101
|
Stetter MG, Vidal-Villarejo M, Schmid KJ. Parallel Seed Color Adaptation during Multiple Domestication Attempts of an Ancient New World Grain. Mol Biol Evol 2019; 37:1407-1419. [DOI: 10.1093/molbev/msz304] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractThousands of plants have been selected as crops; yet, only a few are fully domesticated. The lack of adaptation to agroecological environments of many crop plants with few characteristic domestication traits potentially has genetic causes. Here, we investigate the incomplete domestication of an ancient grain from the Americas, amaranth. Although three grain amaranth species have been cultivated as crop for millennia, all three lack key domestication traits. We sequenced 121 crop and wild individuals to investigate the genomic signature of repeated incomplete adaptation. Our analysis shows that grain amaranth has been domesticated three times from a single wild ancestor. One trait that has been selected during domestication in all three grain species is the seed color, which changed from dark seeds to white seeds. We were able to map the genetic control of the seed color adaptation to two genomic regions on chromosomes 3 and 9, employing three independent mapping populations. Within the locus on chromosome 9, we identify an MYB-like transcription factor gene, a known regulator for seed color variation in other plant species. We identify a soft selective sweep in this genomic region in one of the crop species but not in the other two species. The demographic analysis of wild and domesticated amaranths revealed a population bottleneck predating the domestication of grain amaranth. Our results indicate that a reduced level of ancestral genetic variation did not prevent the selection of traits with a simple genetic architecture but may have limited the adaptation of complex domestication traits.
Collapse
Affiliation(s)
- Markus G Stetter
- Botanical Institute, University of Cologne, Cologne, Germany
- Department of Plant Breeding, Population Genetics and Seed Science, University of Hohenheim, Stuttgart, Germany
| | - Mireia Vidal-Villarejo
- Department of Plant Breeding, Population Genetics and Seed Science, University of Hohenheim, Stuttgart, Germany
| | - Karl J Schmid
- Department of Plant Breeding, Population Genetics and Seed Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
102
|
Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. SCIENCE ADVANCES 2019; 5:eaax3619. [PMID: 32064312 PMCID: PMC6989341 DOI: 10.1126/sciadv.aax3619] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/30/2019] [Indexed: 05/17/2023]
Abstract
Genomes carry millions of noncoding variants, and identifying the tiny fraction with functional consequences is a major challenge for genomics. We assessed the role of selection on long noncoding RNAs (lncRNAs) for domestication-related changes in rice grains. Among 3363 lncRNA transcripts identified in early developing panicles, 95% of those with differential expression (329 lncRNAs) between Oryza sativa ssp. japonica and wild rice were significantly down-regulated in the domestication event. Joint genome and transcriptome analyses reveal that directional selection on lncRNAs altered the expression of energy metabolism genes during domestication. Transgenic experiments and population analyses with three focal lncRNAs illustrate that selection on these loci led to increased starch content and grain weight. Together, our findings indicate that genome-wide selection for lncRNA down-regulation was an important mechanism for the emergence of rice domestication traits.
Collapse
Affiliation(s)
- X. M. Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H. B. Pang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - S. Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Q. Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. R. Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - W. H. Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H. Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| | - K. M. Olsen
- Biology Department, Campus Box 1137, Washington University, St. Louis, MO 63130, USA
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| | - Q. W. Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| |
Collapse
|
103
|
Bao Y, Hu G, Grover CE, Conover J, Yuan D, Wendel JF. Unraveling cis and trans regulatory evolution during cotton domestication. Nat Commun 2019; 10:5399. [PMID: 31776348 PMCID: PMC6881400 DOI: 10.1038/s41467-019-13386-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Cis and trans regulatory divergence underlies phenotypic and evolutionary diversification. Relatively little is understood about the complexity of regulatory evolution accompanying crop domestication, particularly for polyploid plants. Here, we compare the fiber transcriptomes between wild and domesticated cotton (Gossypium hirsutum) and their reciprocal F1 hybrids, revealing genome-wide (~15%) and often compensatory cis and trans regulatory changes under divergence and domestication. The high level of trans evolution (54%-64%) observed is likely enabled by genomic redundancy following polyploidy. Our results reveal that regulatory variation is significantly associated with sequence evolution, inheritance of parental expression patterns, co-expression gene network properties, and genomic loci responsible for domestication traits. With respect to regulatory evolution, the two subgenomes of allotetraploid cotton are often uncoupled. Overall, our work underscores the complexity of regulatory evolution during fiber domestication and may facilitate new approaches for improving cotton and other polyploid plants.
Collapse
Affiliation(s)
- Ying Bao
- School of Life Sciences, Qufu Normal University, 273165, Qufu, Shandong Province, China.
| | - Guanjing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Justin Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Daojun Yuan
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
104
|
Wu J, Zhao Q. Sweeten Almonds: A Single Mutation in the bHLH2 Transcription Factor. TRENDS IN PLANT SCIENCE 2019; 24:976-978. [PMID: 31597602 DOI: 10.1016/j.tplants.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Almond domestication is marked by the selection of sweet kernel genotypes. A recent study (Sánchez-Pérez et al.) reveals that a nonsynonymous point mutation in a bHLH transcription factor prevents transcription of the two P450 genes in the amygdalin biosynthetic pathway, resulting in the sweet kernel trait.
Collapse
Affiliation(s)
- Jie Wu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University, Joint Center for Life Sciences, Beijing 100084, China
| | - Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
105
|
Brǿnnvik H, von Wettberg EJ. Bird Dispersal as a Pre-Adaptation for Domestication in Legumes: Insights for Neo-Domestication. FRONTIERS IN PLANT SCIENCE 2019; 10:1293. [PMID: 31681385 PMCID: PMC6803499 DOI: 10.3389/fpls.2019.01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Hester Brǿnnvik
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, United States
| | - Eric J. von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, United States
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechic University, Saint Petersburg, Russia
| |
Collapse
|
106
|
Wills DM, Fang Z, York AM, Holland JB, Doebley JF. Defining the Role of the MADS-Box Gene, Zea Agamous-like1, a Target of Selection During Maize Domestication. J Hered 2019; 109:333-338. [PMID: 28992108 DOI: 10.1093/jhered/esx073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/02/2017] [Indexed: 11/12/2022] Open
Abstract
Genomic scans for genes that show the signature of past selection have been widely applied to a number of species and have identified a large number of selection candidate genes. In cultivated maize (Zea mays ssp. mays) selection scans have identified several hundred candidate domestication genes by comparing nucleotide diversity and differentiation between maize and its progenitor, teosinte (Z. mays ssp. parviglumis). One of these is a gene called zea agamous-like1 (zagl1), a MADS-box transcription factor, that is known for its function in the control of flowering time. To determine the trait(s) controlled by zagl1 that was (were) the target(s) of selection during maize domestication, we created a set of recombinant chromosome isogenic lines that differ for the maize versus teosinte alleles of zagl1 and which carry cross-overs between zagl1 and its neighbor genes. These lines were grown in a randomized trial and scored for flowering time and domestication related traits. The results indicated that the maize versus teosinte alleles of zagl1 affect flowering time as expected, as well as multiple traits related to ear size with the maize allele conferring larger ears with more kernels. Our results suggest that zagl1 may have been under selection during domestication to increase the size of the maize ear.
