101
|
Hirschmann S, Gómez-Mejia A, Kohler TP, Voß F, Rohde M, Brendel M, Hammerschmidt S. The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms 2021; 9:microorganisms9071365. [PMID: 34201716 PMCID: PMC8306541 DOI: 10.3390/microorganisms9071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The two-component regulatory system 09 of Streptococcus pneumoniae has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09. Contradictory data are known on the impact of TCS09 on virulence, but all have been explored using only the rr09-mutant. In this study, we have therefore deleted one or both components of the TCS09 (SP_0661 and SP_0662) in serotype 4 S. pneumoniae TIGR4. In vitro growth assays in chemically defined medium (CDM) using sucrose or lactose as a carbon source indicated a delayed growth of nonencapsulated tcs09-mutants, while encapsulated wild-type TIGR4 and tcs09-mutants have reduced growth in CDM with glucose. Using a set of antigen-specific antibodies, immunoblot analysis showed that only the pilus 1 backbone protein RrgB is significantly reduced in TIGR4ΔcpsΔhk09. Electron microscopy, adherence and phagocytosis assays showed no impact of TCS09 on the TIGR4 cell morphology and interaction with host cells. In contrast, in vivo infections and in particular competitive co-infection experiments demonstrated that TCS09 enhances robustness during dissemination in the host by maintaining bacterial fitness.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Alejandro Gómez-Mejia
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Thomas P. Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Franziska Voß
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Max Brendel
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
- Correspondence:
| |
Collapse
|
102
|
Jiang X, Ren S, Geng Y, Jiang C, Liu G, Wang H, Yu T, Liang Y. Role of the VirSR-VirAB system in biofilm formation of Listeria monocytogenes EGD-e. Food Res Int 2021; 145:110394. [PMID: 34112397 DOI: 10.1016/j.foodres.2021.110394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 01/24/2023]
Abstract
The ability of Listeria monocytogenes, an important foodborne pathogen, to form biofilms in food processing environments leads to increased opportunity for contamination of food products, which is a major concern for food safety. In this study, the role of a complex system composed of the VirSR two-component signal transduction system (TCS) and the ATP-binding cassette (ABC) transporter VirAB in biofilm formation of L. monocytogenes EGD-e was investigated. Biofilm formation was measured using the microplate assay with crystal violet staining, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and attachment and swarming motility were compared between strain EGD-e and its isogenic deletion mutants. Additionally, the relative expression levels of genes associated with the early steps of biofilm development in the wild-type and mutant strains were also determined by RT-qPCR. Results from microplate assay, CLSM and SEM showed that VirR is not required for biofilm formation in L. monocytogenes EGD-e. A central finding of this study is that both VirAB and VirS are essential for biofilm formation and they could function as a whole in biofilm formation of L. monocytogenes EGD-e. The results also demonstrated that both VirAB and VirS are involved in attachment, but they are not associated with swarming motility. Results from RT-qPCR showed that flaA, motA and motB were downregulated in the mutant strains ΔvirAB and ΔvirS, which could be the possible reason for reduced attachment and biofilm formation in these mutants. This study provides a better understanding of the mechanisms involved in biofilm formation of L. monocytogenes, leading to improved processes to control this biofilm-forming foodborne pathogen.
Collapse
Affiliation(s)
- Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Siyu Ren
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yimin Geng
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Congyi Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Guosheng Liu
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Tao Yu
- College of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang, China.
| | - Yu Liang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, China
| |
Collapse
|
103
|
Ortet P, Fochesato S, Bitbol AF, Whitworth DE, Lalaouna D, Santaella C, Heulin T, Achouak W, Barakat M. Evolutionary history expands the range of signaling interactions in hybrid multikinase networks. Sci Rep 2021; 11:11763. [PMID: 34083699 PMCID: PMC8175716 DOI: 10.1038/s41598-021-91260-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions (‘phylogenetic promiscuity’). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS–GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.
Collapse
Affiliation(s)
- Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Sylvain Fochesato
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Anne-Florence Bitbol
- CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (UMR8237), Sorbonne Université, 75005, Paris, France.,Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK
| | - David Lalaouna
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.,CNRS, ARN UPR 9002, Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
104
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
105
|
Gomez-Arrebola C, Solano C, Lasa I. Regulation of gene expression by non-phosphorylated response regulators. Int Microbiol 2021; 24:521-529. [PMID: 33987704 DOI: 10.1007/s10123-021-00180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Two-component systems (TCSs) are a prominent sensory system in bacteria. A prototypical TCS comprises a membrane-bound sensor histidine kinase (HK) responsible for sensing the signal and a cytoplasmic response regulator (RR) that controls target gene expression. Signal binding activates a phosphotransfer cascade from the HK to the RR. As a result, the phosphorylated RR undergoes a conformational change that leads to activation of the response. Growing experimental evidence indicates that unphosphorylated RRs may also have regulatory functions, and thus, the classical view that the RR is only active when it is phosphorylated needs to be revisited. In this review, we highlight the most recent findings showing that RRs in the non-phosphorylated state control critical bacterial processes that range from secretion of factors to the host, antibiotic resistance, iron transport, stress response, and cell-wall metabolism to biofilm development.
Collapse
Affiliation(s)
- Carmen Gomez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IdiSNA, Irunlarrea 3, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
106
|
Zhao J, Zou L, Li Y, Liu X, Zeng C, Xu C, Jiang B, Guo X, Song X. HisPhosSite: A comprehensive database of histidine phosphorylated proteins and sites. J Proteomics 2021; 243:104262. [PMID: 33984507 DOI: 10.1016/j.jprot.2021.104262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
Histidine phosphorylation is critically important in a variety of cellular processes including signal transduction, cell cycle, proliferation, differentiation, and apoptosis. It is estimated to account for 6% of all phosphorylated amino acids. However, due to the acid lability of the PN bond, the study of pHis lags far behind that of pSer, pThr, and pTyr. Recently, the development and use of pHis-specific antibodies and methodologies have led to a resurgence in the study of histidine phosphorylation. Although a considerable number of pHis proteins and sites have been discovered, most of them have not been manually curated and integrated to any databases. There is a lack of a data repository for pHis, and such work is expected to help further systemic studies of pHis. Thus, we present a comprehensive resource database of histidine phosphorylation (HisPhosSite) by curating experimentally validated pHis proteins and sites and compiling putative pHis sites with ortholog search. HisPhosSite contains 776 verified pHis sites and 2702 verified pHis proteins in 38 eukaryotic and prokaryotic species and 15,378 putative pHis sites and 10,816 putative pHis proteins in 1366 species. HisPhosSite provides rich annotations of pHis sites and proteins and multiple search engines (including motif search and BLAST search) for users to locate pHis sites of interest. HisPhosSite is available at http://reprod.njmu.edu.cn/hisphossite. SIGNIFICANCE: Histidine phosphorylation is involved in a variety of cellular processes as well as cancers, and it has been proved to be more common than previously thought. The HisPhosSite database was developed to collect pHis data from published literatures with experimental evidences. Unification of the identified pHis proteins and sites will give researchers an informative resource for histidine phosphorylation. HisPhosSite has a user-friendly interface with multiple search engines for users to locate pHis sites of interest. In addition, the database provides rich structural and functional annotations. HisPhosSite will help future studies and elucidation of the functions of histidine phosphorylation.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Cong Zeng
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
107
|
De Silva PM, Patidar R, Graham CI, Brassinga AKC, Kumar A. A response regulator protein with antar domain, AvnR, in Acinetobacter baumannii ATCC 17978 impacts its virulence and amino acid metabolism. MICROBIOLOGY-SGM 2021; 166:554-566. [PMID: 32324528 DOI: 10.1099/mic.0.000913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acinetobacter baumannii, a Gram-negative coccobacillus, is notorious for its involvement in opportunistic infections around the world. Its resistance to antibiotics makes treatment of infections challenging. In this study, we describe a novel response regulator protein, AvnR (A1S_2006) that regulates virulence-related traits in A. baumannii ATCC17978. Sequence analysis suggests that AvnR is a CheY-like response regulator and contains the RNA-binding ANTAR (AmiR and NasR transcription anti-termination regulators) domain. We show that AvnR plays a role in regulating biofilm formation (on glass and plastic surfaces), surface motility, adhesion to A549 cells as well as in nitrogen metabolism in A. baumannii. RNA-Seq analysis revealed that avnR deletion results in altered expression of more than 150 genes (116 upregulated and 42 downregulated). RNA-Seq data suggest that altered biofilm formation and surface motility observed in the avnR deletion mutant is likely mediated by previously unknown pathways. Of note, was the altered expression of genes predicted to be involved in amino acid transport and metabolism in avnR deletion mutant. Biolog phenotypic array showed that deletion of avnR hampered A. baumannii ATCC17978's ability to metabolize various nitrogen sources, particularly that of glutamic acid, serine, histidine, aspartic acid, isoleucine and arginine. Taken together our data show that AvnR, the first ANTAR protein described in A. baumannii, affects virulence phenotypes as well as its ability to metabolize nitrogen sources.
