101
|
Abstract
Directed mutation is a proposed process that allows mutations to occur at higher frequencies when they are beneficial. Until now, the existence of such a process has been controversial. Here we describe a novel mechanism of directed mutation mediated by the transposon, IS5 in Escherichia coli. crp deletion mutants mutate specifically to glycerol utilization (Glp(+)) at rates that are enhanced by glycerol or the loss of the glycerol repressor (GlpR), depressed by glucose or glpR overexpression, and RecA-independent. Of the four tandem GlpR binding sites (O1-O4) upstream of the glpFK operon, O4 specifically controls glpFK expression while O1 primarily controls mutation rate in a process mediated by IS5 hopping to a specific site on the E. coli chromosome upstream of the glpFK promoter. IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish an example of transposon-mediated directed mutation, identify the protein responsible and define the mechanism involved.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
102
|
High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc Natl Acad Sci U S A 2009; 106:12412-7. [PMID: 19617543 DOI: 10.1073/pnas.0906217106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Core genes comprising the ubiquitous backbone of bacterial genomes are not subject to frequent horizontal transfer and generally are not thought to contribute to the adaptive evolution of bacterial pathogens. We determined, however, that at least one-third and possibly more than one-half of the core genes in Escherichia coli genomes are targeted by repeated replacement substitutions in the same amino acid positions-hotspot mutations. Occurrence of hotspot mutations is driven by positive selection, as their rate is significantly higher than expected by random chance alone, and neither intragenic recombination nor increased mutability can explain the observed patterns. Also, commensal E. coli strains have a significantly lower frequency of mutated genes and mutations per genome than pathogenic strains. E. coli strains causing extra-intestinal infections accumulate hotspot mutations at the highest rate, whereas the highest total number of mutated genes has been found among Shigella isolates, suggesting the pathoadaptive nature of such mutations. The vast majority of hotspot mutations are of recent evolutionary origin, implying short-term positive selection, where adaptive mutations emerge repeatedly but are not sustained in natural circulation for long. Such pattern of dynamics is consistent with source-sink model of virulence evolution.
Collapse
|
103
|
Richardson AR, Soliven KC, Castor ME, Barnes PD, Libby SJ, Fang FC. The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 2009; 5:e1000451. [PMID: 19478870 PMCID: PMC2680585 DOI: 10.1371/journal.ppat.1000451] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/27/2009] [Indexed: 01/28/2023] Open
Abstract
Intracellular pathogens must withstand nitric oxide (NO.) generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS) and possesses multiple systems to detoxify NO.. Consequently, the level of NO. stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER) system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP) sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO. sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO. fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO.-dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO.. These observations demonstrate that host-derived NO. damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity.
Collapse
|
104
|
Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 2009; 182:1183-95. [PMID: 19474201 DOI: 10.1534/genetics.109.103028] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of beta-lactam antibiotics has led to the evolution and global spread of a variety of resistance mechanisms, including beta-lactamases, a group of enzymes that degrade the beta-lactam ring. The evolution of increased beta-lactam resistance was studied by exposing independent lineages of Salmonella typhimurium to progressive increases in cephalosporin concentration. Each lineage carried a beta-lactamase gene (bla(TEM-1)) that provided very low resistance. In most lineages, the initial response to selection was an amplification of the bla(TEM-1) gene copy number. Amplification was followed in some lineages by mutations (envZ, cpxA, or nmpC) that reduced expression of the uptake functions, the OmpC, OmpD, and OmpF porins. The initial resistance provided by bla(TEM-1) amplification allowed the population to expand sufficiently to realize rare secondary point mutations. Mathematical modeling showed that amplification often is likely to be the initial response because events that duplicate or further amplify a gene are much more frequent than point mutations. These models show the importance of the population size to appearance of later point mutations. Transient gene amplification is likely to be a common initial mechanism and an intermediate in stable adaptive improvement. If later point mutations (allowed by amplification) provide sufficient adaptive improvement, the amplification may be lost.
