101
|
Tang CZ, Zhang DF, Yang JT, Liu QH, Wang YR, Wang WS. Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway. Cell Death Dis 2019; 10:316. [PMID: 30962417 PMCID: PMC6453902 DOI: 10.1038/s41419-019-1522-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022]
Abstract
Depression is a condition with a complex etiological pattern, whose effective treatments are highly limited. MicroRNAs (miRNAs) have been investigated in intensive studies owing to their involvement in pathophysiology of mood disorders. The current study aimed to elucidate the role of miR-301b in hippocampus in mouse models of depressive-like behavior. Microarray-based prediction identified the differentially expressed gene neuronal pentraxin II (NPTX2) related to mental depression. Next, the putative miR-301b binding sites on the 3'UTR of NPTX2 were verified. Then the effect of miR-301b on cognitive function of mice with depressive-like behavior was analyzed using the Morris water maze test. In addition, the regulation of miR-301b to NPTX2 and activation of NF-κB signaling pathway was assessed. Following that, the microglia activation and inflammation in hippocampus were evaluated, with the expressions of inflammatory factors being examined. At last, microglia were flow cytometrically sorted and the inflammatory reaction was also assessed in vitro. The obtained findings revealed that miR-301b targeted and negatively regulated NPTX2. Moreover, overexpressed miR-301b activated the NF-κB signaling pathway, as reflected by increasing protein expressions of p-NF-κB. Upregulated miR-301b accelerated cognitive impairment in mice with depressive-like behavior. In addition, overexpression of miR-301b activated microglia and stimulated inflammation in hippocampus, accompanied by enhanced release of tumor necrosis factor-α (TNF-α), interleukin-Iβ (IL-Iβ) and cyclooxygenase-2(COX-2). Taken together, the evidence provided by the current study indicated that overexpression of miR-301b augmented hippocampal microglia activation, thus exacerbating cognitive impairment and inflammation in mice with depressive-like behavior by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chao-Zhi Tang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Dong-Fang Zhang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Jun-Tang Yang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Qing-Hui Liu
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Ya-Ru Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China
| | - Wen-Sheng Wang
- Laboratory of Molecular Medicine, College of Life Science, Henan Normal University, 453007, Xinxiang, People's Republic of China.
| |
Collapse
|
102
|
Hu X, Deng J, Yu T, Chen S, Ge Y, Zhou Z, Guo Y, Ying H, Zhai Q, Chen Y, Yuan F, Niu Y, Shu W, Chen H, Ma C, Liu Z, Guo F. ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology 2019; 156:1098-1111. [PMID: 30452920 DOI: 10.1053/j.gastro.2018.11.033] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaoming Hu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yadong Ge
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ziheng Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajie Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Niu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Huimin Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Feifan Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
103
|
Li N, Wang J, Yu W, Dong K, You F, Si B, Tang B, Zhang Y, Wang T, Qiao B. MicroRNA‑146a inhibits the inflammatory responses induced by interleukin‑17A during the infection of Helicobacter pylori. Mol Med Rep 2018; 19:1388-1395. [PMID: 30535468 DOI: 10.3892/mmr.2018.9725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/14/2018] [Indexed: 11/05/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the major cause of chronic active gastritis and peptic ulcer disease. Upregulation of IL‑17A is associated with H. pylori infection in the gastric mucosa; however, the factors involved in the regulation of interleukin (IL)‑17A‑induced inflammatory responses in H. pylori‑associated gastritis remain unknown. MicroRNAs (miRNAs) serve as key post‑transcriptional regulators of gene expression and are associated with the H. pylori infection. The present study aimed to analyze the effects of IL‑17A on the expression of miR‑146a upon infection with H. pylori, as well as to identify the possible impact of miR‑146a dysregulation on the inflammatory response in vivo and in vitro. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression levels of miR‑146a in gastric epithelial cells upon IL‑17A stimulation. The effects of miR‑146a mimics on IL‑17A‑induced inflammatory responses in SGC‑7901 cells were evaluated. The effects of miR‑146a mimics on the expression levels of IL‑1 receptor‑associated kinase 1 (IRAK1) and tumor necrosis factor receptor‑associated factor 6 (TRAF6) upon IL‑17A treatment were analyzed, and the IL‑17A‑stimulated inflammation following the silencing of IRAK1 and TRAF6 was observed. In addition, the correlation between miR‑146a and IL‑17A in human gastric mucosa with H. pylori was examined. The results indicated that IL‑17A‑induced miR‑146a may regulate the inflammatory response during the infection of H. pylori in a nuclear factor‑κB‑dependent manner. Furthermore, the expression of miR‑146a and IL‑17A are positively correlated in human gastric mucosa infected with H. pylori. These data suggested that miR‑146a may serve as a biomarker or therapeutic target in gastritis therapy.
