101
|
Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. Formation of Blood Neutrophil Extracellular Traps Increases the Mastitis Risk of Dairy Cows During the Transition Period. Front Immunol 2022; 13:880578. [PMID: 35572521 PMCID: PMC9092530 DOI: 10.3389/fimmu.2022.880578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
The current study was conducted to analyze the functions of blood neutrophils in transition cows and their association with postpartum mastitis risk as indicated by somatic cell counts (SCCs) in milk. Seventy-six healthy Holstein dairy cows were monitored from Week 4 prepartum to Week 4 postpartum. Five dairy cows with low SCCs (38 ± 6.0 × 103/mL) and five with high SCCs (3,753 ± 570.0 × 103/mL) were selected based on milk SCCs during the first three weeks of lactation. At Week 1 pre- and postpartum, serum samples were obtained from each cow to measure neutrophil extracellular trap (NET)-related variables, and blood neutrophils were collected for transcriptome analysis by RNA sequencing. The serum concentration of NETs was significantly higher (P < 0.05) in cows with high SCCs than in cows with low SCCs (36.5 ± 2.92 vs. 18.4 ± 1.73 ng/mL). The transcriptomic analysis revealed that the transcriptome differences in neutrophils between high- and low-SCC cows were mainly in cell cycle-related pathways (42.6%), including the cell cycle, DNA damage, and chromosomal conformation, at Week 1 prepartum. The hub genes of these pathways were mainly involved in both the cell cycle and NETosis. These results indicated that the formation of NETs in the blood of transition dairy cows was different between cows with low and high SCCs, which may be used as a potential indicator for the prognosis of postpartum mastitis risk and management strategies of perinatal dairy cows.
Collapse
Affiliation(s)
- Lu-Yi Jiang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruo-Wei Guan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fushan Shi
- Department of Veterinary Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Department of Animal & Veterinary Sciences, University of Vermont, Burlington, MA, United States
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
102
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
103
|
Inducible Animal Models of Skin Fibrosis; Updated Review of the Literature. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
104
|
Ke JY, Liu ZY, Wang YH, Chen SM, Lin J, Hu F, Wang YF. Gypenosides regulate autophagy through Sirt1 pathway and the anti-inflammatory mechanism of mitochondrial autophagy in systemic lupus erythematosus. Bioengineered 2022; 13:13384-13397. [PMID: 36700474 PMCID: PMC9275881 DOI: 10.1080/21655979.2022.2066749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To study the mechanism of gynostemma pentaphyllum saponins (GpS) regulating mitochondrial autophagy and anti-inflammatory through Sirtuin 1 (Sirt1) pathway in systemic lupus erythematosus (SLE). JURKAT cells were cultured in vitro, RT-PCR and western blotting (WB) were utilized to identify the expression of related-proteins in Sirt1 pathway and global autophagy and mitochondrial autophagy markers in JURKAT before and after GpS treatment induced by ultraviolet B (UVB), and the related-mechanism of GpS regulation of autophagy was analyzed. The SLE model was established to analyze the alleviating effects of GpS on various symptoms of lupus mice. Sirt1/AMPK/mTOR pathway was activated in UVB induced JURKAT cells. After the addition of GpS, WB revealed that the phosphorylation of AMPK decreased, the phosphorylation of mTOR increased, the expression of Sirt1 protein decreased, and the activation of the pathway was inhibited. Moreover, autophagy of JURKAT cells wasinhibited. In order to further verify the role of Sirt1 pathway, we activated Sirt1 expression in cells by constructing lentiviral vectors, and the therapeutic effect of GpS was significantly reduced. These results indicate GpS can exert autophagy regulation by inhibiting the activity of Sirt1 pathway. To treat SLE. GpS can significantly reduce the level of autoantibodies, kidney inflammation, immune complex deposition and urinary protein excretion, improve kidney function in lupus-prone mice. GpS can regulate autophagy and mitochondrial autophagy through Sirt1 pathway, which may be a potential mechanism for GpS to reduce the level of autoantibodies, kidney inflammation, immune complex deposition and urinary protein excretion, improve kidney function in lupus-prone mice.
Collapse
Affiliation(s)
- Jin-Yong Ke
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatism Immunity, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Yu-Fang Wang Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, 435000, Hubei, China
| | - Zhi-Yong Liu
- Department of Rheumatism Immunity, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun-Han Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shi-Ming Chen
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China
| | - Jing Lin
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China
| | - Fang Hu
- Department of Clinical Laboratory, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,CONTACT Fang Hu
| | - Yu-Fang Wang
- Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Department of Rheumatology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, Hubei, China,Yu-Fang Wang Department of Hematology, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi, 435000, Hubei, China
| |
Collapse
|
105
|
Zhao X, Zhou L, Kou Y, Kou J. Activated neutrophils in the initiation and progression of COVID-19: hyperinflammation and immunothrombosis in COVID-19. Am J Transl Res 2022; 14:1454-1468. [PMID: 35422922 PMCID: PMC8991139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic respiratory disease caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). COVID-19 is typically associated with fever and influenza-like symptoms in its early stages. Severe cases progress to acute respiratory distress syndrome/acute lung injury (ARDS/ALI), multiple organ damage, and even death. Until now, there has been a lack of specific and definitive treatment for COVID-19, which further challenges the situation. Previous clinical and laboratory data showed that neutrophils were significantly decreased in patients who died from COVID-19 in the early stages of disease; when patients were admitted to the hospital the number of neutrophils increased dramatically from 7 to 14 days after admission, which is correlated to myocardial and liver injury, thromboembolic complications, and poor prognosis. Autopsy findings revealed abundant neutrophil infiltration in the pulmonary capillaries and exudation into the alveolar cavity. Therefore, we speculate that neutrophils may play an important role in the initiation and progression of COVID-19. In this review, the relationship among the dynamic changes in neutrophils, cytokine storms, and the release of neutrophil extracellular traps (NETs) with the progression of COVID-19 was elucidated in detail. With a better understanding of the pathogenic mechanisms this can lead to improved clinical applications which are identified and discussed in this review.
Collapse
Affiliation(s)
- Xinyi Zhao
- Department of Cardiology of The Second Hospital, Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Lijin Zhou
- Department of Cardiology of The Second Hospital, Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Yan Kou
- Department of Cardiology of The Second Hospital, Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Junjie Kou
- Department of Cardiology of The Second Hospital, Harbin Medical University Harbin 150001, Heilongjiang, China
| |
Collapse
|
106
|
Lu R, Zheng XL. Plasma Levels of Big Endothelin-1 Are Associated with Renal Insufficiency and In-Hospital Mortality of Immune Thrombotic Thrombocytopenic Purpura. Thromb Haemost 2022; 122:344-352. [PMID: 33984867 PMCID: PMC9514555 DOI: 10.1055/a-1508-8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is caused by severe deficiency of plasma ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity. Despite advances in early diagnosis and management, the mortality rate of acute iTTP remains high in a large part of world where access to some of the most novel therapies is limited. To determine the role of plasma big endothelin-1 (bigET-1) or its bioactive product ET-1 as a biomarker and/or a pathogenic factor in acute iTTP, plasma levels of bigET-1 were determined using an immunoassay in patients with iTTP on admission and during remission, as well as in healthy controls; moreover, the biological effect of ET-1 in thrombus formation was determined by a microfluidic assay. We show that plasma levels of bigET-1 were dramatically increased in patients with acute iTTP on admission, which was significantly decreased during clinical response/remission; elevated admission levels of plasma bigET-1 were associated with low estimated glomerular filtration rate, the need for intensive care unit admission or intubation, and in-hospital mortality. Moreover, an addition of a bioactive product ET-1 to cultured endothelial cells in a microfluidic channel significantly accelerated the rate of thrombus formation under arterial flow. Our results demonstrate for the first time a potential role of measuring plasma bigET-1 in patients with acute iTTP in assessing the disease severity and risk of in-hospital mortality, which may help stratify patients for a more aggressive monitoring and therapeutic strategy; also, the bioactive ET-1, derived from bigET-1, may result in acute renal injury in TTP patient, likely through its vasoconstriction and prothrombotic properties.
Collapse
Affiliation(s)
- Ruinan Lu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A.,Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A.,Correspondence should be sent to: X. Long Zheng, M.D., Ph.D., Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 4000 Cambridge Street, MS 3045, Kansas City, KS 66160, Tel. +1 913-588-7124, or
| |
Collapse
|
107
|
Kim M, George A, Ganti L, Huang D, Carman M. The Burden of Hypercoagulability in COVID-19. TH OPEN 2022; 6:e96-e98. [PMID: 35707624 PMCID: PMC9054923 DOI: 10.1055/a-1760-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) infection has widespread impact on multiple organ systems, including damage to endothelial cells. Various studies have found evidence for direct mechanisms by which interaction between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and endothelial cells lead to extensive damage to the latter, and indirect mechanisms, such as excessively elevated cytokines, can also result in the same outcome. Damage to the endothelium results in release of thrombotic factors and inhibition of fibrinolysis. This confers a significant hypercoagulability burden on patients infected or recovering from COVID-19 infection. In this case report, the authors report the case of a gentleman presenting with extensive deep vein thrombosis and pulmonary embolism, in the context of recent COVID-19 infection. The postulated mechanisms and management are discussed.