Collapse
|
105
|
Chandhok NS, Pellman D. A little CIN may cost a lot: revisiting aneuploidy and cancer. Curr Opin Genet Dev 2009; 19:74-81. [PMID: 19195877 DOI: 10.1016/j.gde.2008.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 12/06/2008] [Accepted: 12/09/2008] [Indexed: 01/05/2023]
Abstract
Despite over 100 years of study, the role of aneuploidy in cancer remains poorly understood. This review highlights the advances in understanding the causes and consequences of aneuploidy. Recent work has illuminated ways in which aneuploidy could have either tumor-promoting or tumor-suppressing effects, similar to what is known for other forms of genetic instability such as telomere attrition [Maser RS, DePinho RA: Connecting chromosomes, crisis, and cancer. Science 2002, 297:565-569]. We explore the possibility that aneuploidy could be just another type of 'mutation', with potential beneficial and deleterious effects, depending on the chromosomes involved and the specific selective pressures the cells experience. We also discuss the potential therapeutic implications of changes in physiology associated with aneuploidy.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
106
|
Accumulation of mutants in "aging" bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc Natl Acad Sci U S A 2008; 105:11863-8. [PMID: 18701713 DOI: 10.1073/pnas.0804739105] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several bacterial systems show behavior interpreted as evidence for stress-induced mutagenesis (adaptive mutation), a postulated process by which nongrowing cells temporarily increase their general mutation rate. Theoretical considerations suggest that periodic stress-induced general mutagenesis would not be advantageous in the long term, due to the high cost of deleterious mutations. Alternative explanations have been tested for very few of the systems used as evidence for stress-induced mutation. In one prominent system, mutants resistant to rifampicin (Rif(R); rpoB; RNA polymerase) accumulate in cell populations that "age" on solid medium with little net growth. Mutant accumulation was initially attributed to stress-induced general mutagenesis in nongrowing cells. Evidence is presented that these Rif(R) mutants accumulate because they grow faster than parent cells during the aging period. Direct tests revealed no increase in the frequency of other mutant types during the aging period.
Collapse
|
107
|
|
108
|
Abstract
The treatment of bacterial infections is increasingly complicated because microorganisms can develop resistance to antimicrobial agents. This article discusses the information that is required to predict when antibiotic resistance is likely to emerge in a bacterial population. Indeed, the development of the conceptual and methodological tools required for this type of prediction represents an important goal for microbiological research. To this end, we propose the establishment of methodological guidelines that will allow researchers to predict the emergence of resistance to a new antibiotic before its clinical introduction.
Collapse
Affiliation(s)
- José L Martínez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública and Unidad Asociada al CSIC Resistencia a los Antibióticos y Virulencia Bacteriana, Cantoblanco, 28049-Madrid, Spain.
| | | | | |
Collapse
|
109
|
Craven SH, Neidle EL. Double trouble: medical implications of genetic duplication and amplification in bacteria. Future Microbiol 2007; 2:309-21. [PMID: 17661705 DOI: 10.2217/17460913.2.3.309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gene amplification allows organisms to adapt to changing environmental conditions. This type of increased gene dosage confers selectable benefits, typically by augmenting protein production. Gene amplification is a reversible process that does not require permanent genetic change. Although transient, altered gene dosage has significant medical impact. Recent examples of amplification in bacteria, described here, affect human disease by modifying antibiotic resistance, the virulence of pathogens, vaccine efficacy and antibiotic biosynthesis. Amplification is usually a two-step process whereby genetic duplication (step one) promotes further increases in copy number (step two). Both steps have important evolutionary significance for the emergence of innovative gene functions. Recent genome sequence analyses illustrate how genome plasticity can affect the evolution and immunogenic properties of bacterial pathogens.
