumefaciens and Escherichia coli 1094, which do not produce organized cellulose ribbons. We therefore propose that the cortical belt holds the cellulose synthase complexes in a line to form higher-order cellulose structures, such as sheets and ribbons. IMPORTANCE This work’s relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. It puts forward a noncharacterized cytoskeleton element associated with the side of the cell where the cellulose synthesis occurs. This represents a step forward in the understanding of the cell-guided process of crystalline cellulose synthesis, studied specifically in the Gluconacetobacter genus and still not fully understood. Additionally, our successful attempt to use cryo-focused-ion-beam milling through biofilms to image the cells in their native environment will drive the community to use this tool for the morphological characterization of other studied biofilms.
Collapse
|
115
|
Zhong C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front Bioeng Biotechnol 2020; 8:605374. [PMID: 33415099 PMCID: PMC7783421 DOI: 10.3389/fbioe.2020.605374] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023] Open
Abstract
Bacterial cellulose (BC) is a natural biomaterial synthesized by bacteria. It possesses a unique structure of cellulose nanofiber-weaved three-dimensional reticulated network that endows it excellent mechanical properties, high water holding capability and outstanding suspension stability. It is also characterized with high purity, high degree of crystallinity, great biocompatibility and biodegradability. Due to these advantages, BC has gained great attentions in both academic and industrial areas. This critical review summarizes the up-to-date development of BC production and application from an industrial perspective. Firstly, a fundamental knowledge of BC's biosynthesis, structure and properties is described, and then recent developments in the industrial fermentation of BC are introduced. Subsequently, the latest commercial applications of BC in the areas of food, personal care, household chemicals, biomedicine, textile, composite resin are summarized. Finally, a brief discussion of future development of BC industry is presented at the end.
Collapse
|
116
|
Arteaga-Ballesteros BE, Guevara-Morales A, Martín-Martínez ES, Figueroa-López U, Vieyra H. Composite of polylactic acid and microcellulose from kombucha membranes. E-POLYMERS 2020. [DOI: 10.1515/epoly-2021-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Polylactic acid (PLA) is one of the main components of biodegradable and biocompatible composites. Bacterial cellulose from kombucha membranes is an excellent candidate to be used as a natural filler of eco-composites because it is renewable, has low cost, low density, and acceptable specific strength properties, and is biodegradable. The study aimed to prepare composites of PLA and bacterial cellulose to produce a biodegradable and compostable material. The bacterial microcellulose was obtained from kombucha membranes and blended with PLA by extrusion. The composites contained a PLA with 1%, 3%, and 5% of cellulose. We characterized the PLA, bacterial microcellulose, and composites to ascertain their size and aspect, degree of crystallinity, distribution of the cellulose into PLA, and their mechanical properties. We observed an increase in crystallinity proportional to the cellulose content for the blends and found that the 3% cellulose blend withstands the stress of up to 40 MPa and temperatures up to 120°C before distortion.
Collapse
Affiliation(s)
- Bárbara Estefanía Arteaga-Ballesteros
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe, Km. 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza , Estado de México , 52926 , México
| | - Andrea Guevara-Morales
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe, Km. 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza , Estado de México , 52926 , México
| | - Eduardo San Martín-Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694 , Colonia Irrigación C.P. 11500 , Ciudad de México
| | - Ulises Figueroa-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe, Km. 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza , Estado de México , 52926 , México
| | - Horacio Vieyra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo , Estado de México , 50110 , México
| |
Collapse
|
117
|
Scott W, Lowrance B, Anderson AC, Weadge JT. Identification of the Clostridial cellulose synthase and characterization of the cognate glycosyl hydrolase, CcsZ. PLoS One 2020; 15:e0242686. [PMID: 33264329 PMCID: PMC7710045 DOI: 10.1371/journal.pone.0242686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilms are community structures of bacteria enmeshed in a self-produced matrix of exopolysaccharides. The biofilm matrix serves numerous roles, including resilience and persistence, making biofilms a subject of research interest among persistent clinical pathogens of global health importance. Our current understanding of the underlying biochemical pathways responsible for biosynthesis of these exopolysaccharides is largely limited to Gram-negative bacteria. Clostridia are a class of Gram-positive, anaerobic and spore-forming bacteria and include the important human pathogens Clostridium perfringens, Clostridium botulinum and Clostridioides difficile, among numerous others. Several species of Clostridia have been reported to produce a biofilm matrix that contains an acetylated glucan linked to a series of hypothetical genes. Here, we propose a model for the function of these hypothetical genes, which, using homology modelling, we show plausibly encode a synthase complex responsible for polymerization, modification and export of an O-acetylated cellulose exopolysaccharide. Specifically, the cellulose synthase is homologous to that of the known exopolysaccharide synthases in Gram-negative bacteria. The remaining proteins represent a mosaic of evolutionary lineages that differ from the described Gram-negative cellulose exopolysaccharide synthases, but their predicted functions satisfy all criteria required for a functional cellulose synthase operon. Accordingly, we named these hypothetical genes ccsZABHI, for the Clostridial cellulose synthase (Ccs), in keeping with naming conventions for exopolysaccharide synthase subunits and to distinguish it from the Gram-negative Bcs locus with which it shares only a single one-to-one ortholog. To test our model and assess the identity of the exopolysaccharide, we subcloned the putative glycoside hydrolase encoded by ccsZ and solved the X-ray crystal structure of both apo- and product-bound CcsZ, which belongs to glycoside hydrolase family 5 (GH-5). Although not homologous to the Gram-negative cellulose synthase, which instead encodes the structurally distinct BcsZ belonging to GH-8, we show CcsZ displays specificity for cellulosic materials. This specificity of the synthase-associated glycosyl hydrolase validates our proposal that these hypothetical genes are responsible for biosynthesis of a cellulose exopolysaccharide. The data we present here allowed us to propose a model for Clostridial cellulose synthesis and serves as an entry point to an understanding of cellulose biofilm formation among class Clostridia.