Collapse
Affiliation(s)
- David M Wills
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI.,USDA-ARS Plant Genetics Research Unit, Columbia, MO
| | - Zhou Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC.,Bayer Corporation, Morrisville, NC
| | - Alessandra M York
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| | - James B Holland
- USDA-ARS Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC
| | - John F Doebley
- Laboratory of Genetics, The University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
107
|
Peng Y, Zhang Y, Gui Y, An D, Liu J, Xu X, Li Q, Wang J, Wang W, Shi C, Fan L, Lu B, Deng Y, Teng S, He Z. Elimination of a Retrotransposon for Quenching Genome Instability in Modern Rice. MOLECULAR PLANT 2019; 12:1395-1407. [PMID: 31228579 DOI: 10.1016/j.molp.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 05/26/2023]
Abstract
Transposable elements (TEs) constitute the most abundant portions of plant genomes and can dramatically shape host genomes during plant evolution. They also play important roles in crop domestication. However, whether TEs themselves are also selected during crop domestication has remained unknown. Here, we identify an active long terminal repeat (LTR) retrotransposon, HUO, as a potential target of selection during rice domestication and breeding. HUO is a low-copy-number LTR retrotransposon, and is active under natural growth conditions and transmitted through male gametogenesis, preferentially inserting into genomic regions capable of transcription. HUO exists in all wild rice accessions and about half of the archaeological rice grains (1200-7000 years ago) and landraces surveyed, but is absent in almost all modern varieties, indicating its gradual elimination during rice domestication and breeding. Further analyses showed that HUO is subjected to strict gene silencing through the RNA-directed DNA methylation pathway. Our results also suggest that multiple HUO copies may trigger genomic instability through altering genome-wide DNA methylation and small RNA biogenesis and changing global gene expression, resulting in decreased disease resistance and yield, coinciding with its elimination during rice breeding. Together, our study suggests that negative selection of an active retrotransposon might be important for genome stability during crop domestication and breeding.
Collapse
Affiliation(s)
- Yu Peng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingying Zhang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yijie Gui
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Dong An
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhong Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xun Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chunhai Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Longjiang Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Baorong Lu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Sheng Teng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
108
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
109
|
Wang Y, Gao H, He L, Zhu W, Yan L, Chen Q, He C. The PHOSPHATE1 genes participate in salt and Pi signaling pathways and play adaptive roles during soybean evolution. BMC PLANT BIOLOGY 2019; 19:353. [PMID: 31412775 PMCID: PMC6694516 DOI: 10.1186/s12870-019-1959-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/31/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The PHOSPHATE1 (PHO1) gene family plays diverse roles in inorganic phosphate (Pi) transfer and signal transduction, and plant development. However, the functions and diversification of soybean PHO1 family are poorly understood. RESULTS Cultivated soybean (Glycine max) was domesticated from wild soybean (Glycine soja). To illuminate their roles in this evolutionary process, we comparatively investigated the G. max PHO1 genes (GmPHO1) in Suinong 14 (SN14) and G. soja PHO1 genes (GsPHO1) in ZYD00006 (ZYD6). The sequences of the orthologous Gm-GsPHO1 pairs were grouped into two Classes. The expression of Class I in both SN14 and ZYD6 was widely but relatively high in developing fruits, whereas Class II was predominantly expressed in the roots. The whole family displayed diverse response patterns to salt stresses and Pi-starvation in roots. Between SN14 and ZYD6, most PHO1 genes responded similarly to salinity stresses, and half had sharp contrasts in response to Pi-starvation, which corroborated the differential response capacities to salinity and low-Pi stress between SN14 and ZYD6. Furthermore, in transgenic Arabidopsis plants, most Class II members and GmPHO1;H9 from Class I could enhance salt tolerance, while only two Class II genes (GmPHO1;H4 and GmPHO1;H8) differently altered sensitivity to Pi-starvation. The expression of critical genes was accordingly altered in either salt or Pi signaling pathways in transgenic Arabidopsis plants. CONCLUSIONS Our work identifies some PHO1 genes as promising genetic materials for soybean improvement, and suggests that expression variation is decisive to functional divergence of the orthologous Gm-GsPHO1 pairs, which plays an adaptive role during soybean evolution.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093 China
| | - Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049 China
| | - Lingli He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049 China
| | - Weiwei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049 China
| | - Lixin Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049 China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049 China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
110
|
Paauw M, Koes R, Quattrocchio FM. Alteration of flavonoid pigmentation patterns during domestication of food crops. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3719-3735. [PMID: 30949670 DOI: 10.1093/jxb/erz141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/15/2019] [Indexed: 05/20/2023]
Abstract
Flavonoids are plant pigments that provide health benefits for human and animal consumers. Understanding why domesticated crops have altered pigmentation patterns and unraveling the molecular/genetic mechanisms that underlie this will facilitate the breeding of new (healthier) varieties. We present an overview of changes in flavonoid pigmentation patterns that have occurred during crop domestication and, where possible, link them to the molecular changes that brought about the new phenotypes. We consider species that lost flavonoid pigmentation in the edible part of the plant at some point during domestication (like cereals). We also consider the converse situation, for example eggplant (aubergine), which instead gained strong anthocyanin accumulation in the skin of the fruit during domestication, and some varieties of citrus and apple that acquired anthocyanins in the fruit flesh. Interestingly, the genes responsible for such changes are sometimes closely linked to, or have pleiotropic effects on, important domestication genes, suggesting accidental and perhaps inevitable changes of anthocyanin patterning during domestication. In other cases, flavonoid pigmentation patterns in domesticated crops are the result of cultural preferences, with examples being found in varieties of citrus, barley, wheat, and maize. Finally, and more recently, in some species, anthocyanins seem to have been the direct target of selection in a second wave of domestication that followed the introduction of industrial food processing.
Collapse
Affiliation(s)
- Misha Paauw
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, XH, Amsterdam, Netherlands
| | - Ronald Koes
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, XH, Amsterdam, Netherlands
| | | |
Collapse
|
111
|
Shen C, Wang N, Huang C, Wang M, Zhang X, Lin Z. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:494-505. [PMID: 31002209 DOI: 10.1111/tpj.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 05/28/2023]
Abstract
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population-scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population-scaled recombination rate between Gossypium hirsutum and G. arboreum and sub-genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome-wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high-recombination regions than were those of yield and early maturity traits. These results provide insights into the population-scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
112
|
Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1595-1611. [PMID: 30688400 PMCID: PMC6662113 DOI: 10.1111/pbi.13086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Collapse
Affiliation(s)
- Gunvant B. Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Jinrong Wan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Li Song
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Adrian O. Stec
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Sondus S. Kahil
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - J. Hollis Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Stupar
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
113
|
Genome-Wide Analyses Reveal Footprints of Divergent Selection and Drought Adaptive Traits in Synthetic-Derived Wheats. G3-GENES GENOMES GENETICS 2019; 9:1957-1973. [PMID: 31018942 PMCID: PMC6553533 DOI: 10.1534/g3.119.400010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Crop-wild introgressions have long been exploited without knowing the favorable recombination points. Synthetic hexaploid wheats are one of the most exploited genetic resources for bread wheat improvement. However, despite some QTL with major effects, much less is known about genome-wide patterns of introgressions and their effects on phenotypes. We used two genome-wide association approaches: SNP-GWAS and haplotype-GWAS to identify SNPs and haplotypes associated with productivity under water-limited conditions in a synthetic-derived wheat (SYN-DER) population. Haplotype-GWAS further enriched and identified 20 more genomic regions associated with drought adaptability that did not overlap with SNP-GWAS. Since GWAS is biased to the phenotypes in the study and may fail to detect important genetic diversity during breeding, we used five complementary analytical approaches (t-test, Tajima’s D, nucleotide diversity (π), Fst, and EigenGWAS) to identify divergent selections in SYN-DER compared to modern bread wheat. These approaches consistently pinpointed 89 ‘selective sweeps’, out of which 30 selection loci were identified on D-genome. These key selections co-localized with important functional genes of adaptive traits such as TaElf3-D1 (1D) for earliness per se (Eps), TaCKX-D1 (3D), TaGS1a (6D) and TaGS-D1 (7D) for grain size, weight and morphology, TaCwi-D1 (5D) influencing drought tolerance, and Vrn-D3 (7D) for vernalization. Furthermore, 55 SNPs and 23 haplotypes of agronomic and physiological importance such as grain yield, relative water content and thousand grain weight in SYN-DER, were among the top 5% of divergent selections contributed by synthetic hexaploid wheats. These divergent selections associated with improved agronomic performance carry new alleles that have been introduced to wheat. Our results demonstrated that GWAS and selection sweep analyses are powerful approaches for investigating favorable introgressions under strong selection pressure and the use of crop-wild hybridization to assist the improvement of wheat yield and productivity under moisture limiting environments.
