101
|
Li S, Jakobs TC. Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma. Cell Rep 2022; 41:111880. [PMID: 36577373 PMCID: PMC9847489 DOI: 10.1016/j.celrep.2022.111880] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Aging causes an irreversible, cumulative decline in neuronal function. Using the visual system as a model, we show that astrocytes play a critical role in maintaining retinal ganglion cell health and that deletion of SPP1 (secreted phosphoprotein 1, or osteopontin) from astrocytes leads to increased vulnerability of ganglion cells to age, elevated intraocular pressure, and traumatic optic nerve damage. Overexpression of SPP1 slows the age-related decline in ganglion cell numbers and is highly protective of visual function in a mouse model of glaucoma. SPP1 acts by promoting phagocytosis and secretion of neurotrophic factors while inhibiting production of neurotoxic and pro-inflammatory factors. SPP1 up-regulates transcription of genes related to oxidative phosphorylation, functionally enhances mitochondrial respiration, and promotes the integrity of mitochondrial microstructure. SPP1 increases intracellular ATP concentration via up-regulation of VDAC1.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
102
|
Hu S, Li Y, Zhang Y, Shi R, Tang P, Zhang D, Kuang X, Chen J, Qu J, Gao Y. The adenosine A 2A receptor antagonist KW6002 distinctly regulates retinal ganglion cell morphology during postnatal development and neonatal inflammation. Front Pharmacol 2022; 13:1082997. [PMID: 36588710 PMCID: PMC9800499 DOI: 10.3389/fphar.2022.1082997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) appear early in the retina during postnatal development, but the roles of the A2ARs in the morphogenesis of distinct types of retinal ganglion cells (RGCs) during postnatal development and neonatal inflammatory response remain undetermined. As the RGCs are rather heterogeneous in morphology and functions in the retina, here we resorted to the Thy1-YFPH transgenic mice and three-dimensional (3D) neuron reconstruction to investigate how A2ARs regulate the morphogenesis of three morphologically distinct types of RGCs (namely Type I, II, III) during postnatal development and neonatal inflammation. We found that the A2AR antagonist KW6002 did not change the proportion of the three RGC types during retinal development, but exerted a bidirectional effect on dendritic complexity of Type I and III RGCs and cell type-specifically altered their morphologies with decreased dendrite density of Type I, decreased the dendritic field area of Type II and III, increased dendrite density of Type III RGCs. Moreover, under neonatal inflammation condition, KW6002 specifically increased the proportion of Type I RGCs with enhanced the dendrite surface area and volume and the proportion of Type II RGCs with enlarged the soma area and perimeter. Thus, A2ARs exert distinct control of RGC morphologies to cell type-specifically fine-tune the RGC dendrites during normal development but to mainly suppress RGC soma and dendrite volume under neonatal inflammation.
Collapse
Affiliation(s)
- Shisi Hu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Yaoyao Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanjie Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruyi Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ping Tang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Di Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiuli Kuang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,*Correspondence: Ying Gao, ; Jia Qu,
| | - Ying Gao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,*Correspondence: Ying Gao, ; Jia Qu,
| |
Collapse
|
103
|
Hankeova S, Van Hul N, Laznovsky J, Verboven E, Mangold K, Hensens N, Adori C, Verhoef E, Zikmund T, Dawit F, Kavkova M, Salplachta J, Sjöqvist M, Johansson BR, Hassan MG, Fredriksson L, Baumgärtel K, Bryja V, Lendahl U, Jheon A, Alten F, Fahnehjelm KT, Fischler B, Kaiser J, Andersson ER. Sex differences and risk factors for bleeding in Alagille syndrome. EMBO Mol Med 2022; 14:e15809. [PMID: 36345711 PMCID: PMC9728057 DOI: 10.15252/emmm.202215809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.
Collapse
Affiliation(s)
- Simona Hankeova
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Noemi Van Hul
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jakub Laznovsky
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Katrin Mangold
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Naomi Hensens
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- University of Applied Sciences UtrechtUtrechtThe Netherlands
| | - Csaba Adori
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Elvira Verhoef
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- University of Applied Sciences UtrechtUtrechtThe Netherlands
| | - Tomas Zikmund
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Feven Dawit
- Department of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalHuddingeSweden
| | - Michaela Kavkova
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Jakub Salplachta
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Marika Sjöqvist
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Bengt R Johansson
- EM Unit, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Mohamed G Hassan
- University of San FranciscoSan FranciscoCAUSA
- Department of OrthodonticsFaculty of DentistryAssiut UniversityAssiutEgypt
| | - Linda Fredriksson
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | | | - Vitezslav Bryja
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | | | - Florian Alten
- Department of OphthalmologyUniversity of Muenster Medical CenterMünsterGermany
| | - Kristina Teär Fahnehjelm
- Department of Pediatric Ophthalmology, Strabismus, Electrophysiology and Ocular Oncology, St. Erik Eye HospitalKarolinska InstitutetStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Björn Fischler
- Department of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalHuddingeSweden
| | - Jozef Kaiser
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Emma R Andersson
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
104
|
Songco-Casey JO, Coffing GC, Piscopo DM, Pungor JR, Kern AD, Miller AC, Niell CM. Cell types and molecular architecture of the Octopus bimaculoides visual system. Curr Biol 2022; 32:5031-5044.e4. [PMID: 36318923 PMCID: PMC9815951 DOI: 10.1016/j.cub.2022.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Cephalopods have a remarkable visual system, with a camera-type eye and high acuity vision that they use for a wide range of sophisticated visually driven behaviors. However, the cephalopod brain is organized dramatically differently from that of vertebrates and invertebrates, and beyond neuroanatomical descriptions, little is known regarding the cell types and molecular determinants of their visual system organization. Here, we present a comprehensive single-cell molecular atlas of the octopus optic lobe, which is the primary visual processing structure in the cephalopod brain. We combined single-cell RNA sequencing with RNA fluorescence in situ hybridization to both identify putative molecular cell types and determine their anatomical and spatial organization within the optic lobe. Our results reveal six major neuronal cell classes identified by neurotransmitter/neuropeptide usage, in addition to non-neuronal and immature neuronal populations. We find that additional markers divide these neuronal classes into subtypes with distinct anatomical localizations, revealing further diversity and a detailed laminar organization within the optic lobe. We also delineate the immature neurons within this continuously growing tissue into subtypes defined by evolutionarily conserved developmental genes as well as novel cephalopod- and octopus-specific genes. Together, these findings outline the organizational logic of the octopus visual system, based on functional determinants, laminar identity, and developmental markers/pathways. The resulting atlas presented here details the "parts list" for neural circuits used for vision in octopus, providing a platform for investigations into the development and function of the octopus visual system as well as the evolution of visual processing.