Collapse
Affiliation(s)
- P Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
108
|
Trivial and nontrivial error sources account for misidentification of protein partners in mutual information approaches. Sci Rep 2021; 11:6902. [PMID: 33767294 PMCID: PMC7994710 DOI: 10.1038/s41598-021-86455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/15/2021] [Indexed: 12/01/2022] Open
Abstract
The problem of finding the correct set of partners for a given pair of interacting protein families based on multi-sequence alignments (MSAs) has received great attention over the years. Recently, the native contacts of two interacting proteins were shown to store the strongest mutual information (MI) signal to discriminate MSA concatenations with the largest fraction of correct pairings. Although that signal might be of practical relevance in the search for an effective heuristic to solve the problem, the number of MSA concatenations with near-native MI is large, imposing severe limitations. Here, a Genetic Algorithm that explores possible MSA concatenations according to a MI maximization criteria is shown to find degenerate solutions with two error sources, arising from mismatches among (i) similar and (ii) non-similar sequences. If mistakes made among similar sequences are disregarded, type-(i) solutions are found to resolve correct pairings at best true positive (TP) rates of 70%—far above the very same estimates in type-(ii) solutions. A machine learning classification algorithm helps to show further that differences between optimized solutions based on TP rates are not artificial and may have biological meaning associated with the three-dimensional distribution of the MI signal. Type-(i) solutions may therefore correspond to reliable results for predictive purposes, found here to be more likely obtained via MI maximization across protein systems having a minimum critical number of amino acid contacts on their interaction surfaces (N > 200).
Collapse
|
109
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
110
|
Awais M, Hussain W, Khan YD, Rasool N, Khan SA, Chou KC. iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and Position Relative Features According to the Chou's 5-Step Rule and General Pseudo Amino Acid Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:596-610. [PMID: 31144645 DOI: 10.1109/tcbb.2019.2919025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein phosphorylation is one of the key mechanism in prokaryotes and eukaryotes and is responsible for various biological functions such as protein degradation, intracellular localization, the multitude of cellular processes, molecular association, cytoskeletal dynamics, and enzymatic inhibition/activation. Phosphohistidine (PhosH) has a key role in a number of biological processes, including central metabolism to signalling in eukaryotes and bacteria. Thus, identification of phosphohistidine sites in a protein sequence is crucial, and experimental identification can be expensive, time-taking, and laborious. To address this problem, here, we propose a novel computational model namely iPhosH-PseAAC for prediction of phosphohistidine sites in a given protein sequence using pseudo amino acid composition (PseAAC), statistical moments, and position relative features. The results of the proposed predictor are validated through self-consistency testing, 10-fold cross-validation, and jackknife testing. The self-consistency validation gave the 100 percent accuracy, whereas, for cross-validation, the accuracy achieved is 94.26 percent. Moreover, jackknife testing gave 97.07 percent accuracy for the proposed model. Thus, the proposed model iPhosH-PseAAC for prediction of iPhosH site has the great ability to predict the PhosH sites in given proteins.
Collapse
|
111
|
Fan K, Cao Q, Lan L. Genome-Wide Mapping Reveals Complex Regulatory Activities of BfmR in Pseudomonas aeruginosa. Microorganisms 2021; 9:485. [PMID: 33668961 PMCID: PMC8025907 DOI: 10.3390/microorganisms9030485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
BfmR is a response regulator that modulates diverse pathogenic phenotypes and induces an acute-to-chronic virulence switch in Pseudomonas aeruginosa, an important human pathogen causing serious nosocomial infections. However, the mechanisms of action of BfmR remain largely unknown. Here, using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we showed that 174 chromosomal regions of P. aeruginosa MPAO1 genome were highly enriched by coimmunoprecipitation with a C-terminal Flag-tagged BfmR. Integration of these data with global transcriptome analyses revealed that 172 genes in 106 predicted transcription units are potential targets for BfmR. We determined that BfmR binds to and modulates the promoter activity of genes encoding transcriptional regulators CzcR, ExsA, and PhoB. Intriguingly, BfmR bound to the promoters of a number of genes belong to either CzcR or PhoB regulon, or both, indicating that CzcRS and PhoBR two-component systems (TCSs) deeply feed into the BfmR-mediated regulatory network. In addition, we demonstrated that phoB is required for BfmR to promote the biofilm formation by P. aeruginosa. These results delineate the direct BfmR regulon and exemplify the complexity of BfmR-mediated regulation of cellular functions in P. aeruginosa.
Collapse
Affiliation(s)
- Ke Fan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Lefu Lan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| |
Collapse
|
112
|
Yoon SH, Waters CM. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Curr Opin Microbiol 2021; 60:96-103. [PMID: 33640793 DOI: 10.1016/j.mib.2021.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023]
Abstract
Cyclic dinucleotide (cdN) second messengers are essential for bacteria to sense and adapt to their environment. These signals were first discovered with the identification of 3'-5', 3'-5' cyclic di-GMP (c-di-GMP) in 1987, a second messenger that is now known to be the linchpin signaling pathway modulating bacterial motility and biofilm formation. In the past 15 years, three more cdNs were uncovered: 3'-5', 3'-5' cyclic di-AMP (c-di-AMP) and 3'-5', 3'-5' cyclic GMP-AMP (3',3' cGAMP) in bacteria and 2'-5', 3'-5' cyclic GMP-AMP (2',3' cGAMP) in eukaryotes. We now appreciate that bacteria can synthesize many varieties of cdNs from every ribonucleotide, and even cyclic trinucleotide (ctN) second messengers have been discovered. Here we highlight our current understanding of c-di-GMP and c-di-AMP in bacterial physiology and focus on recent advances in 3',3' cGAMP signaling effectors, its role in bacterial phage response, and the diversity of its synthase family.
Collapse
Affiliation(s)
- Soo Hun Yoon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA.
| |
Collapse
|
113
|
Wang S, Long L, Yang X, Qiu Y, Tao T, Peng X, Li Y, Han A, Senadheera DB, Downey JS, Goodman SD, Zhou X, Cvitkovitch DG. Dissecting the Role of VicK Phosphatase in Aggregation and Biofilm Formation of Streptococcus mutans. J Dent Res 2021; 100:631-638. [PMID: 33530836 DOI: 10.1177/0022034520979798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
VicRK (WalRK or YycFG) is a conserved 2-component regulatory system (TCS) that regulates cell division, cell wall biosynthesis, and homeostasis in low-GC Gram-positive bacteria. VicRK is also associated with biofilm formation of Streptococcus mutans on the tooth surface as it directly regulates the extracellular polysaccharide (EPS) synthesis. Of the 2 components, VicK possesses both autokinase and phosphatase activities, which regulate the phosphorylation and dephosphorylation of the regulator VicR in response to environmental cues. However, the dual mechanism of VicK as the autokinase/phosphatase in regulating S. mutans' responses is not well elucidated. Previously, it has been shown that the phosphatase activity depends on the PAS domain and residues in the DHp domain of VicK in S. mutans. Specifically, mutating proline at 222 in the PAS domain inhibits VicK phosphatase activity. We generated a VicKP222A mutant to determine the level of VicR-P in the cytoplasm by Phos-tag sodium dodecyl sulfate polyacrylamide gel electrophoresis. We show that in VicKP222A phosphatase, attenuation increased phosphorylated VicR (VicR-P) that downregulated glucosyltransferases, gtfBC, thereby reducing the synthesis of water-insoluble polysaccharides (WIS-EPS) in the biofilm. In addition, VicKP222A presented as long-rod cells, reduced growth, and displayed asymmetrical division. A major adhesin of S. mutans, SpaP was downregulated in VicKP222A, making it unable to agglutinate in saliva. In summary, we have confirmed that VicK phosphatase activity is critical to maintain optimal phosphorylation status of VicR in S. mutans, which is important for cell growth, cell division, EPS synthesis, and bacterial agglutination in saliva. Hence, VicK phosphatase activity may represent a promising target to modulate S. mutans' pathogenicity.
