101
|
In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water-soluble gelatin capsules. Anal Bioanal Chem 2010; 400:1093-104. [DOI: 10.1007/s00216-010-4558-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/21/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
102
|
|
103
|
Seoane J, Yankelevich T, Dechesne A, Merkey B, Sternberg C, Smets BF. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 2010; 75:17-27. [PMID: 21091520 DOI: 10.1111/j.1574-6941.2010.00994.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We present an individual-based experimental framework to identify and estimate the main parameters governing bacterial conjugation at the individual cell scale. From this analysis, we have established that transient periods of unregulated plasmid transfer within newly formed transconjugant cells, together with contact mechanics arising from cellular growth and division, are the two main processes determining the emergent inability of the pWW0 TOL plasmid to fully invade spatially structured Pseudomonas putida populations. We have also shown that pWW0 conjugation occurs mainly at advanced stages of the growth cycle and that nongrowing cells, even when exposed to high nutrient concentrations, do not display conjugal activity. These results do not support previous hypotheses relating conjugation decay in the deeper cell layers of bacterial biofilms to nutrient depletion and low physiological activity. We observe, however, that transient periods of elevated plasmid transfer in newly formed transconjugant cells are offset by unfavorable cell-to-cell contact mechanics, which ultimately precludes the pWWO TOL plasmid from fully invading tightly packed multicellular P. putida populations such as microcolonies and biofilms.
Collapse
Affiliation(s)
- Jose Seoane
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
104
|
Ikuma K, Gunsch C. Effect of carbon source addition on toluene biodegradation by an Escherichia coli DH5alpha transconjugant harboring the TOL plasmid. Biotechnol Bioeng 2010; 107:269-77. [PMID: 20506384 DOI: 10.1002/bit.22808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Horizontal gene transfer (HGT) of plasmids is a naturally occurring phenomenon which could be manipulated for bioremediation applications. Specifically, HGT may prove useful to enhance bioremediation through genetic bioaugmentation. However, because the transfer of a plasmid between donor and recipient cells does not always result in useful functional phenotypes, the conditions under which HGT events result in enhanced degradative capabilities must first be elucidated. The objective of this study was to determine if the addition of alternate carbon substrates could improve toluene degradation in Escherichia coli DH5alpha transconjugants. The addition of glucose (0.5-5 g/L) and Luria-Bertani (LB) broth (10-100%) resulted in enhanced toluene degradation. On average, the toluene degradation rate increased 14.1 (+/-2.1)-fold in the presence of glucose while the maximum increase was 18.4 (+/-1.7)-fold in the presence of 25% LB broth. Gene expression of xyl genes was upregulated in the presence of glucose but not LB broth, which implies different inducing mechanisms by the two types of alternate carbon source. The increased toluene degradation by the addition of glucose or LB broth was persistent over the short-term, suggesting the pulse amendment of an alternative carbon source may be helpful in bioremediation. While the effects of recipient genome GC content and other conditions must still be examined, our results suggest that changes in environmental conditions such as alternate substrate availability may significantly improve the functionality of the transferred phenotypes in HGT and therefore may be an important parameter for genetic bioaugmentation optimization.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
105
|
Martínez-Lavanchy PM, Müller C, Nijenhuis I, Kappelmeyer U, Buffing M, McPherson K, Heipieper HJ. High stability and fast recovery of expression of the TOL plasmid-carried toluene catabolism genes of Pseudomonas putida mt-2 under conditions of oxygen limitation and oscillation. Appl Environ Microbiol 2010; 76:6715-23. [PMID: 20709833 PMCID: PMC2953008 DOI: 10.1128/aem.01039-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/08/2010] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida mt-2 harbors the TOL plasmid (pWWO), which contains the genes encoding the enzymes necessary to degrade toluene aerobically. The xyl genes are clustered in the upper operon and encode the enzymes of the upper pathway that degrade toluene to benzoate, while the genes encoding the enzymes of the lower pathway (meta-cleavage pathway) that are necessary for the conversion of benzoate to tricarboxylic acid cycle intermediates, are encoded in a separate operon. In this study, the effects of oxygen availability and oscillation on the expression of catabolic genes for enzymes involved in toluene degradation were studied by using P. putida mt-2 as model bacterium. Quantitative reverse transcription-PCR was used to detect and quantify the expression of the catabolic genes xylM (a key gene of the upper pathway) and xylE (a key gene of the lower pathway) in cultures of P. putida mt-2 that were grown with toluene as a carbon source. Toluene degradation was shown to have a direct dependency on oxygen concentration, where gene expression of xylM and xylE decreased due to oxygen depletion during degradation. Under oscillating oxygen concentrations, P. putida mt-2 induced or downregulated xylM and xylE genes according to the O₂ availability in the media. During anoxic periods, P. putida mt-2 decreased the expression of xylM and xylE genes, while the expression of both xylM and xylE genes was immediately increased after oxygen became available again in the medium. These results suggest that oxygen is not only necessary as a cosubstrate for enzyme activity during the degradation of toluene but also that oxygen modulates the expression of the catabolic genes encoded by the TOL plasmid.
Collapse
Affiliation(s)
- Paula M. Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Christina Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marieke Buffing
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kyle McPherson
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany, Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
106
|
De Las Heras A, Carreño CA, Martínez-García E, De Lorenzo V. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 2010; 34:842-65. [DOI: 10.1111/j.1574-6976.2010.00238.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
107
|
Moreno R, Fonseca P, Rojo F. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes. J Biol Chem 2010; 285:24412-9. [PMID: 20529863 PMCID: PMC2915677 DOI: 10.1074/jbc.m110.126615] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/13/2010] [Indexed: 11/06/2022] Open
Abstract
In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.