Collapse
Affiliation(s)
| | - Gabrielle C Coffing
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Denise M Piscopo
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Judit R Pungor
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
105
|
Gallego-Ortega A, Norte-Muñoz M, Di Pierdomenico J, Avilés-Trigueros M, de la Villa P, Valiente-Soriano FJ, Vidal-Sanz M. Alpha retinal ganglion cells in pigmented mice retina: number and distribution. Front Neuroanat 2022; 16:1054849. [PMID: 36530520 PMCID: PMC9751430 DOI: 10.3389/fnana.2022.1054849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina.Methods: The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation.Results: The total mean number of αRGCs per retina is 2,252 ± 306 SMI32+αRGCs and 2,315 ± 175 OPN+αRGCs (n = 10), representing 5.08% and 5.22% of the total number of RGCs traced from the optic nerve, respectively. αRGCs are distributed throughout the retina, showing a higher density in the temporal hemiretina. ONs-αRGCs represent ≈36% [841 ± 110 cells (n = 10)] of all αRGCs and are located throughout the retina, with the highest density in the temporal region. ONt-αRGCs represent ≈34% [797 ± 146 cells (n = 10)] of all αRGCs and are mainly located in the central retinal region. OFF-αRGCs represent the remaining 32% of total αRGCs and are divided equally between OFFs-αRGCs and OFFt-αRGCs [363 ± 50 cells (n = 10) and 376 ± 36 cells (n = 10), respectively]. OFFs-αRGCs are mainly located in the supero-temporal peripheral region of the retina and OFFt-αRGCs in the mid-peripheral region of the retina, especially in the infero-temporal region.Conclusions: The combination of specific antibodies is a useful tool to identify and study αRGCs and their subtypes. αRGCs are distributed throughout the retina presenting higher density in the temporal area. The sustained ON and OFF response subtypes are mainly located in the periphery while the transient ON and OFF response subtypes are found in the central regions of the retina.
Collapse
Affiliation(s)
- Alejandro Gallego-Ortega
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - María Norte-Muñoz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Johnny Di Pierdomenico
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Laboratory of Visual Neurophysiology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Francisco Javier Valiente-Soriano
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
- *Correspondence: Manuel Vidal-Sanz Francisco Javier Valiente-Soriano
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
- *Correspondence: Manuel Vidal-Sanz Francisco Javier Valiente-Soriano
| |
Collapse
|
106
|
Chirila AM, Rankin G, Tseng SY, Emanuel AJ, Chavez-Martinez CL, Zhang D, Harvey CD, Ginty DD. Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brain. Cell 2022; 185:4541-4559.e23. [PMID: 36334588 PMCID: PMC9691598 DOI: 10.1016/j.cell.2022.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The encoding of touch in the spinal cord dorsal horn (DH) and its influence on tactile representations in the brain are poorly understood. Using a range of mechanical stimuli applied to the skin, large-scale in vivo electrophysiological recordings, and genetic manipulations, here we show that neurons in the mouse spinal cord DH receive convergent inputs from both low- and high-threshold mechanoreceptor subtypes and exhibit one of six functionally distinct mechanical response profiles. Genetic disruption of DH feedforward or feedback inhibitory motifs, comprised of interneurons with distinct mechanical response profiles, revealed an extensively interconnected DH network that enables dynamic, flexible tuning of postsynaptic dorsal column (PSDC) output neurons and dictates how neurons in the primary somatosensory cortex respond to touch. Thus, mechanoreceptor subtype convergence and non-linear transformations at the earliest stage of the somatosensory hierarchy shape how touch of the skin is represented in the brain.
Collapse
Affiliation(s)
- Anda M Chirila
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Shih-Yi Tseng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Carmine L Chavez-Martinez
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Dawei Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
107
|
Chen Y, Chen X, Baserdem B, Zhan H, Li Y, Davis MB, Kebschull JM, Zador AM, Koulakov AA, Albeanu DF. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 2022; 185:4117-4134.e28. [PMID: 36306734 PMCID: PMC9681627 DOI: 10.1016/j.cell.2022.09.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.
Collapse
Affiliation(s)
- Yushu Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yan Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
108
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
109
|
Strauss S, Korympidou MM, Ran Y, Franke K, Schubert T, Baden T, Berens P, Euler T, Vlasits AL. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat Commun 2022; 13:5574. [PMID: 36163124 PMCID: PMC9513071 DOI: 10.1038/s41467-022-32762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Motion sensing is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found that some bipolar cells are radially direction selective, preferring the origin of small object motion trajectories. Using a glutamate sensor, we directly observed bipolar cells synaptic output and found that there are radial direction selective and non-selective bipolar cell types, the majority being selective, and that radial direction selectivity relies on properties of the center-surround receptive field. We used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and additional experiments demonstrated that bipolar cells pass radial direction selective excitation to starburst amacrine cells, which contributes to their directional tuning. As bipolar cells provide excitation to most amacrine and ganglion cells, their radial direction selectivity may contribute to motion processing throughout the visual system.
Collapse
Affiliation(s)
- Sarah Strauss
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
110
|
Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci 2022; 16:992747. [PMID: 36212698 PMCID: PMC9537624 DOI: 10.3389/fncel.2022.992747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a group of eye diseases afflicting more than 70 million people worldwide. It is characterized by damage to retinal ganglion cells (RGCs) that ultimately leads to the death of the cells and vision loss. The diversity of RGC types has been appreciated for decades, and studies, including ours, have shown that RGCs degenerate and die in a type-specific manner in rodent models of glaucoma. The type-specific loss of RGCs results in differential damage to visual and non-visual functions. One type of RGC, the intrinsically photosensitive retinal ganglion cell (ipRGC), expressing the photopigment melanopsin, serves a broad array of non-visual responses to light. Since its discovery, six subtypes of ipRGC have been described, each contributing to various image-forming and non-image-forming functions such as circadian photoentrainment, the pupillary light reflex, the photic control of mood and sleep, and visual contrast sensitivity. We recently demonstrated a link between type-specific ipRGC survival and behavioral deficits in a mouse model of chronic ocular hypertension. This review focuses on the type-specific ipRGC degeneration and associated behavioral changes in animal models and glaucoma patients. A better understanding of how glaucomatous insult impacts the ipRGC-based circuits will have broad impacts on improving the treatment of glaucoma-associated non-visual disorders.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
111
|
Ren Y, Bu X, Wang M, Gong Y, Wang J, Yang Y, Li G, Zhang M, Zhou Y, Han ST. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat Commun 2022; 13:5585. [PMID: 36151070 PMCID: PMC9508249 DOI: 10.1038/s41467-022-33393-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Get in-depth understanding of each part of visual pathway yields insights to conquer the challenges that classic computer vision is facing. Here, we first report the bioinspired striate cortex with binocular and orientation selective receptive field based on the crossbar array of self-powered memristors which is solution-processed monolithic all-perovskite system with each cross-point containing one CsFAPbI3 solar cell directly stacking on the CsPbBr2I memristor. The plasticity of self-powered memristor can be modulated by optical stimuli following triplet-STDP rules. Furthermore, plasticity of 3 × 3 flexible crossbar array of self-powered memristors has been successfully modulated based on generalized BCM learning rule for optical-encoded pattern recognition. Finally, we implemented artificial striate cortex with binocularity and orientation selectivity based on two simulated 9 × 9 self-powered memristors networks. The emulation of striate cortex with binocular and orientation selectivity will facilitate the brisk edge and corner detection for machine vision in the future applications. Designing efficient bio-inspired vision systems remains a challenge. Here, the authors report a bio-inspired striate visual cortex with binocular and orientation selective receptive field based on self-powered memristor to enable machine vision with brisk edge and corner detection in the future applications.
Collapse
Affiliation(s)
- Yanyun Ren
- Institute for Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, PR China.,Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaobo Bu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Ming Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Gong
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Junjie Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuyang Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Guijun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Meng Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
112
|
Clinical and Mechanistic Review of Amiodarone-Associated Optic Neuropathy. Biomolecules 2022; 12:biom12091298. [PMID: 36139137 PMCID: PMC9496374 DOI: 10.3390/biom12091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Amiodarone-associated optic neuropathy (AAON) is a complex clinical diagnosis, requiring distinction from non-arteritic ischemic optic neuropathy (NAION) due to a shared at-risk patient population. Diagnosis of AAON is complicated by a varied clinical presentation and incomplete pathophysiologic mechanisms. This article reviews pertinent literature for describing and clinically delineating AAON from NAION, as well as newly reported protective mechanisms of insulin-like growth factor 1 (IGF-1) and PI3K/Akt against amiodarone-induced oxidative and apoptotic injury in retinal ganglion and pigment epithelial cells. These studies offer a basis for exploring mechanisms of amiodarone toxicity in the optic nerve.
