101
|
Abstract
Fluconazole resistance of the fungal pathogen Candida albicans can arise through several mechanisms, but the responsible genes and pathways are poorly understood. We report here that mutations in CKA2, identified through an insertional mutagenesis screen, confer fluconazole resistance. CKA2 and its homologue CKA1 specify catalytic subunits of protein kinase CK2. Although cka1 mutations have little effect on fluconazole resistance, CKA1 overexpression suppresses the fluconazole resistance of a cka2 mutant. This observation, along with synthetic cka1-cka2 interactions, argues that Cka1p and Cka2p carry out similar functions. cka2 mutants overexpress CDR1 and CDR2, two fluconazole efflux transporter genes, and a cdr1 mutation decreases resistance of a cka2 mutant, as expected if CDR1 and CDR2 overexpression is responsible for fluconazole resistance of the cka2 mutant. The protein phosphatase calcineurin is required for azole tolerance, and we find that the calcineurin inhibitor cyclosporin reverses fluconazole resistance of cka2 mutants. In addition, a mutation in CRZ1, which specifies a homologue of the Saccharomyces cerevisiae transcription factor that is a major target of calcineurin, suppresses fluconazole resistance of cka2 mutants. Expression analysis of Cka2p-responsive genes argues that Cka2p and Crz1p act through distinct mechanisms. Several clinical fluconazole-resistant isolates overexpress some Cka2p-responsive genes. We suggest that a Cka2p-dependent regulatory pathway is altered by clinically derived azole resistance mutations.
Collapse
Affiliation(s)
- Vincent M Bruno
- Department of Microbiology and Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
102
|
Abstract
The objective of this review is to provide a synthesis of speciation theory, of what is known about mechanisms of speciation in fungi and from this, what is expected, and of ideas on how speciation can be elucidated in more fungal systems. The emphasis is on process rather than pattern. Phylogeographic studies in some groups, such as the agarics, demonstrate predominantly allopatric speciation, often through vicariance, as seen in many plants and animals. The variety of life history factors in fungi suggests, however, a diversity in speciation mechanisms that is borne out in comparison of some key examples. Life history features in fungi with a bearing on speciation include genetic mechanisms for intra- and interspecies interactions, haploidy as monokaryons, dikaryons, or coenocytes, distinctive types of propagules with distinctive modes of dispersal, as well as characteristic relationships to the substrate or host as specialized or generalist saprotrophs, parasites or mutualists with associated opportunities and selective pressures for hybridization. Approaches are proposed for both retrospective, phylogeographic determination of speciation mechanisms, and experimental studies with the potential for genomic applications, particularly in examining the relationship between adaptation and reproductive isolation.
Collapse
Affiliation(s)
- Linda M Kohn
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
| |
Collapse
|
103
|
da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, Anderson JB, Colombo AL, Arthington-Skaggs BA, Goldman MHS, Goldman GH. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother 2004; 48:4405-13. [PMID: 15504870 PMCID: PMC525395 DOI: 10.1128/aac.48.11.4405-4413.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the evolution of resistance to the antifungal drug itraconazole in replicate populations of Aspergillus fumigatus that were founded from a strain with a genotype of sensitivity to a single drug and then propagated under uniform conditions. For each population, conidia were serially transferred 10 times to agar medium either with or without itraconazole. After 10 transfers in medium supplemented with itraconazole, 10 itraconazole-resistant mutant strains were isolated from two populations. These mutant strains had different growth rates and different levels of itraconazole resistance. Analysis of the ergosterol contents of these mutants showed that they accumulate ergosterol when they are grown in the presence of itraconazole. The replacement of the CYP51A gene of the wild-type strain changed the susceptibility pattern of this strain to one of itraconazole resistance only when CYP51A genes with N22D and M220I mutations were used as selectable marker genes. Real-time quantitative reverse transcription-PCR was used to assess the levels of expression of the Afumdr1, Afumdr2, Afumdr3, Afumdr4, AtrF transporter, CYP51A, and CYP51B genes in these mutant strains. Most mutants showed either constitutive high-level expression or induction upon exposure of Afumdr3, Afumdr4, and AtrF to itraconazole. Our results suggest that overexpression of drug efflux pumps and/or selection of drug target site mutations are at least partially responsible for itraconazole resistance and could be considered mechanisms for the emergence of clinical resistance to this drug.
Collapse
Affiliation(s)
- Márcia Eliana da Silva Ferreira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Richter RK, Mickus DE, Rychnovsky SD, Molinski TF. Differential modulation of the antifungal activity of amphotericin B by natural and ent-cholesterol. Bioorg Med Chem Lett 2004; 14:115-8. [PMID: 14684310 DOI: 10.1016/j.bmcl.2003.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The addition of exogenous ent-cholesterol suppressed the antifungal activity of the amphotericin B when added to cultures of Candida albicans, but to a lesser extent than natural cholesterol. There were no detectable differences between added 2a or 2b on the antifungal activities of jaspamide or bengazole A, two unrelated antifungal natural products.