Collapse
Affiliation(s)
- William Scott
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Brian Lowrance
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | - Joel T. Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- * E-mail:
| |
Collapse
|
118
|
Yadav C, Saini A, Zhang W, You X, Chauhan I, Mohanty P, Li X. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 2020; 166:1586-1616. [PMID: 33186649 DOI: 10.1016/j.ijbiomac.2020.11.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
"Nanocellulose" have captivated the topical sphere of sturdily escalating market for sustainable materials. The review focuses on the comprehensive understanding of the distinct surface chemistry and functionalities pertaining to the renovation of macro-cellulose at nanodimensional scale to provide an intuition of their processing-structure-function prospective. The abundant availability, cost effectiveness and diverse properties associated with plant-based resources have great economical perspective for developing sustainable cellulose nanomaterials. Hence, emphasis has been given on nanocellulose types obtained from plant-based sources. An overarching goal is to provide the recent advancement in the preparation routes of nanocellulose. Considering the excellent shear thinning/thixotropic/gel-like behavior, the review provids an assemblage of publications specifically dealing with its application as rheology modifier with emphasis on its use as bioink for 3D bioprinting for various biomedical applications. Altogether, this review has been oriented in a way to collocate a collective data starting from the historical perspective of cellulose discovery to modern cellulosic chemistry and its renovation as nanocellulose with recent technological hype for broad spanning applications.
Collapse
Affiliation(s)
- Chandravati Yadav
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Arun Saini
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiangyu You
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Indu Chauhan
- Department of Biotechnology, Dr B. R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
119
|
Systematic Analysis of Escherichia coli Isolates from Sheep and Cattle Suggests Adaption to the Rumen Niche. Appl Environ Microbiol 2020; 86:AEM.01417-20. [PMID: 32801187 DOI: 10.1128/aem.01417-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
The commonly used laboratory bacterium Escherichia coli normally does not produce and secrete cellulases due to its complex bilayer membrane structure and poor secretory apparatus. In our previous study, the cellulolytic E. coli strain ZH-4 with extracellular cellulase activity was found in the bovine rumen. In this study, we demonstrate that the secretion of cellulase is a common feature of E. coli isolates from the rumen of animals such as sheep and cattle. Physiological phenotype characterization of these E. coli isolates, together with genome, transcriptome, and comparative genomics analysis, suggests their adaption to the rumen niche. The higher growth rate of the isolated strains under aerobic conditions meets the competitive requirements of the strains in rumen microecosystem, while anaerobic accumulation of reduced H2 and succinate is hypothesized to be the results of adaptation to the rumen environment. Cellulase secretion increased significantly when the molecular chaperone genes ibpA and ibpB were overexpressed. This was also revealed by the transcriptomic data. A possible mechanism for cellulase secretion by E. coli isolates was proposed based on the transcriptomic data and molecular experiments.IMPORTANCE As an important intestinal microorganism, E. coli is present in the intestinal tract of animals and in many other environments. However, it normally does not produce and secret cellulases due to its complex bilayer membrane structure and poor secretory apparatus. Here, we proved that E. coli is widely present in the rumen of sheep and cattle. Systematic analysis of the isolates indicated that they have adapted to the rumen niche, with phenotypes that include secretion of cellulase and fermentative accumulation of succinate and H2 The finding that overexpression of small heat shock protein genes ibpA and ibpB could facilitate cellulase BcsZ secretion, which provides a possible insight into the protein secretion mechanism of rumen-colonizing E. coli.
Collapse
|
120
|
Musino D, Rivard C, Landrot G, Novales B, Rabilloud T, Capron I. Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. J Colloid Interface Sci 2020; 584:360-371. [PMID: 33080498 DOI: 10.1016/j.jcis.2020.09.082] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
In this study, we investigate the interactions between the cellulose surface and Ag nanoparticles (AgNPs) for the purpose of manufacturing hybrid nanomaterials using bacterial cellulose nanocrystals (BCNs) as a model substrate. We focus on the role of the BCN surface chemistry on the AgNP nucleation obtained by chemical reduction of Ag+ ions. Homogeneous hybrid suspensions of BCN/AgNP are produced, regardless of whether the BCNs are quasi-neutral, negatively (TBCNs) or positively charged (ABCNs). The characterization of BCN/AgNP hybrids identifies the -OH surface groups as nucleation points for AgNPs, of about 20 nm revealing that surface charges only improve the accessibility to OH groups. X-ray Absorption technics (XANES and EXAFS) revealed a high metallic Ag0 content ranging from 88% to 97%. Moreover, the grafting of hydrophobic molecules on a BCN surface (HBCNs) does not prevent AgNP nucleation, illustrating the versatility of our method and the possibility to obtain bifunctional NPs. A H2O2 redox post-treatment on the hybrid induces an increase in AgNPs size, up to 90 nm as well as a shape variation (i.e., triangular). In contrast, H2O2 induces no size/shape variation for aggregated hybrids, emphasizing that the accessibility to -OH groups ensures the nucleation of bigger Ag nano-objects.