Collapse
Affiliation(s)
| | | | - Latha Ganti
- University of Central Florida, Orlando, United States
| | - Derrick Huang
- University of Central Florida College of Medicine, Orlando, United States
| | - Matthew Carman
- Emergency Medicine, Lakeland Regional Health Medical Center, Lakeland, United States
| |
Collapse
|
108
|
Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated. IMMUNO 2022. [DOI: 10.3390/immuno2010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant leucocytes in the circulation in humans. They represent a heterogeneous population exerting diverse functions through several activities. Usually described as typical pro-inflammatory cells, immunomodulatory properties of PMNs have been reported. Among others, once activated and depending on the stimulus, PMNs expel neutrophil extracellular traps (NET) in the extracellular space. NETs are complexes made of DNA and granule proteins representing an innate immune mechanism fighting infections. Nevertheless, an excess of NET formation might be involved in the development of inflammatory or autoimmune responses. Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two chronic, inflammatory, autoimmune diseases of unknown etiology and affecting mostly women. Several abnormal or non-classical functions of PMNs or PMN sub-populations have been described in SLE and RA. Particularly, NETs have been suggested to trigger pro-inflammatory responses by exposing pro-inflammatory mediators. Likewise, NETs may be the targets of autoantibodies or even might trigger the development of autoantibodies by exposing autoantigens. In the present review, we will summarize heterogeneous properties of human PMNs and we will discuss recent evidence linking PMNs and NETs to the pathogenesis of both SLE and RA.
Collapse
|
109
|
Antiochos B, Trejo-Zambrano D, Fenaroli P, Rosenberg A, Baer A, Garg A, Sohn J, Li J, Petri M, Goldman DW, Mecoli C, Casciola-Rosen L, Rosen A. The DNA sensors AIM2 and IFI16 are SLE autoantigens that bind neutrophil extracellular traps. eLife 2022; 11:72103. [PMID: 35608258 PMCID: PMC9129876 DOI: 10.7554/elife.72103] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 04/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background Nucleic acid binding proteins are frequently targeted as autoantigens in systemic lupus erythematosus (SLE) and other interferon (IFN)-linked rheumatic diseases. The AIM-like receptors (ALRs) are IFN-inducible innate sensors that form supramolecular assemblies along double-stranded (ds)DNA of various origins. Here, we investigate the ALR absent in melanoma 2 (AIM2) as a novel autoantigen in SLE, with similar properties to the established ALR autoantigen interferon-inducible protein 16 (IFI16). We examined neutrophil extracellular traps (NETs) as DNA scaffolds on which these antigens might interact in a pro-immune context. Methods AIM2 autoantibodies were measured by immunoprecipitation in SLE and control subjects. Neutrophil extracellular traps were induced in control neutrophils and combined with purified ALR proteins in immunofluorescence and DNase protection assays. SLE renal tissues were examined for ALR-containing NETs by confocal microscopy. Results AIM2 autoantibodies were detected in 41/131 (31.3%) SLE patients and 2/49 (4.1%) controls. Our SLE cohort revealed a frequent co-occurrence of anti-AIM2, anti-IFI16, and anti-DNA antibodies, and higher clinical measures of disease activity in patients positive for antibodies against these ALRs. We found that both ALRs bind NETs in vitro and in SLE renal tissues. We demonstrate that ALR binding causes NETs to resist degradation by DNase I, suggesting a mechanism whereby extracellular ALR-NET interactions may promote sustained IFN signaling. Conclusions Our work suggests that extracellular ALRs bind NETs, leading to DNase resistant nucleoprotein fibers that are targeted as autoantigens in SLE. Funding These studies were funded by NIH R01 DE12354 (AR), P30 AR070254, R01 GM 129342 (JS), K23AR075898 (CM), K08AR077100 (BA), the Jerome L. Greene Foundation and the Rheumatology Research Foundation. Dr. Antiochos and Dr. Mecoli are Jerome L. Greene Scholars. The Hopkins Lupus Cohort is supported by NIH grant R01 AR069572. Confocal imaging performed at the Johns Hopkins Microscopy Facility was supported by NIH Grant S10 OD016374.
Collapse
Affiliation(s)
- Brendan Antiochos
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Daniela Trejo-Zambrano
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Paride Fenaroli
- Nephrology Unit, Parma University Hospital, Department of Medicine and SurgeryParmaItaly,Johns Hopkins University School of Medicine, Division of PathologyBaltimoreUnited States
| | - Avi Rosenberg
- Johns Hopkins University School of Medicine, Division of PathologyBaltimoreUnited States
| | - Alan Baer
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Archit Garg
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical ChemistryBaltimoreUnited States
| | - Jungsan Sohn
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States,Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical ChemistryBaltimoreUnited States
| | - Jessica Li
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Michelle Petri
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Daniel W Goldman
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Christopher Mecoli
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Livia Casciola-Rosen
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Division of RheumatologyBaltimoreUnited States,Johns Hopkins University School of Medicine, Division of PathologyBaltimoreUnited States
| |
Collapse
|
110
|
Rojas M, Ramírez-Santana C, Acosta-Ampudia Y, Monsalve DM, Rodriguez-Jimenez M, Zapata E, Naranjo-Pulido A, Suárez-Avellaneda A, Ríos-Serna LJ, Prieto C, Zambrano-Romero W, Valero MA, Rodríguez Y, Mantilla RD, Zhu C, Li QZ, Toro-Gutiérrez CE, Tobón GJ, Anaya JM. New insights into the taxonomy of autoimmune diseases based on polyautoimmunity. J Autoimmun 2021; 126:102780. [PMID: 34923432 DOI: 10.1016/j.jaut.2021.102780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The clinical coexistence of two or more autoimmune diseases (ADs) fulfilling classification criteria is termed "overt polyautoimmunity" (PolyA), whereas the presence of autoantibodies unrelated to an index AD, without clinical criteria fulfillment, is known as "latent PolyA". We aimed to explore a new taxonomy of ADs based on PolyA. METHODS In a cross-sectional study of 292 subjects, we evaluated the presence of PolyA in 146, 45, 29, 17, and 17 patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), autoimmune thyroid disease (AITD) and systemic sclerosis (SSc), respectively, and 38 healthy controls. Clinical assessment, autoantibody profile (by autoantigen array chip), lymphocytes immunophenotype and cytokine profile (by flow cytometry) were evaluated simultaneously. A mixed cluster methodology was used to classify ADs. RESULTS Latent PolyA was more frequent than overt PolyA, ranging from 69.9% in RA to 100% in SSc. Nevertheless, both latent and overt PolyA clustered together. Over-expressed IgG autoantibodies were found to be hallmarks for the identification of index ADs. The combination of autoantibodies allowed high accuracy in the classification of ADs. Three well-defined clusters based on PolyA were observed with distinctive clinical and immunological phenotypes. CONCLUSIONS This proof-of-concept study indicates that ADs can be classified according to PolyA. PolyA should be considered in all studies dealing with ADs, including epidemiological, genetic, and clinical trials.
Collapse
Affiliation(s)
- Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Mónica Rodriguez-Jimenez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Elizabeth Zapata
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Angie Naranjo-Pulido
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Ana Suárez-Avellaneda
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Centro de Referencia en Osteoporosis, Reumatología & Dermatología, Cali, Colombia
| | - Lady J Ríos-Serna
- Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional (CIRAT), Universidad ICESI, Cali, Colombia
| | - Carolina Prieto
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - William Zambrano-Romero
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - María Alejandra Valero
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Rubén D Mantilla
- Dermatology and Rheumatology Foundation (FUNINDERMA), Bogota, Colombia
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, USA
| | | | - Gabriel J Tobón
- Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional (CIRAT), Universidad ICESI, Cali, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clinica del Occidente, Bogota, Colombia.
| |
Collapse
|
111
|
Guo Y, Gao F, Wang X, Pan Z, Wang Q, Xu S, Pan S, Li L, Zhao D, Qian J. Spontaneous formation of neutrophil extracellular traps is associated with autophagy. Sci Rep 2021; 11:24005. [PMID: 34907287 PMCID: PMC8671464 DOI: 10.1038/s41598-021-03520-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils release neutrophil extracellular traps (NETs), via NETosis, as a defense mechanism against pathogens. Neutrophils can release NETs spontaneously; however, the mechanisms underlying spontaneous NETosis remain unclear. Neutrophils isolated from healthy donors were tested for NET formation and autophagy at 1, 6, 12, and 24 h after incubation. Autophagy response was evaluated in response to various autophagy inducers and inhibitors. The relationship between autophagy and NETosis was detected in vivo using an ovalbumin-induced mouse model of asthma. We found that the increase in the proportion of spontaneous NETosis was time-dependent. The number of autophagy-positive cells also increased over time and LC3B protein played an integral role in NET formation. Trehalose (an inducer of mTOR-independent autophagy) treatment significantly increased NET formation, whereas rapamycin (an mTOR-dependent autophagy inducer) did not increase NET release by neutrophils. Compared with the control group, 3-methyladenine (an autophagy sequestration inhibitor) and hydroxychloroquine sulfate (autophagosome-lysosome fusion inhibitor) treatments significantly reduced the percentage of NET-positive cells. In vivo studies on ovalbumin-induced asthma lung sections revealed NETs and LC3B and citH3 proteins were found to co-localize with DNA. Our findings suggest that autophagy plays a crucial role in aging-related spontaneous NETosis.
