101
|
Wahyuni TS, Utsubo CA, Hotta H. Promising Anti-Hepatitis C Virus Compounds from Natural Resources. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem, which involves approximately 170 million people. High morbidity of patients is caused by chronic infection, which leads to liver cirrhosis, hepatocellular carcinoma and other HCV-related diseases. The sustained virological response (SVR) has been markedly improved to be >90% by the current standard interferon (IFN)-free treatment regimens with a combination of direct-acting antiviral agents (DAAs) targeting the viral NS3 protease, NS5A multi-function protein and NS5B RNA-dependent RNA polymerase, compared with 50–70% of SVR rates achieved by the previous standard IFN-based treatment regimens with or without an NS3 protease inhibitor. However, the emergence of DAA-resistant HCV strains and the limited access to the DAAs due to their high cost could be major concerns. Also, the long-term prognosis of patients treated with DAAs, such as the possible development of hepatocellular carcinoma, still needs to be further evaluated. Natural resources are considered to be good candidates to develop anti-HCV agents. Here, we summarize anti-HCV compounds obtained from natural resources, including medicinal plant extracts, their isolated compounds and some of their derivatives that possess high antiviral potency against HCV.
Collapse
Affiliation(s)
- Tutik Sri Wahyuni
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Jl. Dharmawangsa Dalam, Surabaya 60286, Indonesia
| | - Chie Aoki Utsubo
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, 1-5-6 Minatojima-minamimachi, Chou-ku, Kobe 650-0047, Japan
| |
Collapse
|
102
|
(4R,6S)-2-Dihydromenisdaurilide is a Butenolide that Efficiently Inhibits Hepatitis C Virus Entry. Sci Rep 2016; 6:29969. [PMID: 27426693 PMCID: PMC4947960 DOI: 10.1038/srep29969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Without a vaccine, hepatitis C virus (HCV) remains a significant threat, putting 170–300 million carriers worldwide at risk of cirrhosis and hepatocellular carcinoma. Although the direct-acting antivirals targeting HCV replication have revolutionized the treatment of hepatitis C, several obstacles persist, including resistance development, potential side-effects, and the prohibitive cost that limits their availability. Furthermore, treatment of HCV re-infection in liver transplantation remains a significant challenge. Developing novel antivirals that target viral entry could help expand the scope of HCV therapeutics and treatment strategies. Herein, we report (4R,6S)-2-dihydromenisdaurilide (DHMD), a natural butenolide, as an efficient inhibitor of HCV entry. Specifically, DHMD potently inhibited HCV infection at non-cytotoxic concentration. Examination on the viral life cycle demonstrated that DHMD selectively targeted the early steps of infection while leaving viral replication/translation and assembly/release unaffected. Furthermore, DHMD did not induce an antiviral interferon response. Mechanistic dissection of HCV entry revealed that DHMD could inactivate cell-free virus, abrogate viral attachment, and inhibit viral entry/fusion, with the most pronounced effect observed against the viral adsorption phase as validated using ELISA and confocal microscopy. Due to its potency, DHMD may be of value for further development as an entry inhibitor against HCV, particularly for application in transplant setting.
Collapse
|
103
|
Lee M, Yang J, Park S, Jo E, Kim HY, Bae YS, Windisch MP. Micrococcin P1, a naturally occurring macrocyclic peptide inhibiting hepatitis C virus entry in a pan-genotypic manner. Antiviral Res 2016; 132:287-95. [PMID: 27387825 DOI: 10.1016/j.antiviral.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is considered a major public health concern worldwide. Despite recent advances in curing chronic hepatitis C, unmet medical needs still remain, especially due to the high economic burden of therapies. Accordingly, our study aimed to identify affordable novel HCV inhibitors by screening of natural product compound libraries. We identified micrococcin P1, a macrocyclic peptide antibiotic, inhibiting HCV entry in a pan-genotypic manner with an EC50 range of 0.1-0.5 μM. Micrococcin P1 interfered with HCV entry at an attachment step. Furthermore, micrococcin P1 efficiently inhibited HCV spread by blocking cell-free infection as well as cell-to-cell transmission, without affecting the secretion of infectious virions. Interestingly, the putative molecular target of micrococcin P1 is glycoprotein E2 (IIe-630-Thr), as revealed by selection for viral drug resistance. In addition, micrococcin P1 inhibited sofosbuvir-resistant HCV strains and showed synergy in combination with selected HCV drugs, suggesting an alternative treatment paradigm for patients. In conclusion, we identified micrococcin P1 as specifically inhibiting entry of all HCV genotypes and demonstrated that micrococcin P1 potentially could add value to therapies in combination with current HCV interventions.
Collapse
Affiliation(s)
- Myungeun Lee
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea; Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Jaewon Yang
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Sanghyun Park
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Eunji Jo
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Hee-Young Kim
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Yong-Soo Bae
- Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Marc P Windisch
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea.
| |
Collapse
|
104
|
Mouse Systems to Model Hepatitis C Virus Treatment and Associated Resistance. Viruses 2016; 8:v8060176. [PMID: 27338446 PMCID: PMC4926196 DOI: 10.3390/v8060176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/12/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
While addition of the first-approved protease inhibitors (PIs), telaprevir and boceprevir, to pegylated interferon (PEG-IFN) and ribavirin (RBV) combination therapy significantly increased sustained virologic response (SVR) rates, PI-based triple therapy for the treatment of chronic hepatitis C virus (HCV) infection was prone to the emergence of resistant viral variants. Meanwhile, multiple direct acting antiviral agents (DAAs) targeting either the HCV NS3/4A protease, NS5A or NS5B polymerase have been approved and these have varying potencies and distinct propensities to provoke resistance. The pre-clinical in vivo assessment of drug efficacy and resistant variant emergence underwent a great evolution over the last decade. This field had long been hampered by the lack of suitable small animal models that robustly support the entire HCV life cycle. In particular, chimeric mice with humanized livers (humanized mice) and chimpanzees have been instrumental for studying HCV inhibitors and the evolution of drug resistance. In this review, we present the different in vivo HCV infection models and discuss their applicability to assess HCV therapy response and emergence of resistant variants.