Collapse
Affiliation(s)
- S Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Qiu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - A Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen University Xiang'an Campus, Xiamen, Fujian, China
| | - D B Senadheera
- School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - J S Downey
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry of University of Southern California, Los Angeles, CA, USA
| | - S D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - X Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D G Cvitkovitch
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
114
|
Albicoro FJ, Draghi WO, Martini MC, Salas ME, Torres Tejerizo GA, Lozano MJ, López JL, Vacca C, Cafiero JH, Pistorio M, Bednarz H, Meier D, Lagares A, Niehaus K, Becker A, Del Papa MF. The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti. J Biotechnol 2021; 329:80-91. [PMID: 33539896 DOI: 10.1016/j.jbiotec.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023]
Abstract
The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.
Collapse
Affiliation(s)
- Francisco J Albicoro
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter O Draghi
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María C Martini
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María E Salas
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - G A Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - José L López
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan H Cafiero
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hanna Bednarz
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Doreen Meier
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Karsten Niehaus
- CeBiTec, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany; Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - M F Del Papa
- Instituto de Biotecnología y Biología Molecular -CONICET CCT La Plata Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
115
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021; 46:85. [PMID: 34475315 PMCID: PMC8387214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 04/04/2024]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
116
|
The Two-Component System CopRS Maintains Subfemtomolar Levels of Free Copper in the Periplasm of Pseudomonas aeruginosa Using a Phosphatase-Based Mechanism. mSphere 2020; 5:5/6/e01193-20. [PMID: 33361129 PMCID: PMC7763554 DOI: 10.1128/msphere.01193-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Copper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins and generating damaging free radicals. Two-component systems control periplasmic Cu+ homeostasis in Gram-negative bacteria. In characterized systems such as Escherichia coli CusRS, upon Cu+ binding to the periplasmic sensing region of CusS, a cytoplasmic phosphotransfer domain of the sensor phosphorylates the response regulator CusR. This drives the expression of efflux transporters, chaperones, and redox enzymes to ameliorate metal toxic effects. Here, we show that the Pseudomonas aeruginosa two-component sensor histidine kinase CopS exhibits a Cu-dependent phosphatase activity that maintains CopR in a nonphosphorylated state when the periplasmic Cu levels are below the activation threshold of CopS. Upon Cu+ binding to the sensor, the phosphatase activity is blocked and the phosphorylated CopR activates transcription of the CopRS regulon. Supporting the model, mutagenesis experiments revealed that the ΔcopS strain exhibits maximal expression of the CopRS regulon, lower intracellular Cu+ levels, and increased Cu tolerance compared to wild-type cells. The invariant phosphoacceptor residue His235 of CopS was not required for the phosphatase activity itself but was necessary for its Cu dependency. To sense the metal, the periplasmic domain of CopS binds two Cu+ ions at its dimeric interface. Homology modeling of CopS based on CusS structure (four Ag+ binding sites) clearly supports the different binding stoichiometries in the two systems. Interestingly, CopS binds Cu+/2+ with 3 × 10−14 M affinity, pointing to the absence of free (hydrated) Cu+/2+ in the periplasm. IMPORTANCE Copper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins and generating damaging free radicals. Consequently, copper overload is a strategy that eukaryotic cells use to combat pathogens. Bacteria have developed copper-sensing transcription factors to control copper homeostasis. The cell envelope is the first compartment that has to cope with copper stress. Dedicated two-component systems control the periplasmic response to metal overload. This paper shows that the sensor kinase of the copper-sensing two-component system present in Pseudomonadales exhibits a signal-dependent phosphatase activity controlling the activation of its cognate response regulator, distinct from previously described periplasmic Cu sensors. Importantly, the data show that the system is activated by copper levels compatible with the absence of free copper in the cell periplasm. These observations emphasize the diversity of molecular mechanisms that have evolved in bacteria to manage the copper cellular distribution.
Collapse
|
117
|
Wang R, Ding W, Long L, Lan Y, Tong H, Saha S, Wong YH, Sun J, Li Y, Zhang W, Qian PY. Exploring the Influence of Signal Molecules on Marine Biofilms Development. Front Microbiol 2020; 11:571400. [PMID: 33281767 PMCID: PMC7691533 DOI: 10.3389/fmicb.2020.571400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023] Open
Abstract
Microbes respond to environmental stimuli through complicated signal transduction systems. In microbial biofilms, because of complex multiple species interactions, signals transduction systems are of an even higher complexity. Here, we performed a signal-molecule-treatment experiment to study the role of different signal molecules, including N-hexanoyl-L-homoserine lactone (C6-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), Pseudomonas quinolone signal (PQS), and cyclic di-GMP (c-di-GMP), in the development of marine biofilms. Comparative metagenomics suggested a distinctive influence of these molecules on the microbial structure and function of multi-species biofilm communities in its developing stage. The PQS-treated biofilms shared the least similarity with the control and initial biofilms. The role of PQS in biofilm development was further explored experimentally with the strain Erythrobacter sp. HKB8 isolated from marine biofilms. Comparative transcriptomic analysis showed that 314 genes, such as those related to signal transduction and biofilm formation, were differentially expressed in the untreated and PQS-treated Erythrobacter sp. HKB8 biofilms. Our study demonstrated the different roles of signal molecules in marine biofilm development. In particular, the PQS-based signal transduction system, which is frequently detected in marine biofilms, may play an important role in regulating microbe-microbe interactions and the assemblage of biofilm communities.
Collapse
Affiliation(s)
- Ruojun Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lexin Long
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yi Lan
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Haoya Tong
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Subhasish Saha
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yue Him Wong
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jin Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yongxin Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.,The Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
118
|
Cao Q, Yang N, Wang Y, Xu C, Zhang X, Fan K, Chen F, Liang H, Zhang Y, Deng X, Feng Y, Yang CG, Wu M, Bae T, Lan L. Mutation-induced remodeling of the BfmRS two-component system in Pseudomonas aeruginosa clinical isolates. Sci Signal 2020; 13:13/656/eaaz1529. [PMID: 33144518 DOI: 10.1126/scisignal.aaz1529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic mutations are a primary driving force behind the adaptive evolution of bacterial pathogens. Multiple clinical isolates of Pseudomonas aeruginosa, an important human pathogen, have naturally evolved one or more missense mutations in bfmS, which encodes the sensor histidine kinase of the BfmRS two-component system (TCS). A mutant BfmS protein containing both the L181P and E376Q substitutions increased the phosphorylation and thus the transcriptional regulatory activity of its cognate downstream response regulator, BfmR. This reduced acute virulence and enhanced biofilm formation, both of which are phenotypic changes associated with a chronic infection state. The increased phosphorylation of BfmR was due, at least in part, to the cross-phosphorylation of BfmR by GtrS, a noncognate sensor kinase. Other spontaneous missense mutations in bfmS, such as A42E/G347D, T242R, and R393H, also caused a similar remodeling of the BfmRS TCS in P. aeruginosa This study highlights the plasticity of TCSs mediated by spontaneous mutations and suggests that mutation-induced activation of BfmRS may contribute to host adaptation by P. aeruginosa during chronic infections.