Collapse
Affiliation(s)
- Yun Guo
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Fei Gao
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xin Wang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zhenzhen Pan
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Qian Wang
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shiyao Xu
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shanshan Pan
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ling Li
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Jun Qian
- Department of Respiratory Medicine, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
112
|
Wu Z, Zhu X, Li P, Wang X, Sun Y, Fu Y, Wang J, Yang Z, Zhou E. Fumonisin B 1 induces chicken heterophil extracellular traps mediated by PAD4 enzyme and P2 × 1 receptor. Poult Sci 2021; 101:101550. [PMID: 34823185 PMCID: PMC8626696 DOI: 10.1016/j.psj.2021.101550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/24/2023] Open
Abstract
Fumonisin B1 (FB1) is a common mycotoxin contamination in agricultural commodities being considered as a significant risk to human and livestock health, while the mechanism of FB1 immunotoxicity are less understood, especially in chicken. Given that extracellular traps as a novel defense mechanism of leukocytes play an important role against foreign matters, in this study we aimed to investigate the effects of FB1 on chicken heterophil extracellular traps (HETs) formation. Our result showed that FB1 induced HETs release in chicken heterophils observed via immunostaining, and it was concentration-dependent during 10 to 40 μM. Moreover, in 40 μM FB1-exposed chicken heterophils, reactive oxygen species (ROS) level was increased, while catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity and glutathione (GSH) content were decreased. Simultaneously, FB1 (40 μM) activated ERK and p38 MAPK signaling pathways via increasing the phosphorylation level of ERK and p38 proteins. However, pretreatment of SB202190, U0126, and diphenyleneiodonium chloride (DPI) did not change FB1-triggered ROS production and HETs formation, suggesting FB1-induced HETs was a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, p38, and extracellular regulated protein kinases (ERK) signaling pathways-independent process. Inhibition of peptidyl arginine deiminase 4 (PAD4) enzyme and P2 × 1 receptor showed their vital role in 40 μM FB1-triggered HETs. This study reported for the first time that 40 μM FB1 induced the release of HETs in heterophils, and it was related to ROS production, PAD4, and P2 × 1, but was independent of NADPH oxidase, p38 and ERK signaling pathways, which might provide a whole novel perspective of perceiving and understanding the role of FB1 in immunotoxicity.
Collapse
Affiliation(s)
- Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xia Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Youpeng Sun
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yiwu Fu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
113
|
Efficacy and specificity of different methods for human neutrophil extracellular trap isolation and handling. Cent Eur J Immunol 2021; 46:384-387. [PMID: 34764811 PMCID: PMC8574115 DOI: 10.5114/ceji.2021.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Although in vitro incubation of various cell types with neutrophil extracellular traps (NETs) is commonly used to investigate the influence of NETs on cellular function, it is unclear which human NET isolation and handling protocol is superior. The present study sought to assess the efficacy (yield and purity) and efficiency (time taken) of different available human NET isolation and handling protocols. Material and methods Neutrophils isolated from human blood were stimulated using phorbol 12-myristate 13-acetate. Four distinct protocols were used to isolate NETs, and the yield was quantified using fluorimetry. Results Addition of the restriction enzyme AluI prior to centrifugation is unique to the most effective NET isolation method, yielding a NET concentration of 1077.22 ±229.04 ng/ml (at 523 nm) measured with PicoGreen. Immediate centrifugation to pellet neutrophils is unique to the most efficient method. Conclusions Balancing protocol efficacy and efficiency, the method incorporating centrifugation for 5 min at 450 × γ to pellet neutrophils is more than adequate.
Collapse
|
114
|
Fu X, Liu H, Huang G, Dai SS. The emerging role of neutrophils in autoimmune-associated disorders: effector, predictor, and therapeutic targets. MedComm (Beijing) 2021; 2:402-413. [PMID: 34766153 PMCID: PMC8554667 DOI: 10.1002/mco2.69] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are essential components of the immune system and have vital roles in the pathogenesis of autoimmune disorders. As effector cells, neutrophils promote autoimmune disease by releasing cytokines and chemokines cascades that accompany inflammation, neutrophil extracellular traps (NETs) regulating immune responses through cell-cell interactions. More recent evidence has extended functions of neutrophils. Accumulating evidence implicated neutrophils contribute to tissue damage during a broad range of disorders, involving rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary sjögren's syndrome (pSS), multiple sclerosis (MS), crohn's disease (CD), and gout. A variety of studies have reported on the functional role of neutrophils as therapeutic targets in autoimmune diseases. However, challenges and controversies in the field remain. Enhancing our understanding of neutrophils' role in autoimmune disorders may further advance the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| |
Collapse
|
115
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
116
|
Guan H, Xie L, Ji Z, Song R, Qi J, Nie X. Triptolide inhibits neutrophil extracellular trap formation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1384. [PMID: 34733936 PMCID: PMC8506553 DOI: 10.21037/atm-21-3522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 01/02/2023]
Abstract
Background Triptolide (PG490), as a triterpene dicyclic oxide has been reported to increase the generation of reactive oxygen species (ROS) and nitric oxide (NO) and induce apoptosis of RAW 264.7 cells in a dose-dependent manner. The activity of death NETs plays an important role in anti-bacterial processes in the human body. This study aimed to investigate the effect of triptolide (PG490) on neutrophil extracellular traps (NETs) formation. Methods After isolating peripheral blood neutrophils from healthy volunteers, cells were incubated with PG490 to observe and detect the level of NETs and detect the level of reactive oxygen species (ROS). The cells were cultured, stained and analyzed by fluorescence microscopy. Results Compared with the 12-myristate-13-acetate (PMA) group, the average fluorescence intensity of SYTOX Green in the PG490 + PMA group, as detected by a multifunctional microplate reader, was significantly decreased. Intracellular ROS were labeled by fluorescence, with fluorescence intensity then measured by multifunctional microplate reader and flow cytometry. The results showed that compared with the control group, the fluorescence intensity of the PMA group was significantly increased, while there was no significant difference between PMA group and PG490 + PMA group. Conclusions The production of NETs is inhibited by PG490 in vitro, which is not associated with the level of cellular ROS. This suggests that PG490in Tripterygium wilfordii Hook F can suppress related diseases.
Collapse
Affiliation(s)
- Haiyu Guan
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Lifen Xie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhenzhen Ji
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Rheumatology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jieying Qi
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
117
|
He L, Liu R, Yue H, Zhu G, Fu L, Chen H, Guo Y, Qin C. NETs promote pathogenic cardiac fibrosis and participate in ventricular aneurysm formation after ischemia injury through the facilitation of perivascular fibrosis. Biochem Biophys Res Commun 2021; 583:154-161. [PMID: 34735877 DOI: 10.1016/j.bbrc.2021.10.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis has been widely investigated in acute phase of myocardial infarction (MI). However, the mechanism of sustained fibrosis after MI hasn't been elucidated, which eventually gives rise to ventricular aneurysm (VA) formation chronic while lethal. Neutrophil as vital cell facilitating the fibrotic repair after acute MI may not project its effect to chronic phase unless neutrophil extracellular traps (NETs) were secreted and accumulating. The aim of this study was to investigate whether NETs contribute to the sustained fibrosis and VA formation after MI. We identified NETs in ventricular aneurysm of patients. Accordingly, NETs increased in peripheral blood of VA patients. Moreover, in rat VA NETs were also identified. Stimulated by NETs, the migration of fibroblast was enhanced and the differentiation of cardiac myofibroblast was initiated. Smad, MAPK and RhoA signaling pathways were activated by NETs incubation. And additional deposition with DNase I to disrupt NETs and abrogated NETs induced fibrosis both in vivo and vitro. These results collectively demonstrate a novel profibrotic role for NETs in chronic cardiac fibrosis and VA formation.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
| | - Li Fu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
118
|
Tang H, Tan C, Cao X, Liu Y, Zhao H, Liu Y, Zhao Y. NFIL3 Facilitates Neutrophil Autophagy, Neutrophil Extracellular Trap Formation and Inflammation During Gout via REDD1-Dependent mTOR Inactivation. Front Med (Lausanne) 2021; 8:692781. [PMID: 34660620 PMCID: PMC8514722 DOI: 10.3389/fmed.2021.692781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy pathways play an important role in immunity and inflammation via pathogen clearance mechanisms mediated by immune cells, such as macrophages and neutrophils. In particular, autophagic activity is essential for the release of neutrophil extracellular traps (NETs), a distinct form of active neutrophil death. The current study set out to elucidate the mechanism of the NFIL3/REDD1/mTOR axis in neutrophil autophagy and NET formation during gout inflammation. Firstly, NFIL3 expression patterns were determined in the peripheral blood neutrophils of gout patients and monosodium urate (MSU)-treated neutrophils. Interactions between NFIL3 and REDD1 were identified. In addition, gain- or loss-of-function approaches were used to manipulate NFIL3 and REDD1 in both MSU-induced neutrophils and mice. The mechanism of NFIL3 in inflammation during gout was evaluated both in vivo and in vitro via measurement of cell autophagy, NET formation, MPO activity as well as levels of inflammatory factors. NFIL3 was highly-expressed in both peripheral blood neutrophils from gout patients and MSU-treated neutrophils. NFIL3 promoted the transcription of REDD1 by binding to its promoter. REDD1 augmented neutrophil autophagy and NET formation by inhibiting the mTOR pathway. In vivo experimental results further confirmed that silencing of NFIL3 reduced the inflammatory injury of acute gouty arthritis mice by inhibiting the neutrophil autophagy and NET formation, which was associated with down-regulation of REDD1 and activation of the mTOR pathway. Taken together, NFIL3 can aggravate the inflammatory reaction of gout by stimulating neutrophil autophagy and NET formation via REDD1/mTOR, highlighting NFIL3 as a potential therapeutic target for gout.