Collapse
|
105
|
Hepatitis C virus cell entry: a target for novel antiviral strategies to address limitations of direct acting antivirals. Hepatol Int 2016; 10:741-8. [DOI: 10.1007/s12072-016-9724-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 12/12/2022]
|
106
|
Yu JS, Chen WC, Tseng CK, Lin CK, Hsu YC, Chen YH, Lee JC. Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway. PLoS One 2016; 11:e0152236. [PMID: 27023634 PMCID: PMC4811417 DOI: 10.1371/journal.pone.0152236] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN) is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP) and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K) leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.
Collapse
Affiliation(s)
- Jung-Sheng Yu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (J-CL); (Y-HC)
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (J-CL); (Y-HC)
| |
Collapse
|
107
|
Chung CY, Liu CH, Burnouf T, Wang GH, Chang SP, Jassey A, Tai CJ, Tai CJ, Huang CJ, Richardson CD, Yen MH, Lin CC, Lin LT. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res 2016; 130:58-68. [PMID: 27012176 DOI: 10.1016/j.antiviral.2016.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022]
Abstract
Without a vaccine, hepatitis C virus (HCV) remains a global medical and socio-economic burden, predisposing about 170 million carriers worldwide to end-stage liver diseases including cirrhosis and hepatocellular carcinoma. Although the recently developed direct-acting antivirals (DAAs) have revolutionized hepatitis C treatment, most of them are unsuitable for monotherapy due to risks of resistance, thus necessitating combination with interferon (IFN)-alpha, ribavirin, or additional DAAs. More importantly, the high cost associated with the DAAs restricts their accessibility to most parts of the world. Developing novel cost-effective anti-HCV therapeutics may help expand the scope of antivirals and treatment strategies against hepatitis C. Herein, we applied an activity-based and fraction-guided analysis of extracts from the medicinal plant Phyllanthus urinaria (P. urinaria), which yielded fraction 13 (F13) as possessing the most potent inhibitory activity against early viral entry of cell-culture HCV infection. Chemical analysis (silica gel chromatography followed by ESI LC-MS plus (1)H and (13)C NMR) of F13 identified loliolide (LOD), a monoterpenoid lactone, as a novel inhibitor of HCV entry. Specifically, LOD could efficiently inactivate HCV free virus particles, abrogate viral attachment, and impede viral entry/fusion, with minimal effect on viral replication/translation, particle production, and induction of type I IFN host antiviral immune response. ELISA-based binding analysis confirmed the monoterpenoid's ability in efficiently blocking HCV particle attachment to the host cell surface. Furthermore, LOD could inhibit infection by several genotypic strains of HCV. This is the first report characterizing P. urinaria and its bioactive compound LOD as potent HCV entry inhibitors, which merit further evaluation for development as candidate antiviral agents against hepatitis C.
Collapse
Affiliation(s)
- Chueh-Yao Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen City, China
| | - Shun-Pang Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alagie Jassey
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Jei Tai
- Department of Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jang Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Christopher D Richardson
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
108
|
Perin PM, Haid S, Brown RJ, Doerrbecker J, Schulze K, Zeilinger C, von Schaewen M, Heller B, Vercauteren K, Luxenburger E, Baktash YM, Vondran FW, Speerstra S, Awadh A, Mukhtarov F, Schang LM, Kirschning A, Müller R, Guzman CA, Kaderali L, Randall G, Meuleman P, Ploss A, Pietschmann T. Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1. Hepatology 2016; 63:49-62. [PMID: 26248546 PMCID: PMC4688136 DOI: 10.1002/hep.28111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED To explore mechanisms of hepatitis C viral (HCV) replication we screened a compound library including licensed drugs. Flunarizine, a diphenylmethylpiperazine used to treat migraine, inhibited HCV cell entry in vitro and in vivo in a genotype-dependent fashion. Analysis of mosaic viruses between susceptible and resistant strains revealed that E1 and E2 glycoproteins confer susceptibility to flunarizine. Time of addition experiments and single particle tracking of HCV demonstrated that flunarizine specifically prevents membrane fusion. Related phenothiazines and pimozide also inhibited HCV infection and preferentially targeted HCV genotype 2 viruses. However, phenothiazines and pimozide exhibited improved genotype coverage including the difficult to treat genotype 3. Flunarizine-resistant HCV carried mutations within the alleged fusion peptide and displayed cross-resistance to these compounds, indicating that these drugs have a common mode of action. CONCLUSION These observations reveal novel details about HCV membrane fusion; moreover, flunarizine and related compounds represent first-in-class HCV fusion inhibitors that merit consideration for repurposing as a cost-effective component of HCV combination therapies.
