101
|
Bayoumi A, Grønbæk H, George J, Eslam M. The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease. Trends Genet 2020; 36:429-441. [PMID: 32396836 DOI: 10.1016/j.tig.2020.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Despite decades of research, effective therapies for metabolic (dysfunction)-associated fatty liver disease (MAFLD) are lacking. An increasing body of evidence suggests that epigenetic dysregulation is frequent in MAFLD, and orchestrates many aspects of its development and progression. Furthermore, the high plasticity of epigenetic modifications in response to environmental cues renders epigenetics a novel area for therapeutic drug discovery. Over recent years, several epigenetics-based drugs and diagnostic biomarkers have entered clinical development and/or obtained regulatory approval. Here, we review recent advances in our understanding of epigenetic regulation and programming during MAFLD, including DNA methylation, histone modifications, chromatin remodelling, transcriptional control, and noncoding (nc)RNAs. We also discuss the potential translational implications and challenges of epigenetics in the context of MAFLD.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
102
|
Li Z, Zhang D, Li Q, Yang X, Zhang R, Zhang D, Yang X, Wang C, Tan X, Xiong Y. Effects of methylation of deiodinase 3 gene on gene expression and severity of Kashin-Beck disease. J Cell Physiol 2020; 235:9946-9957. [PMID: 32458485 DOI: 10.1002/jcp.29809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Kashin-Beck disease (KBD) is a complex endemic osteoarthropathy, which mainly occurs in the northeast to southwest China. Iodothyronine deiodinases 3 (DIO3) is one of the selenoproteins, which is closely related to bone metabolism and unclear to KBD. This study aims to investigate the role and associated mechanisms of methylation and expression of DIO3 with disease severity in patients with KBD. We performed a bioinformatics analysis first to identify the biological mechanisms involved in selenoproteins. The methylation status of the DIO3 gene and DIO3 gene expression, as well as DIO3-related regulatory genes in patients with KBD, were analyzed. We found that 15 CpG sites of six selenoproteins were hypomethylated with 5-azacytidine treatment. DIO3 hypermethylation was associated with an increased risk of KBD and may lead to downregulation of DIO3 gene expression as well as be an indicator of the severity of KBD, which may provide a new insight for gene-environment correlations and interactions in etiology and pathogenesis of KBD.
Collapse
Affiliation(s)
- Zhaofang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaoli Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Rongqiang Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xuena Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiwang Tan
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
103
|
Shabangu CS, Huang JF, Hsiao HH, Yu ML, Chuang WL, Wang SC. Liquid Biopsy for the Diagnosis of Viral Hepatitis, Fatty Liver Steatosis, and Alcoholic Liver Diseases. Int J Mol Sci 2020; 21:3732. [PMID: 32466319 PMCID: PMC7279404 DOI: 10.3390/ijms21103732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
During the progression from hepatitis to fibrosis, cirrhosis, and liver failure, the accumulation of stressed/damaged hepatocyte elements associated with liver inflammation is critical. The causes of hepatocyte injuries include viral hepatitis infections, alcoholic hepatitis, and non-alcoholic fatty liver disease. Hepatocyte-derived extracellular vesicles (Hep-EVs) released from stressed/damaged hepatocytes are partly responsible for liver disease progression and liver damage because they activate non-parenchymal cells and infiltrate inflammatory cells within the liver, which are in turn are an important source of EVs. This cell-to-cell signaling is prevalent during inflammation in many liver diseases. Accordingly, special emphasis should be placed on liquid biopsy methods for the long-term monitoring of chronic liver diseases. In the present review, we have highlighted various aspects of current liquid biopsy research into chronic liver diseases. We have also reviewed recent progress on liquid biopsies that focus on cell-free DNA (cfDNA), long non-coding RNA (lncRNA), and the proteins in EVs as potential diagnostic tools and novel therapeutic targets in patients with viral hepatitis, fatty liver steatosis, and alcoholic liver diseases.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
| | - Jee-Fu Huang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hui-Hua Hsiao
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Lung Yu
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| |
Collapse
|
104
|
Liu HH, Fang Y, Wang JW, Yuan XD, Fan YC, Gao S, Han LY, Wang K. Hypomethylation of the cyclin D1 promoter in hepatitis B virus-associated hepatocellular carcinoma. Medicine (Baltimore) 2020; 99:e20326. [PMID: 32443384 PMCID: PMC7253776 DOI: 10.1097/md.0000000000020326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 02/20/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
The hypomethylation of the Cyclin D1 (CCND1) promoter induced by excess oxidative stress likely promotes the development of hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC). We aimed to evaluate methylation status of the CCND1 promoter as a new plasma marker for the detection of HBV-HCC.We consecutively recruited 191 participants, including 105 patients with HBV-HCC, 54 patients with chronic hepatitis B (CHB), and 32 healthy controls (HCs). Using methylation-specific polymerase chain reaction, we identified the methylation status of the CCND1 promoter in plasma samples. We analyzed the expression levels of the CCND1 mRNA in peripheral blood mononuclear cells by using quantitative real-time PCR. We assessed the plasma levels of superoxide dismutase, 8-hydroxydeoxyguanosine and malondialdehyde by using enzyme-linked immunosorbent assays.Patients with HBV-HCC (23.81%) presented a reduced methylation frequency compared with patients with CHB (64.81%) or HCs (78.13%) (P < .001). When receiver operating characteristic curves were plotted for patients with HBV-HCC versus CHB, the methylation status of the CCND1 promoter yielded diagnostic parameter values for the area under the curve of 0.705, sensitivity of 76.19%, and specificity of 64.81%, thus outperforming serum alpha-fetoprotein (AFP), which had an area under the curve of 0.531, sensitivity of 36.19%, and specificity of 90.74%. Methylation of the CCND1 promoter represents a prospective diagnostic marker for patients with AFP-negative HBV-HCC and AFP-positive CHB. The expression levels of CCND1 mRNA was increased in patients with HBV-HCC compared with patients with CHB (Z = -4.946, P < .001) and HCs (Z = -6.819, P < .001). Both the extent of oxidative injury and antioxidant capacity indicated by the superoxide dismutase, 8-hydroxydeoxyguanosine and malondialdehyde levels were increased in patients with HBV-HCC. Clinical follow up of patients with HBV-HCC revealed a worse overall survival (P = .012, log-rank test) and a decreased progression-free survival (HR = 0.109, 95%CI: 0.031-0.384) for the unmethylated CCND1 group than methylated CCND1 group.Our study confirms that oxidative stress appears to correlate with plasma levels of CCND1 promoter methylation, and the methylation status of the CCND1 promoter represents a prospective biomarker with better diagnostic performance than serum AFP levels.
Collapse
Affiliation(s)
- Hui-Hui Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Yu Fang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Xiao-Dong Yuan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Shenzhen Research Institute of Shandong University, Shenzhen
- Institute of Hepatology, Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Institute of Hepatology, Shandong University, Jinan, China
| | - Li-Yan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Shenzhen Research Institute of Shandong University, Shenzhen
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
105
|
Eslam M, Sanyal AJ, George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158:1999-2014.e1. [PMID: 32044314 DOI: 10.1053/j.gastro.2019.11.312] [Citation(s) in RCA: 2107] [Impact Index Per Article: 421.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022]
Abstract
Fatty liver associated with metabolic dysfunction is common, affects a quarter of the population, and has no approved drug therapy. Although pharmacotherapies are in development, response rates appear modest. The heterogeneous pathogenesis of metabolic fatty liver diseases and inaccuracies in terminology and definitions necessitate a reappraisal of nomenclature to inform clinical trial design and drug development. A group of experts sought to integrate current understanding of patient heterogeneity captured under the acronym nonalcoholic fatty liver disease (NAFLD) and provide suggestions on terminology that more accurately reflects pathogenesis and can help in patient stratification for management. Experts reached consensus that NAFLD does not reflect current knowledge, and metabolic (dysfunction) associated fatty liver disease "MAFLD" was suggested as a more appropriate overarching term. This opens the door for efforts from the research community to update the nomenclature and subphenotype the disease to accelerate the translational path to new treatments.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Arun J Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
106
|
The diagnostic utility of fibrosis-4 or nonalcoholic fatty liver disease fibrosis score combined with liver stiffness measurement by fibroscan in assessment of advanced liver fibrosis: a biopsy-proven nonalcoholic fatty liver disease study. Eur J Gastroenterol Hepatol 2020; 32:642-649. [PMID: 31651653 DOI: 10.1097/meg.0000000000001573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM The clinical guidelines recommend the use of nonalcoholic fatty liver disease fibrosis score and fibrosis-4 score for estimating the advanced liver fibrosis in nonalcoholic fatty liver disease. However, these scores are used confidently in eliminating advanced fibrosis, rather than detecting it. Therefore, paired combination with liver stiffness measurement by transient elastography is recommended. In this study, we aimed to validate this combined algorithm in our study population. METHODS A total of 139 consecutive biopsy-proven nonalcoholic fatty liver disease patients were enrolled in the study. We calculated the noninvasive scores and performed liver stiffness measurement examination for each patient. RESULTS The optimal cutoff of liver stiffness measurement for advanced fibrosis was 11.0 kPa (area under curve: 0.856) with a sensitivity of 84% and a specificity of 78%. Using the fibrosis-4 score (< 1.45 for low risk of advanced fibrosis and > 3.25 for high risk of advanced fibrosis) in combination with the liver stiffness measurement cutoffs revealed the best diagnostic performance (< 8.8 kPa for low risk of advanced fibrosis and > 10.9 kPa for high risk of advanced fibrosis). This paired combination had the positive predictive value of 0.735 at a sensitivity of 89% and the negative predictive value of 0.932 at a specificity of 82%. CONCLUSION A paired combination of the fibrosis-4 score and liver stiffness measurement (< 8.8 kPa for exclusion of advanced fibrosis and > 10.9 kPa for inclusion of advanced fibrosis) is able to diagnose the patients with advanced fibrosis with the highest diagnostic accuracy.