Collapse
Affiliation(s)
- Renata Moreno
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Fonseca
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Rojo
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
108
|
Complete nucleotide sequence of TOL plasmid pDK1 provides evidence for evolutionary history of IncP-7 catabolic plasmids. J Bacteriol 2010; 192:4337-47. [PMID: 20581207 DOI: 10.1128/jb.00359-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the mechanisms for structural diversification of Pseudomonas-derived toluene-catabolic (TOL) plasmids, the complete sequence of a self-transmissible plasmid pDK1 with a size of 128,921 bp from Pseudomonas putida HS1 was determined. Comparative analysis revealed that (i) pDK1 consisted of a 75.6-kb IncP-7 plasmid backbone and 53.2-kb accessory gene segments that were bounded by transposon-associated regions, (ii) the genes for conjugative transfer of pDK1 were highly similar to those of MOB(H) group of mobilizable plasmids, and (iii) the toluene-catabolic (xyl) gene clusters of pDK1 were derived through homologous recombination, transposition, and site-specific recombination from the xyl gene clusters homologous to another TOL plasmid, pWW53. The minireplicons of pDK1 and its related IncP-7 plasmids, pWW53 and pCAR1, that contain replication and partition genes were maintained in all of six Pseudomonas strains tested, but not in alpha- or betaproteobacterial strains. The recipient host range of conjugative transfer of pDK1 was, however, limited to two Pseudomonas strains. These results indicate that IncP-7 plasmids are essentially narrow-host-range and self-transmissible plasmids that encode MOB(H) group-related transfer functions and that the host range of IncP-7-specified conjugative transfer was, unlike the situation in other well-known plasmids, narrower than that of its replication.
Collapse
|
109
|
Ribeiro-dos-Santos G, Biondo R, Quadros ODF, Vicente EJ, Schenberg ACG. A metal-repressed promoter from gram-positive Bacillus subtilis is highly active and metal-induced in gram-negative Cupriavidus metallidurans. Biotechnol Bioeng 2010; 107:469-77. [DOI: 10.1002/bit.22820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
110
|
Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 2010; 18:205-14. [DOI: 10.1016/j.tim.2010.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/20/2022]
|
111
|
Rojo F. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010; 34:658-84. [PMID: 20412307 DOI: 10.1111/j.1574-6976.2010.00218.x] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metabolically versatile free-living bacteria have global regulation systems that allow cells to selectively assimilate a preferred compound among a mixture of several potential carbon sources. This process is known as carbon catabolite repression (CCR). CCR optimizes metabolism, improving the ability of bacteria to compete in their natural habitats. This review summarizes the regulatory mechanisms responsible for CCR in the bacteria of the genus Pseudomonas, which can live in many different habitats. Although the information available is still limited, the molecular mechanisms responsible for CCR in Pseudomonas are clearly different from those of Enterobacteriaceae or Firmicutes. An understanding of the molecular mechanisms underlying CCR is important to know how metabolism is regulated and how bacteria degrade compounds in the environment. This is particularly relevant for compounds that are degraded slowly and accumulate, creating environmental problems. CCR has a major impact on the genes involved in the transport and metabolism of nonpreferred carbon sources, but also affects the expression of virulence factors in several bacterial species, genes that are frequently directed to allow the bacterium to gain access to new sources of nutrients. Finally, CCR has implications in the optimization of biotechnological processes such as biotransformations or bioremediation strategies.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
112
|
Koutinas M, Lam MC, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, De Lorenzo V, Dos Santos VAPM, Mantalaris A. The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 2009; 12:1705-18. [DOI: 10.1111/j.1462-2920.2010.02245.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
113
|
Krell T, Busch A, Lacal J, Silva-Jiménez H, Ramos JL. The enigma of cytosolic two-component systems: a hypothesis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:171-176. [PMID: 23765790 DOI: 10.1111/j.1758-2229.2009.00020.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One-component systems (OCSs) and cytosolic two-component regulatory systems (TCSs) appear to share the same biological function, which consists in the transcriptional control in response to the cellular concentration of signal molecules. However, cytosolic TCSs as compared with OCSs represent a genetic and metabolic burden to the cell: the genetic information encoding a TCS is significantly larger than that of an OCS, two or more proteins instead of one need to be synthesized for a TCS and operation of the latter system requires the expense of ATP which is not the case for most OCSs. The evolutionary advantages of cytosolic TCSs over OCSs are thus not obvious. We hypothesize here that the increased capacity of cytosolic TCSs to respond to multiple signals is a major advantage over OCSs. Different mechanisms for the incorporation of additional signals into the regulatory circuit are discussed. The inclusion of several signals into the definition of the final regulatory response is proposed to result in a better adaptation of the host to given environmental conditions.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
114
|
Takahashi Y, Shintani M, Li L, Yamane H, Nojiri H. Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway. Appl Environ Microbiol 2009; 75:3920-9. [PMID: 19376894 PMCID: PMC2698365 DOI: 10.1128/aem.02373-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 04/09/2009] [Indexed: 11/20/2022] Open
Abstract
We determined the effect of the host on the function and structure of the nearly identical IncP-7 carbazole-degradative plasmids pCAR1.1 and pCAR1.2. We constructed Pseudomonas aeruginosa PAO1(pCAR1.2) and P. fluorescens Pf0-1Km(pCAR1.2) and compared their growth on carbazole- and succinate-containing media with that of P. putida KT2440(pCAR1.1). We also assessed the stability of the genetic structures of the plasmids in each of the three hosts. Pf0-1Km(pCAR1.2) showed dramatically delayed growth when carbazole was supplied as the sole carbon source, while the three strains grew at nearly the same rate on succinate. Among the carbazole-grown Pf0-1Km(pCAR1.2) cells, two types of deficient strains appeared and dominated the population; such dominance was not observed in the other two strains or for succinate-grown Pf0-1Km(pCAR1.2). Genetic analysis showed that the two deficient strains possessed pCAR1.2 derivatives in which the carbazole-degradative car operon was deleted or its regulatory gene, antR, was deleted by homologous recombination between insertion sequences. From genomic information and quantitative reverse transcription-PCR analyses of the genes involved in carbazole mineralization by Pf0-1Km(pCAR1.2), we found that the cat genes on the chromosome of Pf0-1Km, which are necessary for the degradation of catechol (a toxic intermediate in the carbazole catabolic pathway), were not induced in the presence of carbazole. The resulting accumulation of catechol may have enabled the strain that lost its carbazole-degrading ability to have overall higher fitness than the wild-type strain. These results suggest that the functions of the chromosomal genes contributed to the selection of plasmid derivatives with altered structures.
