101
|
Hathazi D, Mahuţ SD, Scurtu FV, Bischin C, Stanciu C, Attia AA, Damian G, Silaghi-Dumitrescu R. Involvement of ferryl in the reaction between nitrite and the oxy forms of globins. J Biol Inorg Chem 2014; 19:1233-9. [PMID: 25064750 DOI: 10.1007/s00775-014-1181-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The reaction between nitrite and the oxy forms of globins has complex autocatalytic kinetics with several branching steps and evolves through chain reactions mediated by reactive species (including radicals) such as hydrogen peroxide, ferryl and nitrogen dioxide, starting with a lag phase, after which it proceeds onto an autocatalytic phase. Reported here are UV-Vis spectra collected upon stopped-flow mixing of myoglobin with a supraphysiological excess of nitrite. The best fit to the experimental data follows an A → B → C reaction scheme involving the formation of a short-lived intermediate identified as ferryl. This is consistent with a mechanism where nitrite binds to oxy myoglobin to generate an undetectable ferrous-peroxynitrate intermediate, whose decay leads to nitrate and ferryl. The ferryl is then reduced to met by the excess nitrite. DFT calculations reveal an essentially barrierless reaction between nitrite and the oxy heme, with a notable outer-sphere component; the resulting metastable ferrous-peroxynitrate adduct is found to feature a very low barrier towards nitrate liberation, with ferryl as a final product-in good agreement with experiment.
Collapse
Affiliation(s)
- Denisa Hathazi
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
103
|
Fens MH, Larkin SK, Oronsky B, Scicinski J, Morris CR, Kuypers FA. The capacity of red blood cells to reduce nitrite determines nitric oxide generation under hypoxic conditions. PLoS One 2014; 9:e101626. [PMID: 25007272 PMCID: PMC4090171 DOI: 10.1371/journal.pone.0101626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/09/2014] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) is a key regulator of vascular tone. Endothelial nitric oxide synthase (eNOS) is responsible for NO generation under normoxic conditions. Under hypoxia however, eNOS is inactive and red blood cells (RBC) provide an alternative NO generation pathway from nitrite to regulate hypoxic vasodilation. While nitrite reductase activity of hemoglobin is well acknowledged, little is known about generation of NO by intact RBC with physiological hemoglobin concentrations. We aimed to develop and apply a new approach to provide insights in the ability of RBC to convert nitrite into NO under hypoxic conditions. We established a novel experimental setup to evaluate nitrite uptake and the release of NO from RBC into the gas-phase under different conditions. NO measurements were similar to well-established clinical measurements of exhaled NO. Nitrite uptake was rapid, and after an initial lag phase NO release from RBC was constant in time under hypoxic conditions. The presence of oxygen greatly reduced NO release, whereas inhibition of eNOS and xanthine oxidoreductase (XOR) did not affect NO release. A decreased pH increased NO release under hypoxic conditions. Hypothermia lowered NO release, while hyperthermia increased NO release. Whereas fetal hemoglobin did not alter NO release compared to adult hemoglobin, sickle RBC showed an increased ability to release NO. Under all conditions nitrite uptake by RBC was similar. This study shows that nitrite uptake into RBC is rapid and release of NO into the gas-phase continues for prolonged periods of time under hypoxic conditions. Changes in the RBC environment such as pH, temperature or hemoglobin type, affect NO release.
Collapse
Affiliation(s)
- Marcel H. Fens
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Sandra K. Larkin
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Bryan Oronsky
- RadioRx, Inc., Mountain View, California, United States of America
| | - Jan Scicinski
- RadioRx, Inc., Mountain View, California, United States of America
| | - Claudia R. Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Frans A. Kuypers
- Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Bailey JC, Feelisch M, Horowitz JD, Frenneaux MP, Madhani M. Pharmacology and therapeutic role of inorganic nitrite and nitrate in vasodilatation. Pharmacol Ther 2014; 144:303-20. [PMID: 24992304 DOI: 10.1016/j.pharmthera.2014.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023]
Abstract
Nitrite has emerged as an important bioactive molecule that can be biotransformed to nitric oxide (NO) related metabolites in normoxia and reduced to NO under hypoxic and acidic conditions to exert vasodilatory effects and confer a variety of other benefits to the cardiovascular system. Abundant research is currently underway to understand the mechanisms involved and define the role of nitrite in health and disease. In this review we discuss the impact of nitrite and dietary nitrate on vascular function and the potential therapeutic role of nitrite in acute heart failure.