Collapse
Affiliation(s)
- Paula M. Perin
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection ResearchHannoverGermany
| | - Sibylle Haid
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection ResearchHannoverGermany
| | - Richard J.P. Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection ResearchHannoverGermany
| | - Juliane Doerrbecker
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection ResearchHannoverGermany
| | - Kai Schulze
- Department of Vaccinology and Applied MicrobiologyHelmholtz Centre of Infection ResearchBraunschweigGermany
| | - Carsten Zeilinger
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz UniversitätHannoverGermany
| | | | - Brigitte Heller
- Department of Molecular BiologyPrinceton UniversityPrincetonNJ
| | | | - Eva Luxenburger
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | | | - Florian W.R. Vondran
- ReMediES, Department of GeneralVisceral and Transplantation Surgery, Hannover Medical SchoolHannoverGermany,German Centre for Infection Research, Hannover‐BraunschweigGermany
| | - Sietkse Speerstra
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada,Li Ka Shing Institute of Virology, University of AlbertaEdmontonABCanada
| | - Abdullah Awadh
- Li Ka Shing Institute of Virology, University of AlbertaEdmontonABCanada,Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonABCanada
| | - Furkat Mukhtarov
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada,Li Ka Shing Institute of Virology, University of AlbertaEdmontonABCanada
| | - Luis M. Schang
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada,Li Ka Shing Institute of Virology, University of AlbertaEdmontonABCanada,Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonABCanada
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz UniversitätHannoverGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Carlos A. Guzman
- Department of Vaccinology and Applied MicrobiologyHelmholtz Centre of Infection ResearchBraunschweigGermany
| | | | - Glenn Randall
- Department of MicrobiologyThe University of ChicagoChicagoIL
| | | | - Alexander Ploss
- Department of Molecular BiologyPrinceton UniversityPrincetonNJ
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection ResearchHannoverGermany,German Centre for Infection Research, Hannover‐BraunschweigGermany
| |
Collapse
|
109
|
Flores DJ, Lee LH, Adams SD. Inhibition of Curcumin-Treated Herpes Simplex Virus 1 and 2 in Vero Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.64027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
110
|
Haid S, Grethe C, Bankwitz D, Grunwald T, Pietschmann T. Identification of a Human Respiratory Syncytial Virus Cell Entry Inhibitor by Using a Novel Lentiviral Pseudotype System. J Virol 2015; 90:3065-73. [PMID: 26719246 PMCID: PMC4810627 DOI: 10.1128/jvi.03074-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Lentiviral budding is governed by group-specific antigens (Gag proteins) and proceeds in the absence of cognate viral envelope proteins, which has been exploited to create pseudotypes incorporating envelope proteins from nonlentiviral families. Here, we report the generation of infectious lentiviral pseudoparticles incorporating human respiratory syncytial virus (hRSV) F protein alone (hRSV-Fpp) or carrying SH, G, and F proteins (hRSV-SH/G/Fpp). These particles recapitulate key infection steps of authentic hRSV particles, including utilization of glycosaminoglycans and low-pH-independent cell entry. Moreover, hRSV pseudoparticles (hRSVpp) can faithfully reproduce phenotypic resistance to a small-molecule fusion inhibitor in clinical development (BMS-433771) and a licensed therapeutic F protein-targeting antibody (palivizumab). Inoculation of several human cell lines from lung and liver revealed more than 30-fold differences in susceptibility to hRSVpp infection, suggesting differential expression of hRSV entry cofactors and/or restriction factors between these cell types. Moreover, we observed cell-type-dependent functional differences between hRSVpp carrying solely F protein or SH, G, and F proteins with regard to utilization of glycosaminoglycans. Using hRSVpp, we identified penta-O-galloyl-β-d-glucose (PGG) as a novel hRSV cell entry inhibitor. Moreover, we show that PGG also inhibits cell entry of hRSVpp carrying F proteins resistant to BMS-433771 or palivizumab. This work sheds new light on the mechanisms of hRSV cell entry, including possible strategies for antiviral intervention. Moreover, hRSVpp should prove valuable to dissect hRSV envelope protein functions, including the interaction with cell entry factors. IMPORTANCE Lentiviral pseudotypes are highly useful to specifically dissect the functions of viral and host factors in cell entry, which have been exploited for numerous viruses. Here, we successfully created hRSVpp and show that they faithfully recapitulate key characteristics of parental hRSV cell entry. Importantly, hRSVpp accurately mirror hRSV resistance to small-molecule fusion inhibitors and clinically approved therapeutic antibodies. Moreover, we observed highly different susceptibilities of cell lines to hRSVpp infection and also differences between hRSVpp types (with F protein alone or with SH, G, and F proteins) in regard to cell entry. This indicates differential expression of host factors determining hRSV cell entry between these cell lines and highlights the fact that the hRSVpp system is useful to explore the functional properties of hRSV envelope protein combinations. Therefore, this system will be highly useful to study hRSV cell entry and host factor usage and to explore antiviral strategies targeting hRSV cell entry.
Collapse
Affiliation(s)
- Sibylle Haid
- Division of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christina Grethe
- Division of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Dorothea Bankwitz
- Division of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Thomas Pietschmann
- Division of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| |
Collapse
|
111
|
Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antiviral Res 2015; 125:51-7. [PMID: 26611396 DOI: 10.1016/j.antiviral.2015.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 01/01/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites.
Collapse
|
112
|
Calland N, Sahuc ME, Belouzard S, Pène V, Bonnafous P, Mesalam AA, Deloison G, Descamps V, Sahpaz S, Wychowski C, Lambert O, Brodin P, Duverlie G, Meuleman P, Rosenberg AR, Dubuisson J, Rouillé Y, Séron K. Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action. J Virol 2015; 89:10053-63. [PMID: 26202241 PMCID: PMC4577911 DOI: 10.1128/jvi.01473-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.