Collapse
Affiliation(s)
- Sarah H Craven
- University of Georgia, Microbiology Department, Athens, GA 30602-2605, USA.
| | | |
Collapse
|
110
|
Paulander W, Maisnier-Patin S, Andersson DI. Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium. Mol Microbiol 2007; 64:1038-48. [PMID: 17501926 DOI: 10.1111/j.1365-2958.2007.05713.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined how the fitness costs of mupirocin resistance caused by mutations in the chromosomal isoleucyl-tRNA synthetase gene (ileS) can be ameliorated. Mupirocin-resistant mutants were isolated and four different, resistance-conferring point mutations in the chromosomal ileS gene were identified. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged to evolve compensated mutants with increased fitness. In 34/50 of the evolved lineages, the increase in fitness resulted from additional point mutations in isoleucine tRNA synthetase (IleRS). Measurements in vitro of the kinetics of aminoacylation of wild-type and mutant enzymes showed that resistant IleRS had a reduced rate of aminoacylation due to altered interactions with both tRNAIle and ATP. The intragenic compensatory mutations improved IleRS kinetics towards the wild-type enzyme, thereby restoring bacterial fitness. Seven of the 16 lineages that lacked second-site compensatory mutations in ileS, showed an increase in ileS gene dosage, suggesting that an increased level of defective IleRS compensate for the decrease in aminoacylation activity. Our findings show that the fitness costs of ileS mutations conferring mupirocin resistance can be reduced by several types of mechanisms that may contribute to the stability of mupirocin resistance in clinical settings.
Collapse
Affiliation(s)
- Wilhelm Paulander
- Department of Bacteriology, Swedish Institute for Infectious Disease Control and Microbiology, Tumor and Cell Biology Center, Karolinska Institute, S-171 82 Solna, Sweden
| | | | | |
Collapse
|
111
|
Carr LL, Gottschling DE. Does age influence loss of heterozygosity? Exp Gerontol 2007; 43:123-9. [PMID: 18054191 DOI: 10.1016/j.exger.2007.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/09/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
The striking correlation between advanced age and an increased incidence of cancer has led investigators to examine the influence of aging on genome maintenance. Because loss of heterozygosity (LOH) can lead to the inactivation of tumor suppressor genes, and thus carcinogenesis, understanding the affect of aging on this type of mutation event is particularly important. Several factors may affect the rate of LOH, including an increase in the amount of DNA damage, specifically double-strand breaks (DSBs), and the ability to efficiently repair this damage via pathways that minimize the loss of genetic information. Because of experimental constraints, there is only suggestive evidence for a change in the rate of DNA damage as humans age. However, recent studies in model organisms find that there are increased rates of LOH with age, and that repair of DNA damage occurs via a different pathway in old cells versus young cells. We speculate that the age-dependent change in DNA repair may explain why there is increased LOH, and that the findings from these model organisms may extend to humans.
Collapse
Affiliation(s)
- Laurie L Carr
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
112
|
Bergthorsson U, Andersson DI, Roth JR. Ohno's dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci U S A 2007; 104:17004-9. [PMID: 17942681 PMCID: PMC2040452 DOI: 10.1073/pnas.0707158104] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Indexed: 11/18/2022] Open
Abstract
New genes with novel functions arise by duplication and divergence, but the process poses a problem. After duplication, an extra gene copy must rise to sufficiently high frequency in the population and remain free of common inactivating lesions long enough to acquire the rare mutations that provide a new selectable function. Maintaining a duplicated gene by selection for the original function would restrict the freedom to diverge. (We refer to this problem as Ohno's dilemma). A model is described by which selection continuously favors both maintenance of the duplicate copy and divergence of that copy from the parent gene. Before duplication, the original gene has a trace side activity (the innovation) in addition to its original function. When an altered ecological niche makes the minor innovation valuable, selection favors increases in its level (the amplification), which is most frequently conferred by increased dosage of the parent gene. Selection for the amplified minor function maintains the extra copies and raises the frequency of the amplification in the population. The same selection favors mutational improvement of any of the extra copies, which are not constrained to maintain their original function (the divergence). The rate of mutations (per genome) that improve the new function is increased by the multiplicity of target copies within a genome. Improvement of some copies relaxes selection on others and allows their loss by mutation (becoming pseudogenes). Ultimately one of the extra copies is able to provide all of the new activity.