Collapse
Affiliation(s)
- Yurika Takahashi
- Biotechnology Research Center, The University of Tokyo, Yayoi, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
115
|
Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions. Appl Microbiol Biotechnol 2009; 83:189-98. [DOI: 10.1007/s00253-009-1928-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
116
|
Responses of Pseudomonas to small toxic molecules by a mosaic of domains. Curr Opin Microbiol 2009; 12:215-20. [DOI: 10.1016/j.mib.2009.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 11/21/2022]
|
117
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Random mutagenesis of the PM promoter as a powerful strategy for improvement of recombinant-gene expression. Appl Environ Microbiol 2009; 75:2002-11. [PMID: 19201973 DOI: 10.1128/aem.02315-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inducible Pm-xylS promoter system has proven useful for production of recombinant proteins in several gram-negative species and in high-cell-density cultivations of Escherichia coli. In this study we subjected a 24-bp region of Pm (including the -10 element) to random mutagenesis, leading to large mutant libraries in E. coli. Low-frequency-occurring Pm mutants displaying strongly increased promoter activity (up-mutants) could be efficiently identified by using beta-lactamase as a reporter. The up-mutants typically carried multiple point mutations positioned throughout the mutagenized region, combined with deletions around the transcription start site. Mutants displaying up to about a 14-fold increase in beta-lactamase expression (relative to wild-type Pm) were identified without loss of the inducible phenotype. The mutants also strongly stimulated the expression of two other reporter genes, luc (encoding firefly luciferase) and celB (encoding phosphoglucomutase), and were found to significantly improve (twofold) a previously optimized process for high-level recombinant production of the medically important granulocyte-macrophage colony-stimulating factor in E. coli under high-cell-density conditions. These results demonstrate the potential of using random mutagenesis of promoters to improve protein expression at industrial levels and indicate that targeted modifications of individual functional elements are not sufficient to obtain optimized promoter sequences.
Collapse
|
119
|
Vitale E, Milani A, Renzi F, Galli E, Rescalli E, de Lorenzo V, Bertoni G. Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma54-promoter Pu to the response regulator PprA. Mol Microbiol 2009; 69:698-713. [PMID: 19138193 DOI: 10.1111/j.1365-2958.2008.06321.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Implantation of the regulatory circuit of the degradation pathway of TOL plasmid pWW0 in the native transcriptional network of the host Pseudomonas putida involves interplay between plasmid- and chromosome-encoded factors. We have employed a reverse genetics approach to investigate such a molecular wiring by identifying host proteins that form stable complexes with Pu, the sigma(54)-dependent promoter of the upper TOL operon of pWW0. This approach revealed that the Pu upstream activating sequences (UAS), the target sites of the cognate activator XylR, form a specific complex with a host protein which, following DNA affinity purification and mass spectrometry analysis, was identified as the LytTR-type two-component response regulator PprA. Directed inactivation of pprA resulted in the upregulation of the Pu promoter in vivo, while expression of the same gene from a plasmid vector strongly repressed Pu activity. Such a downregulation of Pu by PprA could be faithfully reproduced both in vitro with purified components and in an in vivo reporter system assembled in Escherichia coli. The overlap of the PprA and XylR binding sites suggested that the basis for the inhibitory effect on Pu was a mutual exclusion mechanism between the two proteins to bind the UAS. We argue that the binding of the response regulator PprA to Pu (a case without precedents in sigma(54)-dependent transcription) helps to anchor the TOL regulatory subnetwork to the wider context of the host transcriptome, thereby allowing the entry of physiological signals that modulate the outcome of promoter activity.