Collapse
|
114
|
Fernie AR, Yan J. De Novo Domestication: An Alternative Route toward New Crops for the Future. MOLECULAR PLANT 2019; 12:615-631. [PMID: 30999078 DOI: 10.1016/j.molp.2019.03.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Current global agricultural production must feed over 7 billion people. However, productivity varies greatly across the globe and is under threat from both increased competitions for land and climate change and associated environmental deterioration. Moreover, the increase in human population size and dietary changes are putting an ever greater burden on agriculture. The majority of this burden is met by the cultivation of a very small number of species, largely in locations that differ from their origin of domestication. Recent technological advances have raised the possibility of de novo domestication of wild plants as a viable solution for designing ideal crops while maintaining food security and a more sustainable low-input agriculture. Here we discuss how the discovery of multiple key domestication genes alongside the development of technologies for accurate manipulation of several target genes simultaneously renders de novo domestication a route toward crops for the future.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
115
|
Zhu F, Wen W, Fernie AR. Finding Noemi: The Transcription Factor Mutations Underlying Trait Differentiation Amongst Citrus. TRENDS IN PLANT SCIENCE 2019; 24:384-386. [PMID: 30898437 DOI: 10.1016/j.tplants.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
A recent study by Butelli et al. (Curr. Biol. 2019;29:158-164) has demonstrated that the linked traits of exceptionally low fruit acidity and the absence of anthocyanins in leaves and flowers and proanthocyanidins in seeds of the citrus are the result of mutations in the Noemi gene encoding a bHLH transcription factor.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
116
|
Hufford MB, Berny Mier Y Teran JC, Gepts P. Crop Biodiversity: An Unfinished Magnum Opus of Nature. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:727-751. [PMID: 31035827 DOI: 10.1146/annurev-arplant-042817-040240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crop biodiversity is one of the major inventions of humanity through the process of domestication. It is also an essential resource for crop improvement to adapt agriculture to ever-changing conditions like global climate change and consumer preferences. Domestication and the subsequent evolution under cultivation have profoundly shaped the genetic architecture of this biodiversity. In this review, we highlight recent advances in our understanding of crop biodiversity. Topics include the reduction of genetic diversity during domestication and counteracting factors, a discussion of the relationship between parallel phenotypic and genotypic evolution, the role of plasticity in genotype × environment interactions, and the important role subsistence farmers play in actively maintaining crop biodiversity and in participatory breeding. Linking genotype and phenotype remains the holy grail of crop biodiversity studies.
Collapse
Affiliation(s)
- Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA;
| | | | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, California 95616-8780, USA; ,
| |
Collapse
|
117
|
Wang J, Li X, Do Kim K, Scanlon MJ, Jackson SA, Springer NM, Yu J. Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean. Genome Biol 2019; 20:74. [PMID: 31018867 PMCID: PMC6482504 DOI: 10.1186/s13059-019-1683-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Plant domestication provides a unique model to study genome evolution. Many studies have been conducted to examine genes, genetic diversity, genome structure, and epigenome changes associated with domestication. Interestingly, domesticated accessions have significantly higher [A] and [T] values across genome-wide polymorphic sites than accessions sampled from the corresponding progenitor species. However, the relative contributions of different genomic regions to this genome divergence pattern and underlying mechanisms have not been well characterized. RESULTS Here, we investigate the genome-wide base-composition patterns by analyzing millions of SNPs segregating among 100 accessions from a teosinte-maize comparison set and among 302 accessions from a wild-domesticated soybean comparison set. We show that non-genic part of the genome has a greater contribution than genic SNPs to the [AT]-increase observed between wild and domesticated accessions in maize and soybean. The separation between wild and domesticated accessions in [AT] values is significantly enlarged in non-genic and pericentromeric regions. Motif frequency and sequence context analyses show the motifs (PyCG) related to solar-UV signature are enriched in these regions, particularly when they are methylated. Additional analysis using population-private SNPs also implicates the role of these motifs in relatively recent mutations. With base-composition across polymorphic sites as a genome phenotype, genome scans identify a set of putative candidate genes involved in UV damage repair pathways. CONCLUSIONS The [AT]-increase is more pronounced in genomic regions that are non-genic, pericentromeric, transposable elements; methylated; and with low recombination. Our findings establish important links among UV radiation, mutation, DNA repair, methylation, and genome evolution.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Michael J. Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
118
|
The complex geography of domestication of the African rice Oryza glaberrima. PLoS Genet 2019; 15:e1007414. [PMID: 30845217 PMCID: PMC6424484 DOI: 10.1371/journal.pgen.1007414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 03/19/2019] [Accepted: 02/08/2019] [Indexed: 11/19/2022] Open
Abstract
While the domestication history of Asian rice has been extensively studied, details of the evolution of African rice remain elusive. The inner Niger delta has been suggested as the center of origin but molecular data to support this hypothesis is lacking. Here, we present a comprehensive analysis of the evolutionary and domestication history of African rice. By analyzing whole genome re-sequencing data from 282 individuals of domesticated African rice Oryza glaberrima and its progenitor O. barthii, we hypothesize a non-centric (i.e. multiregional) domestication origin for African rice. Our analyses showed genetic structure within O. glaberrima that has a geographical association. Furthermore, we have evidence that the previously hypothesized O. barthii progenitor populations in West Africa have evolutionary signatures similar to domesticated rice and carried causal domestication mutations, suggesting those progenitors were either mislabeled or may actually represent feral wild-domesticated hybrids. Phylogeographic analysis of genes involved in the core domestication process suggests that the origins of causal domestication mutations could be traced to wild progenitors in multiple different locations in West and Central Africa. In addition, measurements of panicle threshability, a key early domestication trait for seed shattering, were consistent with the gene phylogeographic results. We suggest seed non-shattering was selected from multiple genotypes, possibly arising from different geographical regions. Based on our evidence, O. glaberrima was not domesticated from a single centric location but was a result of diffuse process where multiple regions contributed key alleles for different domestication traits. For many crops it is not clear how they were domesticated from their wild progenitors. Transition from a wild to domesticated state required a series of genetic changes, and studying the evolutionary origin of these domestication-causing mutations are key to understanding the domestication origins of a crop. Moreover, population comparisons provide insight into the relationship between wild and cultivated populations and the evolutionary history of domestication. In this study, we investigated the domestication history of Oryza glaberrima, a rice species that was domesticated in West Africa independent from the Asian rice species O. sativa. Using genome-wide data from a large sample of domesticated and wild African rice samples we did not find evidence that supported the established domestication model for O. glaberrima—a single domestication origin. Rather, our evidence suggests the domestication process for African rice was initiated in multiple regions of West Africa, caused potentially by the local environments and cultivation preference of people. Hence domestication of African rice was a multi-regional process.