Collapse
|
107
|
Piazzolla VA, Mangia A. Noninvasive Diagnosis of NAFLD and NASH. Cells 2020; 9:E1005. [PMID: 32316690 PMCID: PMC7226476 DOI: 10.3390/cells9041005] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this review is to outline emerging biomarkers that can serve as early diagnostic tools to identify patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) and, among them, the subgroup of best candidates for clinical trials on emerging compounds. Regarding possible predictors of NAFLD, a number of studies evaluated a combination of serum biomarkers either available in routine practice (or investigational) or proprietary and expensive. So far, magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) appears to be the most accurate for fatty liver diagnosis. In clinical practice, the main question is how to diagnose NASH early. There are new promising biomarkers that can help in diagnosing early stages of NASH, yet they include variables not routinely tested. In the setting of NASH, most studies confirm that, in spite of several well-known limitations, transient elastography or point shear wave elastography can help in enriching the pool of patients that should be screened for investigational treatments. Newer multiomics biomarkers including those focusing on microbiota can be useful but require methods to be standardized and implemented. To date, one biomarker alone is not able to non- or minimally invasively identify patients with NASH and mild to moderate fibrosis.
Collapse
Affiliation(s)
| | - Alessandra Mangia
- Liver Unit, Department of Medical Sciences, IRCCS Fondazione, “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
108
|
Genome-Wide Detection of Key Genes and Epigenetic Markers for Chicken Fatty Liver. Int J Mol Sci 2020; 21:ijms21051800. [PMID: 32151087 PMCID: PMC7084419 DOI: 10.3390/ijms21051800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chickens are one of the most important sources of meat worldwide, and the occurrence of fatty liver syndrome (FLS) is closely related to production efficiency. However, the potential mechanism of FLS remains poorly understood. An integrated analysis of data from whole-genome bisulfite sequencing and long noncoding RNA (lncRNA) sequencing was conducted. A total of 1177 differentially expressed genes (DEGs) and 1442 differentially methylated genes (DMGs) were found. There were 72% of 83 lipid- and glucose-related genes upregulated; 81% of 150 immune-related genes were downregulated in fatty livers. Part of those genes was within differentially methylated regions (DMRs). Besides, sixty-seven lncRNAs were identified differentially expressed and divided into 13 clusters based on their expression pattern. Some lipid- and glucose-related lncRNAs (e.g., LNC_006756, LNC_012355, and LNC_005024) and immune-related lncRNAs (e.g., LNC_010111, LNC_010862, and LNC_001272) were found through a co-expression network and functional annotation. From the expression and epigenetic profiles, 23 target genes (e.g., HAO1, ABCD3, and BLMH) were found to be hub genes that were regulated by both methylation and lncRNAs. We have provided comprehensive epigenetic and transcriptomic profiles on FLS in chicken, and the identification of key genes and epigenetic markers will expand our understanding of the molecular mechanism of chicken FLS.
Collapse
|
109
|
Karaman EF, Zeybel M, Ozden S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicol Lett 2020; 326:52-60. [PMID: 32119988 DOI: 10.1016/j.toxlet.2020.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/30/2023]
Abstract
Zearalenone, produced by various Fusarium species, is a non-steroidal estrogenic mycotoxin that contaminates cereals, resulting in adverse effects on human health. We investigated the effects of zearalenone and its metabolite alpha zearalenol on epigenetic modifications and its relationship with metabolic pathways in human hepatocellular carcinoma cells following 24 h of exposure. Zearalenone and alpha zearalenol at the concentrations of 1, 10 and 50 μM significantly increased global levels of DNA methylation and global histone modifications (H3K27me3, H3K9me3, H3K9ac). Expression levels of the chromatin modifying enzymes EHMT2, ESCO1, HAT1, KAT2B, PRMT6 and SETD8 were upregulated by 50 μM of zearalenone exposure using PCR arrays, consistent with the results of global histone modifications. Zearalenone and alpha zearalenol also changed expression levels of the AhR, LXRα, PPARα, PPARɣ, L-fabp, LDLR, Glut2, Akt1 and HK2 genes, which are related to nuclear receptors and metabolic pathways. PPARɣ, a key regulator of lipid metabolism, was selected from among these genes for further analysis. The PPARɣ promoter reduced methylation significantly following zearalenone exposure. Taken together, the epigenetic mechanisms of DNA methylation and histone modifications may be key mechanisms in zearalenone toxicity. Furthermore, effects of zearalenone in metabolic pathways could be mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Müjdat Zeybel
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, 34010, Topkapi, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
110
|
Cai J, Zhang XJ, Ji YX, Zhang P, She ZG, Li H. Nonalcoholic Fatty Liver Disease Pandemic Fuels the Upsurge in Cardiovascular Diseases. Circ Res 2020; 126:679-704. [PMID: 32105577 DOI: 10.1161/circresaha.119.316337] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of death worldwide. Among the major risk factors for CVD, obesity and diabetes mellitus have received considerable attention in terms of public policy and awareness. However, the emerging prevalence of nonalcoholic fatty liver disease (NAFLD), as the most common liver and metabolic disease and a cause of CVD, has been largely overlooked. Currently, the number of individuals with NAFLD is greater than the total number of individuals with diabetes mellitus and obesity. Epidemiological studies have established a strong correlation between NAFLD and an increased risk of CVD and CVD-associated events. Although debate continues over the causal relationship between NAFLD and CVD, many mechanistic and longitudinal studies have indicated that NAFLD is one of the major driving forces for CVD and should be recognized as an independent risk factor for CVD apart from other metabolic disorders. In this review, we summarize the clinical evidence that supports NAFLD as a risk factor for CVD epidemics and discuss major mechanistic insights regarding the acceleration of CVD in the setting of NAFLD. Finally, we address the potential treatments for NAFLD and their potential impact on CVD.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (X.-J.Z.)
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
- Basic Medical School, Wuhan University, China (H.L.)
| |
Collapse
|
111
|
Okamoto K, Koda M, Okamoto T, Onoyama T, Miyoshi K, Kishina M, Matono T, Kato J, Tokunaga S, Sugihara T, Hiramatsu A, Hyogo H, Tobita H, Sato S, Kawanaka M, Hara Y, Hino K, Chayama K, Murawaki Y, Isomoto H. Serum miR-379 expression is related to the development and progression of hypercholesterolemia in non-alcoholic fatty liver disease. PLoS One 2020; 15:e0219412. [PMID: 32106257 PMCID: PMC7046274 DOI: 10.1371/journal.pone.0219412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) has a wide spectrum, eventually leading to cirrhosis and hepatic carcinogenesis. We previously reported that a series of microRNAs (miRNAs) mapped in the 14q32.2 maternally imprinted gene region (Dlk1-Dio3 mat) are related to NAFLD development and progression in a mouse model. We examined the suitability of miR-379, a circulating Dlk1-Dio3 mat miRNA, as a human NAFLD biomarker. Methods Eighty NAFLD patients were recruited for this study. miR-379 was selected from the putative Dlk1-Dio3 mat miRNA cluster because it exhibited the greatest expression difference between NAFLD and non-alcoholic steatohepatitis in our preliminary study. Real-time PCR was used to examine the expression levels of miR-379 and miR-16 as an internal control. One patient was excluded due to low RT-PCR signal. Results Compared to normal controls, serum miR-379 expression was significantly up-regulated in NAFLD patients. Receiver operating characteristic curve analysis suggested that miR-379 is a suitable marker for discriminating NAFLD patients from controls, with an area under the curve value of 0.72. Serum miR-379 exhibited positive correlations with alkaline phosphatase, total cholesterol, low-density-lipoprotein cholesterol and non-high-density-lipoprotein cholesterol levels in patients with early stage NAFLD (Brunt fibrosis stage 0 to 1). The correlation between serum miR-379 and cholesterol levels was lost in early stage NAFLD patients treated with statins. Software-based predictions indicated that various energy metabolism–related genes, including insulin-like growth factor-1 (IGF-1) and IGF-1 receptor, are potential targets of miR-379. Conclusions Serum miR-379 exhibits high potential as a biomarker for NAFLD. miR-379 appears to increase cholesterol lipotoxicity, leading to the development and progression of NAFLD, via interference with the expression of target genes, including those related to the IGF-1 signaling pathway. Our results could facilitate future research into the pathogenesis, diagnosis, and treatment of NAFLD.
Collapse
Affiliation(s)
- Kinya Okamoto
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Masahiko Koda
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Toshiaki Okamoto
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Takumi Onoyama
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Kenichi Miyoshi
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Manabu Kishina
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Tomomitsu Matono
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Jun Kato
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Shiho Tokunaga
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Takaaki Sugihara
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Hiroshi Tobita
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Shuichi Sato
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, General Medical Center, Kawasaki Medical School, Okayama, Okayama, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yoshikazu Murawaki
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| | - Hajime Isomoto
- Second Department of Internal Medicine, Tottori University School of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
112
|
Cabré N, Luciano-Mateo F, Baiges-Gayà G, Fernández-Arroyo S, Rodríguez-Tomàs E, Hernández-Aguilera A, París M, Sabench F, Del Castillo D, López-Miranda J, Menéndez JA, Camps J, Joven J. Plasma metabolic alterations in patients with severe obesity and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:374-387. [PMID: 31825539 DOI: 10.1111/apt.15606] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/05/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity can influence hepatic mitochondrial function, and cause non-alcoholic steatohepatitis (NASH). Diagnosis and follow-up rely on invasive liver biopsy so blood-based markers are urgently required. AIM To investigate whether values of circulating metabolites from energy and one-carbon (1-C) metabolism may: (a) reflect hepatic mitochondrial flexibility failure and (b) act as NASH biomarkers. METHODS Patients with severe obesity undergoing bariatric surgery (n = 270) were investigated using quantitative targeted plasma metabolomics. Comparisons were with non-obese controls without liver disease (n = 50). Obese patients with NASH (n = 53) and without NASH (n = 130) representing extreme groups of liver disease were assessed to test the diagnostic ability of the measured circulating metabolites. Paired liver biopsy and plasma samples from NASH patients were available 1 year post-surgery and were evaluated to monitor metabolomic changes with liver damage resolution. RESULTS We identified correlations between human liver metabolism and obesity. High-plasma α-ketoglutarate (α-KG) and lactate concentrations in NASH patients indicating citric acid cycle replenishment via glutaminolysis might also be a crucial point in NASH onset. Plasma measurements of α-KG, β-hydroxybutyrate, pyruvate and oxaloacetate reduced the uncertainty in clinical diagnosis of NASH [area under receiver operating characteristic curve (AUC) of 0.826] and predicted NASH resolution without ambiguity (AUC of 0.999). CONCLUSION Changes in plasma mitochondrial metabolites appear to be associated with NASH. These metabolic responses may be dynamically remodelled following resolution of liver damage through massive weight loss.