Collapse
Affiliation(s)
- Elena Vitale
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
120
|
Miyakoshi M, Nishida H, Shintani M, Yamane H, Nojiri H. High-resolution mapping of plasmid transcriptomes in different host bacteria. BMC Genomics 2009; 10:12. [PMID: 19134166 PMCID: PMC2642839 DOI: 10.1186/1471-2164-10-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmids are extrachromosomal elements that replicate autonomously, and many can be transmitted between bacterial cells through conjugation. Although the transcription pattern of genes on a plasmid can be altered by a change in host background, the expression range of plasmid genes that will result in phenotypic variation has not been quantitatively investigated. RESULTS Using a microarray with evenly tiled probes at a density of 9 bp, we mapped and quantified the transcripts of the carbazole catabolic plasmid pCAR1 in its original host Pseudomonas resinovorans CA10 and the transconjugant P. putida KT2440(pCAR1) during growth on either carbazole or succinate as the sole carbon source. We identified the operons in pCAR1, which consisted of nearly identical transcription units despite the difference in host background during growth on the same carbon source. In accordance with previous studies, the catabolic operons for carbazole degradation were upregulated during growth on carbazole in both hosts. However, our tiling array results also showed that several operons flanking the transfer gene cluster were transcribed at significantly higher levels in the transconjugant than in the original host. The number of transcripts and the positions of the transcription start sites agreed with our quantitative RT-PCR and primer extension results. CONCLUSION Our tiling array results indicate that the levels of transcription for the operons on a plasmid can vary by host background. High-resolution mapping using an unbiased tiling array is a valuable tool for the simultaneous identification and quantification of prokaryotic transcriptomes including polycistronic operons and non-coding RNAs.
Collapse
|
121
|
Vedler E. Megaplasmids and the Degradation of Aromatic Compounds by Soil Bacteria. MICROBIAL MEGAPLASMIDS 2009. [DOI: 10.1007/978-3-540-85467-8_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
122
|
Sträuber H, Hübschmann T, Jehmlich N, Schmidt F, von Bergen M, Harms H, Müller S. NBDT (3-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-3-toluene)-A novel fluorescent dye for studying mechanisms of toluene uptake into vital bacteria. Cytometry A 2009; 77:113-20. [DOI: 10.1002/cyto.a.20811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
123
|
Cao B, Loh KC. Catabolic pathways and cellular responses ofPseudomonas putidaP8 during growth on benzoate with a proteomics approach. Biotechnol Bioeng 2008; 101:1297-312. [DOI: 10.1002/bit.21997] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
124
|
de las Heras A, Carreño CA, de Lorenzo V. Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 2008; 10:3305-16. [DOI: 10.1111/j.1462-2920.2008.01722.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
125
|
Omokoko B, Jäntges UK, Zimmermann M, Reiss M, Hartmeier W. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator. BMC Microbiol 2008; 8:197. [PMID: 19014555 PMCID: PMC2590616 DOI: 10.1186/1471-2180-8-197] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 11/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. RESULTS A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. CONCLUSION Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic) prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate regulatory mechanisms that are likely to be distinct from modes described for gram-negative bacteria.
Collapse
Affiliation(s)
- Bastian Omokoko
- Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
126
|
The GAF-like-domain-containing transcriptional regulator DfdR is a sensor protein for dibenzofuran and several hydrophobic aromatic compounds. J Bacteriol 2008; 191:123-34. [PMID: 18952799 DOI: 10.1128/jb.01112-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dibenzofuran (DF) is one of the dioxin carbon skeletal compounds used as a model to study the microbial degradation of dioxins. This study analyzed the transcriptional regulation of the DF dioxygenase genes dfdA1 to dfdA4 in the DF-utilizing actinomycetes Rhodococcus sp. strain YK2 and Terrabacter sp. strain YK3. An open reading frame designated dfdR was detected downstream of the dfdC genes. The C-terminal part of the DfdR amino acid sequence has high levels of similarity to several LuxR-type DNA binding helix-turn-helix domains, and a GAF domain sequence in the central part was detected by a domain search analysis. A derivative of YK2 with dfdR disrupted was not able to utilize DF and did not exhibit DF-dependent dfdA1 transcriptional induction ability, and these dysfunctions were compensated for by introduction of dfdR. Promoter analysis of dfdA1 in Rhodococcus strains indicated that activation of the dfdA1 promoter (P(dfdA1)) was dependent on dfdR and DF and not on a metabolite of the DF pathway. The cell extract of a Rhodococcus strain that heterologously expressed DfdR showed electrophoretic mobility shift (EMS) activity for the P(dfdA1) DNA fragment in a DF-dependent manner. In addition, P(dfdA1) activation and EMS activity were observed with hydrophobic aromatic compounds comprising two or more aromatic rings, suggesting that DfdR has broad effector molecule specificity for several hydrophobic aromatic compounds.
Collapse
|
127
|
Abstract
Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Sintef Materials and Chemistry, Sintef, Trondheim, Norway.
| | | | | |
Collapse
|
128
|
Sevastsyanovich YR, Krasowiak R, Bingle LEH, Haines AS, Sokolov SL, Kosheleva IA, Leuchuk AA, Titok MA, Smalla K, Thomas CM. Diversity of IncP-9 plasmids of Pseudomonas. MICROBIOLOGY (READING, ENGLAND) 2008; 154:2929-2941. [PMID: 18832300 PMCID: PMC2885752 DOI: 10.1099/mic.0.2008/017939-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/30/2008] [Accepted: 06/30/2008] [Indexed: 11/18/2022]
Abstract
IncP-9 plasmids are important vehicles for degradation and resistance genes that contribute to the adaptability of Pseudomonas species in a variety of natural habitats. The three completely sequenced IncP-9 plasmids, pWW0, pDTG1 and NAH7, show extensive homology in replication, partitioning and transfer loci (an approximately 25 kb region) and to a lesser extent in the remaining backbone segments. We used PCR, DNA sequencing, hybridization and phylogenetic analyses to investigate the genetic diversity of 30 IncP-9 plasmids as well as the possibility of recombination between plasmids belonging to this family. Phylogenetic analysis of rep and oriV sequences revealed nine plasmid subgroups with 7-35 % divergence between them. Only one phenotypic character was normally associated with each subgroup, except for the IncP-9beta cluster, which included naphthalene- and toluene-degradation plasmids. The PCR and hybridization analysis using pWW0- and pDTG1-specific primers and probes targeting selected backbone loci showed that members of different IncP-9 subgroups have considerable similarity in their overall organization, supporting the existence of a conserved ancestral IncP-9 sequence. The results suggested that some IncP-9 plasmids are the product of recombination between plasmids of different IncP-9 subgroups but demonstrated clearly that insertion of degradative transposons has occurred on multiple occasions, indicating that association of this phenotype with these plasmids is not simply the result of divergent evolution from a single successful ancestral degradative plasmid.