Collapse
|
119
|
Abstract
Crop domestication is a well-established system for understanding evolution. We interrogated the genetic architecture of maize domestication from a quantitative genetics perspective. We analyzed domestication-related traits in a maize landrace and a population of its ancestor, teosinte. We observed strong divergence in the underlying genetic architecture including change in the genetic correlations among traits. Despite striking divergence, selection intensities were low for all traits, indicating that selection under domestication can be weaker than natural selection. Analyses suggest total grain weight per plant was not improved and that genetic correlations placed considerable constraint on selection. We hope our results will motivate crop evolutionists to perform similar work in other crops. The process of evolution under domestication has been studied using phylogenetics, population genetics–genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance–covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.
Collapse
|
120
|
Gauley A, Boden SA. Genetic pathways controlling inflorescence architecture and development in wheat and barley. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:296-309. [PMID: 30325110 PMCID: PMC6900778 DOI: 10.1111/jipb.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful. The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.
Collapse
Affiliation(s)
- Adam Gauley
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUnited Kingdom
| | - Scott A. Boden
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUnited Kingdom
| |
Collapse
|
121
|
Boden SA, Østergaard L. How can developmental biology help feed a growing population? Development 2019; 146:146/3/dev172965. [PMID: 30709913 DOI: 10.1242/dev.172965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Agriculture is challenged globally from a variety of fronts, including a steady increase in world population, changes in climate and a requirement to reduce fertiliser inputs. In the production of crops that are able to overcome these challenges, developmental biology can play a crucial role. The process of domesticating wild progenitors into edible crops is closely linked to modification of developmental processes, and the steps that are needed to face the current challenges will equally require developmental modifications. In this Spotlight, we describe the achievements by developmental biologists in identifying the genes responsible for domestication of some of the most important crops, and highlight that developmental biology is in a unique position to remain centre stage in improving crop performance to meet current and future demands. We propose that the explosive technological advances in sequencing, genome editing and advanced data processing provide an excellent opportunity for researchers to combine scientific disciplines and realise the continued potential of plants as the primary food source for generations to come.
Collapse
Affiliation(s)
- Scott A Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
122
|
Rau D, Murgia ML, Rodriguez M, Bitocchi E, Bellucci E, Fois D, Albani D, Nanni L, Gioia T, Santo D, Marcolungo L, Delledonne M, Attene G, Papa R. Genomic dissection of pod shattering in common bean: mutations at non-orthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:693-714. [PMID: 30422331 DOI: 10.1111/tpj.14155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/14/2018] [Accepted: 10/30/2018] [Indexed: 05/05/2023]
Abstract
The complete or partial loss of shattering ability occurred independently during the domestication of several crops. Therefore, the study of this trait can provide an understanding of the link between phenotypic and molecular convergent evolution. The genetic dissection of 'pod shattering' in Phaseolus vulgaris is achieved here using a population of introgression lines and next-generation sequencing techniques. The 'occurrence' of the indehiscent phenotype (indehiscent versus dehiscent) depends on a major locus on chromosome 5. Furthermore, at least two additional genes are associated with the 'level' of shattering (number of shattering pods per plant: low versus high) and the 'mode' of shattering (non-twisting versus twisting pods), with all of these loci contributing to the phenotype by epistatic interactions. Comparative mapping indicates that the major gene identified on common bean chromosome 5 corresponds to one of the four quantitative trait loci for pod shattering in Vigna unguiculata. None of the loci identified comprised genes that are homologs of the known shattering genes in Glycine max. Therefore, although convergent domestication can be determined by mutations at orthologous loci, this was only partially true for P. vulgaris and V. unguiculata, which are two phylogenetically closely related crop species, and this was not the case for the more distant P. vulgaris and G. max. Conversely, comparative mapping suggests that the convergent evolution of the indehiscent phenotype arose through mutations in different genes from the same underlying gene networks that are involved in secondary cell-wall biosynthesis and lignin deposition patterning at the pod level.
Collapse
Affiliation(s)
- Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100, Sassari, Italy
| | - Maria L Murgia
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100, Sassari, Italy
| | - Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100, Sassari, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Davide Fois
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100, Sassari, Italy
| | - Diego Albani
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100, Sassari, Italy
| | - Laura Nanni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Tania Gioia
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Debora Santo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Luca Marcolungo
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola, 07100, Sassari, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
123
|
Custers R, Casacuberta JM, Eriksson D, Sági L, Schiemann J. Genetic Alterations That Do or Do Not Occur Naturally; Consequences for Genome Edited Organisms in the Context of Regulatory Oversight. Front Bioeng Biotechnol 2019; 6:213. [PMID: 30701172 PMCID: PMC6343457 DOI: 10.3389/fbioe.2018.00213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
The ability to successfully exploit genome edited organisms for the benefit of food security and the environment will essentially be determined by the extent to which these organisms fall under specific regulatory provisions. In many jurisdictions the answer to this question is considered to depend on the genetic characteristics of the edited organism, and whether the changes introduced in its genome do (or do not) occur naturally. We provide here a number of key considerations to assist with this evaluation as well as a guide of concrete examples of genetic alterations with an assessment of their natural occurrence. These examples support the conclusion that for many of the common types of alterations introduced by means of genome editing, the resulting organisms would not be subject to specific biosafety regulatory provisions whenever novelty of the genetic combination is a crucial determinant.
Collapse
Affiliation(s)
| | | | - Dennis Eriksson
- Department of Plant Breeding, Faculty of Landscape Architecture, Horticulture and Crop Production Science, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - László Sági
- Centre for Agriculture Research, Hungarian Academy of Sciences (MTA), Martonvásár, Hungary
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Quedlinburg, Germany
| |
Collapse
|
124
|
Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran LSP. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 2019; 39:321-336. [PMID: 30646772 DOI: 10.1080/07388551.2018.1554621] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein9) system is an RNA-guided genome editing tool that consists of a Cas9 nuclease and a single-guide RNA (sgRNA). By base-pairing with a DNA target sequence, the sgRNA enables Cas9 to recognize and cut a specific target DNA sequence, generating double strand breaks (DSBs) that trigger cell repair mechanisms and mutations at or near the DSBs sites. Since its discovery, the CRISPR/Cas9 system has revolutionized genome editing and is now becoming widely utilized to edit the genomes of a diverse range of crop plants. In this review, we present an overview of the CRISPR/Cas9 system itself, including its mechanism of action, system construction strategies, and the screening methods used to identify mutants containing edited genes. We evaluate recent examples of the use of CRISPR/Cas9 for crop plant improvement, and research into the function(s) of genes involved in determining crop yields, quality, environmental stress tolerance/resistance, regulation of gene transcription and translation, and the construction of mutant libraries and production of transgene-free genome-edited crops. In addition, challenges and future opportunities for the use of the CRISPR/Cas9 system in crop breeding are discussed.