Collapse
Affiliation(s)
- J C Bailey
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - M Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J D Horowitz
- The Queen Elizabeth Hospital, Adelaide, Australia
| | - M P Frenneaux
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - M Madhani
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK.
| |
Collapse
|
105
|
Tepper J, Ochoa R, Rix P, Elliott G, Hoglen N, Poulin D, Parsley E, Masamune H. A 26-Week Toxicity Assessment of AIR001 (Sodium Nitrite) by Inhalation Exposure in Rats and by Intravenous Administration in Dogs. Int J Toxicol 2014; 33:162-174. [PMID: 24801488 DOI: 10.1177/1091581814531801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Historically, nitrogen oxides (NOx) in food, drinking water, as well as in the atmosphere have been believed to be associated with adverse health consequences. More recently, NOx have been implicated in normal homeostatic regulation, and exogenous administration has been associated with health benefits. One such potential health benefit is the prospect that inhaled nitrite will lower pulmonary blood pressure (BP) in patients with pulmonary arterial hypertension (PAH), a disease with poor prognosis due to the lack of effective treatment. To characterize potential chronic toxicity associated with inhaled AIR001 (sodium nitrite) for use in the treatment of PAH, 26-week exposures to AIR001 were carried out by inhalation administration in rats and by intravenous infusion in dogs. The studies revealed that methemoglobinemia was the primary adverse effect in both species. Methemoglobin levels less than 40% were well tolerated in both species, while levels greater than 50% methemoglobin caused death in some rats. Additionally, a decrease in systemic BP was also observed with inhaled AIR001 exposure in dogs. These acute secondary and exaggerated pharmacological effects occurred daily throughout the 26-week treatment period. Chronic exposure did not alter the magnitude of either methemoglobinemia or hypotension or result in additional toxicity or compensatory responses. Based on the exposure levels that produced these pharmacodynamic responses in animals, relative to those measured in early clinical studies, it appears that an adequate margin of safety exists to support the continued clinical development of inhaled AIR001.
Collapse
Affiliation(s)
| | | | - Peter Rix
- Vector Preclinical Solutions, San Diego, CA, USA
| | | | - Niel Hoglen
- Hoglen Consulting, Del Mar, CA, USA.,Pharmaceutical Advisors LLC, Princeton, NJ, USA
| | | | - Ed Parsley
- Aires Pharmaceuticals, Inc, San Diego, CA, USA
| | | |
Collapse
|
106
|
Bhushan S, Kondo K, Polhemus DJ, Otsuka H, Nicholson CK, Tao YX, Huang H, Georgiopoulou VV, Murohara T, Calvert JW, Butler J, Lefer DJ. Nitrite therapy improves left ventricular function during heart failure via restoration of nitric oxide-mediated cytoprotective signaling. Circ Res 2014; 114:1281-91. [PMID: 24599803 DOI: 10.1161/circresaha.114.301475] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE Nitric oxide (NO) bioavailability is reduced in the setting of heart failure. Nitrite (NO2) is a critically important NO intermediate that is metabolized to NO during pathological states. We have previously demonstrated that sodium nitrite ameliorates acute myocardial ischemia/reperfusion injury. OBJECTIVE No evidence exists as to whether increasing NO bioavailability via nitrite therapy attenuates heart failure severity after pressure-overload-induced hypertrophy. METHODS AND RESULTS Serum from patients with heart failure exhibited significantly decreased nitrosothiol and cGMP levels. Transverse aortic constriction was performed in mice at 10 to 12 weeks. Sodium nitrite (50 mg/L) or saline vehicle was administered daily in the drinking water postoperative from day 1 for 9 weeks. Echocardiography was performed at baseline and at 1, 3, 6, and 9 weeks after transverse aortic constriction to assess left ventricular dimensions and ejection fraction. We observed increased cardiac nitrite, nitrosothiol, and cGMP levels in mice treated with nitrite. Sodium nitrite preserved left ventricular ejection fraction and improved left ventricular dimensions at 9 weeks (P<0.001 versus vehicle). In addition, circulating and cardiac brain natriuretic peptide levels were attenuated in mice receiving nitrite (P<0.05 versus vehicle). Western blot analyses revealed upregulation of Akt-endothelial nitric oxide-nitric oxide-cGMP-GS3Kβ signaling early in the progression of hypertrophy and heart failure. CONCLUSIONS These results support the emerging concept that nitrite therapy may be a viable clinical option for increasing NO levels and may have a practical clinical use in the treatment of heart failure.