Collapse
Affiliation(s)
- Na Li
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Jianlong Wang
- Department of Pediatrics, The First People's Hospital of Jining, Jining, Shandong 272000, P.R. China
| | - Wenqian Yu
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Kai Dong
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Feng You
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Biao Si
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Bin Tang
- Department of Clinical Microbiology and Immunology, Southwest Hospital and College of Medical Laboratory Science, The Third Military Medical University, Chongqing, Sichuan 400038, P.R. China
| | - Yan Zhang
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Tongjian Wang
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| | - Bin Qiao
- Institute of Cardiovascular Disease, The 960th Hospital of Chinese PLA, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
104
|
Hu J, Ruan J, Liu X, Xiao C, Xiong J. MicroRNA-301a-3p suppressed the progression of hepatocellular carcinoma via targeting VGLL4. Pathol Res Pract 2018; 214:2039-2045. [PMID: 30322806 DOI: 10.1016/j.prp.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022]
Abstract
Dysregulation of microRNAs (miRNAs) is involved in a variety of biological process including tumorigenesis. miR-301a-3p has been reported to be an onco-miRNA in various types of cancer, like breast cancer, malignant melanoma, and pancreatic cancer. However, the role of miR-301a-3p in hepatocellular carcinoma (HCC) remains largely incomplete. In the present study, we found that miR-301a-3p was upregulated in HCC tissues and cell lines, and higher miR-301a-3p expression predicted poor prognosis in HCC patients. We also demonstrated that miR-301a-3p overexpression enhanced the ability of proliferation, invasion, and chemoresistance in HCC cell lines, and conversely, silencing miR-301a-3p expression induced the opposite effects. VGLL4, as the direct target of miR-301a-3p, was predicted by bioinformatic websites and confirmed by western blot, RT-PCR, and luciferase reporter assay. Enforced VGLL4 expression rescued the effects of miR-301a-3p mimics on cell proliferation, invasion and chemoresistance. Moreover, we found miR-301a-3p modulated the transcription activity of TEADs. Collectively, our findings suggested that the miR-301a-3p-VGLL4 signaling axis might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jinhua Hu
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China; Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jiugen Ruan
- Department of Radiology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China
| | - Xiaohong Liu
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China
| | - Chijin Xiao
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi Province, 338000, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
105
|
Anti-TNF- α Therapy Suppresses Proinflammatory Activities of Mucosal Neutrophils in Inflammatory Bowel Disease. Mediators Inflamm 2018; 2018:3021863. [PMID: 30595666 PMCID: PMC6282128 DOI: 10.1155/2018/3021863] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Neutrophils have been found to play an important role in the pathogenesis of inflammatory bowel disease (IBD), and anti-TNF-α mAb (i.e., infliximab) therapy is demonstrated to be effective in the induction of clinical remission and mucosal healing in these patients. However, how anti-TNF-α mAb regulates the functions of neutrophils is still unknown. Herein, we found that anti-TNF-α therapy significantly downregulated infiltration of neutrophils in inflamed mucosa of IBD patients. Importantly, anti-TNF-α mAb could inhibit neutrophils to produce proinflammatory mediators, such as ROS, calprotectin, IL-8, IL-6, and TNF-α. These data indicate that TNF-α plays a critical role in the induction of mucosal inflammatory response, and that blockade of TNF-α modulates intestinal homeostasis through balancing immune responses of neutrophils.
Collapse
|
106
|
Zhou G, Peng K, Song Y, Yang W, Shu W, Yu T, Yu L, Lin M, Wei Q, Chen C, Yin L, Cong Y, Liu Z. CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer. Carcinogenesis 2018; 39:272-282. [PMID: 29228136 DOI: 10.1093/carcin/bgx142] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are found to be infiltrated in tumour tissues of patients with colitis-associated cancer (CAC) and colorectal cancer (CRC), and CD177 is mainly expressed in neutrophils. In our study, expression of CD177 in tumour tissues from patients with CAC or CRC was analysed byquantitative real-time polymerase chain reaction, flow cytometry and immunohistochemistry. We recruited 378 patients with CRC, determined CD177 expression in tumours and examined its correlation with clinicopathological features. Moreover, CAC model was induced in wild-type and CD177-/- mice by azoxymethane/dextran sodium sulphate. CD177+ neutrophils were significantly increased in colon tumour tissues from patients with CRC or CAC compared with controls. Expression of CD177 mRNA and percentages of CD177+ neutrophils were also markedly increased in tumour tissues from CRC patients compared with controls. Patients with high density of CD177+ neutrophils had better overall survival and disease-free survival compared with controls. Multivariate analyses revealed that the density of CD177+ neutrophils was an independent factor in predicting overall survival and disease-free survival. Consistently, CD177 depletion aggravated azoxymethane/dextran sodium sulphate-induced CAC in mice. Expression of Ki67 and proliferating cell nuclear antigen was increased in tumour tissues from CD177-/- mice compared with wild-type counterparts. Moreover, CD177-/- neutrophils failed to migrate in response to fMLP[AU: Please expand fMLP, DN, TNM and HIF-1α.] stimulation compared with wild-type controls. Our data indicate that CD177+ neutrophils suppress epithelial cell tumourigenesis and act as an independent factor in predicting the prognosis in patients with CRC. CD177+ neutrophils may serve as a novel therapeutic target in the treatment and predict the prognosis of CAC and CRC.
Collapse
Affiliation(s)
- Guangxi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Kangsheng Peng
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yang Song
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lin Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chunqiu Chen
- Department of General Surgery, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lu Yin
- Department of General Surgery, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
107
|
Liu L, Zeng D, Yang M, Wen B, Lai J, Zhou Y, Sun H, Xiong L, Wang J, Lin Y, Pan K, Jing B, Wang P, Ni X. Probiotic Clostridium butyricum Improves the Growth Performance, Immune Function, and Gut Microbiota of Weaning Rex Rabbits. Probiotics Antimicrob Proteins 2018; 11:1278-1292. [DOI: 10.1007/s12602-018-9476-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
108
|
Porter RJ, Andrews C, Brice DP, Durum SK, McLean MH. Can We Target Endogenous Anti-inflammatory Responses as a Therapeutic Strategy for Inflammatory Bowel Disease? Inflamm Bowel Dis 2018; 24:2123-2134. [PMID: 30020451 PMCID: PMC6140439 DOI: 10.1093/ibd/izy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) describes chronic relapsing remitting inflammation of the gastrointestinal tract including ulcerative colitis and Crohn's disease. The prevalence of IBD is rising across the globe. Despite a growing therapeutic arsenal, current medical treatments are not universally effective, do not induce lasting remission in all, or are accompanied by short- and long-term adverse effects. Therefore, there is a clinical need for novel therapeutic strategies for IBD. Current treatments for IBD mainly manipulate the immune system for therapeutic gain by inhibiting pro-inflammatory activity. There is a robust endogenous immunoregulatory capacity within the repertoire of both innate and adaptive immune responses. An alternative treatment strategy for IBD is to hijack and bolster this endogenous capability for therapeutic gain. This review explores this hypothesis and presents current evidence for this therapeutic direction in immune cell function, cytokine biology, and alternative mechanisms of immunoregulation such as microRNA, oligonucleotides, and the endocannabinoid system.