Collapse
Affiliation(s)
- Aili Bao
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - David J Burritt
- b Department of Botany , University of Otago , Dunedin , New Zealand
| | - Haifeng Chen
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - Xinan Zhou
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - Dong Cao
- a Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture , Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences , Wuhan , China
| | - Lam-Son Phan Tran
- c Institute of Research and Development, Duy Tan University , Da Nang, Vietnam.,d Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| |
Collapse
|
125
|
Liu W, Chen L, Zhang S, Hu F, Wang Z, Lyu J, Wang B, Xiang H, Zhao R, Tian Z, Ge S, Wang W. Decrease of gene expression diversity during domestication of animals and plants. BMC Evol Biol 2019; 19:19. [PMID: 30634914 PMCID: PMC6330456 DOI: 10.1186/s12862-018-1340-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The genetic mechanisms underlying the domestication of animals and plants have been of great interest to biologists since Darwin. To date, little is known about the global pattern of gene expression changes during domestication. RESULTS We generated and collected transcriptome data for seven pairs of domestic animals and plants including dog, silkworm, chicken, rice, cotton, soybean and maize and their wild progenitors and compared the expression profiles between the domestic and wild species. Intriguingly, although the number of expressed genes varied little, the domestic species generally exhibited lower gene expression diversity than did the wild species, and this lower diversity was observed for both domestic plants and different kinds of domestic animals including insect, bird and mammal in the whole-genome gene set (WGGS), candidate selected gene set (CSGS) and non-CSGS, with CSGS exhibiting a higher degree of decreased expression diversity. Moreover, different from previous reports which found 2 to 4% of genes were selected by human, we identified 6892 candidate selected genes accounting for 7.57% of the whole-genome genes in rice and revealed that fewer than 8% of the whole-genome genes had been affected by domestication. CONCLUSIONS Our results showed that domestication affected the pattern of variation in gene expression throughout the genome and generally decreased the expression diversity across species, and this decrease may have been associated with decreased genetic diversity. This pattern might have profound effects on the phenotypic and physiological changes of domestic animals and plants and provide insights into the genetic mechanisms at the transcriptome level other than decreased genetic diversity and increased linkage disequilibrium underpinning artificial selection.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204 China
| | - Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Poly-technical University, Xi’an, 710072 China
| | - Shilai Zhang
- School of Agriculture, Yunnan University, Kunming, 650091 Yunnan China
| | - Fengyi Hu
- School of Agriculture, Yunnan University, Kunming, 650091 Yunnan China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jun Lyu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Bao Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204 China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Poly-technical University, Xi’an, 710072 China
| |
Collapse
|
126
|
Monroe JG, Powell T, Price N, Mullen JL, Howard A, Evans K, Lovell JT, McKay JK. Drought adaptation in Arabidopsis thaliana by extensive genetic loss-of-function. eLife 2018; 7:41038. [PMID: 30520727 PMCID: PMC6326724 DOI: 10.7554/elife.41038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022] Open
Abstract
Interdisciplinary syntheses are needed to scale up discovery of the environmental drivers and molecular basis of adaptation in nature. Here we integrated novel approaches using whole genome sequences, satellite remote sensing, and transgenic experiments to study natural loss-of-function alleles associated with drought histories in wild Arabidopsis thaliana. The genes we identified exhibit population genetic signatures of parallel molecular evolution, selection for loss-of-function, and shared associations with flowering time phenotypes in directions consistent with longstanding adaptive hypotheses seven times more often than expected by chance. We then confirmed predicted phenotypes experimentally in transgenic knockout lines. These findings reveal the importance of drought timing to explain the evolution of alternative drought tolerance strategies and further challenge popular assumptions about the adaptive value of genetic loss-of-function in nature. These results also motivate improved species-wide sequencing efforts to better identify loss-of-function variants and inspire new opportunities for engineering climate resilience in crops. Water shortages caused by droughts lead to crop losses that affect billions of people around the world each year. By discovering how wild plants adapt to drought, it may be possible to identify traits and genes that help to improve the growth of crop plants when water is scarce. It has been suggested that plants have adapted to droughts by flowering at times of the year when droughts are less likely to occur. For example, if droughts are more likely to happen in spring, the plants may delay flowering until the summer. Arabidopsis thaliana is a small plant that is found across Eurasia, Africa and North America, including in areas that are prone to drought at different times of the year. Individual plants of the same species may carry different versions of the same gene (known as alleles). Some of these alleles may not work properly and are referred to as loss-of-function alleles. Monroe et al. investigated whether A. thaliana plants carry any loss-of-function alleles that are associated with droughts happening in the spring or summer, and whether they are linked to when those plants will flower. Monroe et al. analyzed satellite images collected over the last 30 years to measure when droughts have occurred. Next, they searched genome sequences of Arabidopsis thaliana for alleles that might help the plants to adapt to droughts in the spring or summer. Combining the two approaches revealed that loss-of-function alleles associated with spring droughts were strongly predicted to be associated with the plants flowering later in the year. Similarly, loss-of-function alleles associated with summer droughts were predicted to be associated with the plants flowering earlier in the year. These findings support the idea that plants can adapt to drought by changing when they produce flowers, and suggest that loss-of-function alleles play a major role in this process. New techniques for editing genes mean it is easier than ever to generate new loss-of-function alleles in specific genes. Therefore, the results presented by Monroe et al. may help researchers to develop new varieties of crop plants that are better adapted to droughts.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, United States
| | - Tyler Powell
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States.,Department of Biology, Colorado State University, Fort Collins, United States
| | - Nicholas Price
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - Anne Howard
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - Kyle Evans
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, United States
| |
Collapse
|
127
|
Torkamaneh D, Laroche J, Rajcan I, Belzile F. Identification of candidate domestication-related genes with a systematic survey of loss-of-function mutations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1218-1227. [PMID: 30246271 DOI: 10.1111/tpj.14104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Domestication is an important key co-evolutionary process through which humans have extensively altered the genomic make-up and appearance of both plants and animals. The identification of domestication-related genes remains very arduous. In this study, we present a systematic analytical approach that harnesses two recent advances in genomics, whole-genome sequencing (WGS) and prediction of loss-of-function (LOF) mutations, to greatly facilitate the assembly of an enriched catalogue of domestication-related candidate genes. Using WGS data for 296 cultivated (Glycine max) and 64 wild soybean accessions, we identified 8699 LOF variants, and 116 genes that are uniquely fixed for one or more LOF allele(s) in domesticated soybeans. Existing soybean transcriptomic data led us to overcome analytical challenges associated with whole-genome duplications and to identify neo- or subfunctionalized genes. This systematic approach allowed us to identify 110 candidate domestication-related genes in an efficient and rapid way. This catalogue contains previously well characterized domestication genes in soybean, as well as some orthologs from other domesticated crop species. In addition, it comprises many promising candidate domestication genes. Overall, this collection of candidate domestication-related genes in soybean is almost twice as large as the sum of all previously reported candidate genes in all other crops. We believe this systematic approach could readily be used in wide range of species.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Department of Plant Agriculture, Crop Science Bldg., University of Guelph, Guelph, ON, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, Crop Science Bldg., University of Guelph, Guelph, ON, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
| |
Collapse
|
128
|
Morata J, Marín F, Payet J, Casacuberta JM. Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs). Genome Biol Evol 2018; 10:1210-1220. [PMID: 29659815 PMCID: PMC5950925 DOI: 10.1093/gbe/evy073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transposable elements are one of the main drivers of plant genome evolution. Transposon insertions can modify the gene coding capacity or the regulation of their expression, the latter being a more subtle effect, and therefore particularly useful for evolution. Transposons have been show to contain transcription factor binding sites that can be mobilized upon transposition with the potential to integrate new genes into transcriptional networks. Miniature inverted-repeat transposable elements (MITEs) are a type of noncoding DNA transposons that could be particularly suited as a vector to mobilize transcription factor binding sites and modify transcriptional networks during evolution. MITEs are small in comparison to other transposons and can be excised, which should make them less mutagenic when inserting into promoters. On the other hand, in spite of their cut-and-paste mechanisms of transposition, they can reach very high copy numbers in genomes. We have previously shown that MITEs have amplified and redistributed the binding motif of the E2F transcription factor in different Brassicas. Here, we show that MITEs have amplified and mobilized the binding motifs of the bZIP60 and PIF3 transcription factors in peach and Prunus mume, and the TCP15/23 binding motif in tomato. Our results suggest that MITEs could have rewired new genes into transcriptional regulatory networks that are responsible for important adaptive responses and breeding traits in plants, such as stress responses, flowering time, or fruit ripening. The results presented here therefore suggest a general impact of MITEs in the evolution of transcriptional regulatory networks in plants.