Collapse
Affiliation(s)
| | - Renata Krasowiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lewis E. H. Bingle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anthony S. Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sergey L. Sokolov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Irina A. Kosheleva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastassia A. Leuchuk
- Genetics Department, Biology Faculty, Belarus State University, 6 Kurchatova St, Minsk 220064, Belarus
| | - Marina A. Titok
- Genetics Department, Biology Faculty, Belarus State University, 6 Kurchatova St, Minsk 220064, Belarus
| | - Kornelia Smalla
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | | |
Collapse
|
129
|
Nogales J, Palsson BØ, Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC SYSTEMS BIOLOGY 2008; 2:79. [PMID: 18793442 PMCID: PMC2569920 DOI: 10.1186/1752-0509-2-79] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 09/16/2008] [Indexed: 11/16/2022]
Abstract
Background Pseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions. Results We present a genome-scale reconstruction of P. putida KT2440's metabolism, iJN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. iJN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of iJN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected. Conclusion Here we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of iJN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putida's potential in bioremediation and bioplastic production.
Collapse
Affiliation(s)
- Juan Nogales
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| | | | | |
Collapse
|
130
|
Parales RE, Parales JV, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:1-73, 2 p following 264. [PMID: 18485280 DOI: 10.1016/s0065-2164(08)00401-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R E Parales
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
131
|
Pizarro-Tobías P, de Genève J, Fernández M. Mining GOLD and new model organisms in biotechnology. Microb Biotechnol 2008; 1:273-4. [PMID: 21261847 PMCID: PMC3815392 DOI: 10.1111/j.1751-7915.2008.00039.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
132
|
Huang WE, Singer AC, Spiers AJ, Preston GM, Whiteley AS. Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1. Environ Microbiol 2008; 10:1668-80. [DOI: 10.1111/j.1462-2920.2008.01583.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
133
|
Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch Microbiol 2008; 190:141-50. [DOI: 10.1007/s00203-008-0380-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 04/03/2008] [Accepted: 04/29/2008] [Indexed: 11/25/2022]
|
134
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
135
|
Nonaka K, Ohta H, Sato Y, Hosokawa K. Utilization of Phenylpropanoids by Pseudomonas putida Soil Isolates and Its Probable Taxonomic Significance. Microbes Environ 2008; 23:360-4. [DOI: 10.1264/jsme2.me08545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kazuhiro Nonaka
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Yoshinori Sato
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | | |
Collapse
|
136
|
Premkumar L, Rife CL, Sri Krishna S, McMullan D, Miller MD, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Canaves JM, Carlton D, Chiu HJ, Clayton T, DiDonato M, Duan L, Elsliger MA, Feuerhelm J, Floyd R, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Koesema E, Kovarik JS, Kreusch A, Levin I, McPhillips TM, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Quijano K, Reyes R, Rezezadeh F, Rodionov D, Schwarzenbacher R, Spraggon G, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of TM1030 from Thermotoga maritima at 2.3 A resolution reveals molecular details of its transcription repressor function. Proteins 2007; 68:418-24. [PMID: 17444523 DOI: 10.1002/prot.21436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
137
|
Pflüger K, di Bartolo I, Velázquez F, de Lorenzo V. Non-disruptive release of Pseudomonas putida proteins by in situ electric breakdown of intact cells. J Microbiol Methods 2007; 71:179-85. [PMID: 17900723 DOI: 10.1016/j.mimet.2007.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/30/2007] [Accepted: 08/13/2007] [Indexed: 11/23/2022]
Abstract
Analysis of the native proteome of bacterial cells typically involves physical procedures (sonication, French press) and/or biochemical methods (treatment with lysozyme, osmotic shock etc.) to break open the bacteria to yield a soluble protein fraction. Such procedures are not only time consuming, but they change bacterial physiology during manipulation and affect labile post-translational modifications such as His-P bonds. In this work, we document the efficacy of the dielectric breakdown of live bacteria for releasing and delivering the protein contents of intact cells directly into a non-denaturing gel system. By means of such an in situ electrophoresis, the protein pool enters the separation medium without any manipulation of the cells other than being exposed to a moderate electric voltage. To validate the method we have followed the fate of the two forms of the PtsN (EIIA(Ntr)) protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) of Pseudomonas putida through the various stages of the procedure. Apart of detecting the corresponding polypeptides, we show that this procedure releases the bulk of the proteome while keeping unharmed the phosphorylation state of EIIA(Ntr) as it was present in the cells prior to applying the electric field. The method is applicable to other bacteria as well.