Collapse
|
113
|
Huang W, Xu Q, Su J, Tang L, Hao ZZ, Xu C, Liu R, Shen Y, Sang X, Xu N, Tie X, Miao Z, Liu X, Xu Y, Liu F, Liu Y, Liu S. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Rep 2022; 40:111322. [PMID: 36103830 DOI: 10.1016/j.celrep.2022.111322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway to the visual world. They can be classified into different types on the basis of their electrophysiological, transcriptomic, or morphological characteristics. Here, we characterize the transcriptomic, morphological, and functional features of 472 high-quality RGCs using Patch sequencing (Patch-seq), providing functional and morphological annotation of many transcriptomic-defined cell types of a previously established RGC atlas. We show a convergence of different modalities in defining the RGC identity and reveal the degree of correspondence for well-characterized cell types across multimodal data. Moreover, we complement some RGC types with detailed morphological and functional properties. We also identify differentially expressed genes among ON, OFF, and ON-OFF RGCs such as Vat1l, Slitrk6, and Lmo7, providing candidate marker genes for functional studies. Our research suggests that the molecularly distinct clusters may also differ in their roles of encoding visual information.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoxiu Tie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhichao Miao
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100085, China.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
| |
Collapse
|
114
|
Zhang Y, Yang L, Gao Y, Zhang D, Tao Y, Xu H, Chen Y, Xu Y, Zhang M. Choroid and choriocapillaris changes in early-stage Parkinson’s disease: a swept-source optical coherence tomography angiography-based cross-sectional study. Alzheimers Res Ther 2022; 14:116. [PMID: 36008844 PMCID: PMC9404633 DOI: 10.1186/s13195-022-01054-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Background Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the aging population. Previous literature has reported thinning of the retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, and photoreceptor layer in PD patients. However, very few studies have used swept-source optical coherence tomography (SS-OCT) to study the choroid and choriocapillaris vascular changes in PD and their correlations with altered contrast sensitivity. Methods PD patients and controls were enrolled in the current study. We used a CSV-1000E instrument to assess contrast sensitivity and performed SS-OCT and SS-OCTA to measure outer retinal thickness, choroidal thickness, choriocapillaris flow density, choroidal vascular volume (CVV), and choroidal vascular index (CVI). Results One hundred eyes of 52 PD patients and 200 eyes of 100 healthy controls were recruited in the present study. Our study found remarkably impaired contrast sensitivity in PD patients (all P < 0.05). Significant thinning of the outer retinal layer and the choroid was appreciated in the PD group compared with the healthy controls (all P < 0.05). Choriocapillaris flow density, CVI, and CVV were significantly decreased in PD patients compared with healthy controls (all P < 0.05). Contrast sensitivity was weakly associated with outer retina thickness in the 3 mm circular area, with 3 cycles per degree being the most relevant (r = 0.535, P < 0.001). Conclusion Our study indicates that there is a significant decrease in contrast sensitivity, outer retina thickness, choriocapillaris flow density, CVI, and CVV in PD patients. This research has also identified a positive correlation between outer retina thickness and contrast sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01054-z.
Collapse
|
115
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
116
|
Li W, Haji Ghaffari D, Misra R, Weiland JD. Retinal ganglion cell desensitization is mitigated by varying parameter constant excitation pulse trains. Front Cell Neurosci 2022; 16:897146. [PMID: 36035262 PMCID: PMC9407683 DOI: 10.3389/fncel.2022.897146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Retinal prostheses partially restore vision in patients blinded by retinitis pigmentosa (RP) and age-related macular degeneration (AMD). One issue that limits the effectiveness of retinal stimulation is the desensitization of the retina response to repeated pulses. Rapid fading of percepts is reported in clinical studies. We studied the retinal output evoked by fixed pulse trains vs. pulse trains that have variable parameters pulse-to-pulse. We used the current clamp to record RGC spiking in the isolated mouse retina. Trains of biphasic current pulses at different frequencies and amplitudes were applied. The main results we report are: (1) RGC desensitization was induced by increasing stimulus frequency, but was unrelated to stimulus amplitude. Desensitization persisted when the 20 Hz stimulation pulses were applied to the retinal ganglion cells at 65 μA, 85 μA, and 105 μA. Subsequent pulses in the train evoked fewer spikes. There was no obvious desensitization when 2 Hz stimulation pulse trains were applied. (2) Blocking inhibitory GABAA receptor increased spontaneous activity but did not reduce desensitization. (3) Pulse trains with constant charge or excitation (based on strength-duration curves) but varying pulse width, amplitude, and shape increased the number of evoked spikes/pulse throughout the pulse train. This suggests that retinal desensitization can be partially overcome by introducing variability into each pulse.
Collapse
Affiliation(s)
- Wennan Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Dorsa Haji Ghaffari
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Misra
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - James D. Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: James D. Weiland
| |
Collapse
|
117
|
Levin LA, Patrick C, Choudry NB, Sharif NA, Goldberg JL. Neuroprotection in neurodegenerations of the brain and eye: Lessons from the past and directions for the future. Front Neurol 2022; 13:964197. [PMID: 36034312 PMCID: PMC9412944 DOI: 10.3389/fneur.2022.964197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurological and ophthalmological neurodegenerative diseases in large part share underlying biology and pathophysiology. Despite extensive preclinical research on neuroprotection that in many cases bridges and unifies both fields, only a handful of neuroprotective therapies have succeeded clinically in either. Main body Understanding the commonalities among brain and neuroretinal neurodegenerations can help develop innovative ways to improve translational success in neuroprotection research and emerging therapies. To do this, analysis of why translational research in neuroprotection fails necessitates addressing roadblocks at basic research and clinical trial levels. These include optimizing translational approaches with respect to biomarkers, therapeutic targets, treatments, animal models, and regulatory pathways. Conclusion The common features of neurological and ophthalmological neurodegenerations are useful for outlining a path forward that should increase the likelihood of translational success in neuroprotective therapies.
Collapse
Affiliation(s)
- Leonard A. Levin
- Departments of Ophthalmology and Visual Sciences, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Nozhat B. Choudry
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| | - Najam A. Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
118
|
Boal AM, McGrady NR, Risner ML, Calkins DJ. Sensitivity to extracellular potassium underlies type-intrinsic differences in retinal ganglion cell excitability. Front Cell Neurosci 2022; 16:966425. [PMID: 35990894 PMCID: PMC9390602 DOI: 10.3389/fncel.2022.966425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal type-specific physiologic heterogeneity can be driven by both extrinsic and intrinsic mechanisms. In retinal ganglion cells (RGCs), which carry visual information from the retina to central targets, evidence suggests intrinsic properties shaping action potential (AP) generation significantly impact the responses of RGCs to visual stimuli. Here, we explored how differences in intrinsic excitability further distinguish two RCG types with distinct presynaptic circuits, alpha ON-sustained (αON-S) cells and alpha OFF-sustained (αOFF-S) cells. We found that αOFF-S RGCs are more excitable to modest depolarizing currents than αON-S RGCs but excitability plateaued earlier as depolarization increased (i.e., depolarization block). In addition to differences in depolarization block sensitivity, the two cell types also produced distinct AP shapes with increasing stimulation. αOFF-S AP width and variability increased with depolarization magnitude, which correlated with the onset of depolarization block, while αON-S AP width and variability remained stable. We then tested if differences in depolarization block observed in αON-S and αOFF-S RGCs were due to sensitivity to extracellular potassium. We found αOFF-S RGCs more sensitive to increased extracellular potassium concentration, which shifted αON-S RGC excitability to that of αOFF-S cells under baseline potassium conditions. Finally, we investigated the influence of the axon initial segment (AIS) dimensions on RGC spiking. We found that the relationship between AIS length and evoked spike rate varied not only by cell type, but also by the strength of stimulation, suggesting AIS structure alone cannot fully explain the observed differences RGC excitability. Thus, sensitivity to extracellular potassium contributes to differences in intrinsic excitability, a key factor that shapes how RGCs encode visual information.
