101
|
Su Y, Luo Y, Zhang P, Lin H, Pu W, Zhang H, Wang H, Hao Y, Xiao Y, Zhang X, Wei X, Nie S, Zhang K, Fu Q, Chen H, Huang N, Ren Y, Wu M, Chow BKC, Chen X, Jin W, Wang F, Zhao L, Rao F. Glucose-induced CRL4 COP1-p53 axis amplifies glycometabolism to drive tumorigenesis. Mol Cell 2023:S1097-2765(23)00432-X. [PMID: 37390815 DOI: 10.1016/j.molcel.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/19/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.
Collapse
Affiliation(s)
- Yang Su
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peitao Zhang
- Department of Thyroid and Neck Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hong Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weijie Pu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongyun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huifang Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yihang Xiao
- School of Science, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiayun Wei
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Siyue Nie
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong, 518083, China
| | - Qiuyu Fu
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Hao Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Niu Huang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingxuan Wu
- School of Science, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | | | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenfei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| | - Li Zhao
- Department of Thyroid and Neck Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
102
|
Shaaban M, Clapperton JA, Ding S, Kunzelmann S, Mäeots ME, Maslen SL, Skehel JM, Enchev RI. Structural and mechanistic insights into the CAND1-mediated SCF substrate receptor exchange. Mol Cell 2023:S1097-2765(23)00418-5. [PMID: 37339624 DOI: 10.1016/j.molcel.2023.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.
Collapse
Affiliation(s)
- Mohammed Shaaban
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Julie A Clapperton
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Märt-Erik Mäeots
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
103
|
De Cesare V. MALDI-TOF Mass Spectrometry for interrogating ubiquitin enzymes. Front Mol Biosci 2023; 10:1184934. [PMID: 37234921 PMCID: PMC10206504 DOI: 10.3389/fmolb.2023.1184934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
The attachment of ubiquitin to a substrate (ubiquitination or ubiquitylation) impacts its lifetime and regulates its function within the cell. Several classes of enzymes oversee the attachment of ubiquitin to the substrate: an E1 activating enzyme that makes ubiquitin chemically susceptible prior to the following stages of conjugation and ligation, respectively mediated by E2 conjugating enzymes (E2s) and E3 ligases (E3s). Around 40 E2s and more than 600 E3s are encoded in the human genome, and their combinatorial and cooperative behaviour dictate the tight specificity necessary for the regulation of thousands of substrates. The removal of ubiquitin is orchestrated by a network of about 100 deubiquitylating enzymes (DUBs). Many cellular processes are tightly controlled by ubiquitylation, which is essential in maintaining cellular homeostasis. Because of the fundamental role(s) of ubiquitylation, there is an interest in better understanding the function and specificity of the ubiquitin machinery. Since 2014, an expanding array of Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) Mass Spectrometry (MS) assays have been developed to systematically characterise the activity of a variety of ubiquitin enzymes in vitro. Here we recapitulate how MALDI-TOF MS aided the in vitro characterization of ubiquitin enzymes and the discovery of new and unexpected of E2s and DUBs functions. Given the versatility of the MALDI-TOF MS approach, we foreseen the use of this technology to further expand our understanding of ubiquitin and ubiquitin-like enzymes.
Collapse
Affiliation(s)
- Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
104
|
Monda JK, Ge X, Hunkeler M, Donovan KA, Ma MW, Jin CY, Leonard M, Fischer ES, Bennett EJ. HAPSTR1 localizes HUWE1 to the nucleus to limit stress signaling pathways. Cell Rep 2023; 42:112496. [PMID: 37167062 DOI: 10.1016/j.celrep.2023.112496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
HUWE1 is a large, enigmatic HECT-domain ubiquitin ligase implicated in the regulation of diverse pathways, including DNA repair, apoptosis, and differentiation. How HUWE1 engages its structurally diverse substrates and how HUWE1 activity is regulated are unknown. Using unbiased quantitative proteomics, we find that HUWE1 targets substrates in a largely cell-type-specific manner. However, we identify C16orf72/HAPSTR1 as a robust HUWE1 substrate in multiple cell lines. Previously established physical and genetic interactions between HUWE1 and HAPSTR1 suggest that HAPSTR1 positively regulates HUWE1 function. Here, we show that HAPSTR1 is required for HUWE1 nuclear localization and nuclear substrate targeting. Nuclear HUWE1 is required for both cell proliferation and modulation of stress signaling pathways, including p53 and nuclear factor κB (NF-κB)-mediated signaling. Combined, our results define a role for HAPSTR1 in gating critical nuclear HUWE1 functions.
Collapse
Affiliation(s)
- Julie K Monda
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuezhen Ge
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle W Ma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marilyn Leonard
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
105
|
Li L, Wang K, Zhou Y, Liu X. Review: A silent concert in developing plants: Dynamic assembly of cullin-RING ubiquitin ligases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111662. [PMID: 36822503 PMCID: PMC10065934 DOI: 10.1016/j.plantsci.2023.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plants appear quiet: quietly, they break the ground, expand leaves, search for resources, alert each other to invaders, and heal their own wounds. In contrast to the stationary appearance, the inside world of a plant is full of movements: cells divide to increase the body mass and form new organs; signaling molecules migrate among cells and tissues to drive transcriptional cascades and developmental programs; macromolecules, such as RNAs and proteins, collaborate with different partners to maintain optimal organismal function under changing cellular and environmental conditions. All these activities require a dynamic yet appropriately controlled molecular network in plant cells. In this short review, we used the regulation of cullin-RING ubiquitin ligases (CRLs) as an example to discuss how dynamic biochemical processes contribute to plant development. CRLs comprise a large family of modular multi-unit enzymes that determine the activity and stability of diverse regulatory proteins playing crucial roles in plant growth and development. The mechanism governing the dynamic assembly of CRLs is essential for CRL activity and biological function, and it may provide insights and implications for the regulation of other dynamic multi-unit complexes involved in fundamental processes such as transcription, translation, and protein sorting in plants.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
106
|
Baek K, Scott DC, Henneberg LT, King MT, Mann M, Schulman BA. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Cell 2023; 186:1895-1911.e21. [PMID: 37028429 PMCID: PMC10156175 DOI: 10.1016/j.cell.2023.02.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/09/2023]
Abstract
Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.