Collapse
Affiliation(s)
- Ross John Porter
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Caroline Andrews
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel Paul Brice
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Scott Kenneth Durum
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Mairi Hall McLean
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom,Address correspondence to: Mairi H. McLean, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK, AB25 2ZD. E-mail:
| |
Collapse
|
109
|
Zhou G, Wu W, Yu L, Yu T, Yang W, Wang P, Zhang X, Cong Y, Liu Z. Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17 cell differentiation in patients with inflammatory bowel diseases. J Allergy Clin Immunol 2018; 142:1218-1228.e12. [DOI: 10.1016/j.jaci.2017.09.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/26/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023]
|
110
|
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L, Qiu Z. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kγ to Promote Pancreatic Cancer Metastasis. Cancer Res 2018; 78:4586-4598. [PMID: 29880482 DOI: 10.1158/0008-5472.can-17-3841] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/18/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Exosomes are emerging as important mediators of the cross-talk between tumor cells and the microenvironment. However, the mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic cancer remain largely unknown. Here, we found that hypoxic exosomes derived from pancreatic cancer cells activate macrophages to the M2 phenotype in a HIF1a or HIF2a-dependent manner, which then facilitates the migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells. Given that exosomes have been shown to transport miRNAs to alter cellular functions, we discovered that miR-301a-3p was highly expressed in hypoxic pancreatic cancer cells and enriched in hypoxic pancreatic cancer cell-derived exosomes. Circulating exosomal miR-301a-3p levels positively associated with depth of invasion, lymph node metastasis, late TNM stage, and poor prognosis of pancreatic cancer. Hypoxic exosomal miR-301a-3p induced the M2 polarization of macrophages via activation of the PTEN/PI3Kγ signaling pathway. Coculturing of pancreatic cancer cells with macrophages in which miR-301a-3p was upregulated or treated with hypoxic exosomes enhanced their metastatic capacity. Collectively, these data indicate that pancreatic cancer cells generate miR-301a-3p-rich exosomes in a hypoxic microenvironment, which then polarize macrophages to promote malignant behaviors of pancreatic cancer cells. Targeting exosomal miR-301a-3p may provide a potential diagnosis and treatment strategy for pancreatic cancer.Significance: These findings identify an exosomal miRNA critical for microenvironmental cross-talk that may prove to be a potential target for diagnosis and treatment of pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4586/F1.large.jpg Cancer Res; 78(16); 4586-98. ©2018 AACR.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Guangtao Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Jun Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Tao Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Liping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China.
| |
Collapse
|
111
|
Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol 2018; 233:9209-9222. [PMID: 30078204 DOI: 10.1002/jcp.26949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions. A systematic search of MEDLINE, Embase, and Cochrane Library was presented for all related studies from 1899 to 2017 with restrictions in the English language. In recent years, researchers have concentrated on mostly those roles of miRNA that are correlated with the inflammatory and anti-inflammatory process. Latest studies have proposed a fundamental pathogenic role in cancers and autoinflammatory diseases. Studies have described the role of microRNAs in autoimmunity and autoinflammatory diseases, cancers, and so on. The miRNA-326 expression plays a significant role in autoimmune and other types of diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| |
Collapse
|
112
|
Fang L, Pang Z, Shu W, Wu W, Sun M, Cong Y, Liu Z. Anti-TNF Therapy Induces CD4+ T-Cell Production of IL-22 and Promotes Epithelial Repairs in Patients With Crohn's Disease. Inflamm Bowel Dis 2018; 24:1733-1744. [PMID: 29718341 DOI: 10.1093/ibd/izy126] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Background Anti-tumor necrosis factor (TNF) therapy appears to be effective in the treatment of Crohn's disease (CD), a chronic inflammatory disease of the gastrointestinal tract. However, the mechanisms involved are not completely understood. Methods Fifty-seven active CD patients were enrolled, and cytokine profiles in colonic biopsies of patients with active CD receiving anti-TNF monoclonal antibody (mAb) (infliximab [IFX]) treatment were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Colonic biopsies of active CD patients and healthy donors were cultured with IFX in vitro, and cytokine profiles were measured by qRT-PCR. Peripheral blood (PB)-CD4+ T cells were stimulated with anti-CD3 and anti-CD28 mAbs in the presence of human immunoglobin (HIg), IFX, recombinant human TNF-α converting enzyme (rhTACE), and aryl hydrocarbon receptor (AhR) inhibitor (CH-223191), respectively, to determine interleukin (IL)-22 expression by CD4+ T cells. Caco2 cells were also utilized to study their potential role in modulating epithelial cell barrier repairs in vitro. Results IFX therapy markedly upregulated IL-22 mRNA expression in the gut mucosa of CD patients. In vitro treatment with IFX greatly promoted CD CD4+ T cells to express IL-22, which was inhibited by rhTACE, indicating that reverse signaling through binding to membrane-bound TNF mediates anti-TNF-induced IL-22 expression of CD CD4+ T cells. However, blockade of AhR markedly inhibited anti-TNF-induced IL-22+CD4+ T (Th22) cell differentiation in CD patients. Moreover, treatment with IL-22 induced intestinal epithelial cell expression of tight junction proteins (eg, claudin1 and ZO-1) and facilitated transepithelial resistance, indicating that IL-22 protects intestinal mucosa from inflammation via maintenance of epithelial barrier integrity. Conclusions Our results uncover a novel mechanism whereby anti-TNF therapy upregulates IL-22 production in CD patients through promoting Th22 cell differentiation and contributes to intestinal epithelial barrier repairs.