Collapse
Affiliation(s)
| | - Camille Rivard
- SOLEIL Synchrotron, L'Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France; INRAE, TRANSFORM, 44316 Nantes, France.
| | - Gautier Landrot
- SOLEIL Synchrotron, L'Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France.
| | | | - Thierry Rabilloud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SYMMES, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France.
| | | |
Collapse
|
121
|
Lemnaru (Popa) GM, Truşcă RD, Ilie CI, Țiplea RE, Ficai D, Oprea O, Stoica-Guzun A, Ficai A, Dițu LM. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules 2020; 25:molecules25184069. [PMID: 32899912 PMCID: PMC7571097 DOI: 10.3390/molecules25184069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
The use of bacterial cellulose (BC) in skin wound treatment is very attractive due to its unique characteristics. These dressings’ wet environment is an important feature that ensures efficient healing. In order to enhance the antimicrobial performances, bacterial-cellulose dressings were loaded with amoxicillin and bacitracin as antibacterial agents. Infrared characterization and thermal analysis confirmed bacterial-cellulose binding to the drug. Hydration capacity showed good hydrophilicity, an efficient dressing’s property. The results confirmed the drugs’ presence in the bacterial-cellulose dressing’s structure as well as the antimicrobial efficiency against Staphylococcus aureus and Escherichia coli. The antimicrobial assessments were evaluated by contacting these dressings with the above-mentioned bacterial strains and evaluating the growth inhibition of these microorganisms.
Collapse
Affiliation(s)
- Georgiana-Mădălina Lemnaru (Popa)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Doina Truşcă
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Cornelia-Ioana Ilie
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Roxana Elena Țiplea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Ovidiu Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Correspondence: (O.O.); (A.F.)
| | - Anicuța Stoica-Guzun
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
| | - Anton Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.-M.L.); (R.D.T.); (C.-I.I.); (R.E.Ț.); (D.F.); (A.S.-G.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence: (O.O.); (A.F.)
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania; or
| |
Collapse
|
122
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
123
|
Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl Microbiol Biotechnol 2020; 104:6565-6585. [PMID: 32529377 PMCID: PMC7347698 DOI: 10.1007/s00253-020-10671-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
The strains of the Komagataeibacter genus have been shown to be the most efficient bacterial nanocellulose producers. Although exploited for many decades, the studies of these species focused mainly on the optimisation of cellulose synthesis process through modification of culturing conditions in the industrially relevant settings. Molecular physiology of Komagataeibacter was poorly understood and only a few studies explored genetic engineering as a strategy for strain improvement. Only since recently the systemic information of the Komagataeibacter species has been accumulating in the form of omics datasets representing sequenced genomes, transcriptomes, proteomes and metabolomes. Genetic analyses of the mutants generated in the untargeted strain modification studies have drawn attention to other important proteins, beyond those of the core catalytic machinery of the cellulose synthase complex. Recently, modern molecular and synthetic biology tools have been developed which showed the potential for improving targeted strain engineering. Taking the advantage of the gathered knowledge should allow for better understanding of the genotype–phenotype relationship which is necessary for robust modelling of metabolism as well as selection and testing of new molecular engineering targets. In this review, we discuss the current progress in the area of Komagataeibacter systems biology and its impact on the research aimed at scaled-up cellulose synthesis as well as BNC functionalisation.Key points • The accumulated omics datasets advanced the systemic understanding of Komagataeibacter physiology at the molecular level. • Untargeted and targeted strain modification approaches have been applied to improve nanocellulose yield and properties. • The development of modern molecular and synthetic biology tools presents a potential for enhancing targeted strain engineering. • The accumulating omic information should improve modelling of Komagataeibacter’s metabolism as well as selection and testing of new molecular engineering targets. |
Collapse
|
124
|
Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, Hadar R, Rosenberg G, Jain R, Cámara-Almirón J, Romero D, van Teeffelen S, Kolodkin-Gal I. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci Signal 2020; 13:13/632/eaaw8905. [PMID: 32430292 DOI: 10.1126/scisignal.aaw8905] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In nature, bacteria form biofilms-differentiated multicellular communities attached to surfaces. Within these generally sessile biofilms, a subset of cells continues to express motility genes. We found that this subpopulation enabled Bacillus subtilis biofilms to expand on high-friction surfaces. The extracellular matrix (ECM) protein TasA was required for the expression of flagellar genes. In addition to its structural role as an adhesive fiber for cell attachment, TasA acted as a developmental signal stimulating a subset of biofilm cells to revert to a motile phenotype. Transcriptomic analysis revealed that TasA stimulated the expression of a specific subset of genes whose products promote motility and repress ECM production. Spontaneous suppressor mutations that restored motility in the absence of TasA revealed that activation of the biofilm-motility switch by the two-component system CssR/CssS antagonized the TasA-mediated reversion to motility in biofilm cells. Our results suggest that although mostly sessile, biofilms retain a degree of motility by actively maintaining a motile subpopulation.