Collapse
Affiliation(s)
- Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Moeko T King
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
107
|
Kiss L, Rhinesmith T, Luptak J, Dickson CF, Weidenhausen J, Smyly S, Yang JC, Maslen SL, Sinning I, Neuhaus D, Clift D, James LC. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates. Nat Commun 2023; 14:2160. [PMID: 37061529 PMCID: PMC10105713 DOI: 10.1038/s41467-023-37504-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 04/17/2023] Open
Abstract
TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Tyler Rhinesmith
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jakub Luptak
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Jonas Weidenhausen
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
- EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Shannon Smyly
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Irmgard Sinning
- Biochemiezentrum der Universität Heidelberg (BZH), INF328, D-69120, Heidelberg, Germany
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
108
|
Abstract
Our understanding of the ubiquitin code has greatly evolved from conventional E1, E2 and E3 enzymes that modify Lys residues on specific substrates with a single type of ubiquitin chain to more complex processes that regulate and mediate ubiquitylation. In this Review, we discuss recently discovered endogenous mechanisms and unprecedented pathways by which pathogens rewrite the ubiquitin code to promote infection. These processes include unconventional ubiquitin modifications involving ester linkages with proteins, lipids and sugars, or ubiquitylation through a phosphoribosyl bridge involving Arg42 of ubiquitin. We also introduce the enzymatic pathways that write and reverse these modifications, such as the papain-like proteases of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Furthermore, structural studies have revealed that the ultimate functions of ubiquitin are mediated not simply by straightforward recognition by ubiquitin-binding domains. Instead, elaborate multivalent interactions between ubiquitylated targets or ubiquitin chains and their readers (for example, the proteasome, the MLL1 complex or DOT1L) can elicit conformational changes that regulate protein degradation or transcription. The newly discovered mechanisms provide opportunities for innovative therapeutic interventions for diseases such as cancer and infectious diseases.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
109
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
110
|
Rashpa R, Klages N, Schvartz D, Pasquarello C, Brochet M. The Skp1-Cullin1-FBXO1 complex is a pleiotropic regulator required for the formation of gametes and motile forms in Plasmodium berghei. Nat Commun 2023; 14:1312. [PMID: 36898988 PMCID: PMC10006092 DOI: 10.1038/s41467-023-36999-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Malaria-causing parasites of the Plasmodium genus undergo multiple developmental phases in the human and the mosquito hosts, regulated by various post-translational modifications. While ubiquitination by multi-component E3 ligases is key to regulate a wide range of cellular processes in eukaryotes, little is known about its role in Plasmodium. Here we show that Plasmodium berghei expresses a conserved SKP1/Cullin1/FBXO1 (SCFFBXO1) complex showing tightly regulated expression and localisation across multiple developmental stages. It is key to cell division for nuclear segregation during schizogony and centrosome partitioning during microgametogenesis. It is additionally required for parasite-specific processes including gamete egress from the host erythrocyte, as well as integrity of the apical and the inner membrane complexes (IMC) in merozoite and ookinete, two structures essential for the dissemination of these motile stages. Ubiquitinomic surveys reveal a large set of proteins ubiquitinated in a FBXO1-dependent manner including proteins important for egress and IMC organisation. We additionally demonstrate an interplay between FBXO1-dependent ubiquitination and phosphorylation via calcium-dependent protein kinase 1. Altogether we show that Plasmodium SCFFBXO1 plays conserved roles in cell division and is also important for parasite-specific processes in the mammalian and mosquito hosts.
Collapse
Affiliation(s)
- Ravish Rashpa
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| | - Natacha Klages
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland
| | - Domitille Schvartz
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Carla Pasquarello
- University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Department of Microbiology and Molecular Medicine, Geneva, Switzerland.
| |
Collapse
|
111
|
Hanzl A, Casement R, Imrichova H, Hughes SJ, Barone E, Testa A, Bauer S, Wright J, Brand M, Ciulli A, Winter GE. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat Chem Biol 2023; 19:323-333. [PMID: 36329119 PMCID: PMC7614256 DOI: 10.1038/s41589-022-01177-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined 'functional hotspots'. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.
Collapse
Affiliation(s)
- Alexander Hanzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ryan Casement
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Scott J Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
- Amphista Therapeutics Ltd., Newhouse, UK
| | - Eleonora Barone
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
- Amphista Therapeutics Ltd., Newhouse, UK
| | - Sophie Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Proxygen GmbH, Vienna, Austria
| | - Jane Wright
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
| | - Matthias Brand
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Proxygen GmbH, Vienna, Austria
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
112
|
Le‐Trilling VTK, Banchenko S, Paydar D, Leipe PM, Binting L, Lauer S, Graziadei A, Klingen R, Gotthold C, Bürger J, Bracht T, Sitek B, Jan Lebbink R, Malyshkina A, Mielke T, Rappsilber J, Spahn CMT, Voigt S, Trilling M, Schwefel D. Structural mechanism of CRL4-instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. EMBO J 2023; 42:e112351. [PMID: 36762436 PMCID: PMC9975947 DOI: 10.15252/embj.2022112351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.
Collapse
Affiliation(s)
| | - Sofia Banchenko
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Darius Paydar
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Zentrum für KinderpsychiatrieUniversitätsklinik ZürichZürichSwitzerland
| | - Pia Madeleine Leipe
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Lukas Binting
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Simon Lauer
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Robin Klingen
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Christine Gotthold
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jörg Bürger
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Thilo Bracht
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Robert Jan Lebbink
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anna Malyshkina
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Thorsten Mielke
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Christian MT Spahn
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sebastian Voigt
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mirko Trilling
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - David Schwefel
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
113
|
Middleton AJ, Day CL. From seeds to trees: how E2 enzymes grow ubiquitin chains. Biochem Soc Trans 2023; 51:353-362. [PMID: 36645006 PMCID: PMC9987950 DOI: 10.1042/bst20220880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Modification of proteins by ubiquitin is a highly regulated process that plays a critical role in eukaryotes, from the construction of signalling platforms to the control of cell division. Aberrations in ubiquitin transfer are associated with many diseases, including cancer and neurodegenerative disorders. The ubiquitin machinery generates a rich code on substrate proteins, spanning from single ubiquitin modifications to polyubiquitin chains with diverse linkage types. Central to this process are the E2 enzymes, which often determine the exact nature of the ubiquitin code. The focus of this mini-review is on the molecular details of how E2 enzymes can initiate and grow ubiquitin chains. In particular, recent developments and biochemical breakthroughs that help explain how the degradative E2 enzymes, Ube2s, Ube2k, and Ube2r, generate complex ubiquitin chains with exquisite specificity will be discussed.
