101
|
Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, Aithal GP. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 2017; 66:1154-1164. [PMID: 28341748 PMCID: PMC5532458 DOI: 10.1136/gutjnl-2016-313369] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a rare but potentially severe adverse drug reaction that should be considered in patients who develop laboratory criteria for liver injury secondary to the administration of a potentially hepatotoxic drug. Although currently used liver parameters are sensitive in detecting DILI, they are neither specific nor able to predict the patient's subsequent clinical course. Genetic risk assessment is useful mainly due to its high negative predictive value, with several human leucocyte antigen alleles being associated with DILI. New emerging biomarkers which could be useful in assessing DILI include total keratin18 (K18) and caspase-cleaved keratin18 (ccK18), macrophage colony-stimulating factor receptor 1, high mobility group box 1 and microRNA-122. From the numerous in vitro test systems that are available, monocyte-derived hepatocytes generated from patients with DILI show promise in identifying the DILI-causing agent from among a panel of coprescribed drugs. Several computer-based algorithms are available that rely on cumulative scores of known risk factors such as the administered dose or potential liabilities such as mitochondrial toxicity, inhibition of the bile salt export pump or the formation of reactive metabolites. A novel DILI cluster score is being developed which predicts DILI from multiple complimentary cluster and classification models using absorption-distribution-metabolism-elimination-related as well as physicochemical properties, diverse substructural descriptors and known structural liabilities. The provision of more advanced scientific and regulatory guidance for liver safety assessment will depend on validating the new diagnostic markers in the ongoing DILI registries, biobanks and public-private partnerships.
Collapse
Affiliation(s)
- Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich and University of Zurich, Zurich, Switzerland,Drug Safety and Epidemiology, Novartis Pharma, Basel, Switzerland
| | - Raul J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Málaga, Spain
| | - Michael Merz
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Peter End
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Andreas Benesic
- Department of Medicine II, Klinikum Grosshadern of the University of Munich (KUM), University of Munich, Munich, Germany,MetaHeps GmbH, Planegg/Martinsried, Germany
| | - Alexander L Gerbes
- Department of Medicine II, Klinikum Grosshadern of the University of Munich (KUM), University of Munich, Munich, Germany
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR), Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
102
|
Khanjarsim V, Karimi J, Khodadadi I, Mohammadalipour A, Goodarzi MT, Solgi G, Hashemnia M. Ameliorative Effects of Nilotinib on CCl4 Induced Liver Fibrosis Via Attenuation of RAGE/HMGB1 Gene Expression and Oxidative Stress in Rat. Chonnam Med J 2017; 53:118-126. [PMID: 28584790 PMCID: PMC5457946 DOI: 10.4068/cmj.2017.53.2.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
Nilotinib as a tyrosine kinase inhibitor has been recently used to improve the liver fibrosis process, but the exact mechanisms still require further clarification. In this study, we investigated the anti-fibrotic effects of Nilotinib via RAGE/HMGB1axis and antioxidant mechanisms. This experimental study was performed in the Hamadan University of Medical Sciences, Iran, from May 2015 to December 2016. Liver fibrosis was induced in Wistar male rats by CCL4. Rats were gavaged daily with Nilotinib (10 mg/kg). RAGE, HMGB1, TNF-α and TGF-β mRNA expression were evaluated by quantitative RT-PCR. TNF-α protein levels were measured using the immunoassay method. Thiol groups, carbonyl groups, nitric oxide levels and glutathione peroxidase activity were measured by spectrophotometric methods.The results showed that Nilotinib decreased TNF-α, TGF-β, RAGE and HMGB1 mRNA expression (p<0.001) in the liver tissues of the fibrosis group. Nilotinib also decreased carbonyl groups and nitric oxide levels and increased thiol groups and glutathione peroxidase activity in the fibrosis groups. The histopathological changes were found to be attenuated by Nilotinib. In conclusion, Nilotinib can improve liver fibrosis and open new mechanisms of the anti-fibrotic properties of Nilotinib.