Collapse
Affiliation(s)
- Ulfar Bergthorsson
- *Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden; and
| | - John R. Roth
- Department of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616
| |
Collapse
|
113
|
Abstract
Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
114
|
Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 2007; 42:399-435. [PMID: 17917874 PMCID: PMC3319127 DOI: 10.1080/10409230701648502] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
Collapse
Affiliation(s)
- Rodrigo S Galhardo
- Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
115
|
Abstract
Bacteria possessing elevated spontaneous mutation rates are prevalent in certain environments, which is a paradox because most mutations are deleterious. For example, cells with defects in the methyl-directed mismatch repair (MMR) system, termed mutators or hypermutators, are overrepresented in populations of bacterial pathogens, with the mutator trait hypothesized to be advantageous in the changing host enviroments faced during colonization and establishment of chronic infections. Error-prone DNA polymerases, such as polIV and polV, function in translesion DNA synthesis, a DNA damage response that ensures genome integrity with a cost of increased mutation. While the biochemical aspects of these mutability pathways are well understood, the biological impacts have received less attention. Here, an examination of bacterial mutability systems and specifically the ecological and evolutionary context resulting in the selection of these systems is carried out.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant Pathology, Centers for Microbial Ecology and Pathogenesis, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
116
|
Stumpf JD, Poteete AR, Foster PL. Amplification of lac cannot account for adaptive mutation to Lac+ in Escherichia coli. J Bacteriol 2007; 189:2291-9. [PMID: 17209030 PMCID: PMC1899370 DOI: 10.1128/jb.01706-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the Lac- strain of Escherichia coli, FC40, is incubated with lactose as its sole carbon and energy source, Lac+ revertants arise at a constant rate, a phenomenon known as adaptive mutation. Two alternative models for adaptive mutation have been proposed: (i) recombination-dependent mutation, which specifies that recombination occurring in nongrowing cells stimulates error-prone DNA synthesis, and (ii) amplification-dependent mutation, which specifies that amplification of the lac region and growth of the amplifying cells creates enough DNA replication to produce mutations at the normal rate. Here, we examined several of the predictions of the amplification-dependent mutation model and found that they are not fulfilled. First, inhibition of adaptive mutation by a gene that is toxic when overexpressed does not depend on the proximity of the gene to lac. Second, mutation at a second locus during selection for Lac+ revertants is also independent of the proximity of the locus to lac. Third, mutation at a second locus on the episome occurs even when the lac allele under selection is on the chromosome. Our results support the hypothesis that most Lac+ mutants that appear during lactose selection are true revertants that arise in a single step from Lac- cells, not from a population of growing or amplifying precursor cells.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
117
|
Banas JA, Miller JD, Fuschino ME, Hazlett KRO, Toyofuku W, Porter KA, Reutzel SB, Florczyk MA, McDonough KA, Michalek SM. Evidence that accumulation of mutants in a biofilm reflects natural selection rather than stress-induced adaptive mutation. Appl Environ Microbiol 2006; 73:357-61. [PMID: 17085702 PMCID: PMC1797100 DOI: 10.1128/aem.02014-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accumulation of mutant genotypes within a biofilm evokes the controversy over whether the biofilm environment induces adaptive mutation or whether the accumulation can be explained by natural selection. A comparison of the virulence of two strains of the dental pathogen Streptococcus mutans showed that rats infected with one of the strains accumulated a high proportion (average, 22%) of organisms that had undergone a deletion between two contiguous and highly homologous genes. To determine if the accumulation of deletion mutants was due to selection or to an increased mutation rate, accumulations of deletion mutants within in vitro planktonic and biofilm cultures and within rats inoculated with various proportions of deletion organisms were quantified. We report here that natural selection was the primary force behind the accumulation of the deletion mutants.