Collapse
Affiliation(s)
- Noemí Cabré
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gayà
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Marta París
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Fàtima Sabench
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Daniel Del Castillo
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Javier A Menéndez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,The Campus of International Excellence Southern Catalonia, Tarragona, Spain
| |
Collapse
|
113
|
Patel K, Sebastiani G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep 2020; 2:100067. [PMID: 32118201 PMCID: PMC7047178 DOI: 10.1016/j.jhepr.2020.100067] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
The diagnostic assessment of liver injury is an important step in the management of patients with chronic liver disease (CLD). Although liver biopsy is the reference standard for the assessment of necroinflammation and fibrosis, the inherent limitations of an invasive procedure, and need for repeat sampling, have led to the development of several non-invasive tests (NITs) as alternatives to liver biopsy. Such non-invasive approaches mostly include biological (serum biomarker algorithms) or physical (imaging assessment of tissue stiffness) assessments. However, currently available NITs have several limitations, such as variability, inadequate accuracy and risk factors for error, while the development of a newer generation of biomarkers for fibrosis may be limited by the sampling error inherent to the reference standard. Many of the current NITs were initially developed to diagnose significant fibrosis in chronic hepatitis C, subsequently refined for the diagnosis of advanced fibrosis in patients with non-alcoholic fatty liver disease, and further adapted for prognostication in CLD. An important consideration is that despite their increased use in clinical practice, these NITs were not designed to reflect the dynamic process of fibrogenesis, differentiate between adjacent disease stages, diagnose non-alcoholic steatohepatitis, or follow longitudinal changes in fibrosis or disease activity caused by natural history or therapeutic intervention. Understanding the strengths and limitations of these NITs will allow for more judicious interpretation in the clinical context, where NITs should be viewed as complementary to, rather than as a replacement for, liver biopsy.
Collapse
Key Words
- AGA, American Gastroenterology Association
- ALT, alanine aminotransferase
- APRI, AST-platelet ratio index
- AST, aspartate aminotransferase
- AUC, area under the curve
- BMI, body mass index
- Biomarkers
- CAP, controlled attenuation parameter
- CHB, chronic hepatitis B
- CHC, chronic hepatitis C
- CLD, chronic liver disease
- CPA, collagen proportionate area
- DAA, direct-acting antiviral
- ELF, enhanced liver fibrosis
- Elastography
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- HCC, hepatocellular carcinoma
- IFN, interferon
- LSM, liver stiffness measure
- Liver biopsy
- MR, magnetic resonance
- MRE, magnetic resonance elastography
- NAFLD, non-alcoholic fatty liver disease
- NFS, NAFLD fibrosis score
- NITs, non-invasive tests
- Non-alcoholic fatty liver disease
- SVR, sustained virologic response
- US, ultrasound
- VCTE, vibration-controlled transient elastography
- Viral hepatitis
Collapse
Affiliation(s)
- Keyur Patel
- Division of Gastroenterology, University Health Network Toronto, Toronto General Hospital, Toronto, ON, Canada
- Corresponding author. Address: Division of Gastroenterology, University of Toronto Health Network, Toronto General Hospital, 200 Elizabeth Street, 9EN, Toronto, ON M5G 2C4.
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
114
|
Singh SP, Barik RK. NonInvasive Biomarkers in Nonalcoholic Fatty Liver Disease: Are We There Yet? J Clin Exp Hepatol 2020; 10:88-98. [PMID: 32025168 PMCID: PMC6995889 DOI: 10.1016/j.jceh.2019.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD encompasses a spectrum of disease ranging from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. However, despite the growing recognition of this important disease burden, there are significant challenges to accurately and noninvasively diagnose the various forms of NAFLD, especially to differentiate benign steatosis from the progressive NASH. This is of utmost importance because although liver biopsy is considered the current imperfect 'gold' standard for diagnosing NASH and staging fibrosis, it is an invasive procedure with significant limitations. Although, a number of noninvasive markers have been or are currently undergoing investigation, until date, no highly sensitive and specific tests are available to differentiate NASH from simple steatosis. At the moment, further investigations are needed before prediction models or blood-based biomarkers become available and acceptable for routine clinical care. There is a great need for developing inexpensive, easily accessible, highly sensitive and specific biomarkers that permit not only the identification of patients at high risk of adverse outcomes, but also the monitoring of disease progression and response after therapeutic interventions.
Collapse
Affiliation(s)
- Shivaram P. Singh
- Address for correspondence: Shivaram Prasad Singh, Professor, Dept. of Gastroenterology, S.C.B. Medical College, Cuttack, Odisha, 753007, India.
| | | |
Collapse
|
115
|
Lai Z, Chen J, Ding C, Wong K, Chen X, Pu L, Huang Q, Chen X, Cheng Z, Liu Y, Tan X, Zhu H, Wang L. Association of Hepatic Global DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with NAFLD. Obesity (Silver Spring) 2020; 28:197-205. [PMID: 31785086 DOI: 10.1002/oby.22667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Clinical relevance of global DNA methylation and one-carbon metabolite levels with histological severity remains uncertain in patients with nonalcoholic fatty liver disease (NAFLD). This study aimed to evaluate hepatic global DNA methylation and serum one-carbon metabolite concentrations in patients with NAFLD and the possible associations of these parameters with liver histology. METHODS Liver biopsies from 18 control participants and 47 patients with NAFLD were evaluated. RESULTS The hepatic global DNA methylation level was significantly lower in the NAFLD group than in the control group among participants with overweight. Participants with moderate inflammation and mild fibrosis had significantly lower levels of global DNA methylation than those without these characteristics. Participants with borderline nonalcoholic steatohepatitis had significantly lower global DNA methylation levels than controls. The hepatic global DNA methylation level tended to decrease with the increasing hepatic inflammation grade and disease progression. The NAFLD group had a significantly higher serum homocysteine concentration than the control group among participants with overweight. This level tended to increase with increasing hepatic steatosis grade and disease progression. CONCLUSIONS Patients with NAFLD exhibited lower hepatic levels of global DNA methylation and elevated serum homocysteine concentrations, which are associated with the histological severity of NAFLD.
Collapse
Affiliation(s)
- Zhiwei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Junliang Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Chenghe Ding
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Kwanshu Wong
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xingyi Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Liuzhen Pu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiangwei Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xiaolin Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Zijian Cheng
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yan Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Xuying Tan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
116
|
Pastore M, Gentilini A, Marra F. Mechanisms of Fibrogenesis in NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:97-127. [DOI: 10.1007/978-3-319-95828-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
117
|
Papatheodoridi AM, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A. The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalcoholic Steatohepatitis. Hepatology 2020; 71:363-374. [PMID: 31230380 DOI: 10.1002/hep.30834] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
In recent years, cellular senescence has generated a lot of interest among researchers because of its involvement in both the normal aging process and common human diseases. During senescence, cells undergo alterations that include telomere shortening, nuclear area enlargement, and genomic and mitochondrial DNA damage, leading to irreversible cell cycle arrest, and secretion of proinflammatory cytokines. Evidence suggests that the complex process of senescence is involved in the development of a plethora of chronic diseases including metabolic and inflammatory disorders and tumorigenesis. Recently, several human and animal studies have emphasized the involvement of senescence in the pathogenesis and development of liver steatosis including the progression to nonalcoholic steatohepatitis (NASH) as characterized by the additional emergence of inflammation, hepatocyte ballooning, and liver fibrosis. The development of nonalcoholic fatty liver disease (NAFLD) and its progression to NASH are commonly accompanied by several pathophysiological events including metabolic dysregulation and inflammatory phenomena occurring within the liver that may contribute to or derive from cellular senescence, implying that the latter may be both a stimulus and a consequence of the disease. Conclusion: In this review, we summarize the current literature on the impact of cellular senescence in NAFLD/NASH and discuss the effectiveness and safety of novel senolytic drugs and therapeutic options available to delay or treat the disease. Finally, we identify the open questions and issues to be addressed in the near future.
Collapse
Affiliation(s)
| | - Lampros Chrysavgis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
118
|
Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci 2019; 9:98. [PMID: 31827764 PMCID: PMC6902440 DOI: 10.1186/s13578-019-0362-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Myofibroblasts are non-muscle contractile cells that play a key physiologically role in organs such as the stem villi of the human placenta during physiological pregnancy. They are able to contract and relax in response to changes in the volume of the intervillous chamber. Myofibroblasts have also been observed in several diseases and are involved in wound healing and the fibrotic processes affecting several organs, such as the liver, lungs, kidneys and heart. During the fibrotic process, tissue retraction rather than contraction is correlated with collagen synthesis in the extracellular matrix, leading to irreversible fibrosis and, finally, apoptosis of myofibroblasts. The molecular motor of myofibroblasts is the non-muscle type IIA and B myosin (NMMIIA and NMMIIB). Fibroblast differentiation into myofibroblasts is largely governed by the transforming growth factor-β1 (TGF-β1). This system controls the canonical WNT/β-catenin pathway in a positive manner, and PPARγ in a negative manner. The WNT/β-catenin pathway promotes fibrosis, while PPARγ prevents it. This review focuses on the contractile properties of myofibroblasts and the conductor, TGF-β1, which together control the opposing interplay between PPARγ and the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- 1Délégation à la Recherche Clinique (DRCI), Hôpital Foch, Suresnes, France.,DACTIM-MIS, Laboratoire de Mathématiques et Applications (LMA), CNRS, UMR 7348, Université de Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
119
|
Ulukan B, Sila Ozkaya Y, Zeybel M. Advances in the epigenetics of fibroblast biology and fibrotic diseases. Curr Opin Pharmacol 2019; 49:102-109. [DOI: 10.1016/j.coph.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 02/09/2023]
|
120
|
Tatler AL. Recent advances in the non-invasive assessment of fibrosis using biomarkers. Curr Opin Pharmacol 2019; 49:110-115. [PMID: 31756570 DOI: 10.1016/j.coph.2019.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022]
Abstract
Fibrosis can occur in most organs and is characterised by excessive and progressive extracellular matrix deposition and destruction of normal tissue architecture and function. In many cases treatment options are limited. Fibrotic diseases are therefore associated with high morbidity and mortality. Tissue biopsies remain a key part of diagnosing fibrosis; however, due to their invasive nature, tissue biopsies are unsuitable for monitoring disease progression. In some cases, tissue biopsies carry an unacceptable risk of mortality to the patient. Furthermore, assessing fibrosis via tissue biopsy is severely limited by the heterogenetic nature of fibrotic diseases and suffers from both sampling bias and observer variation/bias. The search for less invasive methods of diagnosing and monitoring fibrosis has led to the identification of many new biomarkers, many of which can be measured in serum in a so-called 'liquid biopsy' or can be imaged using state-of-the-art imaging modalities. These approaches have the potential to dramatically improve the diagnosis and monitoring of disease, and improve the design of clinical trials in to novel fibrotic therapies. This review summarises some of the recent advances in identifying novel biomarkers to diagnose and monitor fibrosis non-invasively.