Collapse
Affiliation(s)
- Honghu Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Cao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
119
|
Ling H, Luo L, Dai X, Chen H. Fallopian tubal infertility: the result of Chlamydia trachomatis-induced fallopian tubal fibrosis. Mol Cell Biochem 2021; 477:205-212. [PMID: 34652537 DOI: 10.1007/s11010-021-04270-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Chlamydia trachomatis is one of the most common pathogens of sexually transmitted diseases, and its incidence in genital tract infections is now 4.7% in south China. Infertility is the end result of C. trachomatis-induced fallopian tubal fibrosis and is receiving intense attention from scientists worldwide. To reduce the incidence of infertility, it is important to understand the pathology-related changes of the genital tract where C. trachomatis infection is significant, especially the mechanism of fibrosis formation. During fibrosis development, the fallopian tube becomes sticky and occluded, which will eventually lead to tubal infertility. At present, the mechanism of fallopian tubal fibrosis induced by C. trachomatis infection is unclear. Our study attempted to summarize the possible mechanisms of fibrosis caused by C. trachomatis infection in the fallopian tube by reviewing published studies and further providing potential therapeutic targets to reduce the occurrence of infertility. This study also provides ideas for future research. Factors leading to fallopian tube fibrosis include inflammatory factors, miRNA, ECT, cHSP, and host factors. We hypothesized that C. trachomatis mediates the transcription and translation of EMT and ECM via upregulating TGF signaling pathway, which leads to the formation of fallopian tube fibrosis and ultimately to tubal infertility.
Collapse
Affiliation(s)
- Hua Ling
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Lipei Luo
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China
| | - Xingui Dai
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Chenzhou, 423000, People's Republic of China.
- The First People's Hospital of Chenzhou, Chenzhou, 423000, People's Republic of China.
- The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
120
|
Metabolic Analysis of Potential Key Genes Associated with Systemic Lupus Erythematosus Using Liquid Chromatography-Mass Spectrometry. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5799348. [PMID: 34646335 PMCID: PMC8505100 DOI: 10.1155/2021/5799348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022]
Abstract
The biological mechanism underlying the pathogenesis of systemic lupus erythematosus (SLE) remains unclear. In this study, we found 21 proteins upregulated and 38 proteins downregulated by SLE relative to normal protein metabolism in our samples using liquid chromatography-mass spectrometry. By PPI network analysis, we identified 9 key proteins of SLE, including AHSG, VWF, IGF1, ORM2, ORM1, SERPINA1, IGF2, IGFBP3, and LEP. In addition, we identified 4569 differentially expressed metabolites in SLE sera, including 1145 reduced metabolites and 3424 induced metabolites. Bioinformatics analysis showed that protein alterations in SLE were associated with modulation of multiple immune pathways, TP53 signaling, and AMPK signaling. In addition, we found altered metabolites associated with valine, leucine, and isoleucine biosynthesis; one carbon pool by folate; tyrosine metabolism; arginine and proline metabolism; glycine, serine, and threonine metabolism; limonene and pinene degradation; tryptophan metabolism; caffeine metabolism; vitamin B6 metabolism. We also constructed differently expressed protein-metabolite network to reveal the interaction among differently expressed proteins and metabolites in SLE. A total of 481 proteins and 327 metabolites were included in this network. Although the role of altered metabolites and proteins in the diagnosis and therapy of SLE needs to be further investigated, the present study may provide new insights into the role of metabolites in SLE.
Collapse
|
121
|
Mirzoeva S, Yang Y, Klopot A, Budunova I, Brown MA. Early Stress-Response Gene REDD1 Controls Oxazolone-Induced Allergic Contact Dermatitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1747-1754. [PMID: 34452931 PMCID: PMC9714560 DOI: 10.4049/jimmunol.2100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022]
Abstract
REDD1 is an energy sensor and stress-induced mTOR inhibitor. Recently, its novel role in linking metabolism and inflammation/immune responses has emerged. In this study, we assessed the role of REDD1 in murine oxazolone-induced allergic contact dermatitis (ACD), a T cell-dependent model with features of human ACD. A variety of immune indices, including edema, cellular infiltration, inflammatory gene expression, and glucocorticoid response, were compared in Redd1 knockout (KO) and isogenic (C57BL/6 × 129)F1 wild-type mice after sensitization and subsequent ear challenge with oxazolone. Despite relatively normal thymic profiles and similar T cell populations in the lymph nodes of naive Redd1 KO mice, early T cell expansion and cytokine production were profoundly impaired after sensitization. Surprisingly, higher steady-state populations of CD4+ and CD8+ T cells, as well as macrophages (CD45+/Ly-6G-/CD11b+), dendritic cells (CD45+/Ly-6G-/CD11c+), neutrophils (CD45+/Ly-6G+/CD11b+), and innate lymphoid cells (CD45+/Lineage-/IL-7Ra+/ST2+/c-Kit+), were observed in the ears of naive Redd1 KO mice. Upon challenge, ear edema, T cell, macrophage, neutrophil, and dendritic cell infiltration into the ear was significantly reduced in Redd1 KO animals. Accordingly, we observed significantly lower induction of IFN-γ, IL-4, and other cytokines as well as proinflammatory factors, including TSLP, IL-33, IL-1β, IL-6, and TNF-α, in challenged ears of Redd1 KO mice. The response to glucocorticoid treatment was also diminished. Taken together, these data establish REDD1 as an essential immune modulator that influences both the initiation of ACD disease, by driving naive T cell activation, and the effector phase, by promoting immune cell trafficking in T cell-mediated skin inflammation.
Collapse
Affiliation(s)
- Salida Mirzoeva
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| | - Yuchen Yang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| | - Anna Klopot
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Melissa A Brown
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| |
Collapse
|
122
|
Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, Arelaki S, Pateinakis P, Ntinopoulou M, Mitsios A, Antoniadou C, Argyriou C, Georgiadis GS, Papadopoulos V, Giatromanolaki A, Ritis K, Skendros P. Angiotensin II triggers release of neutrophil extracellular traps, linking thromboinflammation with essential hypertension. JCI Insight 2021; 6:e148668. [PMID: 34324440 PMCID: PMC8492353 DOI: 10.1172/jci.insight.148668] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Innate immunity and chronic inflammation are involved in atherosclerosis and atherothrombosis, leading to target organ damage in essential hypertension (EH). However, the role of neutrophils in EH is still elusive. We investigated the association between angiotensin II (Ang II) and neutrophil extracellular traps (NETs) in pathogenesis of EH. Plasma samples, kidney biopsies, and surgical specimens of abdominal aortic aneurysms (AAAs) from patients with EH were used. Cell-based assays, NETs/human aortic endothelial cell cocultures, and in situ studies were performed. Increased plasma levels of NETs and tissue factor (TF) activity were detected in untreated, newly diagnosed patients with EH. Stimulation of control neutrophils with plasma from patients with untreated EH generated TF-enriched NETs promoting endothelial collagen production. Ang II induced NETosis in vitro via an ROS/peptidylarginine deiminase type 4 and autophagy-dependent pathway. Circulating NETs and thrombin generation levels were reduced substantially in patients with EH starting treatment with Ang II receptor blockers, whereas their plasma was unable to trigger procoagulant NETs. Moreover, TF-bearing NETotic neutrophils/remnants accumulated in sites of interstitial renal fibrosis and in the subendothelial layer of AAAs. These data reveal the important pathogenic role of an Ang II/ROS/NET/TF axis in EH, linking thromboinflammation with endothelial dysfunction and fibrosis.
Collapse
Affiliation(s)
- Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | - Maria Ntinopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Antoniadou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine
| | | | | | | | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- First Department of Internal Medicine
| |
Collapse
|
123
|
Neutrophil and Eosinophil Extracellular Traps in Hodgkin Lymphoma. Hemasphere 2021; 5:e633. [PMID: 34485830 PMCID: PMC8410234 DOI: 10.1097/hs9.0000000000000633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Classic Hodgkin lymphoma (cHL), nodular sclerosis (NS) subtype, is characterized by the presence of Hodgkin/Reed-Sternberg (HRS) cells in an inflammatory background containing neutrophils and/or eosinophils. Both types of granulocytes release extracellular traps (ETs), web-like DNA structures decorated with histones, enzymes, and coagulation factors that promote inflammation, thrombosis, and tumor growth. We investigated whether ETs from neutrophils (NETs) or eosinophils (EETs) are detected in cHL, and evaluated their association with fibrosis. We also studied expression of protease-activated receptor-2 (PAR-2) and phospho-extracellular signal-related kinase (p-ERK), potential targets/effectors of ETs-associated elastase, in HRS cells. Expression of tissue factor (TF) was evaluated, given the procoagulant properties of ETs. We analyzed 32 HL cases, subclassified as 12 NS, 5 mixed-cellularity, 5 lymphocyte-rich, 1 lymphocyte-depleted, 4 nodular lymphocyte-predominant HL (NLPHL), and 5 reactive nodes. Notably, a majority of NS cHL cases exhibited NET formation by immunohistochemistry for citrullinated histones, with 1 case revealing abundant EETs. All other cHL subtypes as well as NLPHL were negative. Immunofluorescence microscopy confirmed NETs with filamentous/delobulated morphology. Moreover, ETs formation correlates with concurrent fibrosis (r = 0.7999; 95% CI, 0.6192-0.9002; P ≤ 0.0001). Results also showed that HRS cells in NS cHL expressed PAR-2 with nuclear p-ERK staining, indicating a neoplastic or inflammatory phenotype. Remarkably, TF was consistently detected in the endothelium of NS cHL cases compared with other subtypes, in keeping with a procoagulant status. A picture emerges whereby the release of ETs and resultant immunothrombosis contribute to the inflammatory tumor microenvironment of NS cHL. This is the first description of NETs in cHL.