Collapse
Affiliation(s)
- Shashi Bhushan
- From the LSU Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, LA (S.B., D.J.P., H.O., D.J.L.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (K.K., T.M.); Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center (C.K.N., J.W.C.) and Division of Cardiology, Department of Medicine (V.V.G., J.B.), Emory University School of Medicine, Atlanta, GA; and Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, AL (Y.-X.T., H.H.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Truong GT, Schröder HJ, Liu T, Zhang M, Kanda E, Bragg S, Power GG, Blood AB. Role of nitrite in regulation of fetal cephalic circulation in sheep. J Physiol 2014; 592:1785-94. [PMID: 24535441 DOI: 10.1113/jphysiol.2013.269340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrite has been postulated to provide a reservoir for conversion to nitric oxide (NO), especially in tissues with reduced oxygen levels as in the fetus. Nitrite would thus provide local vasodilatation and restore a balance between oxygen supply and need, a putative mechanism of importance especially in the brain. The current experiments test the hypothesis that exogenous nitrite acts as a vasodilator in the cephalic vasculature of the intact, near term fetal sheep. Fetuses were first instrumented to measure arterial blood pressure and carotid artery blood flow and then studied 4-5 days later while in utero without anaesthesia. Initially l-nitro-arginine (LNNA) was given to block endogenous NO production. Carotid resistance to flow increased 2-fold from 0.54 ± 0.01 (SEM) to 1.20 ± 0.08 mmHg min ml(-1) (in 13 fetuses, P < 0.001), indicating NO tonically reduces cerebral vascular tone. Sodium nitrite (or saline as control) was then infused in increasing step-doses from 0.01 to 33 μm in half-log increments over a period of 2 h. Carotid artery pressure, blood flow and vascular resistance did not change compared to fetuses receiving saline, even at plasma nitrite concentrations two orders of magnitude above the physiological range. The results indicate that while cephalic vascular tone is controlled by endogenous nitric oxide synthase activity, exogenously administered nitrite is not a vasodilator at physiological concentrations in the vasculature served by the carotid artery of fetal sheep.
Collapse
Affiliation(s)
- Giang T Truong
- Department of Pediatrics, 11175 Campus Street, 11121 Coleman, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Lang JD, Smith AB, Brandon A, Bradley KM, Liu Y, Li W, Crowe DR, Jhala NC, Cross RC, Frenette L, Martay K, Vater YL, Vitin AA, Dembo GA, DuBay DA, Bynon JS, Szychowski JM, Reyes JD, Halldorson JB, Rayhill SC, Dick AA, Bakthavatsalam R, Brandenberger J, Broeckel-Elrod JA, Sissons-Ross L, Jordan T, Chen LY, Siriussawakul A, Eckhoff DE, Patel RP. A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS One 2014; 9:e86053. [PMID: 24533048 PMCID: PMC3922702 DOI: 10.1371/journal.pone.0086053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
Decreases in endothelial nitric oxide synthase derived nitric oxide (NO) production during liver transplantation promotes injury. We hypothesized that preemptive inhaled NO (iNO) would improve allograft function (primary) and reduce complications post-transplantation (secondary). Patients at two university centers (Center A and B) were randomized to receive placebo (n = 20/center) or iNO (80 ppm, n = 20/center) during the operative phase of liver transplantation. Data were analyzed at set intervals for up to 9-months post-transplantation and compared between groups. Patient characteristics and outcomes were examined with the Mann-Whitney U test, Student t-test, logistic regression, repeated measures ANOVA, and Cox proportional hazards models. Combined and site stratified analyses were performed. MELD scores were significantly higher at Center B (22.5 vs. 19.5, p<0.0001), surgical times were greater at Center B (7.7 vs. 4.5 hrs, p<0.001) and warm ischemia times were greater at Center B (95.4 vs. 69.7 min, p<0.0001). No adverse metabolic or hematologic effects from iNO occurred. iNO enhanced allograft function indexed by liver function tests (Center B, p<0.05; and p<0.03 for ALT with center data combined) and reduced complications at 9-months (Center A and B, p = 0.0062, OR = 0.15, 95% CI (0.04, 0.59)). ICU (p = 0.47) and hospital length of stay (p = 0.49) were not decreased. iNO increased concentrations of nitrate (p<0.001), nitrite (p<0.001) and nitrosylhemoglobin (p<0.001), with nitrite being postulated as a protective mechanism. Mean costs of iNO were $1,020 per transplant. iNO was safe and improved allograft function at one center and trended toward improving allograft function at the other. ClinicalTrials.gov with registry number 00582010 and the following URL:http://clinicaltrials.gov/show/NCT00582010.