Collapse
Affiliation(s)
- Noémie Calland
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Marie-Emmanuelle Sahuc
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Pène
- University Paris Descartes, EA 4474, Hepatitis C Virology, Paris, France
| | - Pierre Bonnafous
- University Bordeaux, CBMN UMR 5248, Bordeaux INP, Pessac, France
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Gaspard Deloison
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Descamps
- Virology Laboratory, EA 4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Sevser Sahpaz
- Laboratory of Pharmacognosy, EA 4481, Université Lille 2, Lille, France
| | - Czeslaw Wychowski
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Olivier Lambert
- University Bordeaux, CBMN UMR 5248, Bordeaux INP, Pessac, France
| | - Priscille Brodin
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Gilles Duverlie
- Virology Laboratory, EA 4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | | | - Jean Dubuisson
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Karin Séron
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| |
Collapse
|
113
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
114
|
Colpitts CC, Verrier ER, Baumert TF. Targeting Viral Entry for Treatment of Hepatitis B and C Virus Infections. ACS Infect Dis 2015; 1:420-7. [PMID: 27617925 DOI: 10.1021/acsinfecdis.5b00039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections remain major health problems worldwide, with 400-500 million chronically infected people worldwide. Chronic infection results in liver cirrhosis and hepatocellular carcinoma, the second leading cause of cancer death. Current treatments for HBV limit viral replication without efficiently curing infection. HCV treatment has markedly progressed with the licensing of direct-acting antivirals (DAAs) for HCV cure, yet limited access for the majority of patients is a major challenge. Preventative and curative treatment strategies, aimed at novel targets, are needed for both viruses. Viral entry represents one such target, although detailed knowledge of the entry mechanisms is a prerequisite. For HBV, the recent discovery of the NTCP cell entry factor enabled the establishment of an HBV cell culture model and showed that cyclosporin A and Myrcludex B are NTCP-targeting entry inhibitors. Advances in the understanding of HCV entry revealed it to be a complex process involving many factors, offering several antiviral targets. These include viral envelope proteins E1 and E2, virion-associated lipoprotein ApoE, and cellular factors CD81, SRBI, EGFR, claudin-1, occludin, and the cholesterol transporter NPC1L1. Small molecules targeting SR-BI, EGFR, and NPC1L1 have entered clinical trials, whereas other viral- and host-targeted small molecules, peptides, and antibodies show promise in preclinical models. This review summarizes the current understanding of HBV and HCV entry and describes novel antiviral targets and compounds in different stages of clinical development. Overall, proof-of-concept studies indicate that entry inhibitors are a promising class of antivirals to prevent and treat HBV and HCV infections.
Collapse
Affiliation(s)
- Che C. Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire,
Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
115
|
Anggakusuma, Romero-Brey I, Berger C, Colpitts CC, Boldanova T, Engelmann M, Todt D, Perin PM, Behrendt P, Vondran FWR, Xu S, Goffinet C, Schang LM, Heim MH, Bartenschlager R, Pietschmann T, Steinmann E. Interferon-inducible cholesterol-25-hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology 2015; 62:702-14. [PMID: 25999047 DOI: 10.1002/hep.27913] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/20/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a positive-strand RNA virus that primarily infects human hepatocytes. Infections with HCV constitute a global health problem, with 180 million people currently chronically infected. Recent studies have reported that cholesterol 25-hydroxylase (CH25H) is expressed as an interferon-stimulated gene and mediates antiviral activities against different enveloped viruses through the production of 25-hydroxycholesterol (25HC). However, the intrinsic regulation of human CH25H (hCH25H) expression within the liver as well as its mechanistic effects on HCV infectivity remain elusive. In this study, we characterized the expression of hCH25H using liver biopsies and primary human hepatocytes. In addition, the antiviral properties of this protein and its enzymatic product, 25HC, were further characterized against HCV in tissue culture. Levels of hCH25H messenger RNA were significantly up-regulated both in HCV-positive liver biopsies and in HCV-infected primary human hepatocytes. The expression of hCH25H in primary human hepatocytes was primarily and transiently induced by type I interferon. Transient expression of hCH25H in human hepatoma cells restricted HCV infection in a genotype-independent manner. This inhibition required the enzymatic activity of CH25H. We observed an inhibition of viral membrane fusion during the entry process by 25HC, which was not due to a virucidal effect. Yet the primary effect by 25HC on HCV was at the level of RNA replication, which was observed using subgenomic replicons of two different genotypes. Further analysis using electron microscopy revealed that 25HC inhibited formation of the membranous web, the HCV replication factory, independent of RNA replication. CONCLUSION Infection with HCV causes up-regulation of interferon-inducible CH25H in vivo, and its product, 25HC, restricts HCV primarily at the level of RNA replication by preventing formation of the viral replication factory.
Collapse
Affiliation(s)
- Anggakusuma
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Carola Berger
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Che C Colpitts
- Departments of Biochemistry and of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tujana Boldanova
- Department of Biomedicine, University of Basel and Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Michael Engelmann
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Daniel Todt
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Paula Monteiro Perin
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Gastroenterology, Hepatology, and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral, and Transplantation Surgery, Hannover Medical School, and German Centre for Infection Research, Hannover-Braunschweig, Hannover, Germany
| | - Shuting Xu
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Luis M Schang
- Departments of Biochemistry and of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Markus H Heim
- Department of Biomedicine, University of Basel and Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| |
Collapse
|
116
|
Vercauteren K, de Jong YP, Meuleman P. Animal models for the study of HCV. Curr Opin Virol 2015; 13:67-74. [PMID: 26304554 PMCID: PMC4549803 DOI: 10.1016/j.coviro.2015.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022]
Abstract
The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Immune compromised mouse models that recapitulate the complete HCV life cycle have been useful to investigate many aspects of the HCV life cycle including antiviral interventions. However, HCV has a high propensity to establish persistence and associated histopathological manifestations such as steatosis, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Better understanding of these processes requires the development of a permissive and fully immunocompetent small animal model. In this review we summarize the in vivo models that are available for the study of HCV.