Collapse
Affiliation(s)
- Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology, Institute Pasteur, Paris, France
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yanuka-Golub
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Rosenberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rakeshkumar Jain
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jesus Cámara-Almirón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | | | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
125
|
Naloka K, Matsushita K, Theeragool G. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Int J Biol Macromol 2020; 150:1113-1120. [DOI: 10.1016/j.ijbiomac.2019.10.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/03/2019] [Accepted: 10/12/2019] [Indexed: 11/25/2022]
|
126
|
Keren-Paz A, Kolodkin-Gal I. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix. N Biotechnol 2020; 56:9-15. [DOI: 10.1016/j.nbt.2019.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023]
|
127
|
Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 2020; 41:107549. [PMID: 32302653 DOI: 10.1016/j.biotechadv.2020.107549] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is cellulose produced by a few limited species of bacteria in given conditions. BC has many remarkable properties such as its attractive mechanical properties, water uptake ability and biocompatibility which makes it a very desirable material to be used for wound healing. Inherently due to these important properties, the material is very resistant to easy processing and thus difficult to produce into useful entities. Additionally, being rate limited by the dependency on bacterial production, high yield is difficult to obtain and thus secondary material processing is sought after. In this review, BC is explained in terms of synthesis, structure and properties. These beneficial properties are directly related to the material's great potential in wound healing where it has also been trialled commercially but ultimately failed due to processing issues. However, more recently there has been increased frequency in scientific work relating to BC processing into hybrid polymeric fibres using common laboratory fibre forming techniques such as electrospinning and pressurised gyration. This paper summarises current progress in BC fibre manufacturing, its downfalls and also gives a future perspective on how the landscape should change to allow BC to be utilised in wound care in the current environment.
Collapse
|
128
|
Anderson AC, Burnett AJN, Hiscock L, Maly KE, Weadge JT. The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn 2+-dependent phosphoethanolamine transferase. J Biol Chem 2020; 295:6225-6235. [PMID: 32152228 DOI: 10.1074/jbc.ra119.011668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Alysha J N Burnett
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Lana Hiscock
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Kenneth E Maly
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
129
|
Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydr Polym 2020; 232:115788. [DOI: 10.1016/j.carbpol.2019.115788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
|
130
|
Souza EF, Furtado MR, Carvalho CWP, Freitas-Silva O, Gottschalk LMF. Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. Int J Biol Macromol 2020; 146:285-289. [PMID: 31883899 DOI: 10.1016/j.ijbiomac.2019.12.180] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023]
Abstract
Bacterial cellulose (BC) has been largely used in biomedical and technological fields. The use of agro-industrial byproducts as alternative source of carbon and nitrogen in culture media reduces the BC cost production, adds value to the byproducts and minimizes the environmental impact. In this study, the use of cashew apple juice and soybean molasses were evaluated to produce BC by Gluconacetobacter xylinus in comparison to the usual Hestrin and Schramm medium (HS). BC produced in static cultivation was characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. The BC production (4.50 g L-1) obtained from the medium using cashew apple juice as carbon source (20 g L-1) with soybean molasses as nitrogen source (10 g L-1) was superior than HS medium (4.03 g L-1). Morphological analysis showed that bacterial celluloses produced with agro-industrial byproducts combined were similar to those found for the pellicle obtained from HS medium.
Collapse
Affiliation(s)
- Erika F Souza
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO). Av. Pasteur, 296, 22290-240, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Maraysa R Furtado
- Chemical Institute, Federal University of Rio de Janeiro (PPGCAL/UFRJ). Av. Athos da Silveira Ramos, 149 - Cidade Universitária - 21941-909, Rio de Janeiro, Brazil
| | - Carlos W P Carvalho
- Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Otniel Freitas-Silva
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO). Av. Pasteur, 296, 22290-240, Rio de Janeiro, Brazil; Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil.
| | - Leda M F Gottschalk
- Embrapa Agroindústria de Alimentos. Av. das Américas, 29501, 23020-470, Rio de Janeiro, Brazil
| |
Collapse
|
131
|
The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. NANOMATERIALS 2020; 10:nano10030406. [PMID: 32106515 PMCID: PMC7152840 DOI: 10.3390/nano10030406] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Since economic and environmental issues have become critical in the last several years, the amount of sustainable bio-based production has increased. In this article, microbial polysaccharides, including bacterial cellulose (BC), are analyzed as promising resources with the potential for applications in biofields and non-biofields. Many scientists have established various methods of BC production, nanofication, and functionalization. In particular, this review will address the essential advances in recent years focusing on nanofication methods and nanoficated BC applications as well as functionalization methods and functionalized BC applications.
Collapse
|
132
|
Sukhavattanakul P, Manuspiya H. Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability. Carbohydr Polym 2020; 230:115566. [DOI: 10.1016/j.carbpol.2019.115566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023]
|
133
|
Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydr Polym 2020; 229:115513. [DOI: 10.1016/j.carbpol.2019.115513] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/06/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022]
|
134
|
Hodel KVS, Fonseca LMDS, Santos IMDS, Cerqueira JC, dos Santos-Júnior RE, Nunes SB, Barbosa JDV, Machado BAS. Evaluation of Different Methods for Cultivating Gluconacetobacter hansenii for Bacterial Cellulose and Montmorillonite Biocomposite Production: Wound-Dressing Applications. Polymers (Basel) 2020; 12:polym12020267. [PMID: 31991906 PMCID: PMC7077264 DOI: 10.3390/polym12020267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/28/2022] Open
Abstract
Bacterial cellulose (BC) has received considerable attention due to its unique properties, including an ultrafine network structure with high purity, mechanical strength, inherent biodegradability, biocompatibility, high water-holding capacity and high crystallinity. These properties allow BC to be used in biomedical and industrial applications, such as medical product. This research investigated the production of BC by Gluconacetobacter hansenii ATCC 23769 using different carbon sources (glucose, mannitol, sucrose and xylose) at two different concentrations (25 and 50 g∙L−1). The BC produced was used to develop a biocomposite with montmorillonite (MMT), a clay mineral that possesses interesting characteristics for enhancing BC physical-chemical properties, at 0.5, 1, 2 and 3% concentrations. The resulting biocomposites were characterized in terms of their physical and barrier properties, morphologies, water-uptake capacities, and thermal stabilities. Our results show that bacteria presented higher BC yields in media with higher glucose concentrations (50 g∙L−1) after a 14-day incubation period. Additionally, the incorporation of MMT significantly improved the mechanical and thermal properties of the BC membranes. The degradation temperature of the composites was extended, and a decrease in the water holding capacity (WHC) and an improvement in the water release rate (WRR) were noted. Determining a cost-effective medium for the production of BC and the characterization of the produced composites are extremely important for the biomedical applications of BC, such as in wound dressing materials.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | - Larissa Moraes dos Santos Fonseca
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | - Isa Moreira da Silva Santos
- University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil; (I.M.d.S.S.); (R.E.d.S.-J.); (S.B.N.)