Collapse
|
124
|
Abstract
Based on the PubMed data, we have been performing a yearly evaluation of the publications related to autoimmune diseases and immunology to ascertain the relative weight of the former in the scientific literature. It is particularly intriguing to observe that despite the numerous new avenues of immune-related mechanisms, such as cancer immunotherapy, the proportion of immunology manuscripts related to autoimmunity continues to increase and has been approaching 20% in 2019. As in the previous 13 years, we performed an arbitrary selection of the peer-reviewed articles published by the major dedicated Journals and discussed the common themes which continue to outnumber peculiarites in autoimmune diseases. The investigated areas included systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriatic arthritis (PsA), autoantibodies (autoAbs), and common therapeutic avenues and novel pathogenic mechanisms for autoimmune conditions. Some examples include new pathogenetic evidence which is well represented by IL21 or P2X7 receptor (P2X7R) in SLE or the application of single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq), and flow cytometry for the analysis of different cellular populations in RA. Cumulatively and of interest to the clinicians, a large number of findings continue to underline the importance of a strict relationship between basic and clinical science to define new pathogenetic and therapeutic developments. The therapeutic pipeline in autoimmunity continues to grow and maintain a constant flow of new molecules, as well illustrated in RA and PsA, and this is most certainly derived from the new basic evidence and the high-throughput tools applied to autoimmune diseases.
Collapse
|
125
|
Abstract
As a basic biological phenomenon of cells, regulated cell death (RCD) has irreplaceable influence on the occurrence and development of many processes of life and diseases. RCD plays an important role in the stability of the homeostasis, the development of multiple systems and the evolution of organisms. Thus comprehensively understanding of RCD is undoubtedly helpful in the innovation of disease treatment. Recently, research on the underlying mechanisms of the major forms of RCD, such as apoptosis, autophagy, necroptosis, pyroptosis, paraptosis and neutrophils NETosis has made significant breakthroughs. In addition, the interconnections among them have attracted increasing attention from global scholars in the field of life sciences. Here, recent advances in RCD research field are discussed.
Collapse
|
126
|
Sahu S, Sharma K, Sharma M, Narang T, Dogra S, Minz RW, Chhabra S. Neutrophil NETworking in ENL: Potential as a Putative Biomarker: Future Insights. Front Med (Lausanne) 2021; 8:697804. [PMID: 34336901 PMCID: PMC8316588 DOI: 10.3389/fmed.2021.697804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Erythema nodosum leprosum (ENL), also known as type 2 reaction (T2R) is an immune complex mediated (type III hypersensitivity) reactional state encountered in patients with borderline lepromatous and lepromatous leprosy (BL and LL) either before, during, or after the institution of anti-leprosy treatment (ALT). The consequences of ENL may be serious, leading to permanent nerve damage and deformities, constituting a major cause of leprosy-related morbidity. The incidence of ENL is increasing with the increasing number of multibacillary cases. Although the diagnosis of ENL is not difficult to make for physicians involved in the care of leprosy patients, its management continues to be a most challenging aspect of the leprosy eradication program: the chronic and recurrent painful skin lesions, neuritis, and organ involvement necessitates prolonged treatment with prednisolone, thalidomide, and anti-inflammatory and immunosuppressive drugs, which further adds to the existing morbidity. In addition, the use of immunosuppressants like methotrexate, azathioprine, cyclosporine, or biologics carries a risk of reactivation of persisters (Mycobacterium leprae), apart from their own end-organ toxicities. Most ENL therapeutic guidelines are primarily designed for acute episodes and there is scarcity of literature on management of patients with chronic and recurrent ENL. It is difficult to predict which patients will develop chronic or recurrent ENL and plan the treatment accordingly. We need simple point-of-care or ELISA-based tests from blood or skin biopsy samples, which can help us in identifying patients who are likely to require prolonged treatment and also inform us about the prognosis of reactions so that appropriate therapy may be started and continued for better ENL control in such patients. There is a significant unmet need for research for better understanding the immunopathogenesis of, and biomarkers for, ENL to improve clinical stratification and therapeutics. In this review we will discuss the potential of neutrophils (polymorphonuclear granulocytes) as putative diagnostic and prognostic biomarkers by virtue of their universal abundance in human blood, functional versatility, phenotypic heterogeneity, metabolic plasticity, differential hierarchical cytoplasmic granule mobilization, and their ability to form NETs (neutrophil extracellular traps). We will touch upon the various aspects of neutrophil biology relevant to ENL pathophysiology in a step-wise manner. We also hypothesize about an element of metabolic reprogramming of neutrophils by M. leprae that could be investigated and exploited for biomarker discovery. In the end, a potential role for neutrophil derived exosomes as a novel biomarker for ENL will also be explored.
Collapse
Affiliation(s)
- Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshav Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Otolaryngology and Head and Neck Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Seema Chhabra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
127
|
Nakabo S, Romo-Tena J, Kaplan MJ. Neutrophils as Drivers of Immune Dysregulation in Autoimmune Diseases with Skin Manifestations. J Invest Dermatol 2021; 142:823-833. [PMID: 34253374 DOI: 10.1016/j.jid.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Dysregulation in the phenotype and function of neutrophils may play important roles in the initiation and perpetuation of autoimmune responses, including conditions affecting the skin. Neutrophils can have local and systemic effects on innate and adaptive immune cells as well as on resident cells in the skin, including keratinocytes (KCs). Aberrant formation/clearance of neutrophil extracellular traps (NETs) in systemic autoimmunity and chronic inflammatory diseases have been associated with the externalization of modified autoantigens in peripheral blood and tissues. NETs can impact the function of many cells, including macrophages, lymphocytes, dendritic cells, fibroblasts, and KCs. Emerging evidence has unveiled the pathogenic key roles of neutrophils in systemic lupus erythematosus, idiopathic inflammatory myopathies, psoriasis, hidradenitis suppurativa, and other chronic inflammatory conditions. As such, neutrophil-targeting strategies represent promising therapeutic options for these diseases.
Collapse
Affiliation(s)
- Shuichiro Nakabo
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA; Medical Science PhD Program, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
128
|
Patients with autoimmune chronic inflammatory diseases present increased biomarkers of thromboinflammation and endothelial dysfunction in the absence of flares and cardiovascular comorbidities. J Thromb Thrombolysis 2021; 53:10-16. [PMID: 34224067 DOI: 10.1007/s11239-021-02517-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Cardiovascular risk is increased in patients with autoimmune rheumatic diseases. Endothelial, erythrocyte and platelet microvesicles (MVs) are elevated in patients with cardiovascular diseases and represent novel markers of endothelial dysfunction and thromboinflammation. We tested whether their levels are increased in patients with autoimmune rheumatic diseases (ARDs) in the absence of disease flare and cardiovascular comorbidities. Well-controlled patients with rheumatoid arthritis or systemic lupus erythematosus were studied, provided they were free from cardiovascular comorbidities and established cardiovascular disease. We additionally studied (a) a control group consisting of healthy volunteers and (b) a reference group including patients with stable coronary artery disease (CAD). MVs were measured using a standardized flow cytometry protocol. In a population of 74 participants, patients with ARDs (n = 17) presented increased levels of both endothelial (283.3 ± 195.0/μL vs 168.5 ± 54.8/μL, p = 0.029) and platelet MVs (374.0 ± 275.3/μL vs 225.7 ± 101.1/μL, p = 0.046) compared to controls (n = 34), whereas erythrocyte MVs did not significantly differ. In addition, patients with ARDs showed similar levels of endothelial MVs compared to CAD patients (n = 23) (283.3 ± 195.0/μL vs 297.0 ± 211.8/μL, p = 0.846). Platelet MVs were significantly associated with disease duration, and erythrocyte MVs with patients' perceived disease activity. In conclusion, increased levels of endothelial and platelet MVs may be evident in patients with ARDs, even in the absence of disease flares and before the establishment of cardiovascular complications. Levels of endothelial MVs resemble those of patients with profound atherothrombotic profile. The prognostic potential of MVs in terms of cardiovascular disease prevention warrants further investigation in patients with ARDs.