Collapse
Affiliation(s)
- Amanda L Tatler
- Nottingham Respiratory Biomedical Research Centre, Division of Respiratory Medicine, School of Medicine, University of Nottingham, United Kingdom.
| |
Collapse
|
121
|
Lyall MJ, Thomson JP, Cartier J, Ottaviano R, Kendall TJ, Meehan RR, Drake AJ. Non-alcoholic fatty liver disease (NAFLD) is associated with dynamic changes in DNA hydroxymethylation. Epigenetics 2019; 15:61-71. [PMID: 31389294 PMCID: PMC6961686 DOI: 10.1080/15592294.2019.1649527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the commonest cause of liver disease in developed countries affecting 25-33% of the general population and up to 75% of those with obesity. Recent data suggest that alterations in DNA methylation may be related to NAFLD pathogenesis and progression and we have previously shown that dynamic changes in the cell lineage identifier 5-hydroxymethylcytosine (5hmC) may be important in the pathogenesis of liver disease. We used a model of diet-induced obesity, maintaining male mice on a high-fat diet (HFD) to generate hepatic steatosis. We profiled hepatic gene expression, global and locus-specific 5hmC and additionally investigated the effects of weight loss on the phenotype. HFD led to increased weight gain, fasting hyperglycaemia, glucose intolerance, insulin resistance and hepatic periportal macrovesicular steatosis. Diet-induced hepatic steatosis associated with reversible 5hmC changes at a discrete number of functionally important genes. We propose that 5hmC profiles are a useful signature of gene transcription and a marker of cell state in NAFLD and suggest that 5hmC profiles hold potential as a biomarker of abnormal liver physiology.
Collapse
Affiliation(s)
- Marcus J Lyall
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Raffaele Ottaviano
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Timothy J Kendall
- MRC Centre for Inflammation Research, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,Division of Pathology, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
122
|
Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer 2019; 18:114. [PMID: 31269959 PMCID: PMC6607541 DOI: 10.1186/s12943-019-1043-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of death worldwide. Due to latent liver disease, late diagnosis, and nonresponse to systemic treatments, surgical resection and/or biopsy specimens are still generally considered as the gold standard by clinicians for clinical decision-making until now. Since the conventional tissue biopsy is invasive and contains small tissue samples, it is unable to represent tumor heterogeneity or monitor dynamic tumor progression. Therefore, it is imperative to find a new less invasive or noninvasive diagnostic strategy to detect HCC at an early stage and to monitor HCC recurrence. Over the past years, a new diagnostic concept known as “liquid biopsy” has emerged with substantial attention. Liquid biopsy is noninvasive and allows repeated analyses to monitor tumor recurrence, metastasis or treatment responses in real time. With the advanced development of new molecular techniques, HCC circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) detection have achieved interesting and encouraging results. In this review, we focus on the clinical applications of CTCs and ctDNA as key components of liquid biopsy in HCC patients.
Collapse
|
123
|
Zandvakili I, Lazaridis KN. Cell-free DNA testing: future applications in gastroenterology and hepatology. Therap Adv Gastroenterol 2019; 12:1756284819841896. [PMID: 31019553 PMCID: PMC6466469 DOI: 10.1177/1756284819841896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
The application of next-generation sequencing in clinical practice is increasing as accuracy and interpretation have improved and the cost continues to decline rapidly. Cell-free DNA is a unique source for next-generation sequencing that could change routine clinical practice in gastroenterology and hepatology. Testing of cell-free DNA in blood and fecal samples is an easy, rapid, and noninvasive method to assess for premalignant, malignant, metabolic, infectious, inflammatory, and autoimmune gastrointestinal and liver diseases. In this review, we describe cell-free DNA technologies, current applications of cell-free DNA testing, and proposed cell-free DNA targets for gastrointestinal and hepatic diseases, with a specific focus on malignancy. In addition, we provide commentary on how cell-free DNA can be integrated into clinical practice and help guide diagnosis, prognosis, disease management, and therapeutic response.
Collapse
Affiliation(s)
- Inuk Zandvakili
- Division of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
124
|
Lin B, Ma Y, Wu S, Liu Y, Liu L, Wu L. Novel Serum Biomarkers for Noninvasive Diagnosis and Screening of Nonalcoholic Fatty Liver Disease-Related Hepatic Fibrosis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:181-189. [PMID: 30932742 DOI: 10.1089/omi.2019.0035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing global public health concern and becoming the leading cause of liver disease worldwide. The estimated global prevalence of NAFLD is ∼25% depending on the country and the assessment method used to establish the diagnosis. Meta-analyses suggest that the highest prevalence is in the Middle East (31.8%) and South America (30.4%), and the lowest in Africa (13.5%). In the United States, between 75 and 100 million individuals were estimated to have NAFLD. This important disease is associated with increased incidence of liver-related deaths, hepatocarcinoma, and overall mortality. Fibrosis stage, among other histological characteristics, is the most critical factor in predicting all-cause and disease-specific mortality in NAFLD. The ability to detect fibrosis early in NAFLD patients is critical in controlling mortality associated with this highly prevalent disease. We present here an expert review on recent advances in novel blood biomarkers, for example, the Wisteria floribunda agglutinin-positive mac-2 binding protein (WFA+-M2BP), type IV collagen 7S, chitinase 3 like 1 (CHI3L1; YKL-40), and insulin-like growth factor-1 (IGF-1). Algorithms using multiple biomarkers such as alpha-2-macroglobulin, mir34a, YKL-40, and hemoglobin A1c (HbA1c; NIS4), enhanced liver fibrosis (ELF), Hepascore, FibroMeter, FibroTest, FIBROSpect, FIB-C3, and ADPAPT are highlighted. Novel technologies such as tandem mass spectrometry to directly measure protein turnover rate of the key proteins involved in hepatic fibrosis, as an indicator of fibrogenesis, are also discussed. In conclusion, NAFLD is a growing global health problem that warrants long-term funding, research, and training of scholars across the fields of public health diagnostics, systems sciences, nutrition, hepatology, and clinical oncology.
Collapse
Affiliation(s)
- Biaoyang Lin
- 1 Zhejiang-California International Nanosystems Institute (ZCNI), Proprium Research Center, Zhejiang University, Hangzhou, China.,2 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,3 Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Yingying Ma
- 1 Zhejiang-California International Nanosystems Institute (ZCNI), Proprium Research Center, Zhejiang University, Hangzhou, China.,2 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shengjun Wu
- 4 School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunhua Liu
- 5 Department of Liver Diseases, The Second Hospital of Yunnan Province, Kunming, China
| | - Longgen Liu
- 6 The Third People's Hospital of Changzhou, Changzhou, China
| | - Lihua Wu
- 7 State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The Research Center for Clinical Pharmacy, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
125
|
Zhou JH, Cai JJ, She ZG, Li HL. Noninvasive evaluation of nonalcoholic fatty liver disease: Current evidence and practice. World J Gastroenterol 2019; 25:1307-1326. [PMID: 30918425 PMCID: PMC6429343 DOI: 10.3748/wjg.v25.i11.1307] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
With the increasing number of individuals with diabetes and obesity, nonalcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent, affecting one-quarter of adults worldwide. The spectrum of NAFLD ranges from simple steatosis or nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). NAFLD, especially NASH, may progress to fibrosis, leading to cirrhosis and hepatocellular carcinoma. NAFLD can impose a severe economic burden, and patients with NAFLD-related terminal or deteriorative liver diseases have become one of the main groups receiving liver transplantation. The increasing prevalence of NAFLD and the severe outcomes of NASH make it necessary to use effective methods to identify NAFLD. Although recognized as the gold standard, biopsy is limited by its sampling bias, poor acceptability, and severe complications, such as mortality, bleeding, and pain. Therefore, noninvasive methods are urgently needed to avoid biopsy for diagnosing NAFLD. This review discusses the current noninvasive methods for assessing NAFLD, including steatosis, NASH, and NAFLD-related fibrosis, and explores the advantages and disadvantages of measurement tools. In addition, we analyze potential noninvasive biomarkers for tracking disease processes and monitoring treatment effects, and explore effective algorithms consisting of imaging and nonimaging biomarkers for diagnosing advanced fibrosis and reducing unnecessary biopsies in clinical practice.