Collapse
Affiliation(s)
- John D. Lang
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Alvin B. Smith
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela Brandon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kelley M. Bradley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuliang Liu
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Wei Li
- Department of Hepatobiliary-pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - D. Ralph Crowe
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nirag C. Jhala
- Department of Pathology and Laboratory Medicine, Ruth and Raymond Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard C. Cross
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Luc Frenette
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kenneth Martay
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Youri L. Vater
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Alexander A. Vitin
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gregory A. Dembo
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Derek A. DuBay
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. Steven Bynon
- Department of Surgery, Division of Immunology and Organ Transplantation, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jeff M. Szychowski
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jorge D. Reyes
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jeffrey B. Halldorson
- Department of Surgery, University of California San Diego Health Care System, San Diego, California, United States of America
| | - Stephen C. Rayhill
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Andre A. Dick
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ramasamy Bakthavatsalam
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Brandenberger
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jo Ann Broeckel-Elrod
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Laura Sissons-Ross
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Terry Jordan
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lucinda Y. Chen
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Arunotai Siriussawakul
- Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Devin E. Eckhoff
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
109
|
Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC, Thomas J, Ragireddy V, Merchant BA, Wang J, Azarov I, Basu P, Gladwin MT. Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. J Biol Chem 2014; 289:10345-10358. [PMID: 24500710 DOI: 10.1074/jbc.m114.555177] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production.
Collapse
Affiliation(s)
- Courtney E Sparacino-Watkins
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Bin Sun
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Marc C Gauthier
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - John Thomas
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Venkata Ragireddy
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Bonnie A Merchant
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jun Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Ivan Azarov
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
110
|
Guimarães DA, Rizzi E, Ceron CS, Pinheiro LC, Gerlach RF, Tanus-Santos JE. Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension. Redox Biol 2013; 1:578-85. [PMID: 24363994 PMCID: PMC3863772 DOI: 10.1016/j.redox.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO)-derived metabolites including the anion nitrite can recycle back to NO and thus complement NO formation independent of NO synthases. While nitrite is as a major vascular storage pool and source of NO, little is known about drugs that increase tissue nitrite concentrations. This study examined the effects of atorvastatin or sildenafil, or the combination, on vascular nitrite concentrations and on endothelial dysfunction in the 2 kidney-1 clip (2K1C) hypertension model. Sham-operated or 2K1C hypertensive rats were treated with vehicle, atorvastatin (50 mg/Kg), sildenafil (45 mg/Kg), or both for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Nitrite concentrations were assessed in the aortas and in plasma samples by ozone-based reductive chemiluminescence assay. Aortic rings were isolated to assess endothelium-dependent and independent relaxation. Aortic NADPH activity and ROS production were evaluated by luminescence and dihydroethidium, respectively, and plasma TBARS levels were measured. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. Atorvastatin and sildenafil, alone or combined, significantly lowered SBP by approximately 40 mmHg. Atorvastatin significantly increased vascular nitrite levels by 70% in hypertensive rats, whereas sildenafil had no effects. Both drugs significantly improved the vascular function, and decreased vascular NADPH activity, ROS, and nitrotyrosine levels. Lower plasma TBARS concentrations were found with both treatments. The combination of drugs showed no improved responses compared to each drug alone. These findings show evidence that atorvastatin, but not sildenafil, increases vascular NO stores, although both drugs exert antioxidant effects, improve endothelial function, and lower blood pressure in 2K1C hypertension. Nitrite recycles back to NO and complements NO formation independent of NO synthases. Little is known about drugs that increase tissue nitrite concentrations. Atorvastatin or sildenafil lowered blood pressure in renovascular hypertension. Both drugs exerted antioxidant effects and improved endothelial dysfunction. Only atorvastatin increased vascular nitrite levels by 70% in hypertensive rats.