Collapse
Affiliation(s)
- Koen Vercauteren
- Center for Vaccinology, Dept. of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Philip Meuleman
- Center for Vaccinology, Dept. of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| |
Collapse
|
117
|
Galani BRT, Sahuc ME, Njayou FN, Deloison G, Mkounga P, Feudjou WF, Brodin P, Rouillé Y, Nkengfack AE, Moundipa PF, Séron K. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Front Microbiol 2015; 6:488. [PMID: 26029203 PMCID: PMC4432692 DOI: 10.3389/fmicb.2015.00488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
According to some recent studies, Cameroon is one of the sub-Saharan African countries most affected by hepatitis C, with low access to the standard therapy based on the combination of pegylated interferon and ribavirin. A first ethnobotanical survey, conducted in the Western region of Cameroon, reported the use of several medicinal plants in traditional medicine for the healing of liver-related disorders. Crude organic extracts of five plants surveyed were prepared and their effect against hepatitis C virus (HCV) infection investigated. The HCV JFH1 strain cell culture system HCVcc was used. The antiviral activity was quantified by immunofluorescent labeling of HCV E1 envelope protein at 30 h post-infection in the presence of the plant extracts. Active compounds were then tested in time course infection experiments. Dose-response and cellular toxicity assays were also determined. Three extracts, methanol extracts from roots of Trichilia dregeana, stems of Detarium microcarpum and leaves of Phragmanthera capitata, showed anti-HCV activity, with half-maximal inhibitory concentration of 16.16, 1.42, and 13.17 μg/mL, respectively. Huh-7 cells were incubated with the extracts for 72 h and it appears that T. dregeana extract is not toxic up to 200 μg/mL, D. microcarpum up to 100 μg/mL and P. capitata up to 800 μg/mL. All the three extracts showed a strong inhibition of HCV entry and no effect on replication or secretion. Taken together, these results showed that extracts from Cameroonian medicinal plants are promising sources of anti-HCV agents.
Collapse
Affiliation(s)
- Borris R T Galani
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon ; Department of Biological Sciences, Faculty of Science, University of Ngaoundéré Ngaoundéré, Cameroon
| | - Marie-Emmanuelle Sahuc
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Frederic N Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Gaspard Deloison
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Pierre Mkounga
- Laboratory of Physical Chemistry and Phytochemistry, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - William F Feudjou
- Laboratory of Physical Chemistry and Phytochemistry, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Priscille Brodin
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Yves Rouillé
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| | - Augustin E Nkengfack
- Laboratory of Physical Chemistry and Phytochemistry, Department of Organic Chemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I Yaoundé, Cameroon
| | - Karin Séron
- Molecular and Cellular Virology, Center for Infection and Immunity of Lille, Inserm U1019 - CNRS UMR 8204, Institut de Biologie de Lille, Pasteur Institute of Lille, University of Lille Lille, France
| |
Collapse
|
118
|
Lin LT, Chung CY, Hsu WC, Chang SP, Hung TC, Shields J, Russell RS, Lin CC, Li CF, Yen MH, Tyrrell DLJ, Lin CC, Richardson CD. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J Hepatol 2015; 62:541-548. [PMID: 25450204 DOI: 10.1016/j.jhep.2014.10.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS A vaccine against hepatitis C virus (HCV) is unavailable and cost-effective antivirals that prevent HCV infection and re-infection, such as in the transplant setting, do not exist. In a search for novel and economical prophylactic agents, we examined the antiviral activity of saikosaponins (SSa, SSb2, SSc, and SSd) from Bupleurum kaoi root (BK) as entry inhibitors against HCV infection. METHODS Infectious HCV culture systems were used to examine the effect of saikosaponins on the complete virus life cycle (entry, RNA replication/translation, and particle production). Antiviral activity against various HCV genotypes, clinical isolates, and infection of primary human hepatocytes were also evaluated. RESULTS BK and the saikosaponins potently inhibited HCV infection at non-cytotoxic concentrations. These natural agents targeted early steps of the viral life cycle, while leaving replication/translation, egress, and spread relatively unaffected. In particular, we identified SSb2 as an efficient inhibitor of early HCV entry, including neutralization of virus particles, preventing viral attachment, and inhibiting viral entry/fusion. Binding analysis, using soluble viral glycoproteins, demonstrated that SSb2 acted on HCV E2. Moreover, SSb2 inhibited infection by several genotypic strains and prevented binding of serum-derived HCV onto hepatoma cells. Finally, treatment with the compound blocked HCV infection of primary human hepatocytes. CONCLUSIONS Due to its potency, SSb2 may be of value for development as an antagonist of HCV entry and could be explored as prophylactic treatment during the course of liver transplantation.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chueh-Yao Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chan Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shun-Pang Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Chun Hung
- Department of Clinical Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Justin Shields
- Li Ka Shing Institute of Virology, Edmonton, Alberta, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chih-Chan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Chun-Ching Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Christopher D Richardson
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
119
|
García-Risco MR, Vázquez E, Sheldon J, Steinmann E, Riebesehl N, Fornari T, Reglero G. Supercritical fluid extraction of heather (Calluna vulgaris) and evaluation of anti-hepatitis C virus activity of the extracts. Virus Res 2015; 198:9-14. [PMID: 25550074 DOI: 10.1016/j.virusres.2014.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Previous studies using lipid extracts of heather (Calluna vulgaris) leaves showed the presence of high concentrations of ursolic and oleanolic acid. These two compounds have been reported to present antiviral activity against hepatitis C virus (HCV). In this work, the supercritical fluid extraction of heather was studied with the aim of assessing a potential anti-HCV activity of the extracts owing to their triterpenic acid content. Supercritical extraction assays were carried out exploring the pressure range of 20-50 MPa, temperatures of 40-70°C and 0-15% of ethanol cosolvent. The content of oleanolic and ursolic acid in the extracts were determined, and different samples were screened for cellular cytotoxicity and virus inhibition using a HCV cell culture infection system. Antiviral activity was observed in most extracts. In general, superior anti-HCV activity was observed for higher contents of oleanolic and ursolic acids in the extracts.