Collapse
Affiliation(s)
- Jiang-Hua Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Model Animal of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jing-Jing Cai
- Department of Cardiology, The 3rd Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Model Animal of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hong-Liang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Model Animal of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
126
|
Carulli L, Zanca G, Schepis F, Villa E. The OMICs Window into Nonalcoholic Fatty Liver Disease (NAFLD). Metabolites 2019; 9:25. [PMID: 30717274 PMCID: PMC6409793 DOI: 10.3390/metabo9020025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common cause of hepatic abnormalities worldwide. Nonalcoholic steatohepatitis (NASH) is part of the spectrum of NAFLD and leads to progressive liver disease, such as cirrhosis and hepatocellular carcinoma. In NASH patient, fibrosis represents the major predictor of liver-related mortality; therefore, it is important to have an early and accurate diagnosis of NASH. The current gold standard for the diagnosis of NASH is still liver biopsy. The development of biomarkers able to predict disease severity, prognosis, as well as response to therapy without the need for a biopsy is the focus of most up-to-date genomic, transcriptomic, proteomic, and metabolomic research. In the future, patients might be diagnosed and treated according to their molecular signatures. In this short review, we discuss how information from genomics, proteomics, and metabolomics contribute to the understanding of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Lucia Carulli
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Giulia Zanca
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Filippo Schepis
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Erica Villa
- Division of Gastroenterology, Department of Medical Specialties, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
127
|
Mendivil EJ, Sandoval-Rodriguez A, Zuñiga-Ramos LM, Santos-Garcia A, Armendariz-Borunda J. Capsaicin and sulforaphane prevent experimental liver fibrosis via upregulation of peroxisome proliferator-activated receptor gamma and nuclear factor (erythroid-derived 2)-like 2. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
128
|
Laser capture microdissection: techniques and applications in liver diseases. Hepatol Int 2019; 13:138-147. [DOI: 10.1007/s12072-018-9917-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
|
129
|
SOX9 regulated matrix proteins are increased in patients serum and correlate with severity of liver fibrosis. Sci Rep 2018; 8:17905. [PMID: 30559459 PMCID: PMC6297163 DOI: 10.1038/s41598-018-36037-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) deposition and resultant scar play a major role in the pathogenesis and progression of liver fibrosis. Identifying core regulators of ECM deposition may lead to urgently needed diagnostic and therapetic strategies for the disease. The transcription factor Sex determining region Y box 9 (SOX9) is actively involved in scar formation and its prevalence in patients with liver fibrosis predicts progression. In this study, transcriptomic approaches of Sox9-abrogated myofibroblasts identified >30% of genes regulated by SOX9 relate to the ECM. Further scrutiny of these data identified a panel of highly expressed ECM proteins, including Osteopontin (OPN), Osteoactivin (GPNMB), Fibronectin (FN1), Osteonectin (SPARC) and Vimentin (VIM) as SOX9 targets amenable to assay in patient serum. In vivo all SOX-regulated targets were increased in human disease and mouse models of fibrosis and decreased following Sox9-loss in mice with parenchymal and biliary fibrosis. In patient serum samples, SOX9-regulated ECM proteins were altered in response to fibrosis severity, whereas comparison with established clinical biomarkers demonstrated superiority for OPN and VIM at detecting early stages of fibrosis. These data support SOX9 in the mechanisms underlying fibrosis and highlight SOX9 and its downstream targets as new measures to stratify patients with liver fibrosis.
Collapse
|
130
|
Mann J, Reeves HL, Feldstein AE. Liquid biopsy for liver diseases. Gut 2018; 67:2204-2212. [PMID: 30177542 DOI: 10.1136/gutjnl-2017-315846] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
With the growing number of novel therapeutic approaches for liver diseases, significant research efforts have been devoted to the development of liquid biopsy tools for precision medicine. This can be defined as non-invasive reliable biomarkers that can supplement and eventually replace the invasive liver biopsy for diagnosis, disease stratification and monitoring of response to therapeutic interventions. Similarly, detection of liver cancer at an earlier stage of the disease, potentially susceptible to curative resection, can be critical to improve patient survival. Circulating extracellular vesicles, nucleic acids (DNA and RNA) and tumour cells have emerged as attractive liquid biopsy candidates because they fulfil many of the key characteristics of an ideal biomarker. In this review, we summarise the currently available information regarding these promising and potential transformative tools, as well as the issues still needed to be addressed for adopting various liquid biopsy approaches into clinical practice. These studies may pave the way to the development of a new generation of reliable, mechanism-based disease biomarkers.
Collapse
Affiliation(s)
- Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, California, USA
| |
Collapse
|
131
|
Kovalic AJ, Banerjee P, Tran QT, Singal AK, Satapathy SK. Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol 2018; 8:390-402. [PMID: 30564000 PMCID: PMC6286466 DOI: 10.1016/j.jceh.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) constitutes a wide spectrum of liver pathology with hepatic steatosis at the core of this pathogenesis. Variations of certain genetic components have demonstrated increased susceptibility for hepatic steatosis. Therefore, these inciting variants must be further characterized in order to ultimately provide effective, targeted therapies for NAFLD and will be the focus of this review. Several genetic variants revealed an association with NAFLD through Genome-wide Association Study, meta-analyses, and retrospective case-control studies. PNPLA3 rs738409 and TM6SF2 rs58542926 are the two genetic variants providing the strongest evidence for association with NAFLD. However, it remains to be determined if these genetic variants serve as the primary culprit which induces the pathogenesis of NAFLD. Prospective and intervention studies are urgently needed to firmly establish a cause-and-effect relationship between the presence of certain genetic variants and risk of NAFLD development and progression.
Collapse
Key Words
- 1H-MRS, Proton Magnetic Resonance Spectroscopy
- ACC2, Acetyl-CoA Carboxylase 2
- ACLY, ATP Citrate Lyase
- BMI, Body Mass Index
- CK-18, Cytokeratin 18
- CT, Computed Tomography
- FASN, Fatty Acid Synthase
- GWAS, Genome-wide Association Study
- HCC, Hepatocellular Carcinoma
- LT, Liver Transplantation
- NAFLD, Nonalcoholic Fatty Liver Disease
- NASH, Nonalcoholic Steatohepatitis
- SCD1, Stearoyl-CoA Desaturase 1
- SNP, Single Nucleotide Polymorphism
- US, Ultrasonography
- epigenetics
- genetic polymorphisms
- genetic variants
- miRNA, MicroRNA
- nonalcoholic fatty liver disease
- single nucleotide polymorphisms
Collapse
Affiliation(s)
- Alexander J. Kovalic
- Wake Forest Baptist Medical Center, Department of Internal Medicine, Winston-Salem, NC, United States
| | - Pratik Banerjee
- University of Memphis, School of Public Health, Division of Epidemiology, Biostatistics, and Environmental Health, Memphis, TN, United States
| | - Quynh T. Tran
- University of Tennessee Health Science Center, Department of Preventive Medicine, Memphis, TN, United States
| | - Ashwani K. Singal
- University of Alabama at Birmingham, Department of Medicine, Division of Gastroenterology and Hepatology, Birmingham, AL, United States
| | - Sanjaya K. Satapathy
- University of Tennessee Health Science Center, Methodist University Hospital Transplant Institute, Memphis, TN, United States
| |
Collapse
|
132
|
Barault L, Amatu A, Siravegna G, Ponzetti A, Moran S, Cassingena A, Mussolin B, Falcomatà C, Binder A, Cristiano C, Oddo D, Cancelliere C, Bustreo S, Bencardino K, Maden S, Vanzati A, Zavattari P, Truini M, Grady WM, Racca P, Michels KB, Siena S, Esteller M, Bardelli A, Sartore-Bianchi A, Di Nicolantonio F, Sartore-Bianchi A, Di Nicolantonio F. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 2018; 67:1995-2005. [PMID: 28982739 PMCID: PMC5897187 DOI: 10.1136/gutjnl-2016-313372] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Mutations in cell-free circulating DNA (cfDNA) have been studied for tracking disease relapse in colorectal cancer (CRC). This approach requires personalised assay design due to the lack of universally mutated genes. In contrast, early methylation alterations are restricted to defined genomic loci allowing comprehensive assay design for population studies. Our objective was to identify cancer-specific methylated biomarkers which could be measured longitudinally in cfDNA (liquid biopsy) to monitor therapeutic outcome in patients with metastatic CRC (mCRC). DESIGN Genome-wide methylation microarrays of CRC cell lines (n=149) identified five cancer-specific methylated loci (EYA4, GRIA4, ITGA4, MAP3K14-AS1, MSC). Digital PCR assays were employed to measure methylation of these genes in tumour tissue DNA (n=82) and cfDNA from patients with mCRC (n=182). Plasma longitudinal assessment was performed in a patient subset treated with chemotherapy or targeted therapy. RESULTS Methylation in at least one marker was detected in all tumour tissue samples and in 156 mCRC patient cfDNA samples (85.7%). Plasma marker prevalence was 71.4% for EYA4, 68.5% for GRIA4, 69.7% for ITGA4, 69.1% for MAP3K14-AS1% and 65.1% for MSC. Dynamics of methylation markers was not affected by treatment type and correlated with objective tumour response and progression-free survival. CONCLUSION This five-gene methylation panel can be used to circumvent the absence of patient-specific mutations for monitoring tumour burden dynamics in liquid biopsy under different therapeutic regimens. This method might be proposed for assessing pharmacodynamics in clinical trials or when conventional imaging has limitations.