Collapse
Affiliation(s)
- Adam J. Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L. Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
114
|
Liang D, Jiang L, Bhat SA, Missiroli S, Perrone M, Lauriola A, Adhikari R, Gudur A, Vasi Z, Ahearn I, Guardavaccaro D, Giorgi C, Philips M, Kuchay S. Palmitoylation and PDE6δ regulate membrane-compartment-specific substrate ubiquitylation and degradation. Cell Rep 2023; 42:111999. [PMID: 36662618 PMCID: PMC9988375 DOI: 10.1016/j.celrep.2023.111999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Substrate degradation by the ubiquitin proteasome system (UPS) in specific membrane compartments remains elusive. Here, we show that the interplay of two lipid modifications and PDE6δ regulates compartmental substrate targeting via the SCFFBXL2. FBXL2 is palmitoylated in a prenylation-dependent manner on cysteines 417 and 419 juxtaposed to the CaaX motif. Palmitoylation/depalmitoylation regulates its subcellular trafficking for substrate engagement and degradation. To control its subcellular distribution, lipid-modified FBXL2 interacts with PDE6δ. Perturbing the equilibrium between FBXL2 and PDE6δ disrupts the delivery of FBXL2 to all membrane compartments, whereas depalmitoylated FBXL2 is enriched on the endoplasmic reticulum (ER). Depalmitoylated FBXL2(C417S/C419S) promotes the degradation of IP3R3 at the ER, inhibits IP3R3-dependent mitochondrial calcium overload, and counteracts calcium-dependent cell death upon oxidative stress. In contrast, disrupting the PDE6δ-FBXL2 equilibrium has the opposite effect. These findings describe a mechanism underlying spatially-restricted substrate degradation and suggest that inhibition of FBXL2 palmitoylation and/or binding to PDE6δ may offer therapeutic benefits.
Collapse
Affiliation(s)
- David Liang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Ritika Adhikari
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Anish Gudur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Zahra Vasi
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA
| | - Ian Ahearn
- Department of Dermatology and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mark Philips
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB #1157, Chicago, IL 60607, USA.
| |
Collapse
|
115
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
116
|
Hanzl A, Barone E, Bauer S, Yue H, Nowak RP, Hahn E, Pankevich EV, Koren A, Kubicek S, Fischer ES, Winter GE. E3-Specific Degrader Discovery by Dynamic Tracing of Substrate Receptor Abundance. J Am Chem Soc 2023; 145:1176-1184. [PMID: 36602777 PMCID: PMC9853857 DOI: 10.1021/jacs.2c10784] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 01/06/2023]
Abstract
Targeted protein degradation (TPD) is a new pharmacology based on small-molecule degraders that induce proximity between a protein of interest (POI) and an E3 ubiquitin ligase. Of the approximately 600 E3s encoded in the human genome, only around 2% can be co-opted with degraders. This underrepresentation is caused by a paucity of discovery approaches to identify degraders for defined E3s. This hampers a rational expansion of the druggable proteome and stymies critical advancements in the field, such as tissue- and cell-specific degradation. Here, we focus on dynamic NEDD8 conjugation, a post-translational, regulatory circuit that controls the activity of 250 cullin RING E3 ligases (CRLs). Leveraging this regulatory layer enabled us to develop a scalable assay to identify compounds that alter the interactome of an E3 of interest by tracing their abundance after pharmacologically induced auto-degradation. Initial validation studies are performed for CRBN and VHL, but proteomics studies indicate broad applicability for many CRLs. Among amenable ligases, we select CRLDCAF15 for a proof-of-concept screen, leading to the identification of a novel DCAF15-dependent molecular glue degrader inducing the degradation of RBM23 and RBM39. Together, this strategy empowers the scalable identification of degraders specific to a ligase of interest.
Collapse
Affiliation(s)
- Alexander Hanzl
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Eleonora Barone
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Sophie Bauer
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Hong Yue
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Radosław P. Nowak
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Elisa Hahn
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Eugenia V. Pankevich
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Anna Koren
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Eric S. Fischer
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
117
|
Henneberg LT, Singh J, Duda DM, Baek K, Yanishevski D, Murray PJ, Mann M, Sidhu SS, Schulman B. Activity-based profiling of cullin-RING ligase networks by conformation-specific probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524048. [PMID: 36711970 PMCID: PMC9882101 DOI: 10.1101/2023.01.14.524048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cullin-RING E3 ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We report development of a synthetic antibody recognizing the active conformation of a NEDD8-linked cullin. We established a pipeline probing cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing CRLs, revealing the CRL complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, prime efficiency of targeted protein degradation, and are differentially rewired across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate development of degrader drugs.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jaspal Singh
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - David M Duda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Present address: The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David Yanishevski
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J Murray
- Immunoregulation, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- The Anvil Institute, Kitchener, Ontario, Canada, School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Brenda Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
118
|
Jiang C, Dai X, He S, Zhou H, Fang L, Guo J, Liu S, Zhang T, Pan W, Yu H, Fu T, Li D, Inuzuka H, Wang P, Xiao J, Wei W. Ring domains are essential for GATOR2-dependent mTORC1 activation. Mol Cell 2023; 83:74-89.e9. [PMID: 36528027 PMCID: PMC11027793 DOI: 10.1016/j.molcel.2022.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation. Mechanistically, via interacting with Ring domains of WDR59 and WDR24, the Ring domain of Mios acts as a hub to maintain GATOR2 integrity, disruption of which leads to self-ubiquitination of WDR24. Physiologically, leucine stimulation dissociates Sestrin2 from the Ring domain of WDR24 and confers its availability to UBE2D3 and subsequent ubiquitination of NPRL2, contributing to GATOR2-mediated GATOR1 inactivation. As such, WDR24 ablation or Ring deletion prevents mTORC1 activation, leading to severe growth defects and embryonic lethality at E10.5 in mice. Hence, our findings demonstrate that Ring domains are essential for GATOR2 to transmit amino acid availability to mTORC1 and further reveal the essentiality of nutrient sensing during embryonic development.
Collapse
Affiliation(s)
- Cong Jiang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohui He
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hongfei Zhou
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haihong Yu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianmin Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianru Xiao
- Joint Research Center for Musculoskeletal Tumor of Shanghai Changzheng Hospital and University of Shanghai for Science and Technology, Spinal Tumor Center, Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
119
|
Nardone C, Palanski BA, Scott DC, Timms RT, Barber KW, Gu X, Mao A, Leng Y, Watson EV, Schulman BA, Cole PA, Elledge SJ. A central role for regulated protein stability in the control of TFE3 and MITF by nutrients. Mol Cell 2023; 83:57-73.e9. [PMID: 36608670 PMCID: PMC9908011 DOI: 10.1016/j.molcel.2022.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1β-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.