| | - Jamile Costa Cerqueira
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | | | - Silmar Baptista Nunes
- University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil; (I.M.d.S.S.); (R.E.d.S.-J.); (S.B.N.)
| | - Josiane Dantas Viana Barbosa
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
| | - Bruna Aparecida Souza Machado
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical’s Formulations, Health Institute of Technologies (ITS CIMATEC), Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (J.C.C.); (J.D.V.B.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| |
Collapse
|
135
|
Marestoni LD, Barud HDS, Gomes RJ, Catarino RPF, Hata NNY, Ressutte JB, Spinosa WA. Commercial and potential applications of bacterial cellulose in Brazil: ten years review. POLIMEROS 2020. [DOI: 10.1590/0104-1428.09420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
136
|
Kaewkod T, Bovonsombut S, Tragoolpua Y. Efficacy of Kombucha Obtained from Green, Oolong, and Black Teas on Inhibition of Pathogenic Bacteria, Antioxidation, and Toxicity on Colorectal Cancer Cell Line. Microorganisms 2019; 7:E700. [PMID: 31847423 PMCID: PMC6956236 DOI: 10.3390/microorganisms7120700] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Kombucha tea is a refreshing beverage that is produced from the fermentation of tea leaves. In this study, kombucha tea was prepared using 1% green tea, oolong tea, and black tea, and 10% sucrose with acetic acid bacteria and yeast. The pH values of the kombucha tea were found to be in a range of 2.70-2.94 at 15 days of fermentation. The lowest pH value of 2.70 was recorded in the kombucha prepared from black tea. The total acidity of kombucha prepared from black tea was the highest by 16.75 g/L and it was still maintained after heat treatment by boiling and after autoclaved. Six organic acids: glucuronic, gluconic, D-saccharic acid 1,4-lactone, ascorbic, acetic, and succinic acid in kombucha tea were detected by HPLC with the optimization for organic acids detection using isocratic elution buffer with C18 conventional column. The highest level of organic acid was gluconic acid. Kombucha prepared from green tea revealed the highest phenolic content and antioxidation against DPPH radicals by 1.248 and 2.642 mg gallic acid/mL kombucha, respectively. Moreover, pathogenic enteric bacteria: Escherichia coli. E. coli O157:H7. Shigella dysenteriae, Salmonella Typhi, and Vibrio cholera were inhibited by kombucha and heat-denatured kombucha with diameter of the inhibition zones ranged from 15.0 ± 0.0-25.0 ± 0.0 mm. In addition, kombucha prepared from green tea and black tea demonstrated toxicity on Caco-2 colorectal cancer cells. Therefore, kombucha tea could be considered as a potential source of the antioxidation, inhibition of pathogenic enteric bacteria, and toxicity on colorectal cancer cells.
Collapse
Affiliation(s)
- Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (S.B.)
- The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sakunnee Bovonsombut
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (S.B.)
- Center of Excellence in Bioresources for Agriculture, Industry, and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (S.B.)
- Center of Excellence in Bioresources for Agriculture, Industry, and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
137
|
Under Elevated c-di-GMP in Escherichia coli, YcgR Alters Flagellar Motor Bias and Speed Sequentially, with Additional Negative Control of the Flagellar Regulon via the Adaptor Protein RssB. J Bacteriol 2019; 202:JB.00578-19. [PMID: 31611290 DOI: 10.1128/jb.00578-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
In Escherichia coli and Salmonella, the c-di-GMP effector YcgR inhibits flagellar motility by interacting directly with the motor to alter both its bias and speed. Here, we demonstrate that in both of these bacteria, YcgR acts sequentially, altering motor bias first and then decreasing motor speed. We show that when c-di-GMP levels are high, deletion of ycgR restores wild-type motor behavior in E. coli, indicating that YcgR is the only motor effector in this bacterium. Yet, motility and chemotaxis in soft agar do not return to normal, suggesting that there is a second mechanism that inhibits motility under these conditions. In Salmonella, c-di-GMP-induced synthesis of extracellular cellulose has been reported to entrap flagella and to be responsible for the YcgR-independent motility defect. We found that this is not the case in E. coli Instead, we found through reversion analysis that deletion of rssB, which codes for a response regulator/adaptor protein that normally directs ClpXP protease to target σS for degradation, restored wild-type motility in the ycgR mutant. Our data suggest that high c-di-GMP levels may promote altered interactions between these proteins to downregulate flagellar gene expression.IMPORTANCE Flagellum-driven motility has been studied in E. coli and Salmonella for nearly half a century. Over 60 genes control flagellar assembly and function. The expression of these genes is regulated at multiple levels in response to a variety of environmental signals. Cues that elevate c-di-GMP levels, however, inhibit motility by direct binding of the effector YcgR to the flagellar motor. In this study conducted mainly in E. coli, we show that YcgR is the only effector of motor control and tease out the order of YcgR-mediated events. In addition, we find that the σS regulator protein RssB contributes to negative regulation of flagellar gene expression when c-di-GMP levels are elevated.