Collapse
Affiliation(s)
- Ludovic Barault
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Corresponding authors: Ludovic Barault, PhD or Dr Federica Di Nicolantonio, PhD, Department of Oncology, University of Torino, Candiolo Cancer Institute – FPO, IRCCS, Strada Provinciale 142, Km 3.95, 10060 Candiolo, Torino, Italy, Phone: +39-011-9933523, Fax: +39-011-9933225, (; )
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulia Siravegna
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy,FIRC Institute of Molecular Oncology (IFOM), Milano, Italy
| | - Agostino Ponzetti
- Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, San Giovanni Battista Hospital, Turin, Italy
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet, Barcelona, Catalonia, Spain
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Benedetta Mussolin
- Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy
| | - Chiara Falcomatà
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy
| | - Alexandra Binder
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
| | - Carmen Cristiano
- Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, San Giovanni Battista Hospital, Turin, Italy
| | - Daniele Oddo
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy
| | - Carlotta Cancelliere
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy
| | - Sara Bustreo
- Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, San Giovanni Battista Hospital, Turin, Italy
| | - Katia Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sean Maden
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alice Vanzati
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Patrizia Zavattari
- Unit of Biology and Genetics, Dept. Biomedical Sciences, University of Cagliari, Italy
| | - Mauro Truini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Patrizia Racca
- Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, San Giovanni Battista Hospital, Turin, Italy
| | - Karin B. Michels
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy,Università degli Studi di Milano, Milan, Italy
| | - Manel Esteller
- Colorectal Cancer Unit, Medical Oncology Division 1, AOU Città della Salute e della Scienza, San Giovanni Battista Hospital, Turin, Italy,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Alberto Bardelli
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy
| | | | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Candiolo Cancer Institute-FPO, IRCCS, SP 142 km 3.95, 10060 Candiolo (TO), Italy,Corresponding authors: Ludovic Barault, PhD or Dr Federica Di Nicolantonio, PhD, Department of Oncology, University of Torino, Candiolo Cancer Institute – FPO, IRCCS, Strada Provinciale 142, Km 3.95, 10060 Candiolo, Torino, Italy, Phone: +39-011-9933523, Fax: +39-011-9933225, (; )
| | | | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
| |
Collapse
|
133
|
Yiğit B, Boyle M, Özler O, Erden N, Tutucu F, Hardy T, Bergmann C, Distler JHW, Adalı G, Dayangaç M, Mann DA, Zeybel M, Mann J. Plasma cell-free DNA methylation: a liquid biomarker of hepatic fibrosis. Gut 2018; 67:1907-1908. [PMID: 29353249 PMCID: PMC6145292 DOI: 10.1136/gutjnl-2017-315668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Buket Yiğit
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Marie Boyle
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Oğuz Özler
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Nihan Erden
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Faik Tutucu
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Timothy Hardy
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Christina Bergmann
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joerg H W Distler
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gupse Adalı
- Liver Transplantation Unit, Istanbul Bilim University, Florence Nightingale Hospital, Istanbul, Turkey
| | - Murat Dayangaç
- Liver Transplantation Unit, Istanbul Bilim University, Florence Nightingale Hospital, Istanbul, Turkey
| | - Derek A Mann
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mujdat Zeybel
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Jelena Mann
- Faculty of Medical Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
134
|
Wu J, Zhang R, Shen F, Yang R, Zhou D, Cao H, Chen G, Pan Q, Fan J. Altered DNA Methylation Sites in Peripheral Blood Leukocytes from Patients with Simple Steatosis and Nonalcoholic Steatohepatitis (NASH). Med Sci Monit 2018; 24:6946-6967. [PMID: 30270343 PMCID: PMC6180948 DOI: 10.12659/msm.909747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/28/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to identify DNA methylation sites in peripheral blood leukocytes from patients with histologically confirmed nonalcoholic fatty liver disease (NAFLD) that included simple hepatic steatosis and nonalcoholic steatohepatitis (NASH). MATERIAL AND METHODS DNA was isolated from peripheral blood leukocytes from patients with histologically diagnosed NAFLD (n=35), including simple hepatic steatosis (n=18) and NASH (n=17). Healthy controls included individuals without liver disease (n=30). DNA was hybridized, and DNA methylation was interrogated in an epigenome-wide association study (EWAS). DNA methylation levels (β-values) were correlated with serum lipid profiles, liver enzymes, and liver histology. RESULTS Circulating blood leukocytes from 35 patients with NAFLD (simple steatosis and NASH) contained 65 CpG sites, which represented 60 genes that were differentially methylated when compared with healthy controls. In the simple hepatic steatosis group (n=18), 42 methylated CpG sites were found to be associated with increased levels of serum alanine aminotransferase (ALT), and 32 methylated CpG sites were associated with increased serum lipid profiles. In the NASH group (n=17), when compared with the simple hepatic steatosis group, methylated CpG sites showed significant correlations with the presence of lobular inflammation compared with hepatic steatosis and fibrosis. Six differentially methylated CpG sites were identified in the ACSL4, CRLS1, CTP1A, SIGIRR, SSBP1 and ZNF622 genes, which were associated with histologically confirmed simple hepatic steatosis and NASH. CONCLUSIONS The study identified some key methylated CpG sites from peripheral blood leukocytes, which might be used as serum biomarkers to stratify NAFLD patients into simple hepatic steatosis and NASH.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ruinan Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Ruixu Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Da Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haixia Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Guangyu Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Children’s Digestion and Nutrition, Shanghai, P.R. China
- Shanghai Institute of Pediatrics, Shanghai, P.R. China
| |
Collapse
|
135
|
Gutierrez Sanchez LH, Tomita K, Guo Q, Furuta K, Alhuwaish H, Hirsova P, Baheti S, Alver B, Hlady R, Robertson KD, Ibrahim SH. Perinatal Nutritional Reprogramming of the Epigenome Promotes Subsequent Development of Nonalcoholic Steatohepatitis. Hepatol Commun 2018; 2:1493-1512. [PMID: 30556038 PMCID: PMC6287484 DOI: 10.1002/hep4.1265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
With the epidemic of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common pediatric liver disease. The influence of a perinatal obesity‐inducing diet (OID) on the development and progression of NAFLD in offspring is important but incompletely studied. Hence, we fed breeding pairs of C57BL/6J mice during gestation and lactation (perinatally) either chow or an OID rich in fat, fructose, and cholesterol (FFC). The offspring were weaned to either chow or an FFC diet, generating four groups: perinatal (p)Chow‐Chow, pChow‐FFC, pFFC‐Chow, and pFFC‐FFC. Mice were sacrificed at 10 weeks of age. We examined the whole‐liver transcriptome by RNA sequencing (RNA‐seq) and whole‐liver genome methylation by reduced representation bisulfite sequencing (RRBS). Our results indicated that the pFFC‐FFC mice had a significant increase in hepatic steatosis, injury, inflammation, and fibrosis, as assessed histologically and biochemically. We identified 189 genes that were differentially expressed and methylated in the pFFC‐FFC mice versus the pChow‐FFC mice. Gene set enrichment analysis identified hepatic fibrosis/hepatic stellate cell activation as the top canonical pathway, suggesting that the differential DNA methylation events in the mice exposed to the FFC diet perinatally were associated with a profibrogenic transcriptome. To verify that this finding was consistent with perinatal nutritional reprogramming of the methylome, we exposed pFFC‐Chow mice to an FFC diet in adulthood. These mice developed significant hepatic steatosis, injury, inflammation, and more importantly fibrosis when compared to the appropriate controls. Conclusion: Perinatal exposure to an OID primes the immature liver for an accentuated fibrosing nonalcoholic steatohepatitis (NASH) phenotype, likely through nutritional reprogramming of the offspring methylome. These data have potential clinical implications for monitoring children of obese mothers and risk stratification of children with NAFLD.
Collapse
Affiliation(s)
| | - Kyoko Tomita
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | - Kunimaro Furuta
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | - Husam Alhuwaish
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN.,Institute of Clinical Biochemistry and Diagnostics University Hospital Hradec Kralove Hradec Kralove Czech Republic
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics Mayo Clinic Rochester MN
| | - Bonnie Alver
- Department of Molecular Pharmacology and Experimental Therapeutics Mayo Clinic Rochester MN
| | - Ryan Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics Mayo Clinic Rochester MN
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics Mayo Clinic Rochester MN
| | - Samar H Ibrahim
- Division of Pediatric Gastroenterology and Hepatology Mayo Clinic Rochester MN.,Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| |
Collapse
|
136
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects 25% of the global adult population and is the most common chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is the active form of NAFLD, with hepatic necroinflammation and faster fibrosis progression. With an increasing number of patients developing NASH-related end-stage liver disease and pharmacological treatments on the horizon, there is a pressing need to develop NAFLD and NASH biomarkers for prognostication, selection of patients for treatment and monitoring. This requirement is particularly true as liver biopsy utility is limited by its invasive nature, poor patient acceptability and sampling variability. This article reviews current and potential biomarkers for different features of NAFLD, namely, steatosis, necroinflammation and fibrosis. For each biomarker, we evaluate its accuracy, reproducibility, responsiveness, feasibility and limitations. We cover biochemical, imaging and genetic biomarkers and discuss biomarker discovery in the omics era.
Collapse
|
137
|
Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G, Liu Y. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci 2018; 208:201-207. [PMID: 30030064 DOI: 10.1016/j.lfs.2018.07.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM), with non-alcoholic fatty liver disease (NAFLD) complication, may aggravate the disturbance of metabolism, increase the risk of non-alcoholic steatohepatitis, and promote the progress of liver fibrosis. Therefore, early detection of NAFLD in T2DM patients is critical in avoiding the adverse effects of the complication. This study aimed to identify circulating miRNAs for early diagnosis of the complication. MATERIALS AND METHODS Plasma miRNA expression profiles of T2DM patients complicated with or without NAFLD were examined by miRNA array analysis and then were validated by qRT-PCR. A new index for prediction the presence of NAFLD was developed based on the result of multivariate logistic regression analysis. STZ and high fat diet were used for construction a rat model of T2DM complicated with NAFLD. KEY FINDINGS Plasma miR-17, miR-20a, miR-20b, and miR-122 were up-regulated in T2DM patients with NAFLD complicated compared in those without NAFLD (P < 0.05). Moreover, the data from the rat model further showed that the above miRNAs were more sensitive than traditional serological markers for predicting the complication. Meanwhile, in order to improve the diagnostic accuracy, we try to construct an AUC by using the new index, 24.852 × WHR-1.121 × miR122 + 1.988 × LDL-21.838, which was significantly higher than a chance assignment (asymptotic significance P < 0.001) for predicting the presence of NAFLD. SIGNIFICANCE Plasma miRNAs and the new index involving WHR, LDL, and miR-122 are potential novel tools for the early diagnosis and risk estimation of NAFLD in T2DM patients.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianbao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
138
|
Li YY, Tang D, Du YL, Cao CY, Nie YQ, Cao J, Zhou YJ. Fatty liver mediated by peroxisome proliferator-activated receptor-α DNA methylation can be reversed by a methylation inhibitor and curcumin. J Dig Dis 2018; 19:421-430. [PMID: 29802754 DOI: 10.1111/1751-2980.12610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/28/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our studies in vitro and in vivo aimed to investigate the influence of DNA methylation of peroxisome proliferator activated receptor-α (PPAR-α) gene in non-alcoholic fatty liver disease (NAFLD) pathogenesis and to observe whether the DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) and the herbal medicine curcumin might reverse the effect both in vivo and in vitro. METHODS Steatotic hepatocyte model of cell lines and NAFLD rat models were established following protocols documented in previous studies. Subsequently, the models received 5-Aza-CdR and curcumin treatment. Morphological, histological and laboratory variables in each group were determined by routine methods, including PPAR-α mRNA expression by polymerase chain reaction (PCR), PPAR-α protein expression by Western blot and DNA methylation by pyrosequencing. RESULTS The steatotic hepatocyte model and NAFLD rat model were completely established. The expressions of PPAR-α mRNA and protein were significantly lower in the steatotic hepatocyte and NAFLD rat model groups than in the controls (P < 0.05). The mean DNA methylation levels of the PPAR-α gene were significantly higher in the two steatotic model groups than in the controls, especially at several CpG sites (P < 0.05). 5-Aza-CdR and curcumin treatment significantly reversed the DNA methylation levels, increased PPAR-α mRNA and protein expression, and improved lipid accumulation in the two steatotic models (P < 0.05). CONCLUSIONS DNA methylation at the PPAR-α gene is involved in the pathogenesis of NAFLD and is possibly reversible by 5-Aza-CdR and curcumin. Curcumin may be a promising candidate for NAFLD therapy.