Collapse
Affiliation(s)
- Christopher Nardone
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brad A Palanski
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Karl W Barber
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aoyue Mao
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Emma V Watson
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
120
|
Oliveira CAB, Isaakova E, Beli P, Xirodimas DP. A Mass Spectrometry-Based Strategy for Mapping Modification Sites for the Ubiquitin-Like Modifier NEDD8. Methods Mol Biol 2023; 2602:137-149. [PMID: 36446972 DOI: 10.1007/978-1-0716-2859-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The identification of modification sites for ubiquitin and ubiquitin-like modifiers is an essential step in the elucidation of controlled processes. The ubiquitin-like modifier NEDD8 is an important regulator of plethora of biological processes both under homeostatic and proteotoxic stress conditions. Here, we describe a detailed protocol for proteome-wide identification of NEDDylation sites. The approach is based on the use of cell lines stably expressing the NEDD8R74K mutant. Digestion of samples with Lysyl endopeptidase generates peptides with a di-glycine remnant only from proteins modified with NEDD8R74K but not with ubiquitin or ISG15. The isolation of these peptides with anti-di-glycine antibodies (K-ε-GG) allows the identification of NEDDylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
| | | | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany.
| | | |
Collapse
|
121
|
Cai Q, Yan J, Duan R, Zhu Y, Hua Y, Liao Y, Li Q, Li W, Ji S. E3 ligase Cul2 mediates Drosophila early germ cell differentiation through targeting Bam. Dev Biol 2023; 493:103-108. [PMID: 36423673 DOI: 10.1016/j.ydbio.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Drosophila ovary has been one of the most mature and excellent systems for studying the in vivo regulatory mechanisms of stem cell fate determination. It has been well-known that the bone morphogenetic protein (BMP) signaling released by the niche cells promotes the maintenance of germline stem cells (GSCs) through inhibiting the transcription of the bag-of-marbles (bam) gene, which encodes a key factor for GSC differentiation. However, whether Bam is regulated at the post-translational level remains largely unknown. Here we show that the E3 ligase Cullin-2 (Cul2) is involved in modulating Bam ubiquitination, which occurs probably at multiple lysine residues of Bam's C-terminal region. Genetic evidence further supports the notion that Cul2-mediated Bam ubiquitination and turnover are essential for GSC maintenance and proper germline development. Collectively, our data not only uncovers a novel regulatory mechanism by which Bam is controlled at the post-translational level, but also provides new insights into how Cullin family protein determines the differentiation fate of early germ cells.
Collapse
Affiliation(s)
- Qingshuang Cai
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jing Yan
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Renjie Duan
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yangyang Zhu
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yongzhi Hua
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yongrong Liao
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qingyang Li
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Weini Li
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Shanming Ji
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
122
|
Schulze-Niemand E, Naumann M. The COP9 signalosome: A versatile regulatory hub of Cullin-RING ligases. Trends Biochem Sci 2023; 48:82-95. [PMID: 36041947 DOI: 10.1016/j.tibs.2022.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022]
Abstract
The COP9 signalosome (CSN) is a universal regulator of Cullin-RING ubiquitin ligases (CRLs) - a family of modular enzymes that control various cellular processes via timely degradation of key signaling proteins. The CSN, with its eight-subunit architecture, employs multisite binding of CRLs and inactivates CRLs by removing a small ubiquitin-like modifier named neural precursor cell-expressed, developmentally downregulated 8 (Nedd8). Besides the active site of the catalytic subunit CSN5, two allosteric sites are present in the CSN, one of which recognizes the substrate recognition module and the presence of CRL substrates, and the other of which can 'glue' the CSN-CRL complex by recruitment of inositol hexakisphosphate. In this review, we present recent findings on the versatile regulation of CSN-CRL complexes.
Collapse
Affiliation(s)
- Eric Schulze-Niemand
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
123
|
Kurishev AO, Karpov DS, Nadolinskaia NI, Goncharenko AV, Golimbet VE. CRISPR/Cas-Based Approaches to Study Schizophrenia and Other Neurodevelopmental Disorders. Int J Mol Sci 2022; 24:241. [PMID: 36613684 PMCID: PMC9820593 DOI: 10.3390/ijms24010241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The study of diseases of the central nervous system (CNS) at the molecular level is challenging because of the complexity of neural circuits and the huge number of specialized cell types. Moreover, genomic association studies have revealed the complex genetic architecture of schizophrenia and other genetically determined mental disorders. Investigating such complex genetic architecture to decipher the molecular basis of CNS pathologies requires the use of high-throughput models such as cells and their derivatives. The time is coming for high-throughput genetic technologies based on CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas systems to manipulate multiple genomic targets. CRISPR/Cas systems provide the desired complexity, versatility, and flexibility to create novel genetic tools capable of both altering the DNA sequence and affecting its function at higher levels of genetic information flow. CRISPR/Cas tools make it possible to find and investigate the intricate relationship between the genotype and phenotype of neuronal cells. The purpose of this review is to discuss innovative CRISPR-based approaches for studying the molecular mechanisms of CNS pathologies using cellular models.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Nonna I. Nadolinskaia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe sh. 34, 115522 Moscow, Russia
| |
Collapse
|
124
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [PMID: 36530999 PMCID: PMC9753703 DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 02/13/2025] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
Affiliation(s)
- Jiaxun Song
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaofeng Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lianhua Piao
- Jiangsu University of Technology, Changzhou, China
| | - Jiawen Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Pu Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming Zhuang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Liu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhiwei Liu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
- Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
125
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
126
|
Hänle-Kreidler S, Richter KT, Hoffmann I. The SCF-FBXW7 E3 ubiquitin ligase triggers degradation of histone 3 lysine 4 methyltransferase complex component WDR5 to prevent mitotic slippage. J Biol Chem 2022; 298:102703. [PMID: 36395886 PMCID: PMC9764181 DOI: 10.1016/j.jbc.2022.102703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
During prolonged mitotic arrest induced by antimicrotubule drugs, cell fate decision is determined by two alternative pathways, one leading to cell death and the other inducing premature escape from mitosis by mitotic slippage. FBWX7, a member of the F-box family of proteins and substrate-targeting subunit of the SKP1-CUL1-F-Box E3 ubiquitin ligase complex, promotes mitotic cell death and prevents mitotic slippage, but molecular details underlying these roles for FBWX7 are unclear. In this study, we report that WDR5 (WD-repeat containing protein 5), a component of the mixed lineage leukemia complex of histone 3 lysine 4 methyltransferases, is a substrate of FBXW7. We determined by coimmunoprecipitation experiments and in vitro binding assays that WDR5 interacts with FBXW7 in vivo and in vitro. SKP1-CUL1-F-Box-FBXW7 mediates ubiquitination of WDR5 and targets it for proteasomal degradation. Furthermore, we find that WDR5 depletion counteracts FBXW7 loss of function by reducing mitotic slippage and polyploidization. In conclusion, our data elucidate a new mechanism in mitotic cell fate regulation, which might contribute to prevent chemotherapy resistance in patients after antimicrotubule drug treatment.