Collapse
Affiliation(s)
- Mónica Rodriguez García-Risco
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), CEI UAM-CSIC, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Erika Vázquez
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), CEI UAM-CSIC, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Julie Sheldon
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover and Helmholtz Centre for Infection Research, 30625 Hannover, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Nina Riebesehl
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Tiziana Fornari
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), CEI UAM-CSIC, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Guillermo Reglero
- Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), CEI UAM-CSIC, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
120
|
Shawkat H, Yakoot M, Shawkat T, Helmy S. Efficacy and safety of a herbal mixture (Viron® tablets) in the treatment of patients with chronic hepatitis C virus infection: a prospective, randomized, open-label, proof-of-concept study. Drug Des Devel Ther 2015; 9:799-804. [PMID: 25709404 PMCID: PMC4334351 DOI: 10.2147/dddt.s77168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Development of an optimal interferon-free regimen for chronic hepatitis C virus infection is believed to require the combination of different drug classes to provide good antiviral efficacy, clinical and quality of life benefits, as well as a high barrier to resistance. Viron(®) is a new herbal drug in film-coated tablet form, and is based on a mixture of herbs with known hepatoprotective and antiviral properties. We conducted this study to explore the safety and the potential clinical and quality of life benefits of this product in patients with chronic hepatitis C infection. METHODS Eighty-two consecutive patients presenting to our outpatient clinics as already-known or newly-diagnosed cases of chronic hepatitis C virus (HCV) infection, were entered into the study and randomized to three groups to receive escalating doses of Viron for 6 months. Virological, clinical, and enzyme responses, as well as quality of life index scores for chronic liver disease were compared between the groups. RESULTS Of the 20 patients treated with the highest dose of Viron (three tablets twice daily), two (10%) had a complete virological response at the end of treatment (ETR) and two (10%) had a partial ETR, defined as a decrease in viral load of at least 2-log10 at the end of 6 months of treatment, whereas patients treated with the medium dose (two tablets twice daily) and the lowest dose (one tablet twice daily) showed a significantly lower ETR (P=0.043). Alanine aminotransferase levels and scores on the Chronic Liver Disease Questionnaire improved to a significantly greater extent in the highest dose group (P=0.007 and P=0.021, respectively). No serious adverse effects attributable to the herbal formulation were reported in any of the groups, apart from mild transient nausea, bloating, giddiness, and headache in two patients in the group receiving two tablets twice daily and in three patients in the group receiving three tablets twice daily. CONCLUSION We conclude that this herbal formulation is potentially safe and may offer some added clinical and quality of life benefits when used in the treatment of patients with chronic hepatitis C virus infection. Larger studies could be warranted to evaluate the effects of using this formulation as an add-on therapy to an all-oral combination of a directly acting antiviral drug protocol in the treatment of chronic hepatitis C.
Collapse
Affiliation(s)
| | | | - Tarek Shawkat
- KEMET Clinic, Cairo, Egypt
- Internal Medicine Department, Cape Canaveral Hospital, Cocoa Beach, FL, USA
| | | |
Collapse
|
121
|
Control of hepatitis C virus replication in mouse liver-derived cells by MAVS-dependent production of type I and type III interferons. J Virol 2015; 89:3833-45. [PMID: 25609814 DOI: 10.1128/jvi.03129-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) efficiently infects only humans and chimpanzees. Although the detailed mechanisms responsible for this narrow species tropism remain elusive, recent evidence has shown that murine innate immune responses efficiently suppress HCV replication. Therefore, poor adaptation of HCV to evade and/or counteract innate immune responses may prevent HCV replication in mice. The HCV NS3-4A protease cleaves human MAVS, a key cellular adaptor protein required for RIG-I-like receptor (RLR)-dependent innate immune signaling. However, it is unclear if HCV interferes with mouse MAVS function equally well. Moreover, MAVS-dependent signaling events that restrict HCV replication in mouse cells were incompletely defined. Thus, we quantified the ability of HCV NS3-4A to counteract mouse and human MAVS. HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Moreover, replicon-encoded protease cleaved a similar fraction of both MAVS variants. Finally, FLAG-tagged MAVS proteins repressed HCV replication to similar degrees. Depending on MAVS expression, HCV replication in mouse liver cells triggered not only type I but also type III IFNs, which cooperatively repressed HCV replication. Mouse liver cells lacking both type I and III IFN receptors were refractory to MAVS-dependent antiviral effects, indicating that the HCV-induced MAVS-dependent antiviral state depends on both type I and III IFN receptor signaling. IMPORTANCE In this study, we found that HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Therefore, it is unlikely that ineffective cleavage of mouse MAVS per se precludes HCV propagation in immunocompetent mouse liver cells. Hence, approaches to reinforce HCV replication in mouse liver cells (e.g., by expression of essential human replication cofactors) should not be thwarted by the poor ability of HCV to counteract MAVS-dependent antiviral signaling. In addition, we show that mouse MAVS induces both type I and type III IFNs, which together control HCV replication. Characterization of type I or type III-dependent interferon-stimulated genes in these cells should help to identify key murine restriction factors that preclude HCV propagation in immunocompetent mouse liver cells.