Collapse
Affiliation(s)
- Jeffrey A Banas
- University of Iowa College of Dentistry, Dows Institute-Research, Dental Science N 436, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kugelberg E, Kofoid E, Reams AB, Andersson DI, Roth JR. Multiple pathways of selected gene amplification during adaptive mutation. Proc Natl Acad Sci U S A 2006; 103:17319-24. [PMID: 17082307 PMCID: PMC1633709 DOI: 10.1073/pnas.0608309103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a phenomenon referred to as "adaptive mutation," a population of bacterial cells with a mutation in the lac operon (lac-) accumulates Lac+ revertants during prolonged exposure to selective growth conditions (lactose). Evidence was provided that selective conditions do not increase the mutation rate but instead favor the growth of rare cells with a duplication of the leaky lac allele. A further increase in copy number (amplification) improves growth and increases the likelihood of a sequence change by adding more mutational targets to the clone (cells and lac copies per cell). These duplications and amplifications are described here. Before selection, cells with large (134-kb) lac duplications and long junction sequences (>1 kb) were common (0.2%). The same large repeats were found after selection in cells with a low-copy-number lac amplification. Surprisingly, smaller repeats (average, 34 kb) were found in high-copy-number amplifications. The small-repeat duplications form when deletions modify a preexisting large-repeat duplication. The shorter repeat size allowed higher lac amplification and better growth on lactose. Thus, selection favors a succession of gene-amplification types that make sequence changes more probable by adding targets. These findings are relevant to genetic adaptation in any biological systems in which fitness can be increased by adding gene copies (e.g., cancer and bacterial drug resistance).
Collapse
Affiliation(s)
- Elisabeth Kugelberg
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
| | - Eric Kofoid
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
| | - Andrew B. Reams
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, S-751-23 Uppsala University, Uppsala, Sweden
| | - John R. Roth
- *Section of Microbiology, College of Biological Sciences, University of California, Davis, CA 95616; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
119
|
Barash D, Sikorski J, Perry EB, Nevo E, Nudler E. Adaptive Mutations In RNA-Based Regulatory Mechanisms: Computational and Experimental Investigations. Isr J Ecol Evol 2006. [DOI: 10.1560/ijee_52_3-4_263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent discoveries of RNA-based regulatory mechanisms have prompted substantial interest in how they formed and the extent to which varying environmental conditions have influenced their evolution. One class of RNA-based regulatory mechanism that has been found in bacteria is the riboswitch, regulating the biosynthesis of certain vitamins by an RNA genetic control element that senses small molecules and responds with a structural change that affects transcription termination or translation initiation without the participation of proteins. By taking the thiamin pyrophosphate (TPP)-riboswitch inBacillus subtilisas a model system, we wish to examine whether beneficial mutations may exist at the level of RNA that will cause an improvement in organism fitness. By computationally analyzing the difference in primary and secondary structure of theB. subtilisTPP-riboswitch collected from the xeric "African" south-facing slope (SFS) vs. the mesic, "European", north-facing slope (NFS) in "Evolution Canyon" III at Nahal Shaharut, southern Israel, we wish to experimentally study the environmental effect on transcription termination in these RNA-based regulatory mechanisms that are believed to be of ancient origin in the evolutionary time scale. Computational results, so far, indicate that specific mutations affect the riboswitch conformation by causing a global rearrangement. We would like to check whether such mutations could be adaptive mutations that may have a beneficial fitness effect, taking the TPP-riboswitch as a model system at the micro-scale. Empirical results so far indicate that in the promoter region of the TPP-riboswitch, all mutations increase nucleotide GC content in the xeric SFS, whereas in the mesic NFS they increase AT content. Preliminary examination of termination efficiency of strains found exclusively on one slope or the other, reveal increased termination efficiency in the presence of TPP and at more moderate temperatures, but only a suggestion of greater termination efficiency from strains found on both slopes. We expect that further results will shed light on the mutational differences of TPP-riboswitch sequences found on opposite slopes of "Evolution Canyon" III at Nahal Shaharut, potentially leading to interesting discoveries that relate to the topic of adaptive, nonrandom mutations.
Collapse
Affiliation(s)
- Danny Barash
- Institute of Evolution, University of Haifa
- Department of Computer Science, Ben-Gurion University of the Negev
| | - Johannes Sikorski
- Institute of Evolution, University of Haifa
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GMbH (DSMZ)
| | | | | | - Evgeny Nudler
- Department of Biochemistry, New York University Medical School,
| |
Collapse
|