Collapse
Affiliation(s)
- Jordi Morata
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Fatima Marín
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Josep M Casacuberta
- CRAG (CSIC-IRTA-UAB-UB) Campus UAB, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
129
|
Khera P, Pandey MK, Mallikarjuna N, Sriswathi M, Roorkiwal M, Janila P, Sharma S, Shilpa K, Sudini H, Guo B, Varshney RK. Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.). Mol Genet Genomics 2018; 294:365-378. [PMID: 30467595 DOI: 10.1007/s00438-018-1511-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
Abstract
Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, two synthetic tetraploids, viz., ISATGR 1212 (A. duranensis ICG 8123 × A. ipaensis ICG 8206) and ISATGR 265-5A (A. kempff-mercadoi ICG 8164 × A. hoehnei ICG 8190), were used to generate two advanced backcross (AB) populations. The AB-populations, namely, AB-pop1 (ICGV 91114 × ISATGR 1212) and AB-pop2, (ICGV 87846 × ISATGR 265-5A) were genotyped with DArT and SSR markers. Genetic maps were constructed for AB-pop1 and AB-pop2 populations with 258 loci (1415.7 cM map length and map density of 5.5 cM/loci) and 1043 loci (1500.8 cM map length with map density of 1.4 cM/loci), respectively. Genetic analysis identified large number of wild segments in the population and provided a good source of diversity in these populations. Phenotyping of these two populations identified several introgression lines with good agronomic, oil quality, and disease resistance traits. Quantitative trait locus (QTL) analysis showed that the wild genomic segments contributed favourable alleles for foliar disease resistance while cultivated genomic segments mostly contributed favourable alleles for oil quality and yield component traits. These populations, after achieving higher stability, will be useful resource for genetic mapping and QTL discovery for wild species segments in addition to using population progenies in breeding program for diversifying the gene pool of cultivated groundnut.
Collapse
Affiliation(s)
- Pawan Khera
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Nalini Mallikarjuna
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manda Sriswathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Krishna Shilpa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Harikishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Baozhu Guo
- Crop Protection and Management Research Unit, US Department of Agriculture-Agricultural Research Service, Tifton, USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
130
|
Zeder MA. Why evolutionary biology needs anthropology: Evaluating core assumptions of the extended evolutionary synthesis. Evol Anthropol 2018; 27:267-284. [DOI: 10.1002/evan.21747] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Melinda A. Zeder
- Department of AnthropologyNational Museum of Natural History, Smithsonian Institution Washington District of Columbia
| |
Collapse
|
131
|
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SA, Chu C, Tian Z. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 2018; 50:1435-1441. [PMID: 30250128 DOI: 10.1038/s41588-018-0229-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/07/2018] [Indexed: 12/27/2022]
Abstract
Domesticated species often exhibit convergent phenotypic evolution, termed the domestication syndrome, of which loss of seed dormancy is a component. To date, dormancy genes that contribute to parallel domestication across different families have not been reported. Here, we cloned the classical stay-green G gene from soybean and found that it controls seed dormancy and showed evidence of selection during soybean domestication. Moreover, orthologs in rice and tomato also showed evidence of selection during domestication. Analysis of transgenic plants confirmed that orthologs of G had conserved functions in controlling seed dormancy in soybean, rice, and Arabidopsis. Functional investigation demonstrated that G affected seed dormancy through interactions with NCED3 and PSY and in turn modulated abscisic acid synthesis. Therefore, we identified a gene responsible for seed dormancy that has been subject to parallel selection in multiple crop families. This may help facilitate the domestication of new crops.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Xu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Lu
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Tao Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
| | - Chengcai Chu
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
132
|
Abstract
Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.
Collapse
Affiliation(s)
- Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
133
|
Valadez-Moctezuma E, Cabrera-Hidalgo AJ. Easy strategy used to detect the genetic variability in chickpea ( Cicer arietinum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:921-928. [PMID: 30150866 PMCID: PMC6103936 DOI: 10.1007/s12298-018-0548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A priority in the management and use of elite plant materials for breeding has been based on molecular markers or DNA sequencing of entire genomes, in order to perform genetic differentiation which is still quite costly. Chickpea (Cicer arietinum) is one of the species with genomic monotony and very low polymorphism, and its detection even with DNA markers has not been easy. In germplasm banks, the genetic distinction is a priority in order to use properly selected lines. In this study, 57 chickpea accessions from a germplasm bank were analyzed by using nrRAMP (non-radioactive Random Amplified Microsatellite Polymorphism) markers, and their genetic variability was determined. Our results showed DNA polymorphisms, which are enough to differentiate between the accessions and between C. arietinum and Cicer reticulatum (out-group); this last wild species is closely related to chickpea. We concluded that the nrRAMP technique was an effective and a highly useful method to assess the genetic diversity and variability among closely related plants, such as chickpea; in addition, this technique can be easily implemented in laboratories.