Collapse
Affiliation(s)
- Danielle A Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Physiology, and Basic Pathology, University of Sao Paulo, s/n Av. Café, Ribeirao Preto 14040-904, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
111
|
Nicholson CK, Lambert JP, Chow CW, Lefer DJ, Calvert JW. Chronic exercise downregulates myocardial myoglobin and attenuates nitrite reductase capacity during ischemia-reperfusion. J Mol Cell Cardiol 2013; 64:1-10. [PMID: 23962643 PMCID: PMC3800246 DOI: 10.1016/j.yjmcc.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/22/2013] [Accepted: 08/07/2013] [Indexed: 01/31/2023]
Abstract
The infarct sparing effects of exercise are evident following both long-term and short-term training regimens. Here we compared the infarct-lowering effects of nitrite therapy, voluntary exercise, and the combination of both following myocardial ischemia-reperfusion (MI/R) injury. We also compared the degree to which each strategy increased cardiac nitrite levels, as well as the effects of each strategy on the nitrite reductase activity of the heart. Mice subjected to voluntary wheel running (VE) for 4weeks displayed an 18% reduction in infarct size when compared to sedentary mice, whereas mice administered nitrite therapy (25mg/L in drinking water) showed a 53% decrease. However, the combination of VE and nitrite exhibited no further protection than VE alone. Although the VE and nitrite therapy mice showed similar nitrite levels in the heart, cardiac nitrite reductase activity was significantly reduced in the VE mice. Additionally, the cardiac protein expression of myoglobin, a known nitrite reductase, was also reduced after VE. Further studies revealed that cardiac NFAT activity was lower after VE due to a decrease in calcineurin activity and an increase in GSK3β activity. These data suggest that VE downregulates cardiac myoglobin levels by inhibiting calcineurin/NFAT signaling. Additionally, these results suggest that the modest infarct sparing effects of VE are the result of a decrease in the hearts ability to reduce nitrite to nitric oxide during MI/R.
Collapse
Affiliation(s)
- Chad K. Nicholson
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| | - Jonathan P. Lambert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David J. Lefer
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| | - John W. Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| |
Collapse
|
112
|
Modulating hemoglobin nitrite reductase activity through allostery: a mathematical model. Nitric Oxide 2013; 35:193-8. [PMID: 24177061 DOI: 10.1016/j.niox.2013.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022]
Abstract
The production of nitric oxide by hemoglobin (Hb) has been proposed to play a major role in the control of blood flow. Because of the allosteric nature of hemoglobin, the nitrite reductase activity is a complex function of oxygen partial pressure PO2. We have previous developed a model to obtain the micro rate constants for nitrite reduction by R state (kR) and T state (kT) hemoglobin in terms of the experimental maximal macro rate constant kNmax and the corresponding oxygen concentration PO2max. However, because of the intrinsic difficulty in obtaining accurate macro rate constant kN, from available experiments, we have developed an alternative method to determine the micro reaction rate constants (kR and kT) by fitting the simulated macro reaction rate curve (kN versus PO2) to the experimental data. We then use our model to analyze the effect of pH (Bohr Effect) and blood ageing on the nitrite reductase activity, showing that the fall of bisphosphoglycerate (BPG) during red cell storage leads to increase NO production. Our model can have useful predictive and explanatory power. For example, the previously described enhanced nitrite reductase activity of ovine fetal Hb, in comparison to the adult protein, may be understood in terms of a weaker interaction with BPG and an increase in the value of kT from 0.0087M(-1)s(-1) to 0.083M(-1)s(-1).