Collapse
Affiliation(s)
- Yu Yuan Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Dan Tang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yan Lei Du
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chuang Yu Cao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yu Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jie Cao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yong Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
139
|
Ciuculete DM, Boström AE, Tuunainen AK, Sohrabi F, Kular L, Jagodic M, Voisin S, Mwinyi J, Schiöth HB. Changes in methylation within the STK32B promoter are associated with an increased risk for generalized anxiety disorder in adolescents. J Psychiatr Res 2018; 102:44-51. [PMID: 29604450 DOI: 10.1016/j.jpsychires.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
Generalized anxiety disorder (GAD) is highly prevalent among adolescents. An early detection of individuals at risk may prevent later psychiatric condition. Genome-wide studies investigating single nucleotide polymorphisms (SNPs) concluded that a focus on epigenetic mechanisms, which mediate the impact of environmental factors, could more efficiently help the understanding of GAD pathogenesis. We investigated the relationship between epigenetic shifts in blood and the risk to develop GAD, evaluated by the Development and Well-Being Assessment (DAWBA) score, in 221 otherwise healthy adolescents. Our analysis focused specifically on methylation sites showing high inter-individual variation but low tissue-specific variation, in order to infer a potential correlation between results obtained in blood and brain. Two statistical methods were applied, 1) a linear model with limma and 2) a likelihood test followed by Bonferroni correction. Methylation findings were validated in a cohort of 160 adults applying logistic models against the outcome variable "anxiety treatment obtained in the past" and studied in a third cohort with regards to associated expression changes measured in monocytes. One CpG site showed 1% increased methylation in adolescents at high risk of GAD (cg16333992, padj. = 0.028, estimate = 3.22), as confirmed in the second cohort (p = 0.031, estimate = 1.32). The identified and validated CpG site is located within the STK32B promoter region and its methylation level was positively associated with gene expression. Gene ontology analysis revealed that STK32B is involved in stress response and defense response. Our results provide evidence that shifts in DNA methylation are associated with a modulated risk profile for GAD in adolescence.
Collapse
Affiliation(s)
- Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden.
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Anna-Kaisa Tuunainen
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Farah Sohrabi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Sarah Voisin
- Institute of Sport, Exercise and Active Living, Victoria University, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| |
Collapse
|
140
|
Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Goodman ZD, Chalasani NP, Kowdley KV, George J, Lindor K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 2018. [PMID: 29222917 DOI: 10.1002/hep.29721 10.1002/hep.29721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum comprised of isolated steatosis, nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. The majority of NAFLD subjects do not have NASH and do not carry a significant risk for liver-related adverse outcomes (cirrhosis and mortality). Globally, the prevalence of NAFLD is approximately 25%. In Asia, a gradient of high to low prevalence rates is noted from urban to rural areas. Given the prevalence of NAFLD, the clinical and economic burden of NAFLD and NASH can be substantial. With increasing recognition of NASH as an important liver disease, the diagnosis of NASH still requires a liver biopsy that is suboptimal. Although liver biopsy is the most accurate modality to diagnose and stage the severity of NASH, this method suffers from being invasive, costly, associated with potential complications, and plagued with interobserver variability of individual pathological features. A number of noninvasive modalities to diagnose NASH and stage liver fibrosis are being developed. These modalities include predictive models (NAFLD fibrosis score) and serum biomarkers such as enhanced liver fibrosis (ELF). Other tests are based on radiological techniques, such as transient elastography (TE) or magnetic resonance elastography (MRE), which are used to estimate liver stiffness as a potential surrogate of hepatic fibrosis. Although a dynamic field of research, most of these diagnostic modalities have area under the curve ranging between 0.76 and 0.90%, with MRE having the best predictive performance. In summary, developing safe and easily accessible noninvasive modalities to accurately diagnose and monitor NASH and associated fibrosis is of utmost importance in clinical practice and clinical research. These tests are not only important to risk stratify subjects at the greatest risk for progressive liver disease, but also to serve as appropriate surrogate endpoints for therapeutic clinical trials of NASH. (Hepatology 2018;68:349-360).
Collapse
Affiliation(s)
- Zobair M Younossi
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, CA
| | - Quentin M Anstee
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mary E Rinella
- University of Torino, Department of Medical Sciences, Torino, Italy
| | | | - Giulio Marchesini
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO
| | | | | | - Francesco Negro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA
| | - Stephen H Caldwell
- Institute of Cardiometabolim and Nutrition (ICAN) and Hospital Pitié Salpêtrière, de L'Hopital, Paris, France
| | - Vlad Ratziu
- Massachusetts General Hospital, Cambridge, MA
| | - Kathleen E Corey
- Icahn School of Medicine at Mount Sinai, Division of Liver Diseases, New York, NY
| | - Scott L Friedman
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | | | - Stephen A Harrison
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA
| | - Arun J Sanyal
- Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, NY
| | - Joel E Lavine
- Hôpital Claude Huriez Rue Michel Polonowski, Lille, France
| | | | - Michael R Charlton
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Zachary D Goodman
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Naga P Chalasani
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | | |
Collapse
|
141
|
Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Goodman ZD, Chalasani NP, Kowdley KV, George J, Lindor K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 2018; 68:349-360. [PMID: 29222917 PMCID: PMC6511364 DOI: 10.1002/hep.29721] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum comprised of isolated steatosis, nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. The majority of NAFLD subjects do not have NASH and do not carry a significant risk for liver-related adverse outcomes (cirrhosis and mortality). Globally, the prevalence of NAFLD is approximately 25%. In Asia, a gradient of high to low prevalence rates is noted from urban to rural areas. Given the prevalence of NAFLD, the clinical and economic burden of NAFLD and NASH can be substantial. With increasing recognition of NASH as an important liver disease, the diagnosis of NASH still requires a liver biopsy that is suboptimal. Although liver biopsy is the most accurate modality to diagnose and stage the severity of NASH, this method suffers from being invasive, costly, associated with potential complications, and plagued with interobserver variability of individual pathological features. A number of noninvasive modalities to diagnose NASH and stage liver fibrosis are being developed. These modalities include predictive models (NAFLD fibrosis score) and serum biomarkers such as enhanced liver fibrosis (ELF). Other tests are based on radiological techniques, such as transient elastography (TE) or magnetic resonance elastography (MRE), which are used to estimate liver stiffness as a potential surrogate of hepatic fibrosis. Although a dynamic field of research, most of these diagnostic modalities have area under the curve ranging between 0.76 and 0.90%, with MRE having the best predictive performance. In summary, developing safe and easily accessible noninvasive modalities to accurately diagnose and monitor NASH and associated fibrosis is of utmost importance in clinical practice and clinical research. These tests are not only important to risk stratify subjects at the greatest risk for progressive liver disease, but also to serve as appropriate surrogate endpoints for therapeutic clinical trials of NASH. (Hepatology 2018;68:349-360).
Collapse
Affiliation(s)
- Zobair M. Younossi
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, CA
| | | | - Mary E. Rinella
- University of Torino, Department of Medical Sciences, Torino, Italy
| | | | - Giulio Marchesini
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO
| | | | | | - Francesco Negro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA
| | - Stephen H. Caldwell
- Institute of Cardiometabolim and Nutrition (ICAN) and Hospital Pitié Salpêtrière, de L’Hopital, Paris, France
| | - Vlad Ratziu
- Massachusetts General Hospital, Cambridge, MA
| | - Kathleen E. Corey
- Icahn School of Medicine at Mount Sinai, Division of Liver Diseases, New York, NY
| | - Scott L. Friedman
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | | | - Stephen A. Harrison
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA
| | - Arun J. Sanyal
- Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, NY
| | - Joel E. Lavine
- Hôpital Claude Huriez Rue Michel Polonowski, Lille, France
| | | | - Michael R. Charlton
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Zachary D. Goodman
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Naga P. Chalasani
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | | |
Collapse
|
142
|
Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 2018; 65:2-15. [PMID: 29958900 DOI: 10.1016/j.mam.2018.06.003] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Fibrosis denotes excessive scarring, which exceeds the normal wound healing response to injury in many tissues. Although the extracellular matrix deposition appears unstructured disrupting the normal tissue architecture and subsequently impairing proper organ function, fibrogenesis is a highly orchestrated process determined by defined sequences of molecular signals and cellular response mechanisms. Persistent injury and parenchymal cell death provokes tissue inflammation, macrophage activation and immune cell infiltration. The release of biologically highly active soluble mediators (alarmins, cytokines, chemokines) lead to the local activation of collagen producing mesenchymal cells such as pericytes, myofibroblasts or Gli1 positive mesenchymal stem cell-like cells, to a transition of various cell types into myofibroblasts as well as to the recruitment of fibroblast precursors. Clinical observations and experimental models highlighted that fibrosis is not a one-way road. Specific mechanistic principles of fibrosis regression involve the resolution of chronic tissue injury, the shift of inflammatory processes towards recovery, deactivation of myofibroblasts and finally fibrolysis of excess matrix scaffold. The thorough understanding of common principles of fibrogenic molecular signals and cellular mechanisms in various organs - such as liver, kidney, lung, heart or skin - is the basis for developing improved diagnostics including biomarkers or imaging techniques and novel antifibrotic therapeutics.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Frank Tacke
- Dept. of Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
143
|
Pirola CJ, Sookoian S. Multiomics biomarkers for the prediction of nonalcoholic fatty liver disease severity. World J Gastroenterol 2018; 24:1601-1615. [PMID: 29686467 PMCID: PMC5910543 DOI: 10.3748/wjg.v24.i15.1601] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review intends to uncover how information from large-scale genetic profiling (whole genome sequencing, and whole exome sequencing) of nonalcoholic fatty liver disease (NAFLD), as well as information from circulating transcriptomics (cell-free miRNAs) and metabolomics, contributes to the understanding of NAFLD pathogenesis. A further aim is to address the question of whether OMICs information is ready to be implemented in the clinics. The available evidence suggests that any new knowledge pertaining to molecular signatures associated with NAFLD and nonalcoholic steatohepatitis should be promptly translated into the clinical setting. Nevertheless, rigorous steps that must include validation and replication are mandatory before utilizing OMICs biomarkers in diagnostics to identify patients at risk of advanced disease, including liver cancer.