Collapse
|
119
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
120
|
Yunzab M, Soto-Breceda A, Maturana M, Kirkby S, Slattery M, Newgreen A, Meffin H, Kameneva T, Burkitt AN, Ibbotson M, Tong W. Preferential modulation of individual retinal ganglion cells by electrical stimulation. J Neural Eng 2022; 19. [PMID: 35917811 DOI: 10.1088/1741-2552/ac861f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Retinal prostheses have been able to recover partial vision in blind patients with retinal degeneration by electrically stimulating surviving cells in the retina, such as retinal ganglion cells (RGCs), but the restored vision is limited. This is partly due to non-preferential stimulation of all RGCs near a single stimulating electrode, which include cells that conflict in their response properties and their contribution to the vision process. Our study proposes a stimulation strategy to preferentially stimulate individual RGCs based on their temporal electrical receptive fields (tERFs). APPROACH We recorded the responses of RGCs using whole-cell current-clamp and demonstrated the stimulation strategy, first using intracellular stimulation, then via extracellular stimulation. MAIN RESULTS We successfully reconstructed the tERFs according to the RGC response to Gaussian white noise current stimulation. The characteristics of the tERFs were extracted and compared according to the morphological and light response types of the cells. By re-delivering stimulation trains that are composed of the tERFs obtained from different cells, we could target individual RGCs as the cells showed lower activation thresholds to their own tERFs. SIGNIFICANCE This proposed stimulation strategy implemented in the next generation of recording and stimulating retinal prostheses may improve the quality of artificial vision.
Collapse
Affiliation(s)
- Molis Yunzab
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Artemio Soto-Breceda
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Matias Maturana
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Stephanie Kirkby
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Maximilian Slattery
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Anton Newgreen
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Hamish Meffin
- Biomedical Engineering, The University of Melbourne, Grattan Street, Melbourne, Victoria, 3010, AUSTRALIA
| | - Tatiana Kameneva
- School of Science, Engineering, and Computing Technologies, Swinburne University of Technology, School of Science, Engineering, and Computing Technologies, Swinburne University of Technology, Hawthorn, Victoria, 3122, AUSTRALIA
| | - Anthony N Burkitt
- Department of Biomedical Engineering, University of Melbourne, University of Melbourne, Parkville, Victoria, 3010, AUSTRALIA
| | - Michael Ibbotson
- National Vision Research Institute, Australian College of Optometry, Corner of Keppel and Cardigan Streets, Carlton, Victoria, 3053, AUSTRALIA
| | - Wei Tong
- University of Melbourne, School of Physics, University of Melbourne, Parkville, Melbourne, Victoria, 3010, AUSTRALIA
| |
Collapse
|
121
|
Kowal TJ, Dhande OS, Wang B, Wang Q, Ning K, Liu W, Berbari NF, Hu Y, Sun Y. Distribution of prototypical primary cilia markers in subtypes of retinal ganglion cells. J Comp Neurol 2022; 530:2176-2187. [PMID: 35434813 PMCID: PMC9219574 DOI: 10.1002/cne.25326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022]
Abstract
Loss of retinal ganglion cells (RGCs) underlies several forms of retinal disease including glaucomatous optic neuropathy, a leading cause of irreversible blindness. Several rare genetic disorders associated with cilia dysfunction have retinal degeneration as a clinical hallmark. Much of the focus of ciliopathy associated blindness is on the connecting cilium of photoreceptors; however, RGCs also possess primary cilia. It is unclear what roles RGC cilia play, what proteins and signaling machinery localize to RGC cilia, or how RGC cilia are differentiated across the subtypes of RGCs. To better understand these questions, we assessed the presence or absence of a prototypical cilia marker Arl13b and a widely distributed neuronal cilia marker AC3 in different subtypes of mouse RGCs. Interestingly, not all RGC subtype cilia are the same and there are significant differences even among these standard cilia markers. Alpha-RGCs positive for osteopontin, calretinin, and SMI32 primarily possess AC3-positive cilia. Directionally selective RGCs that are CART positive or Trhr positive localize either Arl13b or AC3, respectively, in cilia. Intrinsically photosensitive RGCs differentially localize Arl13b and AC3 based on melanopsin expression. Taken together, we characterized the localization of gold standard cilia markers in different subtypes of RGCs and conclude that cilia within RGC subtypes may be differentially organized. Future studies aimed at understanding RGC cilia function will require a fundamental ability to observe the cilia across subtypes as their signaling protein composition is elucidated. A comprehensive understanding of RGC cilia may reveal opportunities to understanding how their dysfunction leads to retinal degeneration.
Collapse
Affiliation(s)
- Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Onkar S. Dhande
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Wendy Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202 USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA 94304
| |
Collapse
|
122
|
Jiang Q, Litvina EY, Acarón Ledesma H, Shu G, Sonoda T, Wei W, Chen C. Functional convergence of on-off direction-selective ganglion cells in the visual thalamus. Curr Biol 2022; 32:3110-3120.e6. [PMID: 35793680 PMCID: PMC9438454 DOI: 10.1016/j.cub.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023]
Abstract
In the mouse visual system, multiple types of retinal ganglion cells (RGCs) each encode distinct features of the visual space. A clear understanding of how this information is parsed in their downstream target, the dorsal lateral geniculate nucleus (dLGN), remains elusive. Here, we characterized retinogeniculate connectivity in Cart-IRES2-Cre-D and BD-CreER2 mice, which labels subsets of on-off direction-selective ganglion cells (ooDSGCs) tuned to the vertical directions and to only ventral motion, respectively. Our immunohistochemical, electrophysiological, and optogenetic experiments reveal that only a small fraction (<15%) of thalamocortical (TC) neurons in the dLGN receives primary retinal drive from these subtypes of ooDSGCs. The majority of the functionally identifiable ooDSGC inputs in the dLGN are weak and converge together with inputs from other RGC types. Yet our modeling indicates that this mixing is not random: BD-CreER+ ooDSGC inputs converge less frequently with ooDSGCs tuned to the opposite direction than with non-CART-Cre+ RGC types. Taken together, these results indicate that convergence of distinct information lines in dLGN follows specific rules of organization.