Collapse
Affiliation(s)
- Simon Hänle-Kreidler
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kai T. Richter
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Heidelberg, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Heidelberg, Germany,For correspondence: Ingrid Hoffmann
| |
Collapse
|
127
|
Hoyer MJ, Swarup S, Harper JW. Mechanisms Controlling Selective Elimination of Damaged Lysosomes. CURRENT OPINION IN PHYSIOLOGY 2022; 29:100590. [PMID: 36713230 PMCID: PMC9878802 DOI: 10.1016/j.cophys.2022.100590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lysosomes are subjected to physiological and patho-physiological insults over the course of their life cycle and are accordingly repaired or recycled. Lysophagy, the selective degradation of lysosomes via autophagy, occurs upon unrepairable lysosomal membrane rupture; galectins bind to glycosylated macromolecules in the lysosome lumen, orchestrating a series of cellular responses to promote autophagic recycling of damaged lysosomes and transcriptional upregulation of lysosomal genes. Damaged lysosomes are ubiquitylated, resulting in the recruitment of ubiquitin-binding autophagy receptors, which promote assembly of an autophagosome around damaged lysosomes for delivery to healthy lysosomes for degradation. Here, we review the current state of our understanding of mechanisms used to mark and eliminate damaged lysosomes, and discuss the complexities of galectin function and ubiquitin-chain linkage types. Finally, we discuss the limitations of available data and challenges with the goal of understanding the mechanistic basis of key steps in lysophagic flux.
Collapse
Affiliation(s)
- Melissa J. Hoyer
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston MA 02115, USA,Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston MA 02115, USA,Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
128
|
Chen Z, Ioris RM, Richardson S, Van Ess AN, Vendrell I, Kessler BM, Buffa FM, Busino L, Clifford SC, Bullock AN, D'Angiolella V. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Cell Death Differ 2022; 29:1955-1969. [PMID: 35379950 PMCID: PMC9525703 DOI: 10.1038/s41418-022-00983-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/30/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumour in children. Genomic studies have identified distinct disease subgroups: wnt/wingless (WNT), sonic hedgehog (SHH), and non-WNT/non-SHH, comprising group 3 and group 4. Alterations in WNT and SHH signalling form the pathogenetic basis for their subgroups, whereas those for non-WNT/non-SHH tumours remain largely elusive. Recent analyses have revealed recurrent in-frame insertions in the E3 ubiquitin ligase adaptor Kelch Repeat and BTB Domain Containing 4 (KBTBD4) in cases of group 3/4 medulloblastoma. Critically, group 3/4 tumours with KBTBD4 mutations typically lack other gene-specific alterations, such as MYC amplification, indicating KBTBD4 insertion mutations as the primary genetic driver. Delineating the role of KBTBD4 mutations thus offers significant opportunities to understand tumour pathogenesis and to exploit the underpinning mechanisms therapeutically. Here, we show a novel mechanism in cancer pathogenesis whereby indel mutations in KBTBD4 drive its recognition of neo-substrates for degradation. We observe that KBTBD4 mutants promote the recruitment and ubiquitylation of the REST Corepressor (CoREST), which forms a complex to modulate chromatin accessibility and transcriptional programmes. The degradation of CoREST promoted by KBTBD4 mutation diverts epigenetic programmes inducing significant alterations in transcription to promote increased stemness of cancer cells. Transcriptional analysis of >200 human group 3 and 4 medulloblastomas by RNA-seq, highlights the presence of CoREST and stem-like signatures in tumours with KBTBD4 mutations, which extend to a further sub-set of non-mutant tumours, suggesting CoREST alterations as a novel pathogenetic mechanism of wide relevance in groups 3 and 4. Our findings uncover KBTBD4 mutation as a novel driver of epigenetic reprogramming in non-WNT/non-SHH medulloblastoma, establish a novel mode of tumorigenesis through gain-of-function mutations in ubiquitin ligases (neo-substrate recruitment) and identify both mutant KBTBD4 and CoREST complexes as new druggable targets for improved tumour-specific therapies.
Collapse
Affiliation(s)
- Zhuoyao Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Rafael M Ioris
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Ava N Van Ess
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iolanda Vendrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Francesca M Buffa
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Luca Busino
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
129
|
Boland AW, Gas-Pascual E, Nottingham BL, van der Wel H, Daniel NG, Sheikh MO, Schafer CM, West CM. Oxygen-dependent regulation of E3(SCF)ubiquitin ligases and a Skp1-associated JmjD6 homolog in development of the social amoeba Dictyostelium. J Biol Chem 2022; 298:102305. [PMID: 35933019 PMCID: PMC9485057 DOI: 10.1016/j.jbc.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here, we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2-sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA-KO cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-KO cells. Although a double-KO of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a nonheme dioxygenase shown to have physiological O2 dependence, is conserved across protists with its F-box and other domains, and is related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in WT relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic downregulation via PhyA and association with Skp1.
Collapse
Affiliation(s)
- Andrew W Boland
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Braxton L Nottingham
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nitin G Daniel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M Schafer
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
130
|
Wang W, Shi B, Cong R, Hao M, Peng Y, Yang H, Song J, Feng D, Zhang N, Li D. RING-finger E3 ligases regulatory network in PI3K/AKT-mediated glucose metabolism. Cell Death Discov 2022; 8:372. [PMID: 36002460 PMCID: PMC9402544 DOI: 10.1038/s41420-022-01162-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays an essential role in glucose metabolism, promoting glycolysis and resisting gluconeogenesis. PI3K/AKT signaling can directly alter glucose metabolism by phosphorylating several metabolic enzymes or regulators of nutrient transport. It can indirectly promote sustained aerobic glycolysis by increasing glucose transporters and glycolytic enzymes, which are mediated by downstream transcription factors. E3 ubiquitin ligase RING-finger proteins are mediators of protein post-translational modifications and include the cullin-RING ligase complexes, the tumor necrosis factor receptor-associated family, the tripartite motif family and etc. Some members of the RING family play critical roles in regulating cell signaling and are involved in the development and progression of various metabolic diseases, such as cancer, diabetes, and dyslipidemia. And with the progression of modern research, as a negative or active regulator, the RING-finger adaptor has been found to play an indispensable role in PI3K/AKT signaling. However, no reviews have comprehensively clarified the role of RING-finger E3 ligases in PI3K/AKT-mediated glucose metabolism. Therefore, in this review, we focus on the regulation and function of RING ligases in PI3K/AKT-mediated glucose metabolism to establish new insights into the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Wenke Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bei Shi
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Ruiting Cong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingjun Hao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Peng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyue Yang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiahui Song
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Feng
- Education Center for Clinical Skill Practice, China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
131
|
Hopf LVM, Baek K, Klügel M, von Gronau S, Xiong Y, Schulman BA. Structure of CRL7 FBXW8 reveals coupling with CUL1-RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation. Nat Struct Mol Biol 2022; 29:854-862. [PMID: 35982156 PMCID: PMC9507964 DOI: 10.1038/s41594-022-00815-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Most cullin-RING ubiquitin ligases (CRLs) form homologous assemblies between a neddylated cullin-RING catalytic module and a variable substrate-binding receptor (for example, an F-box protein). However, the vertebrate-specific CRL7FBXW8 is of interest because it eludes existing models, yet its constituent cullin CUL7 and F-box protein FBXW8 are essential for development, and CUL7 mutations cause 3M syndrome. In this study, cryo-EM and biochemical analyses reveal the CRL7FBXW8 assembly. CUL7’s exclusivity for FBXW8 among all F-box proteins is explained by its unique F-box-independent binding mode. In CRL7FBXW8, the RBX1 (also known as ROC1) RING domain is constrained in an orientation incompatible with binding E2~NEDD8 or E2~ubiquitin intermediates. Accordingly, purified recombinant CRL7FBXW8 lacks auto-neddylation and ubiquitination activities. Instead, our data indicate that CRL7 serves as a substrate receptor linked via SKP1–FBXW8 to a neddylated CUL1–RBX1 catalytic module mediating ubiquitination. The structure reveals a distinctive CRL–CRL partnership, and provides a framework for understanding CUL7 assemblies safeguarding human health. The cryo-EM structure of CRL7FBXW8 shows that CUL7–RBX1 binds FBXW8–SKP1 in an F-box-independent manner. Bridged by FBXW8–SKP1, CRL7FBXW8 forms a multi-cullin E3 ligase complex with neddylated CUL1–RBX1, which ubiquitinates a substrate recruited to CUL7.