Collapse
|
138
|
Hou Y, Duan C, Zhu G, Luo H, Liang S, Jin Y, Zhao N, Xu J. Functional bacterial cellulose membranes with 3D porous architectures: Conventional drying, tunable wettability and water/oil separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
139
|
Tajima K, Tahara K, Ohba J, Kusumoto R, Kose R, Kono H, Matsushima T, Fushimi K, Isono T, Yamamoto T, Satoh T. Detailed Structural Analyses of Nanofibrillated Bacterial Cellulose and Its Application as Binder Material for a Display Device. Biomacromolecules 2019; 21:581-588. [DOI: 10.1021/acs.biomac.9b01328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Ryota Kose
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu 183-8538, Japan
| | - Hiroyuki Kono
- National Institute of Technology, Tomakomai College, 443, Nishikioka, Tomakomai 059-1275, Japan
| | - Tokuo Matsushima
- Kusano Sakko Inc., 16, Nishi-machi, Kami-ebetsu, Ebetsu 067-0063, Japan
| | | | | | | | | |
Collapse
|
140
|
Chen G, Chen L, Wang W, Chen S, Wang H, Wei Y, Hong FF. Improved bacterial nanocellulose production from glucose without the loss of quality by evaluating thirteen agitator configurations at low speed. Microb Biotechnol 2019; 12:1387-1402. [PMID: 31503407 PMCID: PMC6801155 DOI: 10.1111/1751-7915.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/31/2019] [Indexed: 11/29/2022] Open
Abstract
Thirteen agitator configurations were investigated at low speed in stirred-tank reactors (STRs) to determine if improved crude bacterial nanocellulose (BNC) productivity can be achieved from glucose-based media while maintaining high BNC quality using Komagataeibacter xylinus ATCC 23770 as a model organism. A comparison of five single impellers showed the pitched blade (large) was the optimal impeller at 300 rpm. The BNC production was further increased by maintaining the pH at 5.0. Among the single helical ribbon and frame impellers and the combined impellers, the twin pitched blade provided the best results. The combined impellers at 150 rpm performed better than the single impellers, and after optimizing the agitation conditions, the twin pitched blade (large) and helical ribbon impellers performed the best at 100 rpm. The performances of different agitators at low speed during BNC production were related to how efficiently the agitators improved the oxygen mass transfer coefficient. The twin pitched blade (large) was verified as providing the optimum performance by an observed crude BNC production of 1.97 g (L×d)-1 and a BNC crude yield of consumed glucose of 0.41 g g-1 , which were 2.25 and 2.37 times higher than the initial values observed using the single impeller respectively. Further characterization indicated that the BNC obtained at 100 rpm from the STR equipped with the optimal agitator maintained high degree of polymerization and crystallinity.
Collapse
Affiliation(s)
- Genqiang Chen
- Key Lab of Science and Technology of Eco‐textileMinistry of EducationDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
- Group of Microbiological Engineering and Industrial BiotechnologyCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
| | - Lin Chen
- Group of Microbiological Engineering and Industrial BiotechnologyCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
| | - Wei Wang
- Key Lab of Science and Technology of Eco‐textileMinistry of EducationDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
- Group of Microbiological Engineering and Industrial BiotechnologyCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer ResearchTsinghua UniversityBeijing100084China
- Department of Chemistry and Center for Nanotechnology and Institute of Biomedical TechnologyChung‐Yuan Christian UniversityTaiwanChina
| | - Feng F. Hong
- Key Lab of Science and Technology of Eco‐textileMinistry of EducationDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
- Group of Microbiological Engineering and Industrial BiotechnologyCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityNorth Ren Min Road 2999Shanghai201620China
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620China
| |
Collapse
|
141
|
Reanalysis of Lactobacillus paracasei Lbs2 Strain and Large-Scale Comparative Genomics Places Many Strains into Their Correct Taxonomic Position. Microorganisms 2019; 7:microorganisms7110487. [PMID: 31731444 PMCID: PMC6920896 DOI: 10.3390/microorganisms7110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus paracasei are diverse Gram-positive bacteria that are very closely related to Lactobacillus casei, belonging to the Lactobacillus casei group. Due to extreme genome similarities between L. casei and L. paracasei, many strains have been cross placed in the other group. We had earlier sequenced and analyzed the genome of Lactobacillus paracasei Lbs2, but mistakenly identified it as L. casei. We re-analyzed Lbs2 reads into a 2.5 MB genome that is 91.28% complete with 0.8% contamination, which is now suitably placed under L. paracasei based on Average Nucleotide Identity and Average Amino Acid Identity. We took 74 sequenced genomes of L. paracasei from GenBank with assembly sizes ranging from 2.3 to 3.3 MB and genome completeness between 88% and 100% for comparison. The pan-genome of 75 L. paracasei strains hold 15,945 gene families (21,5232 genes), while the core genome contained about 8.4% of the total genes (243 gene families with 18,225 genes) of pan-genome. Phylogenomic analysis based on core gene families revealed that the Lbs2 strain has a closer relationship with L. paracasei subsp. tolerans DSM20258. Finally, the in-silico analysis of the L. paracasei Lbs2 genome revealed an important pathway that could underpin the production of thiamin, which may contribute to the host energy metabolism.