Collapse
Affiliation(s)
- Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhi Pang
- Department of Gastroenterology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
113
|
Fiorillo AA, Tully CB, Damsker JM, Nagaraju K, Hoffman EP, Heier CR. Muscle miRNAome shows suppression of chronic inflammatory miRNAs with both prednisone and vamorolone. Physiol Genomics 2018; 50:735-745. [PMID: 29883261 PMCID: PMC6172612 DOI: 10.1152/physiolgenomics.00134.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Corticosteroids are highly prescribed and effective anti-inflammatory drugs but the burden of side effects with chronic use significantly detracts from patient quality of life, particularly in children. Developing safer steroids amenable to long-term use is an important goal for treatment of chronic inflammatory diseases such as Duchenne muscular dystrophy (DMD). We have developed vamorolone (VBP15), a first-in-class dissociative glucocorticoid receptor (GR) ligand that shows the anti-inflammatory efficacy of corticosteroids without key steroid side effects in animal models. miRNAs are increasingly recognized as key regulators of inflammatory responses. To define effects of prednisolone and vamorolone on the muscle miRNAome, we performed a preclinical discovery study in the mdx mouse model of DMD. miRNAs associated with inflammation were highly elevated in mdx muscle. Both vamorolone and prednisolone returned these toward wild-type levels (miR-142-5p, miR-142-3p, miR-146a, miR-301a, miR-324-3p, miR-455-5p, miR-455-3p, miR-497, miR-652). Effects of vamorolone were largely limited to reduction of proinflammatory miRNAs. In contrast, prednisolone activated a separate group of miRNAs associated with steroid side effects and a noncoding RNA cluster homologous to human chromosome 14q32. Effects were validated for inflammatory miRNAs in a second, independent preclinical study. For the anti-inflammatory miRNA signature, bioinformatic analyses showed all of these miRNAs are directly regulated by, or in turn activate, the inflammatory transcription factor NF-κB. Moving forward miR-146a and miR-142 are of particular interest as biomarkers or novel drug targets. These data validate NF-κB signaling as a target of dissociative GR-ligand efficacy in vivo and provide new insight into miRNA signaling in chronic inflammation.
Collapse
Affiliation(s)
- Alyson A Fiorillo
- Center for Genetic Medicine Research, Children's National Medical Center , Washington, District of Columbia.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences , Washington, District of Columbia
| | - Christopher B Tully
- Center for Genetic Medicine Research, Children's National Medical Center , Washington, District of Columbia
| | | | - Kanneboyina Nagaraju
- ReveraGen BioPharma, Incorporated, Rockville, Maryland.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton, New York
| | - Eric P Hoffman
- ReveraGen BioPharma, Incorporated, Rockville, Maryland.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York , Binghamton, New York
| | - Christopher R Heier
- Center for Genetic Medicine Research, Children's National Medical Center , Washington, District of Columbia.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences , Washington, District of Columbia
| |
Collapse
|
114
|
Zhou G, Yu L, Fang L, Yang W, Yu T, Miao Y, Chen M, Wu K, Chen F, Cong Y, Liu Z. CD177 + neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 2018; 67:1052-1063. [PMID: 28468761 DOI: 10.1136/gutjnl-2016-313535] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neutrophils are accumulated in inflamed mucosa of IBD and play an important role in the pathogenesis. CD177 is expressed in neutrophils specifically and upregulated during inflammation. However, the role of CD177+ neutrophils in pathogenesis of IBD remains elusive. MATERIALS AND METHODS Expression of CD177 was analysed in peripheral blood and intestinal mucosa from patients with IBD using quantitative RT-PCR, flow cytometry and immunohistochemistry. CD177+ and CD177- neutrophils were isolated to determine gene differences by RNA sequencing. Colitis was established in CD177-/- and wild-type mice in response to dextran sulfate sodium (DSS) insults to determine the role of CD177+ neutrophils in IBD. RESULTS CD177+ neutrophils were markedly increased in peripheral blood and inflamed mucosa from patients with active IBD compared with healthy controls. RNA sequencing revealed that differential gene expression between CD177+ and CD177- neutrophils from patients with IBD was associated with response to bacterial defence, hydrogen peroxide and reactive oxygen species (ROS). CD177+ neutrophils produced lower levels of proinflammatory cytokines (ie, interferon-γ, interleukin (IL)-6, IL-17A), but higher levels of IL-22 and transforming growth factor-β, and exhibited increased bactericidal activities (ie, ROS, antimicrobial peptides, neutrophil extracellular trap) compared with CD177- subset. CD177-/- mice developed more severe colitis on DSS insults compared with wild-type mice. Moreover, CD177 deficiency led to compromised intestinal barrier and impaired antibacterial immunity through decreased production of IL-22 by CD177- neutrophils. CONCLUSIONS CD177+ neutrophils represent functionally activated population and play a protective role in IBD through increased bactericidal activity and IL-22 production. Targeting CD177+ neutrophils may be beneficial for treatment of IBD.