Collapse
Affiliation(s)
- Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
132
|
Fujisawa R, Polo Rivera C, Labib KPM. Multiple UBX proteins reduce the ubiquitin threshold of the mammalian p97-UFD1-NPL4 unfoldase. eLife 2022; 11:e76763. [PMID: 35920641 PMCID: PMC9377798 DOI: 10.7554/elife.76763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The p97/Cdc48 ATPase and its ubiquitin receptors Ufd1-Npl4 are essential to unfold ubiquitylated proteins in many areas of eukaryotic cell biology. In yeast, Cdc48-Ufd1-Npl4 is controlled by a quality control mechanism, whereby substrates must be conjugated to at least five ubiquitins. Here, we show that mammalian p97-UFD1-NPL4 is governed by a complex interplay between additional p97 cofactors and the number of conjugated ubiquitins. Using reconstituted assays for the disassembly of ubiquitylated CMG (Cdc45-MCM-GINS) helicase by human p97-UFD1-NPL4, we show that the unfoldase has a high ubiquitin threshold for substrate unfolding, which can be reduced by the UBX proteins UBXN7, FAF1, or FAF2. Our data indicate that the UBX proteins function by binding to p97-UFD1-NPL4 and stabilising productive interactions between UFD1-NPL4 and K48-linked chains of at least five ubiquitins. Stimulation by UBXN7 is dependent upon known ubiquitin-binding motifs, whereas FAF1 and FAF2 use a previously uncharacterised coiled-coil domain to reduce the ubiquitin threshold of p97-UFD1-NPL4. We show that deleting the Ubnx7 and Faf1 genes impairs CMG disassembly during S-phase and mitosis and sensitises cells to reduced ubiquitin ligase activity. These findings indicate that multiple UBX proteins are important for the efficient unfolding of ubiquitylated proteins by p97-UFD1-NPL4 in mammalian cells.
Collapse
Affiliation(s)
- Ryo Fujisawa
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Cristian Polo Rivera
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Karim PM Labib
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
133
|
Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci 2022; 23:7725. [PMID: 35887072 PMCID: PMC9320238 DOI: 10.3390/ijms23147725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.
Collapse
Affiliation(s)
| | | | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (A.B.-B.); (J.B.-B.)
| |
Collapse
|
134
|
Ji J, Shen J, Xu Y, Xie M, Qian Q, Qiu T, Shi W, Ren D, Ma J, Liu W, Liu B. FBXO2 targets glycosylated SUN2 for ubiquitination and degradation to promote ovarian cancer development. Cell Death Dis 2022; 13:442. [PMID: 35525855 PMCID: PMC9079088 DOI: 10.1038/s41419-022-04892-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
SAD1/UNC84 domain protein-2 (SUN2) plays a tumor suppressor role in various types of cancer by inhibiting cancer cell proliferation, migration and promoting apoptosis. However, the post-translational regulation of SUN2 and the cellular mechanism responsible for its proteasomal degradation remains largely unknown. Here, we show that FBXO2, an E3 ubiquitin ligase of the F-box proteins (FBPs) family targets glycosylated SUN2 for ubiquitination and degradation via the ubiquitin-proteasome system (UPS). By integrating the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the Encyclopedia of Cancer Cell Lines (CCLE) databases, we revealed that FBXO2 was selectively highly expressed in ovarian cancer (OV) tissues and cells. Patients with relatively high FBXO2 expression levels were associated with worse prognosis. Manipulation of the expression of FBXO2 affecting ovarian cancer cell proliferation, migration/invasion in vitro, and tumor growth in mice in vivo. The transcription factor SOX6 promoted FBXO2 expression by recognizing a putative response element localized on the promoter region of FBXO2. Abnormally highly expressed FBXO2 recognized and targeted glycosylated SUN2 protein for ubiquitination-depended degradation to prevent cell apoptosis, promote cell proliferation, and ultimately promote the progression of OV. Thus, we revealed a new SOX6-FBXO2-SUN2 axis that contributed to the development of OV, and targeting this axis may represent an effective OV treatment strategy.
Collapse
Affiliation(s)
- Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jing Shen
- Department of Obstetrics and Gynecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yuxin Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengru Xie
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Teng Qiu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wen Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dexu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinming Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
135
|
Castel P. Defective protein degradation in genetic disorders. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166366. [PMID: 35158019 PMCID: PMC8977116 DOI: 10.1016/j.bbadis.2022.166366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.