Collapse
|
122
|
Yuan J, Zou M, Xiang X, Zhu H, Chu W, Liu W, Chen F, Lin J. Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar. J Surg Res 2015; 195:235-45. [PMID: 25661742 DOI: 10.1016/j.jss.2014.12.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/10/2014] [Accepted: 12/31/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is characterized by a high rate of disability and imposes a heavy burden on society and patients. SCI can activate glial cells and lead to swelling, hyperplasty, and reactive gliosis, which can severely reduce the space for nerve growth. Glial cells can secrete a large amount of extracellular inhibitory components, thus altering the microenvironment of axon growth. Both these factors seriously impede nerve regeneration. In the present study, we investigate whether curcumin (cur), a phytochemical compound with potent anti-inflammatory effect, plays a role in the repair of SCI. MATERIALS AND METHODS We established a rat model of SCI and treated the animals with different concentrations of cur. Using behavioral assessment, immunohistochemistry, real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay, we detected the intracellular and extracellular components of glial scar and related cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nuclear factor (NF)-κb, transforming growth factor (TGF)-β1, TGF-β2, and sex determining region Y-box (SOX)-9. RESULTS We found that cur inhibited the expression of proinflammatory cytokines, such as TNF-α, IL-1β, and NF-κb; reduced the expression of the intracellular components glial fibrillary acidic protein through anti-inflammation; and suppressed the reactive gliosis. Also, cur inhibited the generation of TGF-β1, TGF-β2, and SOX-9; decreased the deposition of chondroitin sulfate proteoglycan by inhibiting the transforming growth factors and transcription factor; and improved the microenvironment for nerve growth. Through the joint inhibition of the intracellular and extracellular components of glial scar, cur significantly reduced glial scar volume and improved the Basso, Beattie, and Bresnahan locomotor rating and axon growth. CONCLUSIONS Our data support a role for curcumin in promoting neural function recovery after SCI by the joint inhibition of the intracellular and extracellular components of glial scar, providing an important strategy for treating SCI.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mingming Zou
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Beijing, China
| | - Xin Xiang
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haitao Zhu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weihua Chu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Liu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Chen
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiangkai Lin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
123
|
Ishida YI, Takeshita M, Kataoka H. Functional foods effective for hepatitis C: Identification of oligomeric proanthocyanidin and its action mechanism. World J Hepatol 2014; 6:870-879. [PMID: 25544874 PMCID: PMC4269906 DOI: 10.4254/wjh.v6.i12.870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/03/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of viral hepatitis and currently infects approximately 170 million people worldwide. An infection by HCV causes high rates of chronic hepatitis (> 75%) and progresses to liver cirrhosis and hepatocellular carcinoma ultimately. HCV can be eliminated by a combination of pegylated α-interferon and the broad-spectrum antiviral drug ribavirin; however, this treatment is still associated with poor efficacy and tolerability and is often accompanied by serious side-effects. While some novel direct-acting antivirals against HCV have been developed recently, high medical costs limit the access to the therapy in cost-sensitive countries. To search for new natural anti-HCV agents, we screened local agricultural products for their suppressive activities against HCV replication using the HCV replicon cell system in vitro. We found a potent inhibitor of HCV RNA expression in the extracts of blueberry leaves and then identified oligomeric proanthocyanidin as the active ingredient. Further investigations into the action mechanism of oligomeric proanthocyanidin suggested that it is an inhibitor of heterogeneous nuclear ribonucleoproteins (hnRNPs) such as hnRNP A2/B1. In this review, we presented an overview of functional foods and ingredients efficient for HCV infection, the chemical structural characteristics of oligomeric proanthocyanidin, and its action mechanism.
Collapse
|
124
|
Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 2014; 20:185-205. [PMID: 25547723 PMCID: PMC6272158 DOI: 10.3390/molecules20010185] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| | - Lokesh Deb
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77054, TX, USA.
| |
Collapse
|
125
|
Vercauteren K, de Jong YP, Meuleman P. HCV animal models and liver disease. J Hepatol 2014; 61:S26-33. [PMID: 25443343 DOI: 10.1016/j.jhep.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
Abstract
The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Due to the narrow host tropism of HCV, the development of mice that can be robustly engrafted with human hepatocytes was a major breakthrough since they recapitulate the complete HCV life cycle. This model has been useful to investigate many aspects of the HCV life cycle, including antiviral interventions. However, studies of cellular immunity, immunopathogenesis and resulting liver diseases have been hampered by the lack of a small animal model with a functional immune system. In this review, we summarize the evolution of in vivo models for the study of HCV.
Collapse
Affiliation(s)
- Koen Vercauteren
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Philip Meuleman
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium.
| |
Collapse
|
126
|
Role of hypervariable region 1 for the interplay of hepatitis C virus with entry factors and lipoproteins. J Virol 2014; 88:12644-55. [PMID: 25142595 DOI: 10.1128/jvi.01145-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) particles associate with lipoproteins and infect cells by using at least four cell entry factors. These factors include scavenger receptor class B type I (SR-BI), CD81, claudin 1 (CLDN1), and occludin (OCLN). Little is known about specific functions of individual host factors during HCV cell entry and viral domains that mediate interactions with these factors. Hypervariable region 1 (HVR1) within viral envelope protein 2 (E2) is involved in the usage of SR-BI and conceals the viral CD81 binding site. Moreover, deletion of this domain alters the density of virions. We compared lipoprotein interaction, surface attachment, receptor usage, and cell entry between wild-type HCV and a viral mutant lacking this domain. Deletion of HVR1 did not affect CD81, CLDN1, and OCLN usage. However, unlike wild-type HCV, HVR1-deleted viruses were not neutralized by antibodies and small molecules targeting SR-BI. Nevertheless, modulation of SR-BI cell surface expression altered the infection efficiencies of both viruses to similar levels. Analysis of affinity-purified virions revealed comparable levels of apolipoprotein E (ApoE) incorporation into viruses with or without HVR1. However, ApoE incorporated into these viruses was differentially recognized by ApoE-specific antibodies. Thus, SR-BI has at least two functions during cell entry. One of them can be neutralized by SR-BI-targeting molecules, and it is critical only for wild-type HCV. The other one is important for both viruses but apparently is not inactivated by the SR-BI binding antibodies and small molecules evaluated here. In addition, HVR1 modulates the conformation and/or epitope exposure of virus particle-associated ApoE. IMPORTANCE HCV cell entry is SR-BI dependent irrespective of the presence or absence of HVR1. Moreover, this domain modulates the properties of ApoE on the surface of virus particles. These findings have implications for the development of SR-BI-targeting antivirals. Furthermore, these findings highlight separable functions of SR-BI during HCV cell entry and reveal a novel role of HVR1 for the properties of virus-associated lipoproteins.
Collapse
|
127
|
Qin Y, Lin L, Chen Y, Wu S, Si X, Wu H, Zhai X, Wang Y, Tong L, Pan B, Zhong X, Wang T, Zhao W, Zhong Z. Curcumin inhibits the replication of enterovirus 71 in vitro. Acta Pharm Sin B 2014; 4:284-94. [PMID: 26579397 PMCID: PMC4629085 DOI: 10.1016/j.apsb.2014.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient to suppress viral replication. We also demonstrated that curcumin showed anti-apoptotic activity at the early stage of viral infection. The results of this study provide solid evidence that curcumin has potent anti-EV71 activity. Whether or not the down-regulated GBF1 and PI4KB by curcumin contribute to its antiviral effect needs further studies.