Collapse
Affiliation(s)
- E. Valadez-Moctezuma
- Laboratorio de Biología Molecular, Departamento de Fitotecnia, Universidad Autónoma Chapingo, Carr. México-Texcoco km 38.5, C.P. 56230 Chapingo, Edo. México Mexico
| | - A. J. Cabrera-Hidalgo
- Laboratorio de Biología Molecular, Departamento de Fitotecnia, Universidad Autónoma Chapingo, Carr. México-Texcoco km 38.5, C.P. 56230 Chapingo, Edo. México Mexico
| |
Collapse
|
134
|
Singh J, Zhao J, Vallejos CE. Differential transcriptome patterns associated with early seedling development in a wild and a domesticated common bean (Phaseolus vulgaris L.) accession. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:153-162. [PMID: 30080599 DOI: 10.1016/j.plantsci.2018.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Genes that control "Domestication Syndrome" traits were direct targets of selection, like those controlling increased seed size in the common bean. However, selection for this trait brought about unintentional selection on genes controlling seedling growth. We hypothesized that wild and domesticated plants have different early seedling growth patterns as an indirect consequence of selection for a larger seed size during domestication, and those differences resulted from changes in gene expression patterns of the wild ancestor. Large seeds pose a challenge to reserve remobilization during early heterotrophic growth, particularly during a transition towards more fertile alluvial soils. To address our hypothesis, we characterized the patterns of gene expression of cotyledon, root, and leaf tissues of 7-day old seedlings of a wild and a landrace accession of the common bean. Differential expression analyses detected genes with contrasting patterns of expression between the two genotypes in all three tissues. Some of the differentially expressed genes with contrasting genotypic patterns are known to have domestication-related signatures of selection. Among these genes were some transcription factors associated with key roles in development. These genes may represent targets of indirect selection and ultimately explain the growth phenotypic differences between wild and domesticated seedlings.
Collapse
Affiliation(s)
- Jugpreet Singh
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Jianxin Zhao
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| | - C Eduardo Vallejos
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
135
|
Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC, Fan L, Yu X. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 2018; 24:635-648. [PMID: 28992048 PMCID: PMC5726479 DOI: 10.1093/dnares/dsx031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant-fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection-resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi-host interactions.
Collapse
Affiliation(s)
- Zihong Ye
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Yao Pan
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Yafen Zhang
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Gulei Jin
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Xiaoping Yu
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
136
|
Specific LTR-Retrotransposons Show Copy Number Variations between Wild and Cultivated Sunflowers. Genes (Basel) 2018; 9:genes9090433. [PMID: 30158460 PMCID: PMC6162735 DOI: 10.3390/genes9090433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022] Open
Abstract
The relationship between variation of the repetitive component of the genome and domestication in plant species is not fully understood. In previous work, variations in the abundance and proximity to genes of long terminal repeats (LTR)-retrotransposons of sunflower (Helianthus annuus L.) were investigated by Illumina DNA sequencingtocompare cultivars and wild accessions. In this study, we annotated and characterized 22 specific retrotransposon families whose abundance varies between domesticated and wild genotypes. These families mostly belonged to the Chromovirus lineage of the Gypsy superfamily and were distributed overall chromosomes. They were also analyzed in respect to their proximity to genes. Genes close to retrotransposon were classified according to biochemical pathways, and differences between domesticated and wild genotypes are shown. These data suggest that structural variations related to retrotransposons might have occurred to produce phenotypic variation between wild and domesticated genotypes, possibly by affecting the expression of genes that lie close to inserted or deleted retrotransposons and belong to specific biochemical pathways as those involved in plant stress responses.
Collapse
|
137
|
Gaut BS, Seymour DK, Liu Q, Zhou Y. Demography and its effects on genomic variation in crop domestication. NATURE PLANTS 2018; 4:512-520. [PMID: 30061748 DOI: 10.1038/s41477-018-0210-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 05/20/2023]
Abstract
Over two thousand plant species have been modified morphologically through cultivation and human use. Here, we review three aspects of crop domestication that are currently undergoing marked revisions, due to analytical advancements and their application to whole genome resequencing (WGS) data. We begin by discussing the duration and demographic history of domestication. There has been debate as to whether domestication occurred quickly or slowly. The latter is tentatively supported both by fossil data and application of WGS data to sequentially Markovian coalescent methods that infer the history of effective population size. This history suggests the possibility of extended human impacts on domesticated lineages prior to their purposeful cultivation. We also make the point that demographic history matters, because it shapes patterns and levels of extant genetic diversity. We illustrate this point by discussing the evolutionary processes that contribute to the empirical observation that most crops examined to date have more putatively deleterious alleles than their wild relatives. These deleterious alleles may contribute to genetic load within crops and may be fitting targets for crop improvement. Finally, the same demographic factors are likely to shape the spectrum of structural variants (SVs) within crops. SVs are known to underlie many of the phenotypic changes associated with domestication and crop improvement, but we currently lack sufficient knowledge about the mechanisms that create SVs, their rates of origin, their population frequencies and their phenotypic effects.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Qingpo Liu
- College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Yongfeng Zhou
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
138
|
Abstract
Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.
Collapse
|
139
|
Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 2018; 50:796-802. [PMID: 29736014 DOI: 10.1038/s41588-018-0116-x] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/15/2018] [Indexed: 01/17/2023]
Abstract
The ancestors of Gossypium arboreum and Gossypium herbaceum provided the A subgenome for the modern cultivated allotetraploid cotton. Here, we upgraded the G. arboreum genome assembly by integrating different technologies. We resequenced 243 G. arboreum and G. herbaceum accessions to generate a map of genome variations and found that they are equally diverged from Gossypium raimondii. Independent analysis suggested that Chinese G. arboreum originated in South China and was subsequently introduced to the Yangtze and Yellow River regions. Most accessions with domestication-related traits experienced geographic isolation. Genome-wide association study (GWAS) identified 98 significant peak associations for 11 agronomically important traits in G. arboreum. A nonsynonymous substitution (cysteine-to-arginine substitution) of GaKASIII seems to confer substantial fatty acid composition (C16:0 and C16:1) changes in cotton seeds. Resistance to fusarium wilt disease is associated with activation of GaGSTF9 expression. Our work represents a major step toward understanding the evolution of the A genome of cotton.
Collapse
|
140
|
Abstract
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
141
|
Chen YH, Schoville SD. Editorial overview: Ecology: Ecological adaptation in agroecosystems: novel opportunities to integrate evolutionary biology and agricultural entomology. CURRENT OPINION IN INSECT SCIENCE 2018; 26:iv-viii. [PMID: 29764669 DOI: 10.1016/j.cois.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Yolanda H Chen
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
142
|
Liu C, Moschou PN. Phenotypic novelty by CRISPR in plants. Dev Biol 2018; 435:170-175. [DOI: 10.1016/j.ydbio.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
|
143
|
Zhang D, Sun L, Li S, Wang W, Ding Y, Swarm SA, Li L, Wang X, Tang X, Zhang Z, Tian Z, Brown PJ, Cai C, Nelson RL, Ma J. Elevation of soybean seed oil content through selection for seed coat shininess. NATURE PLANTS 2018; 4:30-35. [PMID: 29292374 DOI: 10.1038/s41477-017-0084-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 05/06/2023]
Abstract
Many leguminous species have adapted their seed coat with a layer of powdery bloom that contains hazardous allergens and makes the seeds less visible, offering duel protection against potential predators 1 . Nevertheless, a shiny seed surface without bloom is desirable for human consumption and health, and is targeted for selection under domestication. Here we show that seed coat bloom in wild soybeans is mainly controlled by Bloom1 (B1), which encodes a transmembrane transporter-like protein for biosynthesis of the bloom in pod endocarp. The transition from the 'bloom' to 'no-bloom' phenotypes is associated with artificial selection of a nucleotide mutation that naturally occurred in the coding region of B1 during soybean domestication. Interestingly, this mutation not only 'shined' the seed surface, but also elevated seed oil content in domesticated soybeans. Such an elevation of oil content in seeds appears to be achieved through b1-modulated upregulation of oil biosynthesis in pods. This study shows pleiotropy as a mechanism underlying the domestication syndrome 2 , and may pave new strategies for development of soybean varieties with increased seed oil content and reduced seed dust.