Collapse
Affiliation(s)
- Katharina Pflüger
- Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
138
|
Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 2007; 375:59-69. [PMID: 18005985 DOI: 10.1016/j.jmb.2007.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
The XylS protein is the positive transcription regulator of the TOL plasmid meta-cleavage pathway operon Pm. XylS belongs to the AraC family of transcriptional regulators and exhibits an N-terminal domain involved in effector recognition, and a C-terminal domain, made up of seven alpha-helices conforming two helix-turn-helix DNA-binding domains. alpha-Helix 3 and alpha-helix 6 are the recognition helices. In consonance with XylS structural organization, Pm exhibits a bipartite DNA-binding motif consisting of two boxes, called A and B, whose sequences are TGCA and GGNTA, respectively. This bipartite motif is repeated at the Pm promoter so that one of the XylS monomers binds to each of the repeats. An extensive series of genetic epistasis assays combining mutant Pm promoters and XylS single substitution mutant proteins revealed that alpha-helix 3 contacts A box nucleotides, whereas alpha-helix 6 residues contact B box nucleotides. In alpha-helix 3, Asn246 and Arg242 are involved in specific contacts with the TG dinucleotide at box A, whereas Arg296 and Glu299 contact the second G and T nucleotides at box B. On the basis of our results and of the three-dimensional model of the XylS C-terminal domain, we propose that Ser243, Glu249 and Lys250 in alpha-helix 3, and Asn299 and Arg302 in alpha-helix 6 contact the phosphate backbones. Alanine substitutions at the predicted phosphate backbone-contacting residues yielded mutants with low levels of activity, suggesting that XylS-Pm binding specificity not only involves specific amino acid-base interactions, but also relies on secondary DNA structure, which, although at another level, also comes into play. We propose a model in which a XylS dimer binds to the direct repeats in Pm in a head-to-tail conformation that allows the direct interaction of the XylS proximal subunit with the RNA polymerase sigma factor.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
139
|
Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H. Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 2007; 189:6849-60. [PMID: 17675379 PMCID: PMC2045235 DOI: 10.1128/jb.00684-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/19/2007] [Indexed: 11/20/2022] Open
Abstract
The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazole as the sole carbon source was compared to that during growth with succinate. The carbazole catabolic car and ant operons were induced, along with the chromosomal cat and pca genes involved in the catechol branch of the beta-ketoadipate pathway. Additionally, the regulatory gene antR encoding the AraC/XylS family transcriptional activator specific for car and ant operons was upregulated. The characterization of the antR promoter revealed that antR is transcribed from an RpoN-dependent promoter, suggesting that the successful expression of the carbazole catabolic operons depends on whether the chromosome contains the specific RpoN-dependent activator. Next, to analyze whether the horizontal transfer of a plasmid alters the transcription network of its host chromosome, we compared the chromosomal transcriptomes of KT2440(pCAR1) and KT2440 under the same growth conditions. Only subtle changes were caused by the transfer of pCAR1, except for the significant induction of the hypothetical gene PP3700, designated parI, which encodes a putative ParA-like ATPase with an N-terminal Xre-type DNA-binding motif. Further transcriptional analyses showed that the parI promoter was positively regulated by ParI itself and the pCAR1-encoded protein ParA.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R. Metabolic Diversity in Bacterial Degradation of Aromatic Compounds. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:252-79. [PMID: 17883338 DOI: 10.1089/omi.2007.0004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aromatic compounds pose a major threat to the environment, being mutagenic, carcinogenic, and recalcitrant. Microbes, however, have evolved the ability to utilize these highly reduced and recalcitrant compounds as a potential source of carbon and energy. Aerobic degradation of aromatics is initiated by oxidizing the aromatic ring, making them more susceptible to cleavage by ring-cleaving dioxygenases. A preponderance of aromatic degradation genes on plasmids, transposons, and integrative genetic elements (and their shuffling through horizontal gene transfer) have lead to the evolution of novel aromatic degradative pathways. This enables the microorganisms to utilize a multitude of aromatics via common routes of degradation leading to metabolic diversity. In this review, we emphasize the exquisiteness and relevance of bacterial degradation of aromatics, interlinked degradative pathways, genetic and metabolic regulation, carbon source preference, and biosurfactant production. We have also explored the avenue of metagenomics, which opens doors to a plethora of uncultured and uncharted microbial genetics and metabolism that can be used effectively for bioremediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Biotechnology Group, School of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India.
| | | | | | | | | | | |
Collapse
|
141
|
Galvão TC, Mencía M, de Lorenzo V. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 2007; 65:907-19. [PMID: 17645451 DOI: 10.1111/j.1365-2958.2007.05832.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evolutionary expansion of metabolic networks entails the emergence of regulatory factors that become sensitive to new chemical species. A dedicated genetic system was developed for the soil bacterium Pseudomonas putida aimed at deciphering the steps involved in the gain of responsiveness of the toluene-activated prokaryotic regulator XylR to the xenobiotic chemical 2,4 dinitrotoluene (DNT). A mutant library of the A domain of XylR was screened in vivo for those variants activated by DNT through coupling the cognate promoter Pu to the P. putida yeast URA3 homologue, pyrF. All DNT-responsive clones maintained their sensitivity to ordinary effectors of XylR and broadened the range of inducers to unrelated aromatics. Yet, none of the altered amino acids lay in the recognizable effector binding pocket of the polypeptide. Instead, mutations appeared in protein surfaces believed to engage in the conformational shifts that follow effector binding and modulate signal transmission between XylR domains. It thus seems that transcriptional factors are likely to regress into functionally multipotent forms (i.e. stem protein types) as a first step towards the divergence of a new specificity.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
142
|
del Castillo T, Ramos JL. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 2007; 189:6602-10. [PMID: 17616587 PMCID: PMC2045187 DOI: 10.1128/jb.00679-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440(pWW0) can use toluene via the TOL plasmid-encoded catabolic pathways and can use glucose via a series of three peripheral chromosome-encoded routes that convert glucose into 6-phosphogluconate (6PG), namely, the glucokinase pathway, in which glucose is transformed to 6PG through the action of glucokinase and glucose-6-phosphate dehydrogenase. Alternatively, glucose can be oxidized to gluconate, which can be phosphorylated by gluconokinase to 6PG or oxidized to 2-ketogluconate, which, in turn, is converted into 6PG. Our results show that KT2440 metabolizes glucose and toluene simultaneously, as revealed by net flux analysis of [(13)C]glucose. Determination of glucokinase and gluconokinase activities in glucose metabolism, gene expression assays using a fusion of the promoter of the Pu TOL upper pathway to 'lacZ, and global transcriptomic assays revealed simultaneous catabolite repression in the use of these two carbon sources. The effect of toluene on glucose metabolism was directed to the glucokinase branch and did not affect gluconate metabolism. Catabolite repression of the glucokinase pathway and the TOL pathway was triggered by two different catabolite repression systems. Expression from Pu was repressed mainly via PtsN in response to high levels of 2-dehydro-3-deoxygluconate-6-phosphate, whereas repression of the glucokinase pathway was channeled through Crc.