Collapse
|
129
|
Thakur M, Evans B, Schindewolf M, Baumgartner I, Döring Y. Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells 2021; 10:1689. [PMID: 34359859 PMCID: PMC8305819 DOI: 10.3390/cells10071689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory proteins. NETs are diverse in their ability to alter physiological and pathological processes including infection and inflammation. In this review, we will summarize recent findings on the role of NETs in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic inflammation as well as discussing important questions related to their contribution to pathologies outlined above may pave the way for future research on therapeutic targeting of NETs applicable to specific infections and inflammatory disorders.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Bryce Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
130
|
Kumar R, Katare PB, Lentz SR, Modi AJ, Sharathkumar AA, Dayal S. Thrombotic potential during pediatric acute lymphoblastic leukemia induction: Role of cell-free DNA. Res Pract Thromb Haemost 2021; 5:e12557. [PMID: 34337307 PMCID: PMC8312738 DOI: 10.1002/rth2.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Thromboembolism affects up to 30% of children undergoing treatment for acute lymphoblastic leukemia (ALL). Increased thrombin generation has been reported in ALL, but the mechanisms remain elusive. OBJECTIVE We aimed to show that extracellular traps and cell-free DNA (cfDNA) promote thrombin generation in pediatric ALL. METHODS In a longitudinal single-center study, we recruited 17 consecutive pediatric ALL patients. Serial blood samples were collected at diagnosis and weekly during the 4-week induction phase of antileukemic chemotherapy. Healthy children (n = 14) and children with deep vein thrombosis (DVT; n = 7) or sepsis (n = 5) were recruited as negative and positive controls, respectively. In plasma, we measured endogenous thrombin generation potential (ETP) and components of extracellular traps, including cfDNA. RESULTS In patients with ALL, ETP was increased at baseline and remained significantly elevated throughout the induction therapy. Plasma levels of cfDNA were increased at baseline and during the first 3 weeks of induction therapy. The extent of enhancement of ETP and plasma cfDNA in patients with ALL was similar to that seen in patients with DVT or sepsis. Treatment of plasma with DNase 1 lowered ETP in patients with ALL at each time point but did not affect ETP in healthy controls. CONCLUSION We conclude that childhood ALL is associated with a prothrombotic milieu at the time of diagnosis that continues during induction chemotherapy, and cfDNA contributes to increased thrombogenic potential.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Internal MedicineUniversity of IowaIowa CityIAUSA
| | | | - Steven R. Lentz
- Department of Internal MedicineUniversity of IowaIowa CityIAUSA
| | | | | | - Sanjana Dayal
- Department of Internal MedicineUniversity of IowaIowa CityIAUSA
| |
Collapse
|
131
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
132
|
Papagoras C, Chrysanthopoulou A, Mitsios A, Tsironidou V, Ritis K. Neutrophil Extracellular Traps and Interleukin 17 in Ankylosing Spondylitis. Mediterr J Rheumatol 2021; 32:182-185. [PMID: 34447919 PMCID: PMC8369274 DOI: 10.31138/mjr.32.2.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease traditionally regarded as mediated by T lymphocytes. Recent progress has identified that cells of innate immunity are also important for the processes of inflammation and new bone formation, a hallmark of AS. Moreover, interleukin-17 (IL-17) is a cytokine implicated in both processes. Neutrophils are increasingly recognized as mediators of autoinflammatory and autoimmune diseases through several mechanisms, one being the release of neutrophil extracellular traps (NETs). NETs are equipped with an array of bioactive molecules, such as IL-1β or IL-17. It appears that the molecules expressed over NETs vary across different disorders, reflecting diverse pathophysiologic mechanisms. As few studies have investigated the role of neutrophils in AS, the purpose of this research protocol is to study whether neutrophils from AS patients are more likely to form NETs, whether IL-17 and IL-1β are expressed over those NETs and if NETs affect new bone formation.
Collapse
Affiliation(s)
- Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
133
|
Gene Expression as a Guide to the Development of Novel Therapies in Primary Glomerular Diseases. J Clin Med 2021; 10:jcm10112262. [PMID: 34073694 PMCID: PMC8197155 DOI: 10.3390/jcm10112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite improvements in understanding the pathogenic mechanisms of primary glomerular diseases, therapy still remains nonspecific. We sought to identify novel therapies targeting kidney-intrinsic injury of distinct primary glomerulonephritides through computational systems biology approaches. We defined the unique transcriptional landscape within kidneys from patients with focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN) and thin basement membrane nephropathy (TBMN). Differentially expressed genes were functionally annotated with enrichment analysis, and distinct biological processes and pathways implicated in each primary glomerular disease were uncovered. Finally, we identified novel drugs and small-molecule compounds that may reverse each glomerulonephritis phenotype, suggesting they should be further tested as precise therapy in primary glomerular diseases.
Collapse
|
134
|
Iliadi V, Konstantinidou I, Aftzoglou K, Iliadis S, Konstantinidis TG, Tsigalou C. The Emerging Role of Neutrophils in the Pathogenesis of Thrombosis in COVID-19. Int J Mol Sci 2021; 22:5368. [PMID: 34065210 PMCID: PMC8161034 DOI: 10.3390/ijms22105368] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that COVID-19 leads to thrombotic complications, which have been associated with high morbidity and mortality rates. Neutrophils are the largest population of white blood cells and play a pivotal role in innate immunity. During an infection, neutrophils migrate from circulation to the infection site, contributing to killing pathogens. This mechanism is regulated by chemokines such as IL-8. Moreover, it was shown that neutrophils play an important role in thromboinflammation. Through a diverse repertoire of mechanisms, neutrophils, apart from directly killing pathogens, are able to activate the formation of thrombi. In COVID-19 patients, neutrophil activation promotes neutrophil extracellular trap (NET) formation, platelet aggregation, and cell damage. Furthermore, neutrophils participate in the pathogenesis of endothelitis. Overall, this review summarizes recent progress in research on the pathogenesis of COVID-19, highlighting the role of the prothrombotic action of neutrophils in NET formation.
Collapse
Affiliation(s)
- Valeria Iliadi
- Medical School, Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia; (V.I.); (S.I.)
| | | | | | - Sergios Iliadis
- Medical School, Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia; (V.I.); (S.I.)
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece;
| |
Collapse
|
135
|
Lazurova Z, Lazurova I, Shoenfeld Y. Bisphenol A as a Factor in the Mosaic of Autoimmunity. Endocr Metab Immune Disord Drug Targets 2021; 22:728-737. [PMID: 33992069 DOI: 10.2174/1871530321666210516000042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
The population worldwide is largely exposed to bisphenol A (BPA), a commonly used plasticizer, that has a similar molecular structure to endogenous estrogens. Therefore, it is able to influence physiological processes in human body, taking part in the pathophysiology of various endocrinopathies, as well as, cardiovascular, neurological and oncological diseases. BPA has been found to affect the immune system, leading to the development of autoimmunity and allergies, too. In the last few decades, the prevalence of autoimmune diseases has significantly increased, that could be explained by a rising exposure of the population to environmental factors, such as BPA. BPA has been found to play a role in the pathogenesis of systemic autoimmune diseases and also organ-specific autoimmunity (thyroid autoimmunity, diabetes mellitus type 1, myocarditis, inflammatory bowel disease, multiple sclerosis, encephalomyelitis etc), but the results of some studies remain still controversial, so further research is needed.
Collapse
Affiliation(s)
- Zora Lazurova
- 4th Department of Internal Medicine, Medical Faculty of University of PJ Safarik, Kosice, Slovakia
| | - Ivica Lazurova
- 1st Department of Internal Medicine, Medical Faculty of University of PJ Safarik, Kosice, Slovakia
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv, Israel
| |
Collapse
|
136
|
Fetz AE, Bowlin GL. Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:437-450. [PMID: 33736452 DOI: 10.1089/ten.teb.2021.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species, the release of granules, the phagocytosis of invaders, and the extrusion of neutrophil extracellular traps (NETs). However, these canonical protective mechanisms can also have detrimental effects both in the context of infection and in response to sterile injuries. Of particular interest to biomaterials and tissue engineering is the release of NETs, which are extracellular structures composed of decondensed chromatin and various toxic nuclear and granular components. These structures and their dysregulated release can cause collateral tissue damage, uncontrolled inflammation, and fibrosis and prevent the neutrophil from exerting its prohealing functions. This review discusses our knowledge of NETs, including their composition and morphology, signaling pathways, inhibitors, and contribution to inflammatory pathologies, as well as their role in the resolution of inflammation. In addition, we summarize what is known about the release of NETs as a preconditioning event in the response to biomaterials and highlight future considerations to target the neutrophil response and enhance biomaterial-guided tissue repair and regeneration. Impact statement Neutrophil extracellular trap (NET) release is an active process programmed into the neutrophil's molecular machinery to prevent infection. However, the release of NETs on biomaterials appears to be a significant preconditioning event that influences the potential for tissue healing with largely detrimental consequences. Given their contribution to inflammatory pathologies, this review highlights the role of NETs in the response to biomaterials. Together, the studies discussed in this review suggest that biomaterials should be designed to regulate NET release to avoid maladaptive immune responses and improve the therapeutic potential of tissue-engineered biomaterials and their applications in the clinical setting.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
137
|
Wang J, Zhou Y, Ren B, Zou L, He B, Li M. The Role of Neutrophil Extracellular Traps in Periodontitis. Front Cell Infect Microbiol 2021; 11:639144. [PMID: 33816343 PMCID: PMC8012762 DOI: 10.3389/fcimb.2021.639144] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a chronic, destructive disease of periodontal tissues caused by multifaceted, dynamic interactions. Periodontal bacteria and host immunity jointly contribute to the pathological processes of the disease. The dysbiotic microbial communities elicit an excessive immune response, mainly by polymorphonuclear neutrophils (PMNs). As one of the main mechanisms of PMN immune response in the oral cavity, neutrophil extracellular traps (NETs) play a crucial role in the initiation and progression of late-onset periodontitis. NETs are generated and released by neutrophils stimulated by various irritants, such as pathogens, host-derived mediators, and drugs. Chromatin and proteins are the main components of NETs. Depending on the characteristics of the processes, three main pathways of NET formation have been described. NETs can trap and kill pathogens by increased expression of antibacterial components and identifying and trapping bacteria to restrict their spread. Moreover, NETs can promote and reduce inflammation, inflicting injuries on the tissues during the pro-inflammation process. During their long-term encounter with NETs, periodontal bacteria have developed various mechanisms, including breaking down DNA of NETs, degrading antibacterial proteins, and impacting NET levels in the pocket environment to resist the antibacterial function of NETs. In addition, periodontal pathogens can secrete pro-inflammatory factors to perpetuate the inflammatory environment and a friendly growth environment, which are responsible for the progressive tissue damage. By learning the strategies of pathogens, regulating the periodontal concentration of NETs becomes possible. Some practical ways to treat late-onset periodontitis are reducing the concentration of NETs, administering anti-inflammatory therapy, and prescribing broad-spectrum and specific antibacterial agents. This review mainly focuses on the mechanism of NETs, pathogenesis of periodontitis, and potential therapeutic approaches based on interactions between NETs and periodontal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
138
|
Sabbatini M, Magnelli V, Renò F. NETosis in Wound Healing: When Enough Is Enough. Cells 2021; 10:cells10030494. [PMID: 33668924 PMCID: PMC7996535 DOI: 10.3390/cells10030494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The neutrophils extracellular traps (NETs) are a meshwork of chromatin, histonic and non-histonic proteins, and microbicidal agents spread outside the cell by a series of nuclear and cytoplasmic events, collectively called NETosis. NETosis, initially only considered a defensive/apoptotic mechanism, is now considered an extreme defensive solution, which in particular situations induces strong negative effects on tissue physiology, causing or exacerbating pathologies as recently shown in NETs-mediated organ damage in COVID-19 patients. The positive effects of NETs on wound healing have been linked to their antimicrobial activity, while the negative effects appear to be more common in a plethora of pathological conditions (such as diabetes) and linked to a NETosis upregulation. Recent evidence suggests there are other positive physiological NETs effects on wound healing that are worthy of a broader research effort.