Collapse
|
113
|
Owusu BY, Stapley R, Honavar J, Patel RP. Effects of erythrocyte aging on nitric oxide and nitrite metabolism. Antioxid Redox Signal 2013; 19:1198-208. [PMID: 23311696 PMCID: PMC3785809 DOI: 10.1089/ars.2012.4884] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Recent studies have suggested that in addition to oxygen transport, red blood cells (RBC) are key regulators of vascular function by both inhibiting and promoting nitric oxide (NO)-mediated vasodilation. Most studies assume that RBC are homogenous, but, in fact, they comprise cells of differing morphology and biochemical composition which are dependent on their age, parameters that control NO reactions. We tested the hypothesis that distinct RBC populations will have differential effects on NO signaling. RESULTS Young and old RBC were separated by density gradient centrifugation. Consistent with previous reports, old RBC had decreased levels of surface N-acetyl neuraminic acid and increased oxygen binding affinities. Competition kinetic experiments showed that older RBCs scavenged NO∼2-fold faster compared with younger RBC, which translated to a more potent inhibition of both acetylcholine and NO-donor dependent vasodilation of isolated aortic rings. Moreover, nitrite oxidation kinetics was faster with older RBC compared with younger RBC; whereas no differences in nitrite-reduction kinetics were observed. This translated to increased inhibitory effect of older RBC to nitrite-dependent vasodilation under oxygenated and deoxygenated conditions. Finally, leukodepleted RBC storage also resulted in more dense RBC, which may contribute to the greater NO-inhibitory potential of stored RBC. INNOVATION These results suggest that a key element in vascular NO-homeostasis mechanisms is the distribution of RBC ages across the physiological spectrum (0-120 days) and suggest a novel mechanism for inhibited NO bioavailability in diseases which are characterized by a shift to an older RBC phenotype. CONCLUSION Older RBC inhibit NO bioavailability by increasing NO- and nitrite scavenging.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | | | | | | |
Collapse
|
114
|
Yao L, Heuser-Baker J, Herlea-Pana O, Iida R, Wang Q, Zou MH, Barlic-Dicen J. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering. Stem Cells 2013; 30:2720-31. [PMID: 23081735 DOI: 10.1002/stem.1256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/14/2012] [Indexed: 12/30/2022]
Abstract
The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice, normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein (GFP) under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP(+)) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP(+) EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis.
Collapse
Affiliation(s)
- Longbiao Yao
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Rong Z, Wilson MT, Cooper CE. A model for the nitric oxide producing nitrite reductase activity of hemoglobin as a function of oxygen saturation. Nitric Oxide 2013; 33:74-80. [DOI: 10.1016/j.niox.2013.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
|
116
|
Myoglobin's novel role in nitrite-induced hypoxic vasodilation. Trends Cardiovasc Med 2013; 24:69-74. [PMID: 23953980 DOI: 10.1016/j.tcm.2013.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/01/2023]
Abstract
Hypoxic vasodilation represents a key physiological response of the cardiovascular system to low tissue oxygen tension, adjusting local blood flow to meet the metabolic requirements in tissue. Vasodilation occurs by nitric oxide (NO) activation of the cyclic guanosine monophosphate (cGMP) signaling pathway in vascular smooth muscle cells. Under normoxia, NO is formed by the well-known endothelial NO synthase (eNOS) system while under hypoxia NO is generated from nitrite. We have unraveled the heme-protein myoglobin in vascular smooth muscle cells as a major source of NO generation by reduction of endogenous nitrite under hypoxia. This mediates hypoxic vasodilation under physiological conditions without direct involvement of eNOS and independently of effects on cardiac function.
Collapse
|
117
|
Zhao XJ, Wang L, Shiva S, Tejero J, Myerburg MM, Wang J, Frizzell S, Gladwin MT. Mechanisms for cellular NO oxidation and nitrite formation in lung epithelial cells. Free Radic Biol Med 2013; 61:428-37. [PMID: 23639566 PMCID: PMC3883890 DOI: 10.1016/j.freeradbiomed.2013.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/05/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Airway lining fluid contains relatively high concentrations of nitrite, and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 h under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low-oxygen conditions. The addition of oxyhemoglobin to the A549 cell medium decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and nitrate, suggesting an enzymatic activity is required. This NO oxidation activity was highest in membrane-bound proteins with molecular size <100kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation. We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into the medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via p-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell-membrane-associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells.