Collapse
|
142
|
Gorgieva S, Trček J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1352. [PMID: 31547134 PMCID: PMC6835293 DOI: 10.3390/nano9101352] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
Bacterial cellulose (BC) is ultrafine, nanofibrillar material with an exclusive combination of properties such as high crystallinity (84%-89%) and polymerization degree, high surface area (high aspect ratio of fibers with diameter 20-100 nm), high flexibility and tensile strength (Young modulus of 15-18 GPa), high water-holding capacity (over 100 times of its own weight), etc. Due to high purity, i.e., absence of lignin and hemicellulose, BC is considered as a non-cytotoxic, non-genotoxic and highly biocompatible material, attracting interest in diverse areas with hallmarks in medicine. The presented review summarizes the microbial aspects of BC production (bacterial strains, carbon sources and media) and versatile in situ and ex situ methods applied in BC modification, especially towards bionic design for applications in regenerative medicine, from wound healing and artificial skin, blood vessels, coverings in nerve surgery, dura mater prosthesis, arterial stent coating, cartilage and bone repair implants, etc. The paper concludes with challenges and perspectives in light of further translation in highly valuable medical products.
Collapse
Affiliation(s)
- Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, 2000 Maribor, Slovenia.
- Faculty of Electrical Engineering and Computer Science, Institute of Automation, University of Maribor, 2000 Maribor, Slovenia.
| | - Janja Trček
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, 2000 Maribor, Slovenia.
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia.
| |
Collapse
|
143
|
A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proc Natl Acad Sci U S A 2019; 116:19288-19293. [PMID: 31501346 DOI: 10.1073/pnas.1905527116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacterial cellulose nanofiber (BCNF) with high thermal stability produced by an ecofriendly process has emerged as a promising solution to realize safe and sustainable materials in the large-scale battery. However, an understanding of the actual thermal behavior of the BCNF in the full-cell battery has been lacking, and the yield is still limited for commercialization. Here, we report the entire process of BCNF production and battery manufacture. We systematically constructed a strain with the highest yield (31.5%) by increasing metabolic flux and improved safety by introducing a Lewis base to overcome thermochemical degradation in the battery. This report will open ways of exploiting the BCNF as a "single-layer" separator, a good alternative to the existing chemical-derived one, and thus can greatly contribute to solving the environmental and safety issues.
Collapse
|
144
|
May A, Narayanan S, Alcock J, Varsani A, Maley C, Aktipis A. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 2019; 7:e7565. [PMID: 31534844 PMCID: PMC6730531 DOI: 10.7717/peerj.7565] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Kombucha, a fermented tea beverage with an acidic and effervescent taste, is composed of a multispecies microbial ecosystem with complex interactions that are characterized by both cooperation and conflict. In kombucha, a complex community of bacteria and yeast initiates the fermentation of a starter tea (usually black or green tea with sugar), producing a biofilm that covers the liquid over several weeks. This happens through several fermentative phases that are characterized by cooperation and competition among the microbes within the kombucha solution. Yeast produce invertase as a public good that enables both yeast and bacteria to metabolize sugars. Bacteria produce a surface biofilm which may act as a public good providing protection from invaders, storage for resources, and greater access to oxygen for microbes embedded within it. The ethanol and acid produced during the fermentative process (by yeast and bacteria, respectively) may also help to protect the system from invasion by microbial competitors from the environment. Thus, kombucha can serve as a model system for addressing important questions about the evolution of cooperation and conflict in diverse multispecies systems. Further, it has the potential to be artificially selected to specialize it for particular human uses, including the development of antimicrobial ecosystems and novel materials. Finally, kombucha is easily-propagated, non-toxic, and inexpensive, making it an excellent system for scientific inquiry and citizen science.
Collapse
Affiliation(s)
- Alexander May
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Shrinath Narayanan
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Joe Alcock
- University of New Mexico, Albuquerque, NM, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Carlo Maley
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
145
|
Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym 2019; 219:210-218. [DOI: 10.1016/j.carbpol.2019.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
|
146
|
Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface. J Bacteriol 2019; 201:JB.00110-19. [PMID: 31085696 PMCID: PMC6707908 DOI: 10.1128/jb.00110-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
This work reveals a hitherto unrecognized behavior that manifests at the air-liquid interface that depends on production of cellulose and hints at undiscovered dimensions to bacterial life at surfaces. Additionally, the study links activation of known diguanylate cyclase-encoding pathways to cellulose expression and to signals encountered at the meniscus. Further significance stems from recognition of the consequences of fluid instabilities arising from surface production of cellulose for transport of water-soluble products over large distances. Cellulose-overproducing wrinkly spreader mutants of Pseudomonas fluorescens SBW25 have been the focus of much investigation, but conditions promoting the production of cellulose in ancestral strain SBW25 and its effects and consequences have escaped in-depth investigation through lack of an in vitro phenotype. Here, using a custom-built device, we reveal that in static broth microcosms, ancestral SBW25 encounters environmental signals at the air-liquid interface that activate, via three diguanylate cyclase-encoding pathways (Wsp, Aws, and Mws), production of cellulose. Secretion of the polymer at the meniscus leads to modification of the environment and growth of numerous microcolonies that extend from the surface. Accumulation of cellulose and associated microbial growth leads to Rayleigh-Taylor instability resulting in bioconvection and rapid transport of water-soluble products over tens of millimeters. Drawing upon data, we built a mathematical model that recapitulates experimental results and captures the interactions between biological, chemical and physical processes. IMPORTANCE This work reveals a hitherto unrecognized behavior that manifests at the air-liquid interface that depends on production of cellulose and hints at undiscovered dimensions to bacterial life at surfaces. Additionally, the study links activation of known diguanylate cyclase-encoding pathways to cellulose expression and to signals encountered at the meniscus. Further significance stems from recognition of the consequences of fluid instabilities arising from surface production of cellulose for transport of water-soluble products over large distances.