Collapse
Affiliation(s)
- Maurizio Sabbatini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale—via T. Michel 11, 15121 Alessandria, Italy; (M.S.); (V.M.)
| | - Valeria Magnelli
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale—via T. Michel 11, 15121 Alessandria, Italy; (M.S.); (V.M.)
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-66-0634
| |
Collapse
|
139
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
140
|
Papagoras C, Chrysanthopoulou A, Mitsios A, Ntinopoulou M, Tsironidou V, Batsali AK, Papadaki HA, Skendros P, Ritis K. IL-17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone-forming cells in ankylosing spondylitis. Eur J Immunol 2021; 51:930-942. [PMID: 33340091 DOI: 10.1002/eji.202048878] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Ankylosing spondylitis (AS) is an inflammatory disease characterized by excessive bone formation. We investigated the presence of neutrophil extracellular traps (NETs) in AS and how they are involved in the osteogenic capacity of bone marrow mesenchymal stem cells (MSCs) through interleukin-17A (IL-17A). Peripheral neutrophils and sera were obtained from patients with active AS and healthy controls. NET formation and neutrophil/NET-associated proteins were studied using immunofluorescence, immunoblotting, qPCR, and ELISA. In vitro co-culture systems of AS NET structures and MSCs isolated from controls were deployed to examine the role of NETs in the differentiation of MSCs toward osteogenic cells. Analysis was performed using specific staining and qPCR. Neutrophils from patients with AS were characterized by enhanced formation of NETs carrying bioactive IL-17A and IL-1β. IL-17A-enriched AS NETs mediated the differentiation of MSCs toward bone-forming cells. The neutrophil expression of IL-17A was positively regulated by IL-1β. Blocking IL-1β signaling on neutrophils with anakinra or dismantling NETs using DNase-I disrupted osteogenesis driven by IL-17A-bearing NETs. These findings propose a novel role of neutrophils in AS-related inflammation, linking IL-17A-decorated NETs with the differentiation of MSCs toward bone-forming cells. Moreover, IL-1β triggers the expression of IL-17A on NETs offering an additional therapeutic target in AS.
Collapse
Affiliation(s)
- Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Ntinopoulou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aristea K Batsali
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
| | - Helen A Papadaki
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece.,Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.,Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
141
|
Zhang S, Zhang J, Wang C, Chen X, Zhao X, Jing H, Liu H, Li Z, Wang L, Shi J. COVID‑19 and ischemic stroke: Mechanisms of hypercoagulability (Review). Int J Mol Med 2021; 47:21. [PMID: 33448315 PMCID: PMC7849983 DOI: 10.3892/ijmm.2021.4854] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, some patients with severe COVID-19 exhibited complications such as acute ischemic stroke (AIS), which was closely associated with a poor prognosis. These patients often had an abnormal coagulation, namely, elevated levels of D-dimer and fibrinogen, and a low platelet count. Certain studies have suggested that COVID-19 induces AIS by promoting hypercoagulability. Nevertheless, the exact mechanisms through which COVID-19 leads to a hypercoagulable state in infected patients remain unclear. Understanding the underlying mechanisms of hypercoagulability is of utmost importance for the effective treatment of these patients. The present review aims to summarize the current status of research on COVID-19, hypercoagulability and ischemic stroke. The present review also aimed to shed light into the underlying mechanisms through which COVID-19 induces hypercoagulability, and to provide therapies for different mechanisms for the more effective treatment of patients with COVID-19 with ischemic stroke and prevent AIS during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuoqi Zhang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinming Zhang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunxu Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaojing Chen
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinyi Zhao
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhuxin Li
- Department of Acupuncture and Moxibustion, College of Acupuncture and Moxibustion, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Lihua Wang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
142
|
Cai W, Chen X, Men X, Ruan H, Hu M, Liu S, Lu T, Liao J, Zhang B, Lu D, Huang Y, Fan P, Rao J, Lei C, Wang J, Ma X, Zhu Q, Li L, Zhu X, Hou Y, Li S, Dong Q, Tian Q, Ai L, Luo W, Zuo M, Shen L, Xie C, Song H, Xu G, Zheng K, Zhang Z, Lu Y, Qiu W, Chen T, Xiang AP, Lu Z. Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt. SCIENCE ADVANCES 2021; 7:eabe4827. [PMID: 33523954 DOI: 10.1126/sciadv.abe4827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The intestinal microbiota shape the host immune system and influence the outcomes of various neurological disorders. Arteriosclerotic cerebral small vessel disease (aCSVD) is highly prevalent among the elderly with its pathological mechanisms yet is incompletely understood. The current study investigated the ecology of gut microbiota in patients with aCSVD, particularly its impact on the host immune system. We reported that the altered composition of gut microbiota was associated with undesirable disease outcomes and exacerbated inflammaging status. When exposed to the fecal bacterial extracts from a patient with aCSVD, human and mouse neutrophils were activated, and capacity of interleukin-17A (IL-17A) production was increased. Mechanistically, RORγt signaling in neutrophils was activated by aCSVD-associated gut bacterial extracts to up-regulate IL-17A production. Our findings revealed a previously unrecognized implication of the gut-immune-brain axis in aCSVD pathophysiology, with therapeutic implications.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaodong Chen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xuejiao Men
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hengfang Ruan
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jinchi Liao
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yinong Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ping Fan
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Junping Rao
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Chunyan Lei
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Jihui Wang
- Department of Psychiatry, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaomeng Ma
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qiang Zhu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lili Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiuyun Zhu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yujiao Hou
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Shu Li
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Qing Dong
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Tian
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lulu Ai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenjing Luo
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mengyun Zuo
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Liping Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Congyan Xie
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hongzhong Song
- Department of Neurology, Yuedong Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Meizhou, Guangdong 514011, China
| | - Ganlin Xu
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Kangdi Zheng
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Zhao Zhang
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life Sciences and Biomedical Center of Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Qiu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tao Chen
- South China Institute of Biomedicine, Guangzhou, Guangdong 510535, China
- Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong 510535, China
| | - Andy Peng Xiang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
143
|
Ding F, Gao F, Zhang S, Lv X, Chen Y, Liu Q. A review of the mechanism of DDIT4 serve as a mitochondrial related protein in tumor regulation. Sci Prog 2021; 104:36850421997273. [PMID: 33729069 PMCID: PMC10455034 DOI: 10.1177/0036850421997273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DDIT4 is a mitochondrial and tumor-related protein involved in anti-tumor therapy resistance, proliferation, and invasion, etc. Its expression level increases under the stress such as chemotherapy, hypoxia, and DNA damage. A number of clinical studies have confirmed that DDIT4 can change the behavior of tumor cells and the prognosis of patients with cancer. However, the role of DDIT4 in promoting or suppressing cancer is still inconclusive. This article summarized the four characteristics of DDIT4 including a mitochondria-related protein, interactions with various protein molecules, immune and metabolic cell related proteins and participator in the oxygen sensing pathway, which may be related to the progress of cancer.
Collapse
Affiliation(s)
- Fadian Ding
- Department of Hepatobiliary Pancreatic Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Gao
- Department of Pathology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Zhang
- Department of Pathology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoting Lv
- Department of Respiratory, First Affiliated Hospital; Fujian Medical University, Fuzhou, China
| | - Youting Chen
- Department of Hepatobiliary Pancreatic Surgery, 1st Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Abdominal Surgery Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qicai Liu
- Center for Reproductive Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
144
|
Abstract
PURPOSE OF REVIEW Aberrations in the innate and in the adaptive arms of the immune system play both important roles in the initiation and progression of systemic lupus erythematosus (SLE). The aim of this study was to provide an update on the most recent findings on the cellular pathogenesis of SLE. Our overview focused particularly on results obtained over the last 18 months. RECENT FINDINGS Recent observations have provided an improved understanding of the importance of low-density granulocytes, a highly proinflammatory subset of neutrophils. We also highlighted in this work recent descriptions of the various cellular sources associated with the interferon signature. In addition, novel contributions have also developed our understanding of the potential importance of extrafollicular T-B-cell interactions in SLE pathogenesis. Finally, the role of recently described B and T-cell subsets, that is, atypical memory B cells, T-peripheral helper cells, and Th10 T cells, were also reviewed. SUMMARY Recent findings in the cellular pathogenesis of SLE give a deeper comprehension of previously described mechanisms which drive SLE pathogenesis and shed light on novel players in immune dysregulation that could help to identify potential therapeutic targets.