Collapse
Affiliation(s)
- Qiao Cao
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nana Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenchen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feifei Chen
- College of Life Science, Northwest University, Xi'an 710127, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi'an 710127, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Youjun Feng
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | - Lefu Lan
- College of Life Science, Northwest University, Xi'an 710127, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| |
Collapse
|
119
|
Abstract
Today massive amounts of sequenced metagenomic and metatranscriptomic data from different ecological niches and environmental locations are available. Scientific progress depends critically on methods that allow extracting useful information from the various types of sequence data. Here, we will first discuss types of information contained in the various flavours of biological sequence data, and how this information can be interpreted to increase our scientific knowledge and understanding. We argue that a mechanistic understanding of biological systems analysed from different perspectives is required to consistently interpret experimental observations, and that this understanding is greatly facilitated by the generation and analysis of dynamic mathematical models. We conclude that, in order to construct mathematical models and to test mechanistic hypotheses, time-series data are of critical importance. We review diverse techniques to analyse time-series data and discuss various approaches by which time-series of biological sequence data have been successfully used to derive and test mechanistic hypotheses. Analysing the bottlenecks of current strategies in the extraction of knowledge and understanding from data, we conclude that combined experimental and theoretical efforts should be implemented as early as possible during the planning phase of individual experiments and scientific research projects. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| | - Ellen Oldenburg
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
120
|
Chitrakar I, Iuliano JN, He Y, Woroniecka HA, Collado JT, Wint J, Walker SG, Tonge PJ, French JB. Structural Basis for the Regulation of Biofilm Formation and Iron Uptake in A. baumannii by the Blue-Light-Using Photoreceptor, BlsA. ACS Infect Dis 2020; 6:2592-2603. [PMID: 32926768 PMCID: PMC10035076 DOI: 10.1021/acsinfecdis.0c00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic human pathogen, A. baumannii, senses and responds to light using the blue light sensing A (BlsA) photoreceptor protein. BlsA is a blue-light-using flavin adenine dinucleotide (BLUF) protein that is known to regulate a wide variety of cellular functions through interactions with different binding partners. Using immunoprecipitation of tagged BlsA in A. baumannii lysates, we observed a number of proteins that interact with BlsA, including several transcription factors. In addition to a known binding partner, the iron uptake regulator Fur, we identified the biofilm response regulator BfmR as a putative BlsA-binding partner. Using microscale thermophoresis, we determined that both BfmR and Fur bind to BlsA with nanomolar binding constants. To better understand how BlsA interacts with and regulates these transcription factors, we solved the X-ray crystal structures of BlsA in both a ground (dark) state and a photoactivated light state. Comparison of the light- and dark-state structures revealed that, upon photoactivation, the two α-helices comprising the variable domain of BlsA undergo a distinct conformational change. The flavin-binding site, however, remains largely unchanged from dark to light. These structures, along with docking studies of BlsA and Fur, reveal key mechanistic details about how BlsA propagates the photoactivation signal between protein domains and on to its binding partner. Taken together, our structural and biophysical data provide important insights into how BlsA controls signal transduction in A. baumannii and provides a likely mechanism for blue-light-dependent modulation of biofilm formation and iron uptake.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA, 11790
- Biochemistry and Structural Biology Program, Stony Brook University, Stony Brook, NY, USA, 11790
| | - James N. Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
| | - YongLe He
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
| | | | | | - Jinelle Wint
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA, 11790
| | - Stephen G. Walker
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA, 11790
| | - Peter J. Tonge
- Biochemistry and Structural Biology Program, Stony Brook University, Stony Brook, NY, USA, 11790
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
| | - Jarrod B. French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA, 11790
- Biochemistry and Structural Biology Program, Stony Brook University, Stony Brook, NY, USA, 11790
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
- The Hormel Institute, University of Minnesota, Austin, MN, 55912
- To whom correspondence should be addressed: Jarrod B. French: ; (507)437-9637
| |
Collapse
|
121
|
Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics (Basel) 2020; 9:antibiotics9100635. [PMID: 32977461 PMCID: PMC7598275 DOI: 10.3390/antibiotics9100635] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.
Collapse
|
122
|
Xie M, Wu M, Han A. Structural insights into the signal transduction mechanism of the K +-sensing two-component system KdpDE. Sci Signal 2020; 13:13/643/eaaz2970. [PMID: 32753477 DOI: 10.1126/scisignal.aaz2970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two-component systems (TCSs), which consist of a histidine kinase (HK) sensor and a response regulator (RR), are important for bacteria to quickly sense and respond to various environmental signals. HKs and RRs typically function as a cognate pair, interacting only with one another to transduce signaling. Precise signal transduction in a TCS depends on the specific interactions between the receiver domain (RD) of the RR and the dimerization and histidine phosphorylation domain (DHp) of the HK. Here, we determined the complex structure of KdpDE, a TCS consisting of the HK KdpD and the RR KdpE, which is responsible for K+ homeostasis. Both the RD and the DNA binding domain (DBD) of KdpE interacted with KdpD. Although the RD of KdpE and the DHp of KdpD contributed to binding specificity, the DBD mediated a distinct interaction with the catalytic ATP-binding (CA) domain of KdpD that was indispensable for KdpDE-mediated signal transduction. Moreover, the DBD-CA interface largely overlapped with that of the DBD-DNA complex, leading to competition between KdpD and its target promoter in a KdpE phosphorylation-dependent manner. In addition, the extended C-terminal tail of the CA domain was critical for stabilizing the interaction with KdpDE and for signal transduction. Together, these data provide a molecular basis for specific KdpD and KdpE interactions that play key roles in efficient signal transduction and transcriptional regulation by this TCS.
Collapse
Affiliation(s)
- Mingquan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyuan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
123
|
Regulation of Protein Post-Translational Modifications on Metabolism of Actinomycetes. Biomolecules 2020; 10:biom10081122. [PMID: 32751230 PMCID: PMC7464533 DOI: 10.3390/biom10081122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Protein post-translational modification (PTM) is a reversible process, which can dynamically regulate the metabolic state of cells through regulation of protein structure, activity, localization or protein–protein interactions. Actinomycetes are present in the soil, air and water, and their life cycle is strongly determined by environmental conditions. The complexity of variable environments urges Actinomycetes to respond quickly to external stimuli. In recent years, advances in identification and quantification of PTMs have led researchers to deepen their understanding of the functions of PTMs in physiology and metabolism, including vegetative growth, sporulation, metabolite synthesis and infectivity. On the other hand, most donor groups for PTMs come from various metabolites, suggesting a complex association network between metabolic states, PTMs and signaling pathways. Here, we review the mechanisms and functions of PTMs identified in Actinomycetes, focusing on phosphorylation, acylation and protein degradation in an attempt to summarize the recent progress of research on PTMs and their important role in bacterial cellular processes.
Collapse
|
124
|
Espinasse A, Wen X, Goodpaster JD, Carlson EE. Mechanistic Studies of Bioorthogonal ATP Analogues for Assessment of Histidine Kinase Autophosphorylation. ACS Chem Biol 2020; 15:1252-1260. [PMID: 32043868 DOI: 10.1021/acschembio.9b01024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphorylation is an essential protein modification and is most commonly associated with hydroxyl-containing amino acids via an adenosine triphosphate (ATP) substrate. The last decades have brought greater appreciation to the roles that phosphorylation of myriad amino acids plays in biological signaling, metabolism, and gene transcription. Histidine phosphorylation occurs in both eukaryotes and prokaryotes but has been shown to dominate signaling networks in the latter due to its role in microbial two-component systems. Methods to investigate histidine phosphorylation have lagged behind those to study serine, threonine, and tyrosine modifications due to its inherent instability and the historical view that this protein modification was rare. An important strategy to overcome the reactivity of phosphohistidine is the development of substrate-based probes with altered chemical properties that improve modification longevity but that do not suffer from poor recognition or transfer by the protein. Here, we present combined experimental and computational studies to better understand the molecular requirements for efficient histidine phosphorylation by comparison of the native kinase substrate, ATP, and alkylated ATP derivatives. While recognition of the substrates by the histidine kinases is an important parameter for the formation of phosphohistidine derivatives, reaction sterics also affect the outcome. In addition, we found that stability of the resulting phosphohistidine moieties correlates with the stability of their hydrolysis products, specifically with their free energy in solution. Interestingly, alkylation dramatically affects the stability of the phosphohistidine derivatives at very acidic pH values. These results provide critical mechanistic insights into histidine phosphorylation and will facilitate the design of future probes to study enzymatic histidine phosphorylation.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Xuelan Wen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
125
|
Campylobacter jejuni BumSR directs a response to butyrate via sensor phosphatase activity to impact transcription and colonization. Proc Natl Acad Sci U S A 2020; 117:11715-11726. [PMID: 32398371 DOI: 10.1073/pnas.1922719117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.