Collapse
Affiliation(s)
- Qiufen Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Elizabeth Y Litvina
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA; National Institute of Neurological Disorders and Stroke, 6001 Executive Boulevard Suite 3309, Bethesda, MD 20824, USA
| | - Héctor Acarón Ledesma
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Guanhua Shu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Takuma Sonoda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
123
|
Zeng H. What is a cell type and how to define it? Cell 2022; 185:2739-2755. [PMID: 35868277 DOI: 10.1016/j.cell.2022.06.031] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Cell types are the basic functional units of an organism. Cell types exhibit diverse phenotypic properties at multiple levels, making them challenging to define, categorize, and understand. This review provides an overview of the basic principles of cell types rooted in evolution and development and discusses approaches to characterize and classify cell types and investigate how they contribute to the organism's function, using the mammalian brain as a primary example. I propose a roadmap toward a conceptual framework and knowledge base of cell types that will enable a deeper understanding of the dynamic changes of cellular function under healthy and diseased conditions.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
124
|
Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives. Int J Mol Sci 2022; 23:ijms23147908. [PMID: 35887254 PMCID: PMC9323454 DOI: 10.3390/ijms23147908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system characterized by relapses and autoimmunity caused by antibodies against the astrocyte water channel protein aquaporin-4. Over the past decade, there have been significant advances in the biologic knowledge of NMOSD, which resulted in the IDENTIFICATION of variable disease phenotypes, biomarkers, and complex inflammatory cascades involved in disease pathogenesis. Ongoing clinical trials are looking at new treatments targeting NMOSD relapses. This review aims to provide an update on recent studies regarding issues related to NMOSD, including the pathophysiology of the disease, the potential use of serum and cerebrospinal fluid cytokines as disease biomarkers, the clinical utilization of ocular coherence tomography, and the comparison of different animal models of NMOSD.
Collapse
|
125
|
Sabbah S, Worden MS, Laniado DD, Berson DM, Sanes JN. Luxotonic signals in human prefrontal cortex as a possible substrate for effects of light on mood and cognition. Proc Natl Acad Sci U S A 2022; 119:e2118192119. [PMID: 35867740 PMCID: PMC9282370 DOI: 10.1073/pnas.2118192119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Studies with experimental animals have revealed a mood-regulating neural pathway linking intrinsically photosensitive retinal ganglion cells (ipRGCs) and the prefrontal cortex (PFC), involved in the pathophysiology of mood disorders. Since humans also have light-intensity-encoding ipRGCs, we asked whether a similar pathway exists in humans. Here, functional MRI was used to identify PFC regions and other areas exhibiting light-intensity-dependent signals. We report 26 human brain regions having activation that either monotonically decreases or monotonically increases with light intensity. Luxotonic-related activation occurred across the cerebral cortex, in diverse subcortical structures, and in the cerebellum, encompassing regions with functions related to visual image formation, motor control, cognition, and emotion. Light suppressed PFC activation, which monotonically decreased with increasing light intensity. The sustained time course of light-evoked PFC responses and their susceptibility to prior light exposure resembled those of ipRGCs. These findings offer a functional link between light exposure and PFC-mediated cognitive and affective phenomena.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael S. Worden
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Dimitrios D. Laniado
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Jerome N. Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Center for Neurorestoration and Neurotechnology, Veterans Affairs Providence Healthcare System, Providence, RI 02908
| |
Collapse
|
126
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
127
|
Liu K, Wu P, Chen B, Cai Y, Yuan R, Zou J. Implicating Causal Brain Magnetic Resonance Imaging in Glaucoma Using Mendelian Randomization. Front Med (Lausanne) 2022; 9:956339. [PMID: 35847794 PMCID: PMC9283577 DOI: 10.3389/fmed.2022.956339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/31/2022] Open
Abstract
Background Glaucoma is hypothesized to originate in the brain but manifests as an eye disease as it possesses the common features of neurodegeneration diseases. But there is no evidence to demonstrate the primary brain changes in glaucoma patients. In the present study, we have used Mendelian randomization (MR) to understand the causal effect of brain alterations on glaucoma. Methods Our MR study was carried out using summary statistics from genome-wide associations for 110 diffusion tensor imaging (DTI) measurements of white matter (WM) tracts (17,706 individuals), 101 brain region-of-interest (ROI) volumes (19,629 individuals), and glaucoma (8,591 cases, 210,201 control subjects). The causal relationship was evaluated by multiplicative random effects inverse variance weighted (IVW) method and verified by two other MR methods, including MR Egger, weighted median, and extensive sensitivity analyses. Results Genetic liability to fornix fractional anisotropy (FX.FA) (OR = 0.71, 95%CI = 0.56–0.88, P = 2.44 × 10–3), and uncinate fasciculus UNC.FA (OR = 0.65, 95%CI = 0.48–0.88, P = 5.57 × 10–3) was associated with a low risk of glaucoma. Besides, the right ventral diencephalon (OR = 1.72, 95%CI = 1.17–2.52, P = 5.64 × 10–3) and brain stem (OR = 1.35, 95%CI = 1.08–1.69, P = 8.94 × 10–3) were associated with the increased risk of glaucoma. No heterogeneity and pleiotropy were detected. Conclusion Our study suggests that the fornix and uncinate fasciculus degenerations and injures of the right ventral diencephalon and brain stem potentially increase the occurrence of glaucoma and reveal the existence of the brain-eye axis.
Collapse
Affiliation(s)
- Kangcheng Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Research Institute of Ophthalmology and Visual Science, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Pengfei Wu
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Bolin Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Cai
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ruolan Yuan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Zou,
| |
Collapse
|
128
|
Brombas A, Zhou X, Williams SR. Light-evoked dendritic spikes in sustained but not transient rabbit retinal ganglion cells. Neuron 2022; 110:2802-2814.e3. [PMID: 35803269 DOI: 10.1016/j.neuron.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Dendritic computations have a central role in neuronal function, but it is unknown how cell-class heterogeneity of dendritic electrical excitability shapes physiologically engaged neuronal and circuit computations. To address this, we examined dendritic integration in closely related classes of retinal ganglion cells (GCs) using simultaneous somato-dendritic electrical recording techniques in a functionally intact circuit. Simultaneous recordings revealed sustained OFF-GCs generated powerful dendritic spikes in response to visual input that drove action potential firing. In contrast, the dendrites of transient OFF-GCs were passive and did not generate dendritic spikes. Dendritic spike generation allowed sustained, but not transient, OFF-GCs to signal into action potential output the local motion of visual stimuli to produce a continuous wave of action potential firing in adjacent cells as images moved across the retina. Conversely, this representation was highly fragmented in transient OFF-GCs. Thus, a heterogeneity of dendritic excitability defines the computations executed by classes of GCs.
Collapse
Affiliation(s)
- Arne Brombas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiangyu Zhou
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen R Williams
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
129
|
Pfäffle C, Spahr H, Gercke K, Puyo L, Höhl S, Melenberg D, Miura Y, Hüttmann G, Hillmann D. Phase-Sensitive Measurements of Depth-Dependent Signal Transduction in the Inner Plexiform Layer. Front Med (Lausanne) 2022; 9:885187. [PMID: 35721092 PMCID: PMC9198552 DOI: 10.3389/fmed.2022.885187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
Non-invasive spatially resolved functional imaging in the human retina has recently attracted considerable attention. Particularly functional imaging of bipolar and ganglion cells could aid in studying neuronal activity in humans, including an investigation of processes of the central nervous system. Recently, we imaged the activity of the inner neuronal layers by measuring nanometer-size changes of the cells within the inner plexiform layer (IPL) using phase-sensitive optical coherence tomography (OCT). In the IPL, there are connections between the neuronal cells that are dedicated to the processing of different aspects of the visual information, such as edges in the image or temporal changes. Still, so far, it was not possible to assign functional changes to single cells or cell classes in living humans, which is essential for studying the vision process. One characteristic of signal processing in the IPL is that different aspects of the visual impression are only processed in specific sub-layers (strata). Here, we present an investigation of these functional signals for three different sub-layers in the IPL with the aim to separate different properties of the visual signal processing. Whereas the inner depth-layer, closest to the ganglion cells, exhibits an increase in the optical path length, the outer depth-layer, closest to the bipolar cell layer, exhibits a decrease in the optical path length. Additionally, we found that the central depth is sensitive to temporal changes, showing a maximum response at a stimulation frequency of around 12.5 Hz. The results demonstrate that the signals from different cell types can be distinguished by phase-sensitive OCT.