Collapse
Affiliation(s)
- Guangxi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lin Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feidi Chen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
115
|
Critical role of ROCK2 activity in facilitating mucosal CD4 + T cell activation in inflammatory bowel disease. J Autoimmun 2018; 89:125-138. [DOI: 10.1016/j.jaut.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
|
116
|
Shi Y, He C, Ma C, Yu T, Cong Y, Cai W, Liu Z. Smad nuclear interacting protein 1 (SNIP1) inhibits intestinal inflammation through regulation of epithelial barrier function. Mucosal Immunol 2018; 11:835-845. [PMID: 29426045 DOI: 10.1038/mi.2017.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Smad nuclear interacting protein 1 (SNIP1) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms involved are still largely unknown. Our results demonstrated that SNIP1 was markedly decreased in intestinal epithelial cells (IEC) from IBD patients compared with healthy controls. Impaired expression of SNIP1 caused a significant decrease of transepithelial electrical resistance but an increase of fluorescein isothiocyanate-dextran flux in Caco-2 monolayers, whereas overexpression of SNIP1 reversed such effects. Overexpression of SNIP1 also inhibited the activity of NF-κB p65 and proinflammatory cytokine production (e.g., TNF-α, IL-1β, and IL-8) by IEC. Importantly, supplementation of exogenous SNIP1 significantly ameliorated intestinal mucosal inflammation in experimental colitis, characterized by less-severe intestinal epithelial barrier damage and decreased proinflammatory cytokine production. Our data thus demonstrated a novel mechanism whereby SNIP1 regulates intestinal inflammation through modulating intestinal epithelial barrier function. Targeting SNIP1 may provide a therapeutic approach for the treatment of IBD.
Collapse
Affiliation(s)
- Y Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - T Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Y Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W Cai
- Department of General Surgery, Ruijin Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Z Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
117
|
Role of miR-22 in intestinal mucosa tissues and peripheral blood CD4+ T cells of inflammatory bowel disease. Pathol Res Pract 2018; 214:1095-1104. [PMID: 29880327 DOI: 10.1016/j.prp.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE miR-22 is known to be involved in the pathogenesis of several autoimmune diseases, but it remains unclear whether miR-22 is associated with inflammatory intestinal disease (IBD). METHODS The patients with ulcerative colitis (UC) and Crohn's disease (CD) were enrolled in this study. After the CD4+ T cells from healthy controls and active IBD patients were isolated and then transfected with miR-22 mimics/inhibitors, Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure expressions of miR-22, HDAC4, specific transcription factors in intestinal mucosa tissue and CD4+ T cells, while enzyme-linked immuno sorbent assay (ELISA) to detect expressions of inflammatory cytokines in PB. Antisense miR-22 was administered into mice during trinitrobenzene sulphoni cacid (TNBS)-induced colitis to determine its role in IBD. RESULTS A significant elevation of miR-22 but an evident decrease of HDAC4 was found in CD4+ T cells in PB and intestinal mucosa tissues from IBD patients. In addition, there was a great reduction in HDAC4 and a dramatic enhancement in Th17 cell specific transcription factor (RORC) and inflammatory cytokines (IL-17A, IL-6 and TNF-α) after overexpression miR-22, which was opposite to the effect of inhibition of miR-22. Furthermore, administration of antisense miR-22 in TNBS-induced mouse colitis model significantly decreased numbers of interleukin (IL)-17A+ CD4+ T cells and the expressions of IL-17A, RORC, IL-6 and TNF-α. CONCLUSION MiR-22 was up-regulated in CD4+ T cells in PB and intestinal mucosa tissues of IBD patients, which could promote Th17 cell differentiation via targeting HDAC4 to be involved in IBD progression.
Collapse
|
118
|
Baranwal S, Rawat SG, Gupta P. miR-301, Pleiotropic MicroRNA in Regulation of Inflammatory Bowel Disease and Colitis-Associated Cancer. Front Immunol 2018; 9:522. [PMID: 29599779 PMCID: PMC5862795 DOI: 10.3389/fimmu.2018.00522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Somesh Baranwal
- Department of Biochemistry and Microbial Science, School of Basic and Applied Science, Central University of Punjab, Bathinda, India
| | - Shiv Govind Rawat
- Department of Biochemistry and Microbial Science, School of Basic and Applied Science, Central University of Punjab, Bathinda, India
| | - Pooja Gupta
- College of Agriculture, Guru Kashi University, Talwandi Sabo, India
| |
Collapse
|
119
|
Soroosh A, Koutsioumpa M, Pothoulakis C, Iliopoulos D. Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G256-G262. [PMID: 29146677 PMCID: PMC5866423 DOI: 10.1152/ajpgi.00268.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory gastrointestinal diseases, primarily consisting of ulcerative colitis and Crohn's disease. The complex nature of the disease, as well as the limited therapeutic options characterized by low efficiency and major side effects, highlights the importance of developing novel strategies of therapeutic intervention in IBD. Susceptibility loci related to IBD are present only in a small percentage of IBD patients, implying that epigenetic modifications could influence the pathogenesis of the disease. MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple molecular pathways involved in IBD pathobiology. MiRNA inhibitors targeting the IBD-activated miRNAs could have therapeutic value for IBD patients. This review provides an overview of the recent advances in miRNA biology related to IBD pathogenesis and the pharmacological development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Artin Soroosh
- 1Center for Systems Biomedicine, University of California at Los Angeles, Los Angeles, California
| | - Marina Koutsioumpa
- 1Center for Systems Biomedicine, University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- 2Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- 1Center for Systems Biomedicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
120
|
Yang X, He Q, Guo Z, Xiong F, Li Y, Pan Y, Gao C, Li L, He C. MicroRNA-425 facilitates pathogenic Th17 cell differentiation by targeting forkhead box O1 (Foxo1) and is associated with inflammatory bowel disease. Biochem Biophys Res Commun 2018; 496:352-358. [PMID: 29331376 DOI: 10.1016/j.bbrc.2018.01.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune disease, and its pathogenesis remains mostly unknown. MicroRNAs (miRs) has drawn much attention as a crucial regulator of autoimmune diseases. In this study, we demonstrated, for the first time, that miR-425 was significantly up-regulated in peripheral blood mononuclear cells (PBMC) and mucosa of patients with IBD. In note, T helper (Th) 17 cells were found to be the major source of miR-425 expression. Using gain-of-function approaches, we demonstrated that miR-425 could facilitate the differentiation of CD4+ T cells into Th17 lineage. In addition, forkhead box O1 (Foxo1) was identified as a novel target gene of miR-425, which was able to inhibit Th17 cell differentiation, and it was observed to be markedly decreased in PBMC and mucosa of patients with IBD. Notably, in vivo inhibition of miR-425 significantly alleviated the disease severity of TNBS-induced colitis in mice, with down-regulated levels of IL-17A. Our data reveal a novel mechanism in which the elevated miR-425 in IBD mediates pathogenic Th17 cell generation through down-regulation of Foxo1. In vivo blockade of miR-425 may serve as a novel therapeutic approach in the treatment of IBD.