Collapse
|
126
|
Yu L, Li W, Xue M, Li J, Chen X, Ni J, Shang F, Xue T. Regulatory Role of the Two-Component System BasSR in the Expression of the EmrD Multidrug Efflux in Escherichia coli. Microb Drug Resist 2020; 26:1163-1173. [PMID: 32379525 DOI: 10.1089/mdr.2019.0412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to excessive use of antimicrobial agents in the treatment of infectious diseases, bacteria have developed resistance to antibacterial drugs and toxic compounds. The development of multidrug efflux pumps is one of the important mechanisms of bacterial drug resistance. A multidrug efflux pump, EmrD, belonging to the major facilitator superfamily of transporters, confers resistance to many antimicrobial agents. BasSR, a typical two-component signal transduction system (TCS), regulates susceptibility to the cationic antimicrobial peptide, polymyxin B, and the anionic bile detergent, deoxycholic acid, in Escherichia coli. However, whether or not the BasSR TCS affects susceptibility or resistance to other antimicrobial agents and transcription of emrD has not been reported in E. coli. In the present study, we constructed the basSR mutants of wild-type MG1655 and clinical strain APECX40 and performed antimicrobial susceptibility testing, antibacterial activity assays, real-time reverse transcription-PCR experiments and electrophoretic mobility shift assays (EMSA) to investigate the molecular mechanism by which BasSR regulates the EmrD multidrug efflux pump. Results showed that the basSR mutation increased cell susceptibility to eight antimicrobial agents, including ciprofloxacin, norfloxacin, doxycycline, tetracycline, clindamycin, lincomycin, erythromycin, and sodium dodecyl sulfate, by downregulating the transcriptional levels of emrD. Furthermore, EMSA indicated that BasR could directly bind to the emrD promoter. Therefore, this study was the first to demonstrate that BasSR activates transcription of emrD by binding directly to its promoter region, and then decreases susceptibility to various antimicrobial agents in E. coli strains, APECX40 and MG1655.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mei Xue
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China
| | - Jing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
127
|
Jani S, Sterzenbach K, Adatrao V, Tajbakhsh G, Mascher T, Golemi-Kotra D. Low phosphatase activity of LiaS and strong LiaR-DNA affinity explain the unusual LiaS to LiaR in vivo stoichiometry. BMC Microbiol 2020; 20:104. [PMID: 32349670 PMCID: PMC7191749 DOI: 10.1186/s12866-020-01796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background LiaRS mediates Bacillus subtilis response to cell envelope perturbations. A third protein, LiaF, has an inhibitory role over LiaRS in the absence of stimulus. Together, LiaF and LiaRS form a three-component system characterized by an unusual stoichiometry, a 4:1 ratio between LiaS and LiaR, the significance of which in the signal transduction mechanism of LiaRS is not entirely understood. Results We measured, for the first time, the kinetics of the phosphorylation-dependent processes of LiaRS, the DNA-binding affinity of LiaR, and characterized the effect of phosphorylation on LiaR oligomerization state. Our study reveals that LiaS is less proficient as a phosphatase. Consequently, unspecific phosphorylation of LiaR by acetyl phosphate may be significant in vivo. This drawback is exacerbated by the strong interaction between LiaR and its own promoter, as it can drive LiaRS into losing grip over its own control in the absence of stimuli. These intrinsic, seemingly ‘disadvantageous”, attributes of LiaRS are likely overcome by the higher concentration of LiaS over LiaR in vivo, and a pro-phosphatase role of LiaF. Conclusions Overall, our study shows that despite the conservative nature of two-component systems, they are, ultimately, tailored to meet specific cell needs by modulating the dynamics of interactions among their components and the kinetics of phosphorylation-mediated processes.
Collapse
Affiliation(s)
- Shailee Jani
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Karen Sterzenbach
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Vijaya Adatrao
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Ghazal Tajbakhsh
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Thorsten Mascher
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
128
|
Li R, Wang X, Wu L, Huang L, Qin Q, Yao J, Lu G, Tang J. Xanthomonas campestris sensor kinase HpaS co-opts the orphan response regulator VemR to form a branched two-component system that regulates motility. MOLECULAR PLANT PATHOLOGY 2020; 21:360-375. [PMID: 31919999 PMCID: PMC7036368 DOI: 10.1111/mpp.12901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 05/07/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xin‐Xin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Li Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qi‐Jian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Jia‐Li Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
129
|
Phillips R, Belliveau NM, Chure G, Garcia HG, Razo-Mejia M, Scholes C. Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression. Annu Rev Biophys 2020; 48:121-163. [PMID: 31084583 DOI: 10.1146/annurev-biophys-052118-115525] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is tempting to believe that we now own the genome. The ability to read and rewrite it at will has ushered in a stunning period in the history of science. Nonetheless, there is an Achilles' heel exposed by all of the genomic data that has accrued: We still do not know how to interpret them. Many genes are subject to sophisticated programs of transcriptional regulation, mediated by DNA sequences that harbor binding sites for transcription factors, which can up- or down-regulate gene expression depending upon environmental conditions. This gives rise to an input-output function describing how the level of expression depends upon the parameters of the regulated gene-for instance, on the number and type of binding sites in its regulatory sequence. In recent years, the ability to make precision measurements of expression, coupled with the ability to make increasingly sophisticated theoretical predictions, has enabled an explicit dialogue between theory and experiment that holds the promise of covering this genomic Achilles' heel. The goal is to reach a predictive understanding of transcriptional regulation that makes it possible to calculate gene expression levels from DNA regulatory sequence. This review focuses on the canonical simple repression motif to ask how well the models that have been used to characterize it actually work. We consider a hierarchy of increasingly sophisticated experiments in which the minimal parameter set learned at one level is applied to make quantitative predictions at the next. We show that these careful quantitative dissections provide a template for a predictive understanding of the many more complex regulatory arrangements found across all domains of life.
Collapse
Affiliation(s)
- Rob Phillips
- Department of Physics, California Institute of Technology, Pasadena, California, USA; .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nathan M Belliveau
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Griffin Chure
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Hernan G Garcia
- Department of Molecular & Cell Biology, Department of Physics, Biophysics Graduate Group, and Institute for Quantitative Biosciences-QB3, University of California, Berkeley, California, USA
| | - Manuel Razo-Mejia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
130
|
Hochstrasser R, Hutter CAJ, Arnold FM, Bärlocher K, Seeger MA, Hilbi H. The structure of the
Legionella
response regulator LqsR reveals amino acids critical for phosphorylation and dimerization. Mol Microbiol 2020; 113:1070-1084. [DOI: 10.1111/mmi.14477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | | | - Fabian M. Arnold
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Kevin Bärlocher
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| |
Collapse
|
131
|
A Thermolabile Phospholipase B from Talaromyces marneffei GD-0079: Biochemical Characterization and Structure Dynamics Study. Biomolecules 2020; 10:biom10020231. [PMID: 32033124 PMCID: PMC7072546 DOI: 10.3390/biom10020231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/01/2022] Open
Abstract
Phospholipase B (EC 3.1.1.5) are a distinctive group of enzymes that catalyzes the hydrolysis of fatty acids esterified at the sn-1 and sn-2 positions forming free fatty acids and lysophospholipids. The structural information and catalytic mechanism of phospholipase B are still not clear. Herein, we reported a putative phospholipase B (TmPLB1) from Talaromyces marneffei GD-0079 synthesized by genome mining library. The gene (TmPlb1) was expressed and the TmPLB1 was purified using E. coli shuffle T7 expression system. The putative TmPLB1 was purified by affinity chromatography with a yield of 13.5%. The TmPLB1 showed optimum activity at 35 °C and pH 7.0. The TmPLB1 showed enzymatic activity using Lecithin (soybean > 98% pure), and the hydrolysis of TmPLB1 by 31P NMR showed phosphatidylcholine (PC) as a major phospholipid along with lyso-phospholipids (1-LPC and 2-LPC) and some minor phospholipids. The molecular modeling studies indicate that its active site pocket contains Ser125, Asp183 and His215 as the catalytic triad. The structure dynamics and simulations results explained the conformational changes associated with different environmental conditions. This is the first report on biochemical characterization and structure dynamics of TmPLB1 enzyme. The present study could be helpful to utilize TmPLB1 in food industry for the determination of food components containing phosphorus. Additionally, such enzyme could also be useful in Industry for the modifications of phospholipids.