Collapse
Affiliation(s)
- Clara Pfäffle
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany
| | - Hendrik Spahr
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany
| | - Katharina Gercke
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany
| | - Léo Puyo
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany.,Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Svea Höhl
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany
| | - David Melenberg
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany
| | - Yoko Miura
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany.,Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Dierck Hillmann
- Institute of Biomedical Optic, University of Lübeck, Lübeck, Germany.,Thorlabs GmbH, Lübeck, Germany.,Department of Physics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
130
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
131
|
Lee JM, Lin D, Hong G, Kim KH, Park HG, Lieber CM. Scalable Three-Dimensional Recording Electrodes for Probing Biological Tissues. NANO LETTERS 2022; 22:4552-4559. [PMID: 35583378 DOI: 10.1021/acs.nanolett.2c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording technologies can provide critical insight into the function of the nervous system and other biological tissues. Standard silicon-based probes have limitations, including single-sided recording sites and intrinsic instabilities due to the probe stiffness. Here, we demonstrate high-performance neural recording using double-sided three-dimensional (3D) electrodes integrated in an ultraflexible bioinspired open mesh structure, allowing electrodes to sample fully the 3D interconnected tissue of the brain. In vivo electrophysiological recording using 3D electrodes shows statistically significant increases in the number of neurons per electrode, average spike amplitudes, and signal to noise ratios in comparison to standard two-dimensional electrodes, while achieving stable detection of single-neuron activity over months. The capability of these 3D electrodes is further shown for chronic recording from retinal ganglion cells in mice. This approach opens new opportunities for a comprehensive 3D interrogation, stimulation, and understanding of the complex circuitry of the brain and other electrogenic tissues in live animals over extended time periods.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kyoung-Ho Kim
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
132
|
Kim S, Roh H, Im M. Artificial Visual Information Produced by Retinal Prostheses. Front Cell Neurosci 2022; 16:911754. [PMID: 35734216 PMCID: PMC9208577 DOI: 10.3389/fncel.2022.911754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Numerous retinal prosthetic systems have demonstrated somewhat useful vision can be restored to individuals who had lost their sight due to outer retinal degenerative diseases. Earlier prosthetic studies have mostly focused on the confinement of electrical stimulation for improved spatial resolution and/or the biased stimulation of specific retinal ganglion cell (RGC) types for selective activation of retinal ON/OFF pathway for enhanced visual percepts. To better replicate normal vision, it would be also crucial to consider information transmission by spiking activities arising in the RGC population since an incredible amount of visual information is transferred from the eye to the brain. In previous studies, however, it has not been well explored how much artificial visual information is created in response to electrical stimuli delivered by microelectrodes. In the present work, we discuss the importance of the neural information for high-quality artificial vision. First, we summarize the previous literatures which have computed information transmission rates from spiking activities of RGCs in response to visual stimuli. Second, we exemplify a couple of studies which computed the neural information from electrically evoked responses. Third, we briefly introduce how information rates can be computed in the representative two ways - direct method and reconstruction method. Fourth, we introduce in silico approaches modeling artificial retinal neural networks to explore the relationship between amount of information and the spiking patterns. Lastly, we conclude our review with clinical implications to emphasize the necessity of considering visual information transmission for further improvement of retinal prosthetics.
Collapse
Affiliation(s)
- Sein Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
| |
Collapse
|
133
|
Huang X, Kim AJ, Acarón Ledesma H, Ding J, Smith RG, Wei W. Visual Stimulation Induces Distinct Forms of Sensitization of On-Off Direction-Selective Ganglion Cell Responses in the Dorsal and Ventral Retina. J Neurosci 2022; 42:4449-4469. [PMID: 35474276 PMCID: PMC9172291 DOI: 10.1523/jneurosci.1391-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Experience-dependent modulation of neuronal responses is a key attribute in sensory processing. In the mammalian retina, the On-Off direction-selective ganglion cell (DSGC) is well known for its robust direction selectivity. However, how the On-Off DSGC light responsiveness dynamically adjusts to the changing visual environment is underexplored. Here, we report that On-Off DSGCs tuned to posterior motion direction [i.e. posterior DSGCs (pDSGCs)] in mice of both sexes can be transiently sensitized by prior stimuli. Notably, distinct sensitization patterns are found in dorsal and ventral pDSGCs. Although responses of both dorsal and ventral pDSGCs to dark stimuli (Off responses) are sensitized, only dorsal cells show the sensitization of responses to bright stimuli (On responses). Visual stimulation to the dorsal retina potentiates a sustained excitatory input from Off bipolar cells, leading to tonic depolarization of pDSGCs. Such tonic depolarization propagates from the Off to the On dendritic arbor of the pDSGC to sensitize its On response. We also identified a previously overlooked feature of DSGC dendritic architecture that can support dendritic integration between On and Off dendritic layers bypassing the soma. By contrast, ventral pDSGCs lack a sensitized tonic depolarization and thus do not exhibit sensitization of their On responses. Our results highlight a topographic difference in Off bipolar cell inputs underlying divergent sensitization patterns of dorsal and ventral pDSGCs. Moreover, substantial crossovers between dendritic layers of On-Off DSGCs suggest an interactive dendritic algorithm for processing On and Off signals before they reach the soma.SIGNIFICANCE STATEMENT Visual neuronal responses are dynamically influenced by the prior visual experience. This form of plasticity reflects the efficient coding of the naturalistic environment by the visual system. We found that a class of retinal output neurons, On-Off direction-selective ganglion cells, transiently increase their responsiveness after visual stimulation. Cells located in dorsal and ventral retinas exhibit distinct sensitization patterns because of different adaptive properties of Off bipolar cell signaling. A previously overlooked dendritic morphologic feature of the On-Off direction-selective ganglion cell is implicated in the cross talk between On and Off pathways during sensitization. Together, these findings uncover a topographic difference in the adaptive encoding of upper and lower visual fields and the underlying neural mechanism in the dorsal and ventral retinas.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, Illinois 60637
| | - Alan Jaehyun Kim
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - Héctor Acarón Ledesma
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637
| | - Jennifer Ding
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, Illinois 60637
| | - Robert G Smith
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
134
|
Jia S, Yu Z, Onken A, Tian Y, Huang T, Liu JK. Neural System Identification With Spike-Triggered Non-Negative Matrix Factorization. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4772-4783. [PMID: 33400673 DOI: 10.1109/tcyb.2020.3042513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina with a relatively simple neuronal circuit. A retinal ganglion cell (GC) receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required to decipher these components in a systematic manner. Recently a method called spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using retinal GCs as a model system, we show that STNMF can detect various computational properties of upstream bipolar cells (BCs), including spatial receptive field, temporal filter, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a GC into a few subsets of spikes, where each subset is contributed by one presynaptic BC. Taken together, these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.