Collapse
Affiliation(s)
- Rowena K Richter
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
105
|
Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 2004; 101:7329-34. [PMID: 15123810 PMCID: PMC409918 DOI: 10.1073/pnas.0401648101] [Citation(s) in RCA: 553] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the diploid genome sequence of the fungal pathogen Candida albicans. Because C. albicans has no known haploid or homozygous form, sequencing was performed as a whole-genome shotgun of the heterozygous diploid genome in strain SC5314, a clinical isolate that is the parent of strains widely used for molecular analysis. We developed computational methods to assemble a diploid genome sequence in good agreement with available physical mapping data. We provide a whole-genome description of heterozygosity in the organism. Comparative genomic analyses provide important clues about the evolution of the species and its mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ted Jones
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Microorganisms have successfully adapted to changes in food production, processing, and preservation techniques, resulting in a number of new and emerging foodborne pathogens and the re-emergence of organisms that have been problematic in the past. To protect public health, science must meet the challenges that result from the remarkable adaptability of foodborne pathogens. However, not all of the challenges of preventing foodborne illness reside in the realm of science. Food safety policy must evolve in response to new scientific understanding of hazards in the food supply and an ever-changing food processing industry. The laws, regulations, and organizations comprising the food safety system frequently lag behind current scientific knowledge of the risks posed by foodborne pathogens. Future systemic changes to enhance food safety will require better understanding of risks associated with specific pathogens occurring in the food supply and the costs and benefits of implementing mitigation strategies.
Collapse
|
107
|
Bennion B, Park C, Fuller M, Lindsey R, Momany M, Jennemann R, Levery SB. Glycosphingolipids of the model fungus Aspergillus nidulans: characterization of GIPCs with oligo-alpha-mannose-type glycans. J Lipid Res 2003; 44:2073-88. [PMID: 12923229 DOI: 10.1194/jlr.m300184-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus nidulans is a well-established nonpathogenic laboratory model for the opportunistic mycopathogen, A. fumigatus. Some recent studies have focused on possible functional roles of glycosphingolipids (GSLs) in these fungi. It has been demonstrated that biosynthesis of glycosylinositol phosphorylceramides (GIPCs) is required for normal cell cycle progression and polarized growth in A. nidulans (Cheng, J., T.-S. Park, A. S. Fischl, and X. S. Ye. 2001. Mol. Cell Biol. 21: 6198-6209); however, the structures of A. nidulans GIPCs were not addressed in that study, nor were the functional significance of individual structural variants and the downstream steps in their biosynthesis. To initiate such studies, acidic GSL components (designated An-2, -3, and -5) were isolated from A. nidulans and subjected to structural characterization by a combination of one-dimensional (1-D) and 2-D NMR spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), ESI-MS/collision-induced decomposition-MS (MS/CID-MS), ESI-pseudo-[CID-MS]2, and gas chromatography-MS methods. All three were determined to be GIPCs, with mannose as the only monosaccharide present in the headgroup glycans; An-2 and An-3 were identified as di- and trimannosyl inositol phosphorylceramides (IPCs) with the structures Man alpha 1-->3Man alpha 1-->2Ins1-P-1Cer and Man alpha 1-->3(Man alpha 1-->6)Man alpha 1-->2Ins1-P-1Cer, respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide). An-5 was partially characterized, and is proposed to be a pentamannosyl IPC, based on the trimannosyl core structure of An-3.
Collapse
Affiliation(s)
- Beau Bennion
- Department of Chemistry, University of New Hampshire, Durham, NH 03824-3598, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Current awareness on yeast. Yeast 2003; 20:455-62. [PMID: 12728936 DOI: 10.1002/yea.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
109
|
Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, Kohn LM. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 2003; 163:1287-98. [PMID: 12702675 PMCID: PMC1462505 DOI: 10.1093/genetics/163.4.1287] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We show that mode of selection, degree of dominance of mutations, and ploidy are determining factors in the evolution of resistance to the antifungal drug fluconazole in yeast. In experiment 1, yeast populations were subjected to a stepwise increase in fluconazole concentration over 400 generations. Under this regimen, two mutations in the same two chromosomal regions rose to high frequency in parallel in three replicate populations. These mutations were semidominant and additive in their effect on resistance. The first of these mutations mapped to PDR1 and resulted in the overexpression of the ABC transporter genes PDR5 and SNQ2. These mutations had an unexpected pleiotropic effect of reducing the residual ability of the wild type to reproduce at the highest concentrations of fluconazole. In experiment 2, yeast populations were subjected to a single high concentration of fluconazole. Under this regimen, a single recessive mutation appeared in each of three replicate populations. In a genome-wide screen of approximately 4700 viable deletion strains, 13 were classified as resistant to fluconazole (ERG3, ERG6, YMR102C, YMR099C, YPL056C, ERG28, OSH1, SCS2, CKA2, SML1, YBR147W, YGR283C, and YLR407W). The mutations in experiment 2 all mapped to ERG3 and resulted in the overexpression of the gene encoding the drug target ERG11, but not PDR5 and SNQ2. Diploid hybrids from experiments 1 and 2 were less fit than the parents in the presence of fluconazole. In a variation of experiment 2, haploids showed a higher frequency of resistance than diploids, suggesting that degree of dominance and ploidy are important factors in the evolution of antifungal drug resistance.
Collapse
Affiliation(s)
- James B Anderson
- Department of Botany, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | | | | | |
Collapse
|