Collapse
|
132
|
Evidence of Robustness in a Two-Component System Using a Synthetic Circuit. J Bacteriol 2020; 202:JB.00672-19. [PMID: 31792012 DOI: 10.1128/jb.00672-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.
Collapse
|
133
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
134
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
135
|
Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev 2019; 40:1440-1495. [PMID: 31802520 DOI: 10.1002/med.21651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/11/2022]
Abstract
Infections caused by multidrug-resistant bacteria represent a significant and ever-increasing cause of morbidity and mortality. There is thus an urgent need to develop efficient and well-tolerated antibacterials targeting unique cellular processes. Numerous studies have led to the identification of new biological targets to fight bacterial resistance. Two-component signal transduction systems are widely employed by bacteria to translate external and cellular signals into a cellular response. They are ubiquitous in bacteria, absent in the animal kingdom and are integrated into various virulence pathways. Several chemical series, including isothiazolidones, imidazolium salts, benzoxazines, salicylanilides, thiophenes, thiazolidiones, benzimidazoles, and other derivatives deduced by different approaches have been reported in the literature to have histidine kinase (HK) inhibitory activity. In this review, we report on the design and the synthesis of these HKs inhibitors and their potential to serve as antibacterial agents.
Collapse
Affiliation(s)
| | | | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | | |
Collapse
|
136
|
Chantreau M, Poux C, Lensink MF, Brysbaert G, Vekemans X, Castric V. Asymmetrical diversification of the receptor-ligand interaction controlling self-incompatibility in Arabidopsis. eLife 2019; 8:e50253. [PMID: 31763979 PMCID: PMC6908432 DOI: 10.7554/elife.50253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
How two-component genetic systems accumulate evolutionary novelty and diversify in the course of evolution is a fundamental problem in evolutionary systems biology. In the Brassicaceae, self-incompatibility (SI) is a spectacular example of a diversified allelic series in which numerous highly diverged receptor-ligand combinations are segregating in natural populations. However, the evolutionary mechanisms by which new SI specificities arise have remained elusive. Using in planta ancestral protein reconstruction, we demonstrate that two allelic variants segregating as distinct receptor-ligand combinations diverged through an asymmetrical process whereby one variant has retained the same recognition specificity as their (now extinct) putative ancestor, while the other has functionally diverged and now represents a novel specificity no longer recognized by the ancestor. Examination of the structural determinants of the shift in binding specificity suggests that qualitative rather than quantitative changes of the interaction are an important source of evolutionary novelty in this highly diversified receptor-ligand system.
Collapse
Affiliation(s)
| | - Céline Poux
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paléo, F-59000LilleFrance
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000LilleFrance
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000LilleFrance
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paléo, F-59000LilleFrance
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paléo, F-59000LilleFrance
| |
Collapse
|
137
|
Multisite phosphorylation drives phenotypic variation in (p)ppGpp synthetase-dependent antibiotic tolerance. Nat Commun 2019; 10:5133. [PMID: 31723135 PMCID: PMC6853874 DOI: 10.1038/s41467-019-13127-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/21/2019] [Indexed: 01/21/2023] Open
Abstract
Isogenic populations of cells exhibit phenotypic variability that has specific physiological consequences. Individual bacteria within a population can differ in antibiotic tolerance, but whether this variability can be regulated or is generally an unavoidable consequence of stochastic fluctuations is unclear. Here we report that a gene encoding a bacterial (p)ppGpp synthetase in Bacillus subtilis, sasA, exhibits high levels of extrinsic noise in expression. We find that sasA is regulated by multisite phosphorylation of the transcription factor WalR, mediated by a Ser/Thr kinase-phosphatase pair PrkC/PrpC, and a Histidine kinase WalK of a two-component system. This regulatory intersection is crucial for controlling the appearance of outliers; rare cells with unusually high levels of sasA expression, having increased antibiotic tolerance. We create a predictive model demonstrating that the probability of a given cell surviving antibiotic treatment increases with sasA expression. Therefore, multisite phosphorylation can be used to strongly regulate variability in antibiotic tolerance.
Collapse
|
138
|
Hybrid Two-Component Sensors for Identification of Bacterial Chemoreceptor Function. Appl Environ Microbiol 2019; 85:AEM.01626-19. [PMID: 31492670 DOI: 10.1128/aem.01626-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli. The bacterial chemotaxis system is a modified two-component system with additional protein components and a response that, rather than regulating gene expression, involves behavioral adaptation and results in net movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to 40 or more chemoreceptors encoded in their genomes. To simplify the identification of chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to potential attractants were monitored by β-galactosidase assays using an E. coli reporter strain in which the nitrate-responsive narG promoter was fused to lacZ Hybrid receptors constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids, tricarboxylic acid cycle intermediates, and naphthalene, respectively, were sensitive and specific for detecting known attractants, and the β-galactosidase activities measured in E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In addition, a screen of the hybrid receptors successfully identified new ligands for chemoreceptor proteins and resulted in the identification of six receptors that detect propionate.IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial genomes have been functionally characterized. More importantly, although methyl-accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria, are easily identified bioinformatically, it is not currently possible to predict what chemicals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in biodegradation as well as in host-pathogen and host-symbiont interactions, but many studies are currently limited by the inability to identify relevant chemoreceptor ligands. The use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensitive screening for potential chemoeffectors. The fusion site chosen for this study resulted in a high percentage of functional hybrids, indicating that it could be used to broadly test chemoreceptor responses from phylogenetically diverse samples. Considering the wide range of chemical attractants detected by soil bacteria, hybrid receptors may also be useful as sensitive biosensors.