Collapse
|
135
|
Gao J, Griner EM, Liu M, Moy J, Provencio I, Liu X. Differential effects of experimental glaucoma on intrinsically photosensitive retinal ganglion cells in mice. J Comp Neurol 2022; 530:1494-1506. [PMID: 34958682 PMCID: PMC9010357 DOI: 10.1002/cne.25293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022]
Abstract
Glaucoma is a group of eye diseases characterized by retinal ganglion cell (RGC) loss and optic nerve damage. Studies, including this study, support that RGCs degenerate and die in a type-specific manner following the disease insult. Here we specifically examined one RGC type, the intrinsically photosensitive retinal ganglion cell (ipRGC), and its associated functional deficits in a mouse model of experimental glaucoma. We induced chronic ocular hypertension (OHT) by laser photocoagulation and then characterized the survival of ipRGC subtypes. We found that ipRGCs suffer significant loss, similar to the general RGC population, but ipRGC subtypes are differentially affected following chronic OHT. M4 ipRGCs, which are involved in pattern vision, are susceptible to chronic OHT. Correspondingly, mice with chronic OHT experience reduced contrast sensitivity and visual acuity. By comparison, M1 ipRGCs, which project to the suprachiasmatic nuclei to regulate circadian rhythmicity, exhibit almost no cell loss following chronic OHT. Accordingly, we observed that circadian re-entrainment and circadian rhythmicity are largely not disrupted in OHT mice. Our study demonstrates the link between subtype-specific ipRGC survival and behavioral deficits in glaucomatous mice. These findings provide insight into glaucoma-induced visual behavioral deficits and their underlying mechanisms.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Erin M. Griner
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Joanna Moy
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
136
|
Meister M. Learning, fast and slow. Curr Opin Neurobiol 2022; 75:102555. [PMID: 35617751 DOI: 10.1016/j.conb.2022.102555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Animals can learn efficiently from a single experience and change their future behavior in response. However, in other instances, animals learn very slowly, requiring thousands of experiences. Here, I survey tasks involving fast and slow learning and consider some hypotheses for what differentiates the underlying neural mechanisms. It has been proposed that fast learning relies on neural representations that favor efficient Hebbian modification of synapses. These efficient representations may be encoded in the genome, resulting in a repertoire of fast learning that differs across species. Alternatively, the required neural representations may be acquired from experience through a slow process of unsupervised learning from the environment.
Collapse
Affiliation(s)
- Markus Meister
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, United States.
| |
Collapse
|
137
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
138
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
139
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
140
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
141
|
Nasir-Ahmad S, Vanstone KA, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans. J Comp Neurol 2022; 530:923-940. [PMID: 34622958 PMCID: PMC8831458 DOI: 10.1002/cne.25258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Recent advances in single-cell RNA sequencing have enabled the molecular distinction of ganglion cell populations in mammalian retinas. Here we used antibodies against the transcription factor special AT-rich binding protein 1 (Satb1, a protein which is expressed by on-off direction-selective ganglion cells in mouse retina) to study Satb1 expression in the retina of marmosets (Callithrix jacchus), macaques (Macaca fascicularis), and humans. In all species, Satb1 was exclusively expressed in retinal ganglion cells. The Satb1 cells made up ∼2% of the ganglion cell population in the central retina of all species, rising to a maximum ∼7% in peripheral marmoset retina. Intracellular injections in marmoset and macaque retinas revealed that most Satb1 expressing ganglion cells are widefield ganglion cells. In marmoset, Satb1 cells have a densely branching dendritic tree and include broad and narrow thorny, recursive bistratified, and parasol cells, all of which show some costratification with the outer or inner cholinergic amacrine cells. The recursive bistratified cells showed the strongest costratification but did not show extensive cofasciculation as reported for on-off direction-selective ganglion cells in rabbit and rodent retinas. In macaque, Satb1 was not expressed in recursive bistratified cells, but in large sparsely branching cells. Our findings further support the idea that the expression of transcription factors in retinal ganglion cells is not conserved across Old World (human and macaque) and New World (marmoset) primates and provides a further step to link a molecular marker with specific cell types.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Kurt A Vanstone
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Mario Novelli
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Sammy C S Lee
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| |
Collapse
|
142
|
Abed S, Reilly A, Arnold SJ, Feldheim DA. Adult Expression of Tbr2 Is Required for the Maintenance but Not Survival of Intrinsically Photosensitive Retinal Ganglion Cells. Front Cell Neurosci 2022; 16:826590. [PMID: 35401124 PMCID: PMC8983909 DOI: 10.3389/fncel.2022.826590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). ipRGCs regulate subconscious non-image-forming behaviors such as circadian rhythms, pupil dilation, and light-mediated mood. Previously, we and others showed that the transcription factor Tbr2 (EOMES) is required during retinal development for the formation of ipRGCs. Tbr2 is also expressed in the adult retina leading to the hypothesis that it plays a role in adult ipRGC function. To test this, we removed Tbr2 in adult mice. We found that this results in the loss of melanopsin expression in ipRGCs but does not lead to cell death or morphological changes to their dendritic or axonal termination patterns. Additionally, we found ectopic expression of Tbr2 in conventional RGCs does not induce melanopsin expression but can increase melanopsin expression in existing ipRGCs. An interesting feature of ipRGCs is their superior survival relative to conventional RGCs after an optic nerve injury. We find that loss of Tbr2 decreases the survival rate of ipRGCs after optic nerve damage suggesting that Tbr2 plays a role in ipRGC survival after injury. Lastly, we show that the GABAergic amacrine cell marker Meis2, is expressed in the majority of Tbr2-expressing displaced amacrine cells as well as in a subset of Tbr2-expressing RGCs. These findings demonstrate that Tbr2 is necessary but not sufficient for melanopsin expression, that Tbr2 is involved in ipRGC survival after optic nerve injury, and identify a marker for Tbr2-expressing displaced amacrine cells.
Collapse
Affiliation(s)
- Sadaf Abed
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreea Reilly
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- *Correspondence: David A. Feldheim,
| |
Collapse
|
143
|
Yu Z, Turner MH, Baudin J, Rieke F. Adaptation in cone photoreceptors contributes to an unexpected insensitivity of primate On parasol retinal ganglion cells to spatial structure in natural images. eLife 2022; 11:e70611. [PMID: 35285798 PMCID: PMC8956286 DOI: 10.7554/elife.70611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 03/13/2022] [Indexed: 02/06/2023] Open
Abstract
Neural circuits are constructed from nonlinear building blocks, and not surprisingly overall circuit behavior is often strongly nonlinear. But neural circuits can also behave near linearly, and some circuits shift from linear to nonlinear behavior depending on stimulus conditions. Such control of nonlinear circuit behavior is fundamental to neural computation. Here, we study a surprising stimulus dependence of the responses of macaque On (but not Off) parasol retinal ganglion cells: these cells respond nonlinearly to spatial structure in some stimuli but near linearly to spatial structure in others, including natural inputs. We show that these differences in the linearity of the integration of spatial inputs can be explained by a shift in the balance of excitatory and inhibitory synaptic inputs that originates at least partially from adaptation in the cone photoreceptors. More generally, this highlights how subtle asymmetries in signaling - here in the cone signals - can qualitatively alter circuit computation.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Maxwell H Turner
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
144
|
Mead B, Tomarev S. The role of miRNA in retinal ganglion cell health and disease. Neural Regen Res 2022; 17:516-522. [PMID: 34380881 PMCID: PMC8504366 DOI: 10.4103/1673-5374.320974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
miRNA are short non-coding RNA responsible for the knockdown of proteins through their targeting and silencing of complimentary mRNA sequences. The miRNA landscape of a cell thus affects the levels of its proteins and has significant consequences to its health. Deviations in this miRNA landscape have been implicated in a variety of neurodegenerative diseases and have also garnered interest as targets for treatment. Retinal ganglion cells are the sole projection neuron of the retina with their axons making up the optic nerve. They are a focus of study not only for their importance in vision and the myriad of blinding diseases characterized by their dysfunction and loss, but also as a model of other central nervous system diseases such as spinal cord injury and traumatic brain injury. This review summarizes current knowledge on the role of miRNA in retinal ganglion cell function, highlighting how perturbations can result in disease, and how modulating their abundance may provide a novel avenue of therapeutic research.