Collapse
|
143
|
Rüegg I, Hafner T, Bucheli-Witschel M, Egli T. Dynamics of Benzene and Toluene Degradation inPseudomonas putida F1 in the Presence of the Alternative Substrate Succinate. Eng Life Sci 2007. [DOI: 10.1002/elsc.200720202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
144
|
Pflüger K, de Lorenzo V. Growth-dependent Phosphorylation of the PtsN (EIINtr) Protein of Pseudomonas putida. J Biol Chem 2007; 282:18206-18211. [PMID: 17478425 DOI: 10.1074/jbc.m611110200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitrogen-related branch of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) of Pseudomonas putida includes the ptsN gene encoding the EIINtr (PtsN) enzyme. Although the implication of this protein in a variety of cellular functions has been observed in diverse bacteria, the physiological signals that bring about phosphorylation/dephosphorylation of the PtsN protein are not understood. This work documents the phosphorylation status of the EIINtr enzyme of P. putida at various growth stages in distinct media. Culture conditions were chosen to include fructose (the uptake of which is controlled by the PTS) or glucose (a non-PTS sugar in P. putida) in minimal medium with casamino acids, ammonia, or nitrate as alternative nitrogen sources. To quantify the relative ratio of PtsN/PtsN approximately P in live cells, we resorted to the in situ electrophoresis of whole bacteria expressing an E-epitope-tagged EIINtr followed by the fractionation of the thereby released native proteome in a non-denaturing gel. Although the PtsN species phosphorylated in amino acid His68 was detected under virtually all growth scenarios, the relative levels of the non-phosphorylated form varied dramatically depending on the growth phase and the nutrients available in the medium. The share of phosphorylated PtsN increased along growth in a fashion apparently independent of any trafficking of sugars. The large variations of non-phosphorylated PtsN in different growth conditions, in contrast to the systematic excess of the phosphorylated PtsN form, suggested that the P-free PtsN is the predominant signaling species of the protein.
Collapse
Affiliation(s)
- Katharina Pflüger
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
145
|
Yano H, Garruto CE, Sota M, Ohtsubo Y, Nagata Y, Zylstra GJ, Williams PA, Tsuda M. Complete Sequence Determination Combined with Analysis of Transposition/Site-specific Recombination Events to Explain Genetic Organization of IncP-7 TOL Plasmid pWW53 and Related Mobile Genetic Elements. J Mol Biol 2007; 369:11-26. [PMID: 17408691 DOI: 10.1016/j.jmb.2007.02.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 11/19/2022]
Abstract
Recent studies have indicated that the evolutionarily common catabolic gene clusters are loaded on structurally diverse toluene-catabolic (TOL) plasmids and their residing transposons. To elucidate the mechanisms supporting the diversification of catabolic plasmids and transposons, we determined here the complete 107,929 bp sequence of pWW53, a TOL plasmid from Pseudomonas putida MT53. pWW53 was found to belong to the IncP-7 incompatibility group that play important roles in the catabolism of several xenobiotics. pWW53 carried two distinct transposase-resolvase gene clusters (tnpAR modules), five short terminal inverted repeats (IRs), and three site-specific resolution (res) sites that are all typical of class II transposons. This organization of pWW53 suggested the four possible transposable regions, Tn4657 to Tn4660. The largest 86 kb region (Tn4657) spanned the three other regions, and Tn4657 and Tn4660 (62 kb) covered all of the 36 xyl genes for toluene catabolism. Our subsequent transposition experiments clarified that the three transposons, Tn4657 to Tn4659, indeed exhibit their transposability, and that pWW53 also generated another 37 kb toluene-catabolic transposon, Tn4656, which carried the two separated and inversely oriented segments of pWW53: the tnpRA-IR module of Tn4658 and a part of xyl gene clusters on Tn4657. The Tn4658 transposase was able to mediate the transposition of Tn4658, Tn4657, and Tn4656, while the Tn4659 transposase catalyzed only the transposition of Tn4659. Tn4656 was formed by the Tn4658 resolvase-mediated site-specific inversion between the two inversely oriented res sites on pWW53. These findings and comparison with other catabolic plasmids clearly indicate multiple copies of transposition-related genes and sites on one plasmid and their recombination activities contribute greatly to the diversification of plasmid structures as well as wide dissemination of the evolutionary common gene clusters in various plasmids.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Aranda-Olmedo I, Marín P, Ramos JL, Marqués S. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Appl Environ Microbiol 2006; 72:7418-21. [PMID: 16997980 PMCID: PMC1636206 DOI: 10.1128/aem.01067-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIA(Ntr) participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.