Collapse
|
139
|
Jiang S, He M, Xiang XW, Adnan M, Cui ZN. Novel S-Thiazol-2-yl-furan-2-carbothioate Derivatives as Potential T3SS Inhibitors Against Xanthomonas oryzae on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11867-11876. [PMID: 31584805 DOI: 10.1021/acs.jafc.9b04085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is considered as the most destructive disease of rice. The use of bactericides is among the most widely used traditional methods to control this destructive disease. The excessive and repeated use of the same bactericides is also becoming the reason behind the development of bactericide resistance. The widely used method for finding the new antimicrobial agents often involves the bacterial virulence factors as a target without affecting bacterial growth. Type III secretion system (T3SS) is a protein appendage and is considered as having essential virulence factors in most Gram-negative bacteria. Due to the conserved construct, T3SS has been regarded as an important mark for the blooming of novel antimicrobial drugs. Toward the search of new T3SS inhibitors, an alternative series of 1,3-thiazole derivatives were designed and synthesized. Their structures were characterized and confirmed by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of hpa1 gene significantly. Eight of them showed better inhibition than our previous T3SS inhibitor TS006 (o-coumaric acid, OCA). The treatment of Xoo with eight compounds significantly attenuated HR without affecting bacterial growth. The mRNA levels of some representative genes (hrp/hrc genes) were reduced up to different extents. In vivo bioassay results showed that eight T3SS inhibitors could reduce bacterial leaf blight and bacterial leaf streak symptoms on rice, significantly.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Min He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Xu-Wen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
140
|
Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput Biol 2019; 15:e1007179. [PMID: 31609984 PMCID: PMC6812855 DOI: 10.1371/journal.pcbi.1007179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/24/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Determining which proteins interact together is crucial to a systems-level understanding of the cell. Recently, algorithms based on Direct Coupling Analysis (DCA) pairwise maximum-entropy models have allowed to identify interaction partners among paralogous proteins from sequence data. This success of DCA at predicting protein-protein interactions could be mainly based on its known ability to identify pairs of residues that are in contact in the three-dimensional structure of protein complexes and that coevolve to remain physicochemically complementary. However, interacting proteins possess similar evolutionary histories. What is the role of purely phylogenetic correlations in the performance of DCA-based methods to infer interaction partners? To address this question, we employ controlled synthetic data that only involve phylogeny and no interactions or contacts. We find that DCA accurately identifies the pairs of synthetic sequences that share evolutionary history. While phylogenetic correlations confound the identification of contacting residues by DCA, they are thus useful to predict interacting partners among paralogs. We find that DCA performs as well as phylogenetic methods to this end, and slightly better than them with large and accurate training sets. Employing DCA or phylogenetic methods within an Iterative Pairing Algorithm (IPA) allows to predict pairs of evolutionary partners without a training set. We further demonstrate the ability of these various methods to correctly predict pairings among real paralogous proteins with genome proximity but no known direct physical interaction, illustrating the importance of phylogenetic correlations in natural data. However, for physically interacting and strongly coevolving proteins, DCA and mutual information outperform phylogenetic methods. We finally discuss how to distinguish physically interacting proteins from proteins that only share a common evolutionary history. Many biologically important protein-protein interactions are conserved over evolutionary time scales. This leads to two different signals that can be used to computationally predict interactions between protein families and to identify specific interaction partners. First, the shared evolutionary history leads to highly similar phylogenetic relationships between interacting proteins of the two families. Second, the need to keep the interaction surfaces of partner proteins biophysically compatible causes a correlated amino-acid usage of interface residues. Employing simulated data, we show that the shared history alone can be used to detect partner proteins. Similar accuracies are achieved by algorithms comparing phylogenetic relationships and by methods based on Direct Coupling Analysis (DCA), which are primarily known for their ability to detect the second type of signal. Using natural sequence data, we show that in cases with shared evolutionary history but without known physical interactions, both methods work with similar accuracy, while for some physically interacting systems, DCA and mutual information outperform phylogenetic methods. We propose methods allowing both to predict interactions between protein families and to find interacting partners among paralogs.
Collapse
|
141
|
Distinct Chemotaxis Protein Paralogs Assemble into Chemoreceptor Signaling Arrays To Coordinate Signaling Output. mBio 2019; 10:mBio.01757-19. [PMID: 31551333 PMCID: PMC6759762 DOI: 10.1128/mbio.01757-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The assembly of chemotaxis receptors and signaling proteins into polar arrays is universal in motile chemotactic bacteria. Comparative genome analyses indicate that most motile bacteria possess multiple chemotaxis signaling systems, and experimental evidence suggests that signaling from distinct chemotaxis systems is integrated. Here, we identify one such mechanism. We show that paralogs from two chemotaxis systems assemble together into chemoreceptor arrays, forming baseplates comprised of proteins from both chemotaxis systems. These mixed arrays provide a straightforward mechanism for signal integration and coordinated response output from distinct chemotaxis systems. Given that most chemotactic bacteria encode multiple chemotaxis systems and the propensity for these systems to be laterally transferred, this mechanism may be common to ensure chemotaxis signal integration occurs. Most chemotactic motile bacteria possess multiple chemotaxis signaling systems, the functions of which are not well characterized. Chemotaxis signaling is initiated by chemoreceptors that assemble as large arrays, together with chemotaxis coupling proteins (CheW) and histidine kinase proteins (CheA), which form a baseplate with the cytoplasmic tips of receptors. These cell pole-localized arrays mediate sensing, signaling, and signal amplification during chemotaxis responses. Membrane-bound chemoreceptors with different cytoplasmic domain lengths segregate into distinct arrays. Here, we show that a bacterium, Azospirillum brasilense, which utilizes two chemotaxis signaling systems controlling distinct motility parameters, coordinates its chemotactic responses through the production of two separate membrane-bound chemoreceptor arrays by mixing paralogs within chemotaxis baseplates. The polar localization of chemoreceptors of different length classes is maintained in strains that had baseplate signaling proteins from either chemotaxis system but was lost when both systems were deleted. Chemotaxis proteins (CheA and CheW) from each of the chemotaxis signaling systems (Che1 and Che4) could physically interact with one another, and chemoreceptors from both classes present in A. brasilense could interact with Che1 and Che4 proteins. The assembly of paralogs from distinct chemotaxis pathways into baseplates provides a straightforward mechanism for coordinating signaling from distinct pathways, which we predict is not unique to this system given the propensity of chemotaxis systems for horizontal gene transfer.
Collapse
|
142
|
Gene networks that compensate for crosstalk with crosstalk. Nat Commun 2019; 10:4028. [PMID: 31492904 PMCID: PMC6731275 DOI: 10.1038/s41467-019-12021-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Crosstalk is a major challenge to engineering sophisticated synthetic gene networks. A common approach is to insulate signal-transduction pathways by minimizing molecular-level crosstalk between endogenous and synthetic genetic components, but this strategy can be difficult to apply in the context of complex, natural gene networks and unknown interactions. Here, we show that synthetic gene networks can be engineered to compensate for crosstalk by integrating pathway signals, rather than by pathway insulation. We demonstrate this principle using reactive oxygen species (ROS)-responsive gene circuits in Escherichia coli that exhibit concentration-dependent crosstalk with non-cognate ROS. We quantitatively map the degree of crosstalk and design gene circuits that introduce compensatory crosstalk at the gene network level. The resulting gene network exhibits reduced crosstalk in the sensing of the two different ROS. Our results suggest that simple network motifs that compensate for pathway crosstalk can be used by biological networks to accurately interpret environmental signals. Crosstalk between genetic circuits is a major challenge for engineering sophisticated networks. Here the authors design networks that compensate for crosstalk by integrating, not insulating, pathways.
Collapse
|
143
|
Cheng ST, Wang FF, Qian W. Cyclic-di-GMP binds to histidine kinase RavS to control RavS-RavR phosphotransfer and regulates the bacterial lifestyle transition between virulence and swimming. PLoS Pathog 2019; 15:e1007952. [PMID: 31408509 PMCID: PMC6707612 DOI: 10.1371/journal.ppat.1007952] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 08/23/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022] Open
Abstract
The two-component signalling system (TCS) comprising a histidine kinase (HK) and a response regulator (RR) is the predominant bacterial sense-and-response machinery. Because bacterial cells usually encode a number of TCSs to adapt to various ecological niches, the specificity of a TCS is in the centre of regulation. Specificity of TCS is defined by the capability and velocity of phosphoryl transfer between a cognate HK and a RR. Here, we provide genetic, enzymology and structural data demonstrating that the second messenger cyclic-di-GMP physically and specifically binds to RavS, a HK of the phytopathogenic, gram-negative bacterium Xanthomonas campestris pv. campestris. The [c-di-GMP]-RavS interaction substantially promotes specificity between RavS and RavR, a GGDEF–EAL domain-containing RR, by reinforcing the kinetic preference of RavS to phosphorylate RavR. [c-di-GMP]-RavS binding effectively decreases the phosphorylation level of RavS and negatively regulates bacterial swimming. Intriguingly, the EAL domain of RavR counteracts the above regulation by degrading c-di-GMP and then increasing the level of phosphorylated RavS. Therefore, RavR acts as a bifunctional phosphate sink that finely controls the level of phosphorylated RavS. These biochemical processes interactively modulate the phosphoryl flux between RavS-RavR and bacterial lifestyle transition. Our results revealed that c-di-GMP acts as an allosteric effector to dynamically modulate specificity between HK and RR. c-di-GMP is a multifunctional bacterial second messenger that controls various physiological processes. The nucleotide derivative binds to riboswitches or proteins as effectors during regulation. Here, we found that c-di-GMP physically binds to a histidine kinase, RavS, of a plant pathogenic bacterium. The binding event significantly enhanced the phosphotransferase activity of RavS to phosphorylate a response regulator, RavR. This process tightly modulates the phosphorylation level of RavS, which is important to the lifestyle transition of the bacterium between virulence and swimming motility. Therefore, our results reveal that c-di-GMP controls the bacterial two-component signalling, one of the dominant mechanisms of bacterial cells in adaptation to various environmental stimuli.