Collapse
Affiliation(s)
- Xue Yang
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Qinyu He
- Department of Rehabilitation, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenzhen Guo
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Xiong
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Li
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Pan
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangping Li
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China.
| | - Chong He
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
121
|
Liu L, Liu Y, Yuan M, Xu L, Sun H. Elevated expression of microRNA-873 facilitates Th17 differentiation by targeting forkhead box O1 (Foxo1) in the pathogenesis of systemic lupus erythematosus. Biochem Biophys Res Commun 2017; 492:453-460. [DOI: 10.1016/j.bbrc.2017.08.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/20/2017] [Indexed: 12/17/2022]
|
122
|
MicroRNA-590 promotes pathogenic Th17 cell differentiation through targeting Tob1 and is associated with multiple sclerosis. Biochem Biophys Res Commun 2017; 493:901-908. [PMID: 28947212 DOI: 10.1016/j.bbrc.2017.09.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
Abstract
Although the exact pathogenesis of multiple sclerosis (MS) remains largely unclear, Th17 cells have been suggested as an essential regulator in the disease induction. Emerging evidence have demonstrated that noncoding RNAs, especially microRNAs (miRs), play a crucial role in modulation of Th17 cell differentiation and autoimmune disease development. Here, we revealed that miR-590 expression was markedly increased in periphery blood mononuclear cells (PBMC) and cerebrospinal fluid (CSF) of patients with MS, and positively correlated with the disease severity. Th17 cells were found to express high level of miR-590. We further demonstrated that miR-590 was able to facilitate Th17 differentiation and pathogenicity. Notably, we identified that miR-590 directly targeted Tob1, a known suppressor of Th17 differentiation. The expression level of Tob1 was observed to be significantly decreased in PBMC of patients with MS. Our finding suggest that miR-590 could enhance pathogenic Th17 differentiation in MS and augment inflammation in central nervous system (CNS) through inhibiting Tob1.
Collapse
|
123
|
Winger EE, Reed JL, Ji X. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept. PLoS One 2017; 12:e0180124. [PMID: 28692679 PMCID: PMC5503193 DOI: 10.1371/journal.pone.0180124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/11/2017] [Indexed: 12/16/2022] Open
Abstract
Objective We investigated the capacity of first trimester peripheral blood mononuclear cell (PBMC) microRNA to determine risk of spontaneous preterm birth among pregnant women. Study design The study included 39 pregnant women with the following delivery outcomes: 25 with a full term delivery (38–42 weeks gestation) 14 with spontaneous preterm birth (<38 weeks gestation). Of the 14 women experiencing spontaneous preterm birth, 7 delivered at 34-<38 weeks gestation (late preterm) and 7 delivered at <34 weeks gestation (early preterm). Samples were collected at a mean of 7.9±3.0 weeks gestation. Quantitative rtPCR was performed on 30 selected microRNAs. MicroRNA Risk Scores were calculated and Area-Under the Curve-Receiver-Operational-Characteristic (AUC-ROC) curves derived. Results The AUC-ROC for the group delivering preterm (<38 weeks) was 0.95 (p>0.0001). The AUC-ROC for early preterm group (<34 weeks) was 0.98 (p<0.0001) and the AUC-ROC for the late preterm group (34-<38 weeks) was 0.92 (p<0.0001). Conclusion Quantification of first trimester peripheral blood PBMC MicroRNA may provide sensitive and specific prediction of spontaneous preterm birth in pregnant women. Larger studies are needed for confirmation.