Collapse
|
145
|
Bonaventura A, Vecchié A, Mauro AG, Brucato AL, Imazio M, Abbate A. An update on the pathophysiology of acute and recurrent pericarditis. Panminerva Med 2020; 63:249-260. [PMID: 33337127 DOI: 10.23736/s0031-0808.20.04205-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pericarditis is an inflammatory disease of the pericardium. Progress has been done in recent years in the understanding of its pathophysiology. In particular, pre-clinical and clinical studies have contributed to increasing our knowledge on the role of interleukin (IL)-1 and NLRP3 (NACHT, leucine- rich repeat, and pyrin domain- containing protein 3) inflammasome. Based on current evidence, pericarditis should be considered as an inflammatory reaction to various stimuli, including chemical/physical, infectious, or ischemic ones, with a viral infection being a common etiology. Interaction of pathogens or irritants with toll-like receptor (TLRs) and stimulation of IL-1 receptor by IL-1α and IL-1β lead to an increased transcription of pro-inflammatory genes, including those needed for NLRP3 inflammasome assembly. This pathway is confirmed indirectly by the beneficial effect of colchicine (an indirect NLRP3 inflammasome inhibitor) and IL-1 blockers in patients with recurrent pericarditis. More recently, a direct evidence of the NLRP3 inflammasome within the inflamed pericardium has been provided as well. It may, however, occur that selfantigens on the surface of mesothelial cells or microbial peptides may stimulate autoreactive T cells along with B cells producing anti-heart antibodies, although less evidence is available on this. Some uncertainties still remain about the role of neutrophils, neutrophil extracellular traps (NETs), and pericardial interstitial cells in recurrent and constrictive pericarditis. Unraveling these aspects might have a direct impact on the development of novel targeted therapies, especially considering the increasing number of drugs targeting NETs.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA - .,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy - .,Internal Medicine Unit, Department of Medicine and Surgery, University of Insubria-Ospedale Di Circolo di Varese, ASST Dei Sette Laghi, Varese, Italy -
| | - Alessandra Vecchié
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA.,Internal Medicine Unit, Department of Medicine and Surgery, University of Insubria-Ospedale Di Circolo di Varese, ASST Dei Sette Laghi, Varese, Italy
| | - Adolfo G Mauro
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA
| | - Antonio L Brucato
- Department of Biomedical and Clinical Sciences, Fatebenefratelli Hospital, Università di Milano, Milan, Italy
| | - Massimo Imazio
- University Cardiology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA
| |
Collapse
|
146
|
Chen X, Yu C, Jing H, Wang C, Zhao X, Zhang J, Zhang S, Liu H, Xie R, Shi J. COVID-19 associated thromboinflammation of renal capillary: potential mechanisms and treatment. Am J Transl Res 2020; 12:7640-7656. [PMID: 33437350 PMCID: PMC7791506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic disease with high morbidity and mortality. Inflammatory and thrombosis are its main manifestations. As an important organ of hemofiltration metabolism, the kidney is prone to blockage and destruction when filter high inflammatory and high viscous blood of COVID-19, resulting in the loss of a large amount of protein, aggravating blood concentration, and then worsening COVID-19 hypercoagulability, which may explain the phenomenon of erythrocytes aggregation blocking the capillary lumen and the main reason why the kidney has become the second largest involvement organs. Therefore, this review discusses the effects of pathophysiological mechanisms such as inflammatory storm, endothelial injury, phosphatidylserine expression, extracellular traps release on renal capillary thrombosis caused by COVID-19 infection. Meanwhile, in view of the above mechanisms, we put forward the potential targets of antithrombotic therapy, and graded management of patients, reasonable use of drugs according to the severity of the disease and the choice of time. And we support the view of prevention of thrombus before admission, continuous anticoagulation and drug choice after discharge. It is suggested that the symptomatic and supportive treatment of renal disease in critically ill patients should be combined with the concept of antithrombotic therapy. The ultimate goal is to reduce the occurrence and development of kidney disease, provide direction for the current management of COVID-19 with kidney disease, and reduce the mortality of COVID-19.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical UniversityChina
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Chengyuan Yu
- Department of Geriatric, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen 518020, Guangdong, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Chunxu Wang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Xinyi Zhao
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Jinming Zhang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Shuoqi Zhang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Huan Liu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Rujuan Xie
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical UniversityChina
| | - Jialan Shi
- Department of Hematology, The First Hospital of Harbin, Harbin Medical UniversityChina
- Departments of Research and Medicine, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
147
|
Zhou L, Liu Z, Chen S, Qiu J, Li Q, Wang S, Zhou W, Chen D, Yang G, Guo L. Transcription factor EB‑mediated autophagy promotes dermal fibroblast differentiation and collagen production by regulating endoplasmic reticulum stress and autophagy‑dependent secretion. Int J Mol Med 2020; 47:547-560. [PMID: 33416091 PMCID: PMC7797452 DOI: 10.3892/ijmm.2020.4814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Autophagy is reported to be involved in the formation of skin hypertrophic scar (HTS). However, the role of autophagy in the process of fibrosis remains unclear, therefore an improved understanding of the molecular mechanisms associated with autophagy may accelerate the development of effective therapeutic strategies against HTS. The present study evaluated the roles of autophagy mediated by transcription factor EB (TFEB), a pivotal regulator of lysosome biogenesis and autophagy, in transforming growth factor-β1 (TGF-β1)-induced fibroblast differentiation and collagen production. Fibroblasts were treated with TGF-β1, TGF-β1 + tauroursodeoxycholic acid (TUDCA) or TGF-β1 + TFEB-small interfering RNA (siRNA). TGF-β1 induced phenotypic transformation of fibro-blasts, as well as collagen synthesis and secretion in fibroblasts in a dose-dependent manner. Western blotting and immuno-fluorescence analyses demonstrated that TGF-β1 upregulated the expression of autophagy-related proteins through the endoplasmic reticulum (ER) stress pathway, whereas TUDCA reversed TGF-β1-induced changes. Reverse transcription-quantitative PCR (RT-qPCR), western blotting and RFP-GFP-LC3 double fluorescence analyses demonstrated that knockdown of TFEB by TFEB-siRNA decreased autophagic flux, upregulated the expression of proteins involved in the apoptotic pathway, such as phosphorylated-α subunit of eukaryotic initiation factor 2, C/EBP homologous protein and cysteinyl aspartate specific proteinase 3, and also downregulated the expression of α-smooth muscle actin and collagen I (COL I) in fibroblasts. Immunofluorescence confocal analyses and enzyme-linked immunosorbent assay indicated that TGF-β1 increased the colocalization of COL I with lysosomal-associated membrane protein 1 and Ras-related protein Rab-8A, a marker of secretory vesicles, in fibroblasts, as well as the secretion of pro-COL Iα1 in culture supernatants. Meanwhile, these effects were abolished by TFEB knockdown. The present results suggested that autophagy reduced ER stress, decreased cell apoptosis and maintained fibroblast activation not only through degradation of misfolded or unfolded proteins, but also through promotion of COL I release from the autolysosome to the extracellular environment.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zeming Liu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sichao Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Qiu
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Qianqian Li
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shipei Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guang Yang
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
148
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
149
|
Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 2020; 41:1539-1546. [PMID: 33110240 PMCID: PMC7588589 DOI: 10.1038/s41401-020-00554-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) and its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the greatest current threat to global public health. The highly infectious SARS-CoV-2 virus primarily attacks pulmonary tissues and impairs gas exchange leading to acute respiratory distress syndrome (ARDS) and systemic hypoxia. The current pharmacotherapies for COVID-19 largely rely on supportive and anti-thrombi treatment and the repurposing of antimalarial and antiviral drugs such as hydroxychloroquine and remdesivir. For a better mechanistic understanding of COVID-19, our present review focuses on its primary pathophysiologic features: hypoxia and cytokine storm, which are a prelude to multiple organ failure and lethality. We discussed a possible link between the activation of hypoxia inducible factor 1α (HIF-1α) and cell entry of SARS-CoV-2, since HIF-1α is shown to suppress the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) and upregulate disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). In addition, the protein targets of HIF-1α are involved with the activation of pro-inflammatory cytokine expression and the subsequent inflammatory process. Furthermore, we hypothesized a potential utility of so-called "hypoxic conditioning" to activate HIF-1α-induced cytoprotective signaling for reduction of illness severity and improvement of vital organ function in patients with COVID-19. Taken together, we would propose further investigations into the hypoxia-related molecular mechanisms, from which novel targeted therapies can be developed for the improved management of COVID-19.
Collapse
|
150
|
Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2020; 78:109861. [PMID: 33253915 DOI: 10.1016/j.cellsig.2020.109861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor β, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".
Collapse
Affiliation(s)
- Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|