Collapse
Affiliation(s)
- Carlos J Pirola
- Department of Genetics and Molecular Biology of Complex Diseases. University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina, National Scientific and Technical Research Council-University of Buenos Aires. Institute of Medical Research (IDIM), CABA 1427, Argentina
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, University of Buenos Aires, Institute of Medical Research A Lanari, Buenos Aires, Argentina, National Scientific and Technical Research Council-University of Buenos Aires. Institute of Medical Research (IDIM), CABA 1427, Argentina
| |
Collapse
|
144
|
Genetic and Epigenetic Regulation in Nonalcoholic Fatty Liver Disease (NAFLD). Int J Mol Sci 2018; 19:ijms19030911. [PMID: 29562725 PMCID: PMC5877772 DOI: 10.3390/ijms19030911] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Genetics and epigenetics play a key role in the development of several diseases, including nonalcoholic fatty liver disease (NAFLD). Family studies demonstrate that first degree relatives of patients with NAFLD are at a much higher risk of the disease than the general population. The development of the Genome Wide Association Study (GWAS) technology has allowed the identification of numerous genetic polymorphisms involved in the evolution of diseases (e.g., PNPLA3, MBOAT7). On the other hand, epigenetic changes interact with inherited risk factors to determine an individual’s susceptibility to NAFLD. Modifications of the histones amino-terminal ends are key factors in the maintenance of chromatin structure and gene expression (cAMP-responsive element binding protein H (CREBH) or SIRT1). Activation of SIRT1 showed potential against the physiological mechanisms related to NAFLD. Abnormal DNA methylation represents a starting point for cancer development in NAFLD patients. Besides, the evaluation of circulating miRNA profiles represents a promising approach to assess and non-invasively monitor liver disease severity. To date, there is no approved pharmacologic therapy for NAFLD and the current treatment remains weight loss with lifestyle modification and exercise. In this review, the status of research into relevant genetic and epigenetic modifiers of NAFLD progression will be discussed.
Collapse
|
145
|
Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs. Recent Findings Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis. Summary Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
146
|
Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018; 68:268-279. [PMID: 29122391 DOI: 10.1016/j.jhep.2017.09.003] [Citation(s) in RCA: 638] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now recognised as the most common liver disease worldwide. It encompasses a broad spectrum of conditions, from simple steatosis, through non-alcoholic steatohepatitis, to fibrosis and ultimately cirrhosis and hepatocellular carcinoma. A hallmark of NAFLD is the substantial inter-patient variation in disease progression. NAFLD is considered a complex disease trait such that interactions between the environment and a susceptible polygenic host background determine disease phenotype and influence progression. Recent years have witnessed multiple genome-wide association and large candidate gene studies, which have enriched our understanding of the genetic basis of NAFLD. Notably, the I148M PNPLA3 variant has been identified as the major common genetic determinant of NAFLD. Variants with moderate effect size in TM6SF2, MBOAT7 and GCKR have also been shown to have a significant contribution. The premise for this review is to discuss the status of research into important genetic and epigenetic modifiers of NAFLD progression. The potential to translate the accumulating wealth of genetic data into the design of novel therapeutics and the clinical implementation of diagnostic/prognostic biomarkers will be explored. Finally, personalised medicine and the opportunities for future research and challenges in the immediate post genetics era will be illustrated and discussed.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
147
|
Vilar-Gomez E, Chalasani N. Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers. J Hepatol 2018; 68:305-315. [PMID: 29154965 DOI: 10.1016/j.jhep.2017.11.013] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 12/04/2022]
Abstract
The correct identification of patients at increased risk of non-alcoholic steatohepatitis (NASH) and advanced fibrosis is a critical step in the assessment of non-alcoholic fatty liver disease (NAFLD). Since liver biopsy is invasive, expensive and prone to sampling error, several clinical prediction rules and blood-based biomarkers have been developed as attractive and affordable alternatives for identification of patients at high risk of NASH and advanced fibrosis. Current biomarkers constitute predictive models (e.g. NAFLD fibrosis score, FIB-4 index and BARD score) or direct measures of inflammation (e.g. circulating keratin 18 fragments), or fibrosis (e.g. FibroTest®, ELF™ or Pro-C3 tests). In the clinical setting, biomarkers may discriminate between patients with NASH or advanced fibrosis, predict dynamic changes in NASH/fibrosis over time, and provide long-term prognostic information. Although clinically useful, current biomarker predictions may be influenced by hepatic and extrahepatic conditions (e.g. age, patient comorbidities, and fibrosis or NASH prevalence), which may lead to inaccurate estimates in small subsamples of patients. No highly sensitive and specific tests are available to differentiate NASH from simple steatosis. However, diagnostic accuracy can be improved by combining blood biomarkers. NAFLD fibrosis score and FIB-4 index are both cost-effective and highly sensitive tools to exclude patients with advanced fibrosis. Moreover, their higher scores may identify patients at higher risk of non-liver- and liver-related morbidity and mortality. More expensive tests such as FibroTest or ELF are more specific for detection of patients with significant and advanced fibrosis. Recent efforts have concentrated on "omics" approaches for developing and validating novel biomarkers. Herein, we describe currently available clinical prediction rules and blood-based biomarkers for identifying NASH and advanced fibrosis in patients with NAFLD, discussing their advantages and disadvantages, as well as their potential clinical utility for predicting dynamic changes over time and identifying patients at increased risk of adverse outcomes.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, IN, USA.
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, IN, USA.
| |
Collapse
|
148
|
Loomba R, Gindin Y, Jiang Z, Lawitz E, Caldwell S, Djedjos CS, Xu R, Chung C, Myers RP, Subramanian GM, Goodman Z, Charlton M, Afdhal NH, Diehl AM. DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight 2018; 3:96685. [PMID: 29367468 DOI: 10.1172/jci.insight.96685] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
A DNA methylation (DNAm) signature (the "Horvath clock") has been proposed as a measure of human chronological and biological age. We determined peripheral blood DNAm in patients with nonalcoholic steatohepatitis (NASH) and assessed whether accelerated aging occurs in these patients. DNAm signatures were obtained in patients with biopsy-proven NASH and stage 2-3 fibrosis. The DNAm profile from one test and two validation cohorts served as controls. Age acceleration was calculated as the difference between DNAm age and the predicted age based on the linear model derived from controls. Hepatic collagen content was assessed by quantitative morphometry. The Horvath clock accurately predicts the chronological age of the entire cohort. Age acceleration was observed among NASH subjects compared with control data sets and our test controls. Age acceleration in NASH subjects did not differ by fibrosis stage but correlated with hepatic collagen content. A set of 152 differentially methylated CpG islands between NASH subjects and controls identified gene set enrichment for transcription factors and developmental pathways. Patients with NASH exhibit epigenetic age acceleration that correlates with hepatic collagen content.
Collapse
Affiliation(s)
- Rohit Loomba
- University of California, San Diego, La Jolla, California, USA
| | | | | | - Eric Lawitz
- Texas Liver Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | - Ren Xu
- Gilead Sciences Inc., Foster City, California, USA
| | - Chuhan Chung
- Gilead Sciences Inc., Foster City, California, USA
| | | | | | | | | | - Nezam H Afdhal
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Mae Diehl
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
149
|
Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard? Biochim Biophys Acta Mol Basis Dis 2018; 1864:1024-1036. [PMID: 29329986 DOI: 10.1016/j.bbadis.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is the result of persistent liver injury, and is characterized by sustained scar formation and disruption of the normal liver architecture. The extent of fibrosis is considered as an important prognostic factor for the patient outcome, as an absence of (early) treatment can lead to the development of liver cirrhosis and hepatocellular carcinoma. Till date, the most sensitive and specific way for the diagnosis and staging of liver fibrosis remains liver biopsy, an invasive diagnostic tool, which is associated with high costs and discomfort for the patient. Over time, non-invasive scoring systems have been developed, of which the measurements of serum markers and liver stiffness are validated for use in the clinic. These tools lack however the sensitivity and specificity to detect small changes in the progression or regression of both early and late stages of fibrosis. Novel non-invasive diagnostic markers with the potential to overcome these limitations have been developed, but often lack validation in large patient cohorts. In this review, we will summarize novel trends in non-invasive markers of liver fibrosis development and will discuss their (dis-)advantages for use in the clinic.
Collapse
|
150
|
Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15:11-20. [PMID: 28930295 DOI: 10.1038/nrgastro.2017.109] [Citation(s) in RCA: 3667] [Impact Index Per Article: 523.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NAFLD is one of the most important causes of liver disease worldwide and will probably emerge as the leading cause of end-stage liver disease in the coming decades, with the disease affecting both adults and children. The epidemiology and demographic characteristics of NAFLD vary worldwide, usually parallel to the prevalence of obesity, but a substantial proportion of patients are lean. The large number of patients with NAFLD with potential for progressive liver disease creates challenges for screening, as the diagnosis of NASH necessitates invasive liver biopsy. Furthermore, individuals with NAFLD have a high frequency of metabolic comorbidities and could place a growing strain on health-care systems from their need for management. While awaiting the development effective therapies, this disease warrants the attention of primary care physicians, specialists and health policy makers.
Collapse
Affiliation(s)
- Zobair Younossi
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, Virginia 22042, USA
- Center for Outcomes Research in Liver Disease, 2411 I Street NW, Washington DC, 20037, USA
| | - Quentin M Anstee
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, 4 th Floor, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, UK
| | - Milena Marietti
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, AOU Città della Salute e della Scienza, Corso Dogliotti 14, 10126 Torino, Italy
| | - Timothy Hardy
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, 4 th Floor, William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, UK
| | - Linda Henry
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, Virginia 22042, USA
- Center for Outcomes Research in Liver Disease, 2411 I Street NW, Washington DC, 20037, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Rd, Westmead NSW 2145, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Rd, Westmead NSW 2145, Sydney, New South Wales, Australia
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, AOU Città della Salute e della Scienza, Corso Dogliotti 14, 10126 Torino, Italy
| |
Collapse
|