Collapse
Affiliation(s)
- Edward E. Winger
- Laboratory for Reproductive Medicine and Immunology, San Francisco, CA, United States of America
- * E-mail:
| | - Jane L. Reed
- Laboratory for Reproductive Medicine and Immunology, San Francisco, CA, United States of America
| | - Xuhuai Ji
- Stanford University, Human Immune Monitoring Center, Stanford, CA, United States of America
| |
Collapse
|
124
|
Zhou R, Chang Y, Liu J, Chen M, Wang H, Huang M, Liu S, Wang X, Zhao Q. JNK Pathway-Associated Phosphatase/DUSP22 Suppresses CD4 + T-Cell Activation and Th1/Th17-Cell Differentiation and Negatively Correlates with Clinical Activity in Inflammatory Bowel Disease. Front Immunol 2017; 8:781. [PMID: 28725226 PMCID: PMC5496234 DOI: 10.3389/fimmu.2017.00781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the role of JNK pathway-associated phosphatase (JKAP) in inflammatory bowel disease (IBD). JKAP expression was analyzed in the intestinal mucosa of 81 IBD patients and 25 healthy controls (HCs) by qPCR and immunoblotting. The correlations of JKAP with clinical activity and inflammatory cytokines were performed. JKAP expression before and after infliximab treatment was also measured. CD4+ T cells were isolated from peripheral blood in active IBD patient and HCs and transduced with lentivirus-encoding JKAP (LV-JKAP), anti-JKAP (LV-anti-JKAP), or empty vector (LV-scramble), and JKAP functions on IBD CD4+ T cells were subsequently investigated. JKAP expression was decreased in inflamed mucosa of active IBD patients and was negatively correlated with disease activity [Crohn’s disease activity index (CDAI), Mayo index, C-reactive protein, and erythrocyte sedimentation rate], interleukin-17, and tumor necrosis factor (TNF)-α levels. Anti-TNF-α treatment up-regulated JKAP expression in CD patients, and baseline JKAP expression was elevated in response patients than in failure patients. Transduction of LV-JKAP into CD4+ T cells inhibited the percentages of CD25+ and CD69+ cells and proliferation. Moreover, inhibition of JKAP promotes Th1/Th17 cell differentiation. Our data indicated that the decreased expression of JKAP in intestinal mucosa contributed to the pathogenesis of IBD, through facilitating CD4+ T-cell activation, proliferation, and Th1/Th17-cell differentiation.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hongling Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meifang Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
125
|
Vitamin D inhibits the Staphylococcal enterotoxin B-induced expression of tumor necrosis factor in microglial cells. Immunol Res 2017; 65:913-919. [DOI: 10.1007/s12026-017-8930-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
126
|
He C, Yu T, Shi Y, Ma C, Yang W, Fang L, Sun M, Wu W, Xiao F, Guo F, Chen M, Yang H, Qian J, Cong Y, Liu Z. MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterology 2017; 152:1434-1448.e15. [PMID: 28193514 DOI: 10.1053/j.gastro.2017.01.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/15/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intestinal tissues from patients with inflammatory bowel disease (IBD) and colorectal cancer have increased expression of microRNA-301a (MIR301A) compared with tissues from patients without IBD. We studied the mechanisms of MIR301A in the progression of IBD in human tissues and mice. METHODS We isolated intestinal epithelial cells (IECs) from biopsy samples of the colon from 153 patients with different stages of IBD activity, 6 patients with colitis-associated cancer (CAC), and 35 healthy individuals (controls), enrolled in the study in Shanghai, China. We measured expression of MIR301A and BTG anti-proliferation factor 1 (BTG1) by IECs using quantitative reverse-transcription polymerase chain reaction. Human colon cancer cell lines (HCT-116 and SW480) were transfected with a lentivirus that expresses MIR301A; expression of cytokines and tight junction proteins were measured by quantitative reverse transcription polymerase chain reaction, flow cytometry, and immunofluorescence staining. We generated mice with disruption of the microRNA-301A gene (MIR301A-knockout mice), and also studied mice that express a transgene-encoding BTG1. Colitis was induced in knockout, transgenic, and control (C57BL/B6) mice by administration of dextran sulfate sodium (DSS), and mice were given azoxymethane to induce colorectal carcinogenesis. Colons were collected and analyzed histologically and by immunohistochemistry; tumor nodules were counted and tumor size was measured. SW480 cells expressing the MIR301A transgene were grown as xenograft tumors in nude mice. RESULTS Expression of MIR301A increased in IECs from patients with IBD and CAC compared with controls. MIR301A-knockout mice were resistant to the development of colitis following administration of DSS; their colon tissues expressed lower levels of interleukin 1β (IL1β), IL6, IL8, and tumor necrosis factor than colons of control mice. Colon tissues from MIR301A-knockout mice had increased epithelial barrier integrity and formed fewer tumors following administration of azoxymethane than control mice. Human IECs expressing transgenic MIR301A down-regulated expression of cadherin 1 (also called E-cadherin or CDH1). We identified BTG1 mRNA as a target of MIR301A; levels of BTG1 mRNA were reduced in inflamed mucosa from patients with active IBD compared with controls. There was an inverse correlation between levels of BTG1 mRNA and levels of MIR301A in inflamed mucosal tissues from patients with active IBD. Human colon cancer cell lines that expressed a MIR301A transgene increased proliferation; they had increased permeability and decreased expression of CDH1 compared with cells transfected with a control vector, indicating reduced intestinal barrier function. BTG1 transgenic mice developed less severe colitis than control mice following administration of DSS. SW480 cells expressing anti-MIR301A formed fewer xenograft tumors in nude mice than cells expressing a control vector. CONCLUSIONS Levels of MIR301A are increased in IECs from patients with active IBD. MIR301A reduces expression of BTG1 to reduce epithelial integrity and promote inflammation in mouse colon and promotes tumorigenesis. Strategies to decrease levels of MIR301A in colon tissues might be developed to treat patients with IBD and CAC.
Collapse
Affiliation(s)
- Chong He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yan Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, the Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, the Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX.
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
127
|
Wu R, He Q, Chen H, Xu M, Zhao N, Xiao Y, Tu QQ, Zhang W, Bi X. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem Biophys Res Commun 2017; 486:759-766. [DOI: 10.1016/j.bbrc.2017.03.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
|
128
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD), composed of Crohn's disease (CD) and ulcerative colitis (UC), is an inflammatory autoimmune disease. CD99 has been reported to participate in migration of leukocytes and T cell activation. However, the roles of CD99 in IBD are obscure. MATERIALS AND METHODS CD99 expression was examined in peripheral blood mononuclear cells (PBMCs) and inflamed mucosa from IBD patients by qRT-PCR. Serum TNF-α and IL-17A levels were detected by ELISA. Correlations of CD99 expression with TNF-α, IL-17A, Crohn's disease activity index (CDAI), simple endoscopic score for CD (SES-CD), Mayo index, and Truelove grading were performed by Pearson's correlation. RESULTS CD99 expression was increased in PBMCs and inflamed mucosa from active CD and UC patients, and CD99 expression was also increased in the inflamed mucosa compared with unaffected control from the same patients. Serum TNF-α and IL-17A levels were increased in active CD or UC patients, and positively correlated with CD99 expression in PBMCs (CD: r = .402, p = .009; r = .350, p = .025. UC: r = .289, p = .028; r = .322, p = .014). Moreover, CD99 expression in inflamed mucosa was correlated with CDAI, SES-CD, Mayo index, and Truelove grading (r = .410, p = .012; r = .341, p = .005; r = .366, p = .002; r = .312, p = .011). CONCLUSION CD99 expression is increased in patients with active IBD, and positively correlated with disease activity. Therefore, CD99 expression can be used as an index to evaluate the activity of IBD.