Collapse
Affiliation(s)
- Vahid Khanjarsim
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adel Mohammadalipour
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| |
Collapse
|
103
|
Li L, Duan M, Chen W, Jiang A, Li X, Yang J, Li Z. The spleen in liver cirrhosis: revisiting an old enemy with novel targets. J Transl Med 2017; 15:111. [PMID: 28535799 PMCID: PMC5442653 DOI: 10.1186/s12967-017-1214-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
The spleen is a secondary lymphoid organ which can influence the progression of multiple diseases, notably liver cirrhosis. In chronic liver diseases, splenomegaly and hypersplenism can manifest following the development of portal hypertension. These splenic abnormalities correlate with and have been postulated to facilitate the progression of liver fibrosis to cirrhosis, although precise mechanisms remain poorly understood. In this review, we summarize the literature to highlight the mechanistic contributions of splenomegaly and hypersplenism to the development of liver cirrhosis, focusing on three key aspects: hepatic fibrogenesis, hepatic immune microenvironment dysregulation and liver regeneration. We conclude with a discussion of the possible therapeutic strategies for modulating splenic abnormalities, including the novel potential usage of nanomedicine in non-surgically targetting splenic disorders for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC, Australia
| | - Weisan Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC, Australia
| | - An Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China. .,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China. .,Department of Pathology, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China. .,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
104
|
Prakoura N, Chatziantoniou C. Matricellular Proteins and Organ Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
105
|
Lytle KA, Wong CP, Jump DB. Docosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese Ldlr-/- mice. PLoS One 2017; 12:e0173376. [PMID: 28422962 PMCID: PMC5396882 DOI: 10.1371/journal.pone.0173376] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a major public health concern in western societies. Nonalcoholic steatohepatitis (NASH), the progressive form of NAFLD, is characterized by hepatic steatosis, inflammation, oxidative stress and fibrosis. NASH is a risk factor for cirrhosis and hepatocellular carcinoma. NASH is predicted to be the leading cause of liver transplants by 2020. Despite this growing public health concern, there remain no Food and Drug Administration (FDA) approved NASH treatments. Using Ldlr-/- mice as a preclinical model of western diet (WD)-induced NASH, we previously established that dietary supplementation with docosahexaenoic acid (DHA, 22:6,ω3) attenuated WD-induced NASH in a prevention study. Herein, we evaluated the capacity of DHA supplementation of the WD and a low fat diet to fully reverse NASH in mice with pre-existing disease. Methods Ldlr-/- mice fed the WD for 22 wks developed metabolic syndrome (MetS) and a severe NASH phenotype, including obesity, dyslipidemia, hyperglycemia, hepatic steatosis, inflammation, fibrosis and low hepatic polyunsaturated fatty acid (PUFA) content. These mice were randomized to 5 groups: a baseline group (WDB, sacrificed at 22 wks) and 4 treatments: 1) WD + olive oil (WDO); 2) WD + DHA (WDD); 3) returned to chow + olive oil (WDChO); or 4) returned to chow + DHA (WDChD). The four treatment groups were maintained on their respective diets for 8 wks. An additional group was maintained on standard laboratory chow (Reference Diet, RD) for the 30-wk duration of the study. Results When compared to the WDB group, the WDO group displayed increased hepatic expression of genes linked to inflammation (Opn, Il1rn, Gdf15), hepatic fibrosis (collagen staining, Col1A1, Thbs2, Lox) reflecting disease progression. Mice in the WDD group, in contrast, had increased hepatic C20-22 ω3 PUFA and no evidence of NASH progression. MetS and NASH markers in the WDChO or WDChD groups were significantly attenuated and marginally different from the RD group, reflecting disease remission. Conclusion While these studies establish that DHA supplementation of the WD blocks WD-induced NASH progression, DHA alone does not promote full remission of diet-induced MetS or NASH.
Collapse
Affiliation(s)
- Kelli A. Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Carmen P. Wong
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Donald B. Jump
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
106
|
Magdaleno F, Blajszczak CC, Nieto N. Key Events Participating in the Pathogenesis of Alcoholic Liver Disease. Biomolecules 2017; 7:biom7010009. [PMID: 28134813 PMCID: PMC5372721 DOI: 10.3390/biom7010009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of morbidity and mortality worldwide. It ranges from fatty liver to steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The most prevalent forms of ALD are alcoholic fatty liver, alcoholic hepatitis (AH) and alcoholic cirrhosis, which frequently progress as people continue drinking. ALD refers to a number of symptoms/deficits that contribute to liver injury. These include steatosis, inflammation, fibrosis and cirrhosis, which, when taken together, sequentially or simultaneously lead to significant disease progression. The pathogenesis of ALD, influenced by host and environmental factors, is currently only partially understood. To date, lipopolysaccharide (LPS) translocation from the gut to the portal blood, aging, gender, increased infiltration and activation of neutrophils and bone marrow-derived macrophages along with alcohol plus iron metabolism, with its associated increase in reactive oxygen species (ROS), are all key events contributing to the pathogenesis of ALD. This review aims to introduce the reader to the concept of alcohol-mediated liver damage and the mechanisms driving injury.