Collapse
Affiliation(s)
- Isabel Aranda-Olmedo
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Dept. of Environmental Protection, Granada E-18008, Spain
| | | | | | | |
Collapse
|
147
|
Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, Pérez-Pérez MM, Santero E, Díaz E, Ramos JL, de Lorenzo V, Rojo F. Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 2006; 8:165-77. [PMID: 16343331 DOI: 10.1111/j.1462-2920.2005.00890.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial transcriptional networks are built on a hierarchy of regulators, on top of which lie the components of the RNA polymerase (in particular the sigma factors) and the global control elements, which play a pivotal role. We have designed a genome-wide oligonucleotide-based DNA microarray for Pseudomonas putida KT2440. In combination with real-time reverse transcription polymerase chain reaction (RT-PCR), we have used it to analyse the expression pattern of the genes encoding the RNA polymerase subunits (the core enzyme and the 24 sigma factors), and various proteins involved in global regulation (Crc, Lrp, Fur, Anr, Fis, CsrA, IHF, HupA, HupB, HupN, BipA and several MvaT-like proteins), during the shift from exponential growth in rich medium into starvation and stress brought about by the entry into stationary phase. Expression of the genes encoding the RNA polymerase core and the vegetative sigma factor decreased in stationary phase, while that of sigma(S) increased. Data obtained for sigma(N), sigma(H), FliA and for the 19 extracytoplasmic function (ECF)-like sigma factors suggested that their mRNA levels change little upon entry into stationary phase. Expression of Crc, BipA, Fis, HupB, HupN and the MvaT-like protein PP3693 decreased in stationary phase, while that of HupA and the MvaT-like protein PP3765 increased significantly. Expression of IHF was indicative of post-transcriptional control. These results provide the first global study of the expression of the transcriptional machinery through the exponential stationary-phase shift in P. putida.
Collapse
Affiliation(s)
- Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 - Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Jurado P, Fernández LA, de Lorenzo V. In vivo drafting of single-chain antibodies for regulatory duty on the sigma54-promoter Pu of the TOL plasmid. Mol Microbiol 2006; 60:1218-27. [PMID: 16689797 DOI: 10.1111/j.1365-2958.2006.05183.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of single-chain antibodies (scFvs) that interfere in vivo with the building of the complex that activate the prokaryotic, sigma54-dependent promoter Pu of the catabolic TOL plasmid pWW0 is reported. To this end, a phage M13 library of scFvs was raised against the cognate prokaryotic enhancer-binding activator, XylR. The scFv pool was then expressed intracellularly in a reporter Pu-lacZ strain of Escherichia coli designed to permit formation of intramolecular disulphide bonds in cytoplasmic proteins. This strain allowed the assembly of functional scFvs and the direct testing of their activity on the Pu promoter in vivo. Specifically, genetic screening for lacZ-minus colonies yielded a number of scFvs able to downregulate transcriptional output in live cells. Two antibody clones were purified and shown to inhibit the activity of the same promoter in vitro as well. These scFvs targeted the DNA-binding domain of XylR and its ATP binding site respectively. This work provides a proof of principle that mimetic regulatory factors can be derived from an antibody repertoire that specifically interact with given transcriptional activators. As assembly of initiation complexes is stimulated or inhibited by regulatory proteins we argue that anti-XylR scFvs operate as bona fide transcriptional inhibitors of the Pu promoter.
Collapse
Affiliation(s)
- Paola Jurado
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
149
|
Basu A, Apte SK, Phale PS. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 2006; 72:2226-30. [PMID: 16517677 PMCID: PMC1393237 DOI: 10.1128/aem.72.3.2226-2230.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, suggesting that de novo protein synthesis was essential. Cells showed cometabolism of aromatic compounds and organic acids; however, organic acids suppressed glucose utilization.
Collapse
Affiliation(s)
- Aditya Basu
- Biotechnology Group, School of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | | | | |
Collapse
|
150
|
Velázquez F, de Lorenzo V, Valls M. The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes. Environ Microbiol 2006; 8:591-602. [PMID: 16584471 DOI: 10.1111/j.1462-2920.2005.00936.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of archetypal environmental stresses on expression of the catabolic xyl genes of the TOL plasmid pWW0 of the m-xylene degrading strain Pseudomonas putida mt-2 has been investigated. To this end, a subgenomic DNA chip was employed which included structural and regulatory DNA sequences of the TOL pathway along with selected descriptors of specific physiological conditions. Cells were separately exposed to m-xylene under various oxygen tensions, temperatures and nitrogen sources as well as situations of DNA damage, oxidative stress, carbon and iron starvation, respiratory chain damage, and contact with arsenic, but at doses which did not cause a gross effect on growth or cell viability. The incidence of each stress class was categorized through the corresponding descriptors in the chip in respect to the relative output of xyl transcripts. While most of the stresses downregulated the m-xylene biodegradation-related genes, some uncouplers of the respiratory chain (azide) and small doses of arsenate appeared to stimulate their expression. The replacement of NH4+ by NO3- as N source augmented expression of the TOL cistrons also. We subsequently subjected P. putida mt-2 cells to the multiple abiotic stress brought about by exposure to crude tar from the 2002 oil spill of the Prestige tanker, which embraces a complex mixture of hydrocarbons. The resulting expression profile of xyl genes and stress-responding markers over time suggested that adaptation to external insults precedes any significant expression of the catabolic genes. The consequences of this hierarchy of responses for microbial biodegradation in situ are discussed.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología-CSIC, Campus UAM-Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|