Collapse
Affiliation(s)
- Ben Mead
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
145
|
Hilgen G, Kartsaki E, Kartysh V, Cessac B, Sernagor E. A novel approach to the functional classification of retinal ganglion cells. Open Biol 2022; 12:210367. [PMID: 35259949 PMCID: PMC8905177 DOI: 10.1098/rsob.210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinal neurons are remarkedly diverse based on structure, function and genetic identity. Classifying these cells is a challenging task, requiring multimodal methodology. Here, we introduce a novel approach for retinal ganglion cell (RGC) classification, based on pharmacogenetics combined with immunohistochemistry and large-scale retinal electrophysiology. Our novel strategy allows grouping of cells sharing gene expression and understanding how these cell classes respond to basic and complex visual scenes. Our approach consists of several consecutive steps. First, the spike firing frequency is increased in RGCs co-expressing a certain gene (Scnn1a or Grik4) using excitatory DREADDs (designer receptors exclusively activated by designer drugs) in order to single out activity originating specifically from these cells. Their spike location is then combined with post hoc immunostaining, to unequivocally characterize their anatomical and functional features. We grouped these isolated RGCs into multiple clusters based on spike train similarities. Using this novel approach, we were able to extend the pre-existing list of Grik4-expressing RGC types to a total of eight and, for the first time, we provide a phenotypical description of 13 Scnn1a-expressing RGCs. The insights and methods gained here can guide not only RGC classification but neuronal classification challenges in other brain regions as well.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Evgenia Kartsaki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Université Côte d'Azur, Inria, Biovision team and Neuromod Institute, 06902 Sophia Antipolis Cedex, France
| | - Viktoriia Kartysh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria,Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bruno Cessac
- Université Côte d'Azur, Inria, Biovision team and Neuromod Institute, 06902 Sophia Antipolis Cedex, France
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
146
|
Shekhar K, Whitney IE, Butrus S, Peng YR, Sanes JR. Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types. eLife 2022; 11:e73809. [PMID: 35191836 PMCID: PMC8956290 DOI: 10.7554/elife.73809] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC transcriptomic type identity is not specified at mitotic exit, but acquired by gradual, asynchronous restriction of postmitotic multipotential precursors. Some types are not identifiable until a week after they are generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to the rest of the brain before their type identity emerges. Optimal transport inference identifies groups of RGC precursors with largely nonoverlapping fates, distinguished by selectively expressed transcription factors that could act as fate determinants. Our study provides a framework for investigating the molecular diversification of discrete types within a neuronal class.
Collapse
Affiliation(s)
- Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, BerkeleyBerkeleyUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, BerkeleyBerkeleyUnited States
| | - Yi-Rong Peng
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of MedicineLos AngelesUnited States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
147
|
Niu F, Han P, Zhang J, She Y, Yang L, Yu J, Zhuang M, Tang K, Shi Y, Yang B, Liu C, Peng B, Ji SJ. The m 6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells. eLife 2022; 11:75827. [PMID: 35179492 PMCID: PMC8906807 DOI: 10.7554/elife.75827] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the N6-methyladenosine (m6A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m6A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Collapse
Affiliation(s)
- Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuanchu She
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lixin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kezhen Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuwei Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Baisheng Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunqiao Liu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Department of Neurosurgery, Fudan University, Shanghai, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
148
|
Angueyra JM, Baudin J, Schwartz GW, Rieke F. Predicting and Manipulating Cone Responses to Naturalistic Inputs. J Neurosci 2022; 42:1254-1274. [PMID: 34949692 PMCID: PMC8883858 DOI: 10.1523/jneurosci.0793-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Primates explore their visual environment by making frequent saccades, discrete and ballistic eye movements that direct the fovea to specific regions of interest. Saccades produce large and rapid changes in input. The magnitude of these changes and the limited signaling range of visual neurons mean that effective encoding requires rapid adaptation. Here, we explore how macaque cone photoreceptors maintain sensitivity under these conditions. Adaptation makes cone responses to naturalistic stimuli highly nonlinear and dependent on stimulus history. Such responses cannot be explained by linear or linear-nonlinear models but are well explained by a biophysical model of phototransduction based on well-established biochemical interactions. The resulting model can predict cone responses to a broad range of stimuli and enables the design of stimuli that elicit specific (e.g., linear) cone photocurrents. These advances will provide a foundation for investigating the contributions of cone phototransduction and post-transduction processing to visual function.SIGNIFICANCE STATEMENT We know a great deal about adaptational mechanisms that adjust sensitivity to slow changes in visual inputs such as the rising or setting sun. We know much less about the rapid adaptational mechanisms that are essential for maintaining sensitivity as gaze shifts around a single visual scene. We characterize how phototransduction in cone photoreceptors adapts to rapid changes in input similar to those encountered during natural vision. We incorporate these measurements into a quantitative model that can predict cone responses across a broad range of stimuli. This model not only shows how cone phototransduction aids the encoding of natural inputs but also provides a tool to identify the role of the cone responses in shaping those of downstream visual neurons.
Collapse
Affiliation(s)
- Juan M Angueyra
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Gregory W Schwartz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60511
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
149
|
Norton TT, Savier EL, Sedigh-Sarvestani M. DeBruyn and Casagrande manuscripts on tree shrew retinal ganglion cells as a basis for cross-species retina research. Vis Neurosci 2022; 39:E001. [PMID: 35094741 PMCID: PMC8807137 DOI: 10.1017/s0952523821000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
The purpose of this brief communication is to make publicly available three unpublished manuscripts on the organization of retinal ganglion cells in the tree shrew. The manuscripts were authored in 1986 by Dr. Edward DeBruyn, a PhD student in the laboratory of the late Dr. Vivien Casagrande at Vanderbilt University. As diurnal animals closely related to primates, tree shrews are ideally suited for comparative analyses of visual structures including the retina. We hope that providing this basic information in a citable form inspires other groups to pursue further characterization of the tree shrew retina using modern techniques.
Collapse
Affiliation(s)
- Thomas T. Norton
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elise L. Savier
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Madineh Sedigh-Sarvestani
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| |
Collapse
|
150
|
Ingensiep C, Schaffrath K, Walter P, Johnen S. Effects of Hydrostatic Pressure on Electrical Retinal Activity in a Multielectrode Array-Based ex vivo Glaucoma Acute Model. Front Neurosci 2022; 16:831392. [PMID: 35177963 PMCID: PMC8845467 DOI: 10.3389/fnins.2022.831392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a heterogeneous eye disease causing atrophy of the optic nerve head (ONH). The optic nerve is formed by the axons of the retinal ganglion cells (RGCs) that transmit visual input to the brain. The progressive RGC loss during glaucoma leads to irreversible vision loss. An elevated intraocular pressure (IOP) is described as main risk factor in glaucoma. In this study, a multielectrode array (MEA)-based ex vivo glaucoma acute model was established and the effects of hydrostatic pressure (10, 30, 60, and 90 mmHg) on the functionality and survival of adult male and female wild-type mouse (C57BL/6) retinae were investigated. Spontaneous activity, response rate to electrical and light stimulation, and bursting behavior of RGCs was analyzed prior, during, and after pressure stress. No pressure related effects on spontaneous firing and on the response rate of the RGCs were observed. Even a high pressure level (90 mmHg for 2 h) did not disturb the RGC functionality. However, the cells’ bursting behavior significantly changed under 90 mmHg. The number of spikes in bursts doubled during pressure application and stayed on a high level after pressure stress. Addition of the amino sulfonic acid taurine (1 mM) showed a counteracting effect. OFF ganglion cells did not reveal an increase in bursts under pressure stress. Live/dead staining after pressure application showed no significant changes in RGC survival. The findings of our ex vivo model suggest that RGCs are tolerant toward high, short-time pressure stress.
Collapse
|