Collapse
Affiliation(s)
- Guangxi Zhou
- a Department of Gastroenterology , The Shanghai Tenth People's Hospital, Tongji University , Shanghai , China
| | - Wenjing Yang
- a Department of Gastroenterology , The Shanghai Tenth People's Hospital, Tongji University , Shanghai , China
| | - Lin Yu
- a Department of Gastroenterology , The Shanghai Tenth People's Hospital, Tongji University , Shanghai , China
| | - Tianming Yu
- a Department of Gastroenterology , The Shanghai Tenth People's Hospital, Tongji University , Shanghai , China
| | - Zhanju Liu
- a Department of Gastroenterology , The Shanghai Tenth People's Hospital, Tongji University , Shanghai , China
| |
Collapse
|
129
|
Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10:eaaf5185. [PMID: 28196914 DOI: 10.1126/scisignal.aaf5185] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Effective recognition of viral components and the subsequent stimulation of the production of type I interferons (IFNs) is crucial for the induction of host antiviral immunity. The failure of the host to efficiently produce type I IFNs in response to infection by the Japanese encephalitis virus (JEV) is linked with an increased probability for the disease to become lethal. JEV is a neurotropic virus of the Flaviviridae family that causes encephalitis in humans. JEV infection is regulated by several host factors, including microRNAs, which are conserved noncoding RNAs that participate in various physiological and pathological processes. We showed that the JEV-induced expression of miR-301a led to inhibition of the production of type I IFN by reducing the abundances of the transcription factor IFN regulatory factor 1 (IRF1) and the signaling protein suppressor of cytokine signaling 5 (SOCS5). Mechanistically, induction of miR-301a expression during JEV infection required the transcription factor nuclear factor κB. In mouse neurons, neutralization of miR-301a restored the host innate immune response by enabling IFN-β production, thereby restricting viral propagation. Inhibition of miR-301a in mouse brain rescued the production of IRF1 and SOCS5, increased the generation of IFN-β, and reduced the extent of JEV replication, thus improving mouse survival. Thus, our study suggests that the JEV-induced expression of miR-301a assists viral pathogenesis by suppressing IFN production, which might be targeted by antiviral therapies.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
130
|
Sun M, He C, Wu W, Zhou G, Liu F, Cong Y, Liu Z. Hypoxia inducible factor-1α-induced interleukin-33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease. Clin Exp Immunol 2016; 187:428-440. [PMID: 27921309 DOI: 10.1111/cei.12896] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 01/05/2023] Open
Abstract
Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor-1α (HIF-1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC-derived HIF-1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF-1α and IL-33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)-33 were correlated positively with that of HIF-1α. A HIF-1α-interacting element was identified in the promoter region of IL-33, indicating that HIF-1α activity regulates IL-33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF-1α-dependent IL-33 expression in IEC. Our data thus demonstrate that HIF-1α-dependent IL-33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.
Collapse
Affiliation(s)
- M Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - C He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - W Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - G Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - F Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Y Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Z Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
131
|
Wang H, Chao K, Ng SC, Bai AH, Yu Q, Yu J, Li M, Cui Y, Chen M, Hu JF, Zhang S. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol 2016; 17:58. [PMID: 27029486 PMCID: PMC4815271 DOI: 10.1186/s13059-016-0901-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Background The IL23/Th17 pathway is essential for the onset of inflammatory bowel disease (IBD), yet the specific mechanism by which this pathway initiates the disease remains unknown. In this study, we identify the mechanisms that mediate cross-talk between the IL23 pathway and the intestinal barrier in IBD. Results The downstream targets of the IL23 pathway were identified by RNA array profiling and confirmed by immunohistochemical staining. The role of miRNAs that interact with IL23 was explored in mice with TNBS-induced colitis. Claudin-8 (CLDN8), a multigene family protein that constitutes the backbone of tight junctions, was identified as a novel target of IL23 in IBD. CLDN8 was significantly downregulated in IBD patients with inflamed colonic mucosa, and in trinitrobenzene sulphonic acid (TNBS) induced colitis in mice. Therapeutic treatment of colitis in mice using an IL23 antibody restored CLDN8 abundance, in parallel with recovery from colitis. In addition, we identify miR-223 as a novel mediator of the crosstalk between the IL23 signal pathway and CLDN8 in the development of IBD. MiR-223 was upregulated in IBD, and its activity was regulated through the IL23 pathway. Antagomir inhibition of miR-223 reactivated CLDN8 and improved a number of signs associated with TNBS-induced colitis in mice. Conclusions Our study characterizes a new mechanistic pathway in IBD, in which miR-223 interacts with the IL23 pathway by targeting CLDN8. Strategies designed to disrupt this interaction may provide novel therapeutic agents for the management of IBD. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0901-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiling Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Kang Chao
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Siew Chien Ng
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Hong Kong, P.R. China
| | - Alfa Hc Bai
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Hong Kong, P.R. China
| | - Qiao Yu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Jun Yu
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, Hong Kong, P.R. China
| | - Manying Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Yi Cui
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China.
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, P.R. China. .,Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA, 94304, USA.
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, P.R. China.
| |
Collapse
|