Collapse
Affiliation(s)
- Shou-Ting Cheng
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institution of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Biotic Interactions, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
144
|
Ahmad S, Shaker B, Ahmad F, Raza S, Azam SS. Moleculer dynamics simulaiton revealed reciever domain of Acinetobacter baumannii BfmR enzyme as the hot spot for future antibiotics designing. J Biomol Struct Dyn 2019; 37:2897-2912. [PMID: 30043709 DOI: 10.1080/07391102.2018.1498805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/06/2018] [Indexed: 01/04/2023]
Abstract
Acinetobacter baumannii is an alarming nosocomial pathogen that is resistant to multiple drugs. The pathogen is forefront of scientific attention because of high mortality and morbidity found for its complications in the past decade. As a consequence, identification of novel drug candidates and subsequent designing of novel chemical scaffolds is an imperative need of time. In the present study, we used a recently reported structure of BfmR enzyme and performed structure based virtual screening, MD simulation and binding free energies calculations. MD simulation revealed a profound movement of the best-characterized inhibitor towards the α4-β5-α5 face of the enzyme receiver domain, thus indicating its high affinity for this site compared to phosphorylation. Furthermore, it was observed that the enzyme and enzyme-inhibitor complex have high structure stability with mean RMSD of 1.2 and 1.1 Å, respectively. Binding free energy calculations for the complex unraveled high stability with MMGBSA score of -26.21 kcal/mol and MMPBSA score of -1.47 kcal/mol. Van der Waal energy was found highly favorable with value of -30.25 kcal/mol and dominated significantly the overall binding energy. Furthermore, a novel WaterSwap assay was used to circumvent the limitations of MMGB/PBSA that complements the inhibitor affinity for enzyme active pocket as depicted by the low convergence of Bennett, TI and FEP algorithms. Results yielded from this study will not only give insight into the phenomena of inhibitor movement towards the enzyme receiver domain, but will also provide a useful baseline for designing derivatives with improved biological and pharmacokinetics profiles. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sajjad Ahmad
- a Computational Biology Lab, National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Bilal Shaker
- a Computational Biology Lab, National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Faisal Ahmad
- a Computational Biology Lab, National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Saad Raza
- a Computational Biology Lab, National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Syed Sikander Azam
- a Computational Biology Lab, National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
145
|
Buschiazzo A, Trajtenberg F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu Rev Microbiol 2019; 73:507-528. [PMID: 31226026 DOI: 10.1146/annurev-micro-091018-054627] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perceiving environmental and internal information and reacting in adaptive ways are essential attributes of living organisms. Two-component systems are relevant protein machineries from prokaryotes and lower eukaryotes that enable cells to sense and process signals. Implicating sensory histidine kinases and response regulator proteins, both components take advantage of protein phosphorylation and flexibility to switch conformations in a signal-dependent way. Dozens of two-component systems act simultaneously in any given cell, challenging our understanding about the means that ensure proper connectivity. This review dives into the molecular level, attempting to summarize an emerging picture of how histidine kinases and cognate response regulators achieve required efficiency, specificity, and directionality of signaling pathways, properties that rely on protein:protein interactions. α helices that carry information through long distances, the fine combination of loose and specific kinase/regulator interactions, and malleable reaction centers built when the two components meet emerge as relevant universal principles.
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; , .,Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; ,
| |
Collapse
|
146
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
147
|
Schmidl SR, Ekness F, Sofjan K, Daeffler KNM, Brink KR, Landry BP, Gerhardt KP, Dyulgyarov N, Sheth RU, Tabor JJ. Rewiring bacterial two-component systems by modular DNA-binding domain swapping. Nat Chem Biol 2019; 15:690-698. [PMID: 31110305 DOI: 10.1038/s41589-019-0286-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/04/2019] [Indexed: 01/16/2023]
Abstract
Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways and valuable sensors for synthetic biology. However, most TCSs remain uncharacterized or difficult to harness for applications. Major challenges are that many TCS output promoters are unknown, subject to cross-regulation, or silent in heterologous hosts. Here, we demonstrate that the two largest families of response regulator DNA-binding domains can be interchanged with remarkable flexibility, enabling the corresponding TCSs to be rewired to synthetic output promoters. We exploit this plasticity to eliminate cross-regulation, un-silence a gram-negative TCS in a gram-positive host, and engineer a system with over 1,300-fold activation. Finally, we apply DNA-binding domain swapping to screen uncharacterized Shewanella oneidensis TCSs in Escherichia coli, leading to the discovery of a previously uncharacterized pH sensor. This work should accelerate fundamental TCS studies and enable the engineering of a large family of genetically encoded sensors with diverse applications.
Collapse
Affiliation(s)
- Sebastian R Schmidl
- Department of Bioengineering, Rice University, Houston, TX, USA.,RELLIS campus, Texas A&M University, Bryan, TX, USA
| | - Felix Ekness
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Katri Sofjan
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Kathryn R Brink
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Brian P Landry
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Karl P Gerhardt
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Ravi U Sheth
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA. .,PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA. .,Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
148
|
Abstract
Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| |
Collapse
|
149
|
Reyes Ruiz LM, Fiebig A, Crosson S. Regulation of bacterial surface attachment by a network of sensory transduction proteins. PLoS Genet 2019; 15:e1008022. [PMID: 31075103 PMCID: PMC6530869 DOI: 10.1371/journal.pgen.1008022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022] Open
Abstract
Bacteria are often attached to surfaces in natural ecosystems. A surface-associated lifestyle can have advantages, but shifts in the physiochemical state of the environment may result in conditions in which attachment has a negative fitness impact. Therefore, bacteria employ numerous mechanisms to control the transition from an unattached to a sessile state. The Caulobacter crescentus protein HfiA is a potent developmental inhibitor of the secreted polysaccharide adhesin known as the holdfast, which enables permanent attachment to surfaces. Multiple environmental cues influence expression of hfiA, but mechanisms of hfiA regulation remain largely undefined. Through a forward genetic selection, we have discovered a multi-gene network encoding a suite of two-component system (TCS) proteins and transcription factors that coordinately control hfiA transcription, holdfast development and surface adhesion. The hybrid HWE-family histidine kinase, SkaH, is central among these regulators and forms heteromeric complexes with the kinases, LovK and SpdS. The response regulator SpdR indirectly inhibits hfiA expression by activating two XRE-family transcription factors that directly bind the hfiA promoter to repress its transcription. This study provides evidence for a model in which a consortium of environmental sensors and transcriptional regulators integrate environmental cues at the hfiA promoter to control the attachment decision. Living on a surface within a community of cells confers a number of advantages to a bacterium. However, the transition from a free-living, planktonic state to a surface-attached lifestyle should be tightly regulated to ensure that cells avoid adhering to toxic or resource-limited niches. Many bacteria build adhesive structures on the surface of their cell envelopes that enable attachment. We sought to discover genes that control development of the Caulobacter crescentus surface adhesin known as the holdfast. Our studies uncovered a network of signal transduction proteins that coordinately control the biosynthesis of the holdfast by regulating transcription of the holdfast inhibitor, hfiA. We conclude that C. crescentus uses a multi-component regulatory system to sense and integrate environmental information to determine whether to attach to a surface, or to remain in an unattached state.
Collapse
Affiliation(s)
- Leila M Reyes Ruiz
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois United States of America
| | - Sean Crosson
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois United States of America.,Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
150
|
Francis MS, Auerbuch V. Editorial: The Pathogenic Yersiniae-Advances in the Understanding of Physiology and Virulence, Second Edition. Front Cell Infect Microbiol 2019; 9:119. [PMID: 31058103 PMCID: PMC6482262 DOI: 10.3389/fcimb.2019.00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew S Francis
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|