Collapse
|
147
|
Halib N, Ahmad I, Grassi M, Grassi G. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int J Pharm 2019; 566:631-640. [PMID: 31195074 DOI: 10.1016/j.ijpharm.2019.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
Cellulose is a natural homopolymer, composed of β-1,4- anhydro-d-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia.
| | - Ishak Ahmad
- Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| |
Collapse
|
148
|
Portela R, Leal CR, Almeida PL, Sobral RG. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 2019; 12:586-610. [PMID: 30838788 PMCID: PMC6559198 DOI: 10.1111/1751-7915.13392] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Although several therapeutic approaches are available for wound and burn treatment and much progress has been made in this area, room for improvement still exists, driven by the urgent need of better strategies to accelerate wound healing and recovery, mostly for cases of severe burned patients. Bacterial cellulose (BC) is a biopolymer produced by bacteria with several advantages over vegetal cellulose, such as purity, high porosity, permeability to liquid and gases, elevated water uptake capacity and mechanical robustness. Besides its biocompatibility, BC can be modified in order to acquire antibacterial response and possible local drug delivery features. Due to its intrinsic versatility, BC is the perfect example of a biotechnological response to a clinical problem. In this review, we assess the BC main features and emphasis is given to a specific biomedical application: wound dressings. The production process and the physical-chemical properties that entitle this material to be used as wound dressing namely for burn healing are highlighted. An overview of the most common BC composites and their enhanced properties, in particular physical and biological, is provided, including the different production processes. A particular focus is given to the biochemistry and genetic manipulation of BC. A summary of the current marketed BC-based wound dressing products is presented, and finally, future perspectives for the usage of BC as wound dressing are foreseen.
Collapse
Affiliation(s)
- Raquel Portela
- Laboratory of Molecular Microbiology of Bacterial PathogensUCIBIO@REQUIMTEDepartamento de Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de Lisboa2829‐516CaparicaPortugal
| | - Catarina R. Leal
- Área Departamental de FísicaISEL ‐ Instituto Superior de Engenharia de LisboaInstituto Politécnico de LisboaRua Conselheiro Emídio Navarro 1P‐1959‐007LisboaPortugal
- CENIMAT/I3NDepartamento de Ciência dos MateriaisFaculdade Ciências e TecnologiaUniversidade Nova de Lisboa2829‐516CaparicaPortugal
| | - Pedro L. Almeida
- Área Departamental de FísicaISEL ‐ Instituto Superior de Engenharia de LisboaInstituto Politécnico de LisboaRua Conselheiro Emídio Navarro 1P‐1959‐007LisboaPortugal
- CENIMAT/I3NDepartamento de Ciência dos MateriaisFaculdade Ciências e TecnologiaUniversidade Nova de Lisboa2829‐516CaparicaPortugal
| | - Rita G. Sobral
- Laboratory of Molecular Microbiology of Bacterial PathogensUCIBIO@REQUIMTEDepartamento de Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de Lisboa2829‐516CaparicaPortugal
| |
Collapse
|
149
|
Jacek P, Dourado F, Gama M, Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 2019; 12:633-649. [PMID: 30883026 PMCID: PMC6559022 DOI: 10.1111/1751-7915.13386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022] Open
Abstract
Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties - e.g. porosity, density of fibres crosslinking, mechanical properties, etc. - will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| | - Fernando Dourado
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Miguel Gama
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Stanisław Bielecki
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| |
Collapse
|
150
|
Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng 2019; 13:55. [PMID: 31249615 PMCID: PMC6585131 DOI: 10.1186/s13036-019-0177-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cellulose-based hydrogels are immensely important for tissue engineering. In this review, we attempt to document the source, nature, and application of cellulose-based hydrogels as an extracellular matrix for tissue growth and regeneration. Hydrogels can be prepared either from native cellulose, including both bacterial and plant sources or from cellulose derivatives, such as methyl cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose or even metal ions such as silver. Cellulose-polymer composite (polymers that include natural sources including chitosan, starch, alginates, collagen, hyaluronic acid, and chitin) are an attractive, inexpensive, and advantageous structural material that is easy to use. Cellulose-based scaffolding materials are widely used in the regeneration of various tissues, such as bone, cartilage, heart, blood vessel, nerve, and liver, among others. In this review, we discuss the most important applications of cellulosic hydrogels in tissue engineering based on their structural compositions.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Biorobotics Laboratory, Department of Biosystems Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ki-Taek Lim
- Biorobotics Laboratory, Department of Biosystems Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|