Collapse
Affiliation(s)
- Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Yanhua Ding
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Linghong Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Xuemin Tang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhifang Zhang
- Institute of Genetics and Developmental Biology, Beijing, China
| | - Zhixi Tian
- Institute of Genetics and Developmental Biology, Beijing, China
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Chunmei Cai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
144
|
|
145
|
Lundström M, Leino MW, Hagenblad J. Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat. BMC Genet 2017; 18:118. [PMID: 29262777 PMCID: PMC5738170 DOI: 10.1186/s12863-017-0566-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The NAM-B1 gene in wheat has for almost three decades been extensively studied and utilized in breeding programs because of its significant impact on grain protein and mineral content and pleiotropic effects on senescence rate and grain size. First detected in wild emmer wheat, the wild-type allele of the gene has been introgressed into durum and bread wheat. Later studies have, however, also found the presence of the wild-type allele in some domesticated subspecies. In this study we trace the evolutionary history of the NAM-B1 in tetraploid wheat species and evaluate it as a putative domestication gene. RESULTS Genotyping of wild and landrace tetraploid accessions showed presence of only null alleles in durum. Domesticated emmer wheats contained both null alleles and the wild-type allele while wild emmers, with one exception, only carried the wild-type allele. One of the null alleles consists of a deletion that covers several 100 kb. The other null-allele, a one-basepair frame-shift insertion, likely arose among wild emmer. This allele was the target of a selective sweep, extending over several 100 kb. CONCLUSIONS The NAM-B1 gene fulfils some criteria for being a domestication gene by encoding a trait of domestication relevance (seed size) and is here shown to have been under positive selection. The presence of both wild-type and null alleles in domesticated emmer does, however, suggest the gene to be a diversification gene in this species. Further studies of genotype-environment interactions are needed to find out under what conditions selection on different NAM-B1 alleles have been beneficial.
Collapse
Affiliation(s)
- Maria Lundström
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden
| | - Matti W Leino
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden.,Nordiska museet, Swedish Museum of Cultural History, Box 27820, SE-115 93, Stockholm, Sweden.,The Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jenny Hagenblad
- Linköping University, IFM Biology, SE-581 83, Linköping, Sweden.
| |
Collapse
|
146
|
González-González A, Hug SM, Rodríguez-Verdugo A, Patel JS, Gaut BS. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression. Mol Biol Evol 2017; 34:2839-2855. [PMID: 28961910 PMCID: PMC5815632 DOI: 10.1093/molbev/msx216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Shaun M. Hug
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| | - Alejandra Rodríguez-Verdugo
- Department of Environmental Systems Sciences, ETH Zürich, Zürich,
Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf,
Switzerland
| | | | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| |
Collapse
|
147
|
Chen YH, Shapiro LR, Benrey B, Cibrián-Jaramillo A. Back to the Origin: In Situ Studies Are Needed to Understand Selection during Crop Diversification. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
148
|
Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017; 171:470-480.e8. [PMID: 28919077 DOI: 10.1016/j.cell.2017.08.030] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/30/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022]
Abstract
Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.
Collapse
Affiliation(s)
| | - Zachary H Lemmon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jarrett Man
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
149
|
Díaz A, Martín-Hernández AM, Dolcet-Sanjuan R, Garcés-Claver A, Álvarez JM, Garcia-Mas J, Picó B, Monforte AJ. Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1837-1856. [PMID: 28584902 DOI: 10.1007/s00122-017-2928-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 05/06/2023]
Abstract
Loci on LGIV, VI, and VIII of melon genome are involved in the control of fruit domestication-related traits and they are candidate to have played a role in the domestication of the crop. The fruit of wild melons is very small (20-50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F2 population from the cross between the Indian wild melon "Trigonus" and the western elite cultivar 'Piel de Sapo'. Twenty-seven QTL were identified in at least two out of the three field trials. Six of them were also being detected in BC1 and BC3 populations derived from the same cross. Ten of them were related to fruit morphological traits, 12 to fruit size characters, and 5 to pulp content. The Trigonus alleles decreased the value of the characters, except for the QTL at andromonoecious gene at linkage group (LG) II, and the QTL for pulp content at LGV. QTL genotypes accounted for a considerable degree of the total phenotypic variation, reaching up to 46%. Around 66% of the QTL showed additive gene action, 19% exhibited dominance, and 25% consisted of overdominance. The regions on LGIV, VI, and VIII included the QTL with more consistent and strong effects on domestication-related traits. QTLs on those regions were validated in BC2S1, BC2S2, and BC3 families, with "Trigonus" allele decreasing the fruit morphological traits in all cases. The validated QTL could represent loci involved in melon domestication, although further experiments as genomic variation studies across wild and cultivated genotypes would be necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Aurora Díaz
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930., 50059, Saragossa, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n., 46022, Valencia, Spain
| | - Ana Montserrat Martín-Hernández
- IRTA, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Parc de Recerca de la UAB, C/Vall de Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Ramón Dolcet-Sanjuan
- IRTA Fruitcentre, PCiTAL Parc de Gardeny-Edifici Fruitcentre, 25003, Lleida, Spain
| | - Ana Garcés-Claver
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930., 50059, Saragossa, Spain
| | - José María Álvarez
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930., 50059, Saragossa, Spain
| | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Parc de Recerca de la UAB, C/Vall de Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n., 46022, Valencia, Spain
| | - Antonio José Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n., 46022, Valencia, Spain.
| |
Collapse
|
150
|
Zhong L, Yang Q, Yan X, Yu C, Su L, Zhang X, Zhu Y. Signatures of soft sweeps across the Dt1 locus underlying determinate growth habit in soya bean [Glycine max (L.) Merr.]. Mol Ecol 2017; 26:4686-4699. [PMID: 28627128 DOI: 10.1111/mec.14209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 02/02/2023]
Abstract
Determinate growth habit is an agronomically important trait associated with domestication in soya bean. Previous studies have demonstrated that the emergence of determinacy is correlated with artificial selection on four nonsynonymous mutations in the Dt1 gene. To better understand the signatures of the soft sweeps across the Dt1 locus and track the origins of the determinate alleles, we examined patterns of nucleotide variation in Dt1 and the surrounding genomic region of approximately 800 kb. Four local, asymmetrical hard sweeps on four determinate alleles, sized approximately 660, 120, 220 and 150 kb, were identified, which constitute the soft sweeps for the adaptation. These variable-sized sweeps substantially reflected the strength and timing of selection and indicated that the selection on the alleles had been completed rapidly within half a century. Statistics of EHH, iHS, H12 and H2/H1 based on haplotype data had the power to detect the soft sweeps, revealing distinct signatures of extensive long-range LD and haplotype homozygosity, and multiple frequent adaptive haplotypes. A haplotype network constructed for Dt1 and a phylogenetic tree based on its extended haplotype block implied independent sources of the adaptive alleles through de novo mutations or rare standing variation in quick succession during the selective phase, strongly supporting multiple origins of the determinacy. We propose that the adaptation of soya bean determinacy is guided by a model of soft sweeps and that this model might be indispensable during crop domestication or evolution.
Collapse
Affiliation(s)
- Limei Zhong
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiaomei Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Yu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Liu Su
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xifeng Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|