Collapse
Affiliation(s)
- Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| | - Chuck C Blajszczak
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA.
| |
Collapse
|
107
|
Epigallocatechin-3-Gallate Upregulates miR-221 to Inhibit Osteopontin-Dependent Hepatic Fibrosis. PLoS One 2016; 11:e0167435. [PMID: 27935974 PMCID: PMC5147893 DOI: 10.1371/journal.pone.0167435] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Osteopontin (OPN) promotes hepatic fibrosis, and developing therapies targeting OPN expression in settings of hepatic injury holds promise. The polyphenol epigallocatechin-3-gallate (EGCG), found in high concentrations in green tea, downregulates OPN expression through OPN mRNA degradation, but the mechanism is unknown. Previous work has shown that microRNAs can decrease OPN mRNA levels, and other studies have shown that EGCG modulates the expression of multiple microRNAs. In our study, we first demonstrated that OPN induces hepatic stellate cells to transform into an activated state. We then identified three microRNAs which target OPN mRNA: miR-181a, miR-10b, and miR-221. In vitro results show that EGCG upregulates all three microRNAs, and all three microRNAs are capable of down regulating OPN mRNA when administered alone. Interestingly, only miR-221 is necessary for EGCG-mediated OPN mRNA degradation and miR-221 inhibition reduces the effects of EGCG on cell function. In vivo experiments show that thioacetamide (TAA)-induced cell cytotoxicity upregulates OPN expression; treatment with EGCG blocks the effects of TAA. Furthermore, chronic treatment of EGCG in vivo upregulates all three microRNAs equally, suggesting that in more chronic treatment all three microRNAs are involved in modulating OPN expression. We conclude that in in vitro and in vivo models of TAA-induced hepatic fibrosis, EGCG inhibits OPN-dependent injury and fibrosis. EGCG works primarily by upregulating miR-221 to accelerate OPN degradation. EGCG may therefore have utility as a protective agent in settings of liver injury.
Collapse
|
108
|
Bandiera S, Billie Bian C, Hoshida Y, Baumert TF, Zeisel MB. Chronic hepatitis C virus infection and pathogenesis of hepatocellular carcinoma. Curr Opin Virol 2016; 20:99-105. [PMID: 27741441 DOI: 10.1016/j.coviro.2016.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is one of the major causes of advanced liver disease and hepatocellular carcinoma (HCC) worldwide. While the knowledge about the molecular virology of HCV infection has markedly advanced, the molecular mechanisms of disease progression leading to fibrosis, cirrhosis and HCC are still unclear. Accumulating experimental and clinical studies indicate that HCV may drive hepatocarcinogenesis directly via its proteins or transcripts, and/or indirectly through induction of chronic liver inflammation. Despite the possibility to eradicate HCV infection through direct-acting antiviral treatment, the risk of HCC persists although specific biomarkers to estimate this risk are still missing. Thus, a better understanding of HCV-induced HCC and more physiological liver disease models are required to prevent cancer development.
Collapse
Affiliation(s)
- Simonetta Bandiera
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - C Billie Bian
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France.
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
109
|
Saneyasu T, Akhtar R, Sakai T. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2646212. [PMID: 27800489 PMCID: PMC5075297 DOI: 10.1155/2016/2646212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/28/2016] [Indexed: 12/14/2022]
Abstract
Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM) influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GE, UK
| | - Takao Sakai
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
110
|
Wen Y, Jeong S, Xia Q, Kong X. Role of Osteopontin in Liver Diseases. Int J Biol Sci 2016; 12:1121-8. [PMID: 27570486 PMCID: PMC4997056 DOI: 10.7150/ijbs.16445] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN), a multifunctional protein, is involved in numerous pathological conditions including inflammation, immunity, angiogenesis, fibrogenesis and carcinogenesis in various tissues. Extensive studies have elucidated the critical role of OPN in cell signaling such as regulation of cell proliferation, migration, inflammation, fibrosis and tumor progression. In the liver, OPN interacts with integrins, CD44, vimentin and MyD88 signaling, thereby induces infiltration, migration, invasion and metastasis of cells. OPN is highlighted as a chemoattractant for macrophages and neutrophils during injury in inflammatory liver diseases. OPN activates hepatic stellate cells (HSCs) to exert an enhancer in fibrogenesis. The role of OPN in hepatocellular carcinoma (HCC) has also generated significant interests, especially with regards to its role as a diagnostic and prognostic factor. Interestingly, OPN acts an opposing role in liver repair under different pathological conditions. This review summarizes the current understanding of OPN in liver diseases. Further understanding of the pathophysiological role of OPN in cellular interactions and molecular mechanisms associated with hepatic inflammation, fibrosis and cancer may contribute to the development of novel strategies for clinical diagnosis, monitoring and therapy of liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
111
|
Affiliation(s)
- Lee A Borthwick
- Tissue Fibrosis and Repair Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Derek A Mann
- Tissue Fibrosis and Repair Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|