Collapse
Key Words
- Apoptosis
- CVB, coxsackieviurs B
- Curcumin
- DCFH-DA, dichloro-dihydro-fluorescein diacetate
- ERK, extracellular signal-regulated kinase
- EV71, enterovirus 71
- Enterovirus 71
- GBF1
- GBF1, Golgi brefeldin A resistant guanine nucleotide exchange factor 1
- GEF, guanine nucleotide exchange factor
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HFMD, hand, foot, and mouth disease
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- NAC, N-acetyl-l-cysteine
- PARP-1, poly(ADP-ribose) polymerase
- PGC-1α, peroxisome proliferator-activated receptor-gamma co-activator 1 alpha
- PI4KB
- PI4KB, phosphatidylinositol 4-kinase class III catalytic subunit β
- PI4P, phosphatidylinositol 4-phosphate
- ROS, reactive oxygen species
- SLLVY-AMC, succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- UPS, ubiquitin–proteasome system
- Ubiquitin–proteasome system
- Viral replication
- p.i., post-infection
- siRNA, small interfering RNA
Collapse
|
128
|
|
129
|
Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 2014; 4:5411. [PMID: 24958333 PMCID: PMC4067622 DOI: 10.1038/srep05411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/30/2014] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and‘no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.
Collapse
|
130
|
Abstract
Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chan Hsu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
131
|
Zhang Y, Zhao L, Wu J, Jiang X, Dong L, Xu F, Zou P, Dai Y, Shan X, Yang S, Liang G. Synthesis and evaluation of a series of novel asymmetrical curcumin analogs for the treatment of inflammation. Molecules 2014; 19:7287-307. [PMID: 24901832 PMCID: PMC6271832 DOI: 10.3390/molecules19067287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022] Open
Abstract
Curcumin has been reported to possess multiple bioactivities, such as antioxidant, anticancer, and anti-inflammatory properties, however the clinical application of curcumin has been significantly limited by its instability and poor metabolism. Modification of curcumin has led to discovery and development of lots of novel therapeutic candidates. In recent years acute and chronic inflammation has been the focus of numerous studies in various diseases. Here, we synthesized a series of asymmetrical curcumin analogs with high in vitro chemical stability, and their anti-inflammatory activity was evaluated in LPS-stimulated macrophages. According to the bio-screening results and QSAR analysis, these analogs exhibited potent activities against LPS-induced TNF-α and IL-6 release. Among the analogs of the potent anti-inflammatory activity, compounds 3b8 and 3b9 exhibited significant protection and possess enhanced anti-inflammatory activity thereby attenuated the LPS-induced septic death in mice.
Collapse
Affiliation(s)
- Yali Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Leping Zhao
- Department of Pharmacy at the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325699, Zhejiang, China.
| | - Jianzhang Wu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Xin Jiang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Lili Dong
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Fengli Xu
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Peng Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Yuanrong Dai
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Xiaoou Shan
- The 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
132
|
A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J Virol 2014; 88:7806-17. [PMID: 24789779 DOI: 10.1128/jvi.00896-14] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. Importance: This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others.
Collapse
|
133
|
Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J Gastroenterol 2014; 20:3457-3467. [PMID: 24707128 PMCID: PMC3974512 DOI: 10.3748/wjg.v20.i13.3457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem, with an estimated 170 million people being chronically infected. HCV cell entry is a complex multi-step process, involving several cellular factors that trigger virus uptake into the hepatocytes. The high- density lipoprotein receptor scavenger receptor class B type I, tetraspanin CD81, tight junction protein claudin-1, and occludin are the main receptors that mediate the initial step of HCV infection. In addition, the virus uses cell receptor tyrosine kinases as entry regulators, such as epidermal growth factor receptor and ephrin receptor A2. This review summarizes the current understanding about how cell surface molecules are involved in HCV attachment, internalization, and membrane fusion, and how host cell kinases regulate virus entry. The advances of the potential antiviral agents targeting this process are introduced.
Collapse
|
134
|
Murine models of hepatitis C: what can we look forward to? Antiviral Res 2014; 104:15-22. [PMID: 24462693 DOI: 10.1016/j.antiviral.2014.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/11/2022]
Abstract
The study of interactions between hepatitis C virus (HCV) with its mammalian host, along with the development of more effective therapeutics and vaccines has been delayed by the lack of a suitable small animal model. HCV readily infects only humans and chimpanzees, which poses logistic, economic and ethical challenges with analyzing HCV infection in vivo. Progress has been made in understanding the determinants that dictate HCV's narrow host range providing a blueprint for constructing a mouse model with inheritable susceptibility to HCV infection. Indeed, genetically humanized mice were generated that support viral uptake, replication and production of infectious virions--albeit at low levels. These efforts are complemented with attempts to select for viral variants that are inherently more capable of replicating in non-human species. In parallel, engraftment of relevant human tissues into improved xenorecipients is being continuously refined. Incorporating advances in stem-cell-biology and tissue engineering may allow the generation of patient-specific humanized mice. Construction of such mouse "avatars" may allow analyzing functionally patient-specific differences with respect to susceptibility to infection, disease progression and responses to treatment. In this review, we discuss the three, before mentioned approaches to overcome current species barriers and generate a small animal model for HCV infection, i.e. genetic modification of mice to increase their susceptibility to the virus; genetic modification of HCV, to increase its pathogenicity for mice; and the introduction of human liver and immune cells into immunodeficient mice, to create "humanized" mice. Although in the foreseeable future there will not be a single model that perfectly mimics the natural course of HCV in humans there is reason for optimism. The spectrum of murine animal models for hepatitis C provides a broad arsenal for analyzing the disease. These models may play an important role by prioritizing vaccine candidates and possibly refining combination anti-viral drug therapies. This article forms part of a symposium in Anti-viral Research on "Hepatitis C: next steps toward global eradication."
Collapse
|