Collapse
Affiliation(s)
- Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, 10016, United States of America.
| |
Collapse
|
136
|
Jiang H, Chiang CY, Chen Z, Nathan S, D'Agostino G, Paulo JA, Song G, Zhu H, Gabelli SB, Cole PA. Enzymatic analysis of WWP2 E3 ubiquitin ligase using protein microarrays identifies autophagy-related substrates. J Biol Chem 2022; 298:101854. [PMID: 35331737 PMCID: PMC9034101 DOI: 10.1016/j.jbc.2022.101854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
WWP2 is a HECT E3 ligase that targets protein Lys residues for ubiquitination and is comprised of an N-terminal C2 domain, four central WW domains, and a C-terminal catalytic HECT domain. The peptide segment between the middle WW domains, the 2,3-linker, is known to autoinhibit the catalytic domain, and this autoinhibition can be relieved by phosphorylation at Tyr369. Several protein substrates of WWP2 have been identified, including the tumor suppressor lipid phosphatase PTEN, but the full substrate landscape and biological functions of WWP2 remain to be elucidated. Here, we used protein microarray technology and the activated enzyme phosphomimetic mutant WWP2Y369E to identify potential WWP2 substrates. We identified 31 substrate hits for WWP2Y369E using protein microarrays, of which three were known autophagy receptors (NDP52, OPTN, and SQSTM1). These three hits were validated with in vitro and cell-based transfection assays and the Lys ubiquitination sites on these proteins were mapped by mass spectrometry. Among the mapped ubiquitin sites on these autophagy receptors, many had been previously identified in the endogenous proteins. Finally, we observed that WWP2 KO SH-SH5Y neuroblastoma cells using CRISPR-Cas9 showed a defect in mitophagy, which could be rescued by WWP2Y369E transfection. These studies suggest that WWP2-mediated ubiquitination of the autophagy receptors NDP52, OPTN, and SQSTM1 may positively contribute to the regulation of autophagy.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claire Y Chiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gabriel D'Agostino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
137
|
Cable J, Weber-Ban E, Clausen T, Walters KJ, Sharon M, Finley DJ, Gu Y, Hanna J, Feng Y, Martens S, Simonsen A, Hansen M, Zhang H, Goodwin JM, Reggio A, Chang C, Ge L, Schulman BA, Deshaies RJ, Dikic I, Harper JW, Wertz IE, Thomä NH, Słabicki M, Frydman J, Jakob U, David DC, Bennett EJ, Bertozzi CR, Sardana R, Eapen VV, Carra S. Targeted protein degradation: from small molecules to complex organelles-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1510:79-99. [PMID: 35000205 DOI: 10.1111/nyas.14745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.
Collapse
Affiliation(s)
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter and Medical University of Vienna, Vienna, Austria
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Michal Sharon
- Department of Bimolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel J Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Yangnan Gu
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, California
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Yue Feng
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sascha Martens
- Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, California
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences and College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | - Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Chunmei Chang
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Ingrid E Wertz
- Departments of Molecular Oncology and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California
- Bristol Myers Squibb, Brisbane, California
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Judith Frydman
- Biophysics Graduate Program, Department of Biology and Department of Genetics, Stanford University, Stanford, California
- Biohub, San Francisco, California
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Della C David
- German Center for Neurodegenerative Diseases (DZNE), and Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Carolyn R Bertozzi
- Department of Chemistry and Stanford ChEM-H, Stanford University and Howard Hughes Medical Institute, Stanford, California
| | - Richa Sardana
- Weill Institute of Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Vinay V Eapen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
138
|
New classes of E3 ligases illuminated by chemical probes. Curr Opin Struct Biol 2022; 73:102341. [DOI: 10.1016/j.sbi.2022.102341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
139
|
Bai N, Riching KM, Makaju A, Wu H, Acker TM, Ou SC, Zhang Y, Shen X, Bulloch DN, Rui H, Gibson BW, Daniels DL, Urh M, Rock BM, Humphreys SC. Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. J Biol Chem 2022; 298:101653. [PMID: 35101445 PMCID: PMC9019245 DOI: 10.1016/j.jbc.2022.101653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."
Collapse
Affiliation(s)
- Nan Bai
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA.
| | - Kristin M Riching
- Research and Development Department, Promega Corporation, Madison, Wisconsin, USA.
| | - Aman Makaju
- Discovery Attribute Science, Amgen Research, South San Francisco, California, USA
| | - Hao Wu
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Timothy M Acker
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Shu-Ching Ou
- Discovery Attribute Science, Amgen Research, Thousand Oaks, California, USA
| | - Yaru Zhang
- Oncology, Amgen Research, Thousand Oaks, California, USA
| | - Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Daryl N Bulloch
- Discovery Attribute Science, Amgen Research, South San Francisco, California, USA
| | - Huan Rui
- Discovery Attribute Science, Amgen Research, Thousand Oaks, California, USA
| | - Bradford W Gibson
- Discovery Attribute Science, Amgen Research, South San Francisco, California, USA
| | - Danette L Daniels
- Research and Development Department, Promega Corporation, Madison, Wisconsin, USA
| | - Marjeta Urh
- Research and Development Department, Promega Corporation, Madison, Wisconsin, USA
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA
| | - Sara C Humphreys
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA.
| |
Collapse
|
140
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
141
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
142
|
Witus SR, Zhao W, Brzovic PS, Klevit RE. BRCA1/BARD1 is a nucleosome reader and writer. Trends Biochem Sci 2022; 47:582-595. [DOI: 10.1016/j.tibs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
|
143
|
Cowan AD, Ciulli A. Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annu Rev Biochem 2022; 91:295-319. [PMID: 35320687 DOI: 10.1146/annurev-biochem-032620-104421] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methods to direct the degradation of protein targets with proximity-inducing molecules that coopt the cellular degradation machinery are advancing in leaps and bounds, and diverse modalities are emerging. The most used and well-studied approach is to hijack E3 ligases of the ubiquitin-proteasome system. E3 ligases use specific molecular recognition to determine which proteins in the cell are ubiquitinated and degraded. This review focuses on the structural determinants of E3 ligase recruitment of natural substrates and neo-substrates obtained through monovalent molecular glues and bivalent proteolysis-targeting chimeras. We use structures to illustrate the different types of substrate recognition and assess the basis for neo-protein-protein interactions in ternary complex structures. The emerging structural and mechanistic complexity is reflective of the diverse physiological roles of protein ubiquitination. This molecular insight is also guiding the application of structure-based design approaches to the development of new and existing degraders as chemical tools and therapeutics. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Angus D Cowan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| |
Collapse
|
144
|
The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochem Soc Trans 2022; 50:473-485. [PMID: 35129615 DOI: 10.1042/bst20210731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Due to its fundamental role in all eukaryotic cells, a deeper understanding of the molecular mechanisms underlying ubiquitination is of central importance. Being responsible for chain specificity and substrate recognition, E3 ligases are the selective elements of the ubiquitination process. In this review, we discuss different cellular pathways regulated by one of the first identified E3 ligase, NEDD4, focusing on its pathophysiological role, its known targets and modulators. In addition, we highlight small molecule inhibitors that act on NEDD4 and discuss new strategies to effectively target this E3 enzyme.
Collapse
|
145
|
Chaithongyot S, Naumann M. Helicobacter pylori-induced reactive oxygen species direct turnover of CSN-associated STAMBPL1 and augment apoptotic cell death. Cell Mol Life Sci 2022; 79:86. [PMID: 35066747 PMCID: PMC8784504 DOI: 10.1007/s00018-022-04135-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Deubiquitinylases (DUBs) are central regulators of the ubiquitin system involved in protein regulation and cell signalling and are important for a variety of physiological processes. Most DUBs are cysteine proteases, and few other proteases are metalloproteases of the JAB1/MPN +/MOV34 protease family (JAMM). STAM-binding protein like 1 (STAMBPL1), a member of the JAMM family, cleaves ubiquitin bonds and has a function in regulating cell survival, Tax-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and epithelial-mesenchymal transition. However, the molecular mechanism by which STAMBPL1 influences cell survival is not well defined, especially with regard to its deubiquitinylation function. Here, we show that reactive oxygen species (ROS) induced by chemotherapeutic agents or the human microbial pathogen Helicobacter pylori can induce cullin 1-RING ubiquitin ligase (CRL1) and 26S proteasome-dependent degradation STAMBPL1. Interestingly, STAMBPL1 has a direct interaction with the constitutive photomorphogenic 9 (COP9 or CSN) signalosome subunits CSN5 and CSN6. The interaction with the CSN is required for the stabilisation and function of the STAMBPL1 protein. In addition, STAMBPL1 deubiquitinylates the anti-apoptotic protein Survivin and thus ameliorates cell survival. In summary, our data reveal a previously unknown mechanism by which the deubiquitinylase STAMBPL1 and the E3 ligase CRL1 balance the level of Survivin degradation and thereby determine apoptotic cell death. In response to genotoxic stress, the degradation of STAMBPL1 augments apoptotic cell death. This new mechanism may be useful to develop therapeutic strategies targeting STAMBPL1 in tumours that have high STAMBPL1 and Survivin protein levels.
Collapse
|
146
|
Lebensohn AM, Bazan JF, Rohatgi R. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Curr Top Dev Biol 2022; 150:25-89. [PMID: 35817504 DOI: 10.1016/bs.ctdb.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.
Collapse
|
147
|
Li L, Garsamo M, Yuan J, Wang X, Lam SH, Varala K, Boavida LC, Zhou Y, Liu X. CAND1 is required for pollen viability in Arabidopsis thaliana-a test of the adaptive exchange hypothesis. FRONTIERS IN PLANT SCIENCE 2022; 13:866086. [PMID: 35968124 PMCID: PMC9366119 DOI: 10.3389/fpls.2022.866086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/04/2022] [Indexed: 05/11/2023]
Abstract
The dynamic assembly of SKP1•CUL1•F-box protein (SCF) ubiquitin ligases is important for protein ubiquitination and degradation. This process is enabled by CAND1, which exchanges F-box proteins associated with the common CUL1 scaffold, and thereby, recycles the limited CUL1 core and allows diverse F-box proteins to assemble active SCFs. Previous human cell biological and computational studies have led to the adaptive exchange hypothesis, which suggests that the CAND1-mediated exchange confers plasticity on the SCF system, allowing cells to tolerate large variations in F-box protein expression. Here, we tested this hypothesis using Arabidopsis thaliana, a multicellular organism expressing hundreds of F-box protein genes at variable levels in different tissues. The cand1 null mutant in Arabidopsis is viable but produce almost no seeds. Bioinformatic, cell biological, and developmental analyses revealed that the low fertility in the cand1 mutant is associated with cell death in pollen, where the net expression of F-box protein genes is significantly higher than any other Arabidopsis tissue. In addition, we show that the transmission efficiency of the cand1 null allele was reduced through the male but not the female gametophyte. Our results suggest that CAND1 activity is essential in cells or tissues expressing high levels of F-box proteins. This finding is consistent with the proposed adaptive exchange hypothesis, demonstrating the necessity of the evolutionarily conserved CAND1-mediated exchange system in the development of a multicellular organism.
Collapse
Affiliation(s)
- Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Melaku Garsamo
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Jing Yuan
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Xiaojin Wang
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Susan H. Lam
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Kranthi Varala
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Leonor C. Boavida
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Xing Liu,
| |
Collapse
|
148
|
Kiss L, James LC. The molecular mechanisms that drive intracellular neutralization by the antibody-receptor and RING E3 ligase TRIM21. Semin Cell Dev Biol 2021; 126:99-107. [PMID: 34823983 DOI: 10.1016/j.semcdb.2021.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
The cytosolic antibody receptor and RING E3 ligase TRIM21 targets intracellular, antibody-coated immune complexes for degradation and activates the immune system. Here we review how TRIM21 degrades diverse targets and how this activity can be exploited in molecular biology and for the development of new therapeutics. In addition, we compare what is known about TRIM21's mechanism to other TRIM proteins and RING E3 ligases.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, UK.
| | | |
Collapse
|
149
|
Perez L. Characterizing cytomegalovirus infection one cell at a time. Nat Microbiol 2021; 6:1477-1478. [PMID: 34697463 DOI: 10.1038/s41564-021-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Perez
- Section of Allergy and Immunology, Department of Medicine, Center for Human Immunology Lausanne (CHIL), University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Epalinges, Switzerland.
| |
Collapse
|
150
|
USP15 antagonizes CRL4 CRBN-mediated ubiquitylation of glutamine synthetase and neosubstrates. Proc Natl Acad Sci U S A 2021; 118:2111391118. [PMID: 34583995 DOI: 10.1073/pnas.2111391118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Targeted protein degradation by the ubiquitin-proteasome system represents a new strategy to destroy pathogenic proteins in human diseases, including cancer and neurodegenerative diseases. The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide have revolutionized the treatment of patients with multiple myeloma (MM) and other hematologic malignancies, but almost all patients eventually develop resistance to IMiDs. CRBN, a substrate receptor of CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase, is a direct target for thalidomide teratogenicity and antitumor activity of IMiDs (now known as Cereblon E3 ligase modulators: CELMoDs). Despite recent advances in developing potent CELMoDs and CRBN-based proteolysis-targeting chimeras (PROTACs), many questions apart from clinical efficacy remain unanswered. CRBN is required for the action of IMiDs, but its protein expression levels do not correlate with intrinsic resistance to IMiDs in MM cells, suggesting other factors involved in regulating resistance to IMiDs. Our recent work revealed that the CRL4CRBN-p97 pathway is required for degradation of natural substrate glutamine synthetase (GS) and neosubstrates. Here, I show that USP15 is a key regulator of the CRL4CRBN-p97 pathway to control stability of GS and neosubstrates IKZF1, IKZF3, CK1-α, RNF166, GSPT1, and BRD4, all of which are crucial drug targets in different types of cancer. USP15 antagonizes ubiquitylation of CRL4CRBN target proteins, thereby preventing their degradation. Notably, USP15 is highly expressed in IMiD-resistant cells, and depletion of USP15 sensitizes these cells to lenalidomide. Inhibition of USP15 represents a valuable therapeutic opportunity to potentiate CELMoD and CRBN-based PROTAC therapies for the treatment of cancer.
Collapse
|