Collapse
Affiliation(s)
- Xue-Jun Zhao
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ling Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesus Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mike M Myerburg
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jun Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sam Frizzell
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
118
|
Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Long-Term Infusion of Sodium Nitrite in Humans. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e60. [PMID: 23903463 PMCID: PMC3731826 DOI: 10.1038/psp.2013.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/09/2013] [Indexed: 01/08/2023]
Abstract
A long-term sodium nitrite infusion is intended for the treatment of vascular disorders. Phase I data demonstrated a significant nonlinear dose-exposure-toxicity relationship within the therapeutic dosage range. This study aims to develop a quantitative systems pharmacology model characterizing nitric oxide (NO) metabolome and methemoglobin after sodium nitrite infusion. Nitrite, nitrate, and methemoglobin concentration–time profiles in plasma and RBC were used for model development. Following intravenous sodium nitrite administration, nitrite undergoes conversion in RBC and tissue. Nitrite sequestered by RBC interacts more extensively with deoxyhemoglobin, which contributes greatly to methemoglobin formation. Methemoglobin is formed less-than-proportionally at higher nitrite doses as characterized with facilitated methemoglobin removal. Nitrate-to-nitrite reduction occurs in tissue and via entero-salivary recirculation. The less-than-proportional increase in nitrite and nitrate exposure at higher nitrite doses is modeled with a dose-dependent increase in clearance. The model provides direct insight into NO metabolome disposition and is valuable for nitrite dosing selection in clinical trials.
Collapse
|
119
|
Ergenekon E, Bozkaya D, Goktas T, Erbas D, Yucel A, Turan O, Hirfanoglu I, Onal E, Turkyilmaz C, Koc E, Atalay Y. Are serum nitric oxide and vascular endothelial growth factor levels affected by packed red blood cell transfusions? Hematology 2013; 15:170-3. [DOI: 10.1179/102453309x12583347113456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Ebru Ergenekon
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| | - Davut Bozkaya
- Department of PediatricsGazi University Hospital, Ankara, Turkey
| | - Tayfun Goktas
- Department of PhysiologyFaculty of Medicine, Gazi University, Ankara, Turkey
| | - Deniz Erbas
- Department of PhysiologyFaculty of Medicine, Gazi University, Ankara, Turkey
| | - Aysegul Yucel
- Department of PhysiologyFaculty of Medicine, Gazi University, Ankara, Turkey; Department of Immunology, Gazi University Hospital, Ankara, Turkey
| | - Ozden Turan
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| | - Ibrahim Hirfanoglu
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| | - Esra Onal
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| | - Canan Turkyilmaz
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| | - Esin Koc
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| | - Yildiz Atalay
- Division of Newborn MedicineDepartment of Pediatrics, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
120
|
Abstract
Organic nitrates are traditionally felt to be a safe adjuvant in the chronic therapy of patients with coronary artery disease. Despite their long use, progress in the understanding of the pharmacology and mechanism of action of these drugs has been achieved only in the last two decades, with the identification of the role of oxidative stress in the pathophysiology of nitrate tolerance, with, the discovery of the ancillary effects of nitrates, and with the demonstration that nitrate therapy has important chronic side effects that might modify patients' prognosis. These advances are however mostly confined to the molecular level or to studies in healthy volunteers, and the true impact of organic nitrates on clinical outcome remains unknown. Complicating this issue, evidence supports the existence of important differences among the different drugs belonging to the group, and there are reasons to believe that the nitrates should not be treated as a homogeneous class. As well, the understanding of the effects of alternative nitric oxide (NO) donors is currently being developed, and future studies will need to test whether the properties of these new medications may compensate and prevent the abnormalities imposed by chronic nitrate therapy. Intermittent therapy with nitroglycerin and isosorbide mononitrate is now established in clinical practice, but they should neither be considered a definitive solution to the problem of nitrate tolerance. Both these strategies are not deprived of complications, and should currently be seen as a compromise rather than a way fully to exploit the benefits of NO donor therapy.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology and Angiology, University Medical Center Mainz, Mainz, Germany
| | | | | |
Collapse
|
121
|
Madigan M, Zuckerbraun B. Therapeutic Potential of the Nitrite-Generated NO Pathway in Vascular Dysfunction. Front Immunol 2013; 4:174. [PMID: 23847616 PMCID: PMC3698458 DOI: 10.3389/fimmu.2013.00174] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) generated through L-arginine metabolism by endothelial nitric oxide synthase (eNOS) is an important regulator of the vessel wall. Dysregulation of this system has been implicated in various pathological vascular conditions, including atherosclerosis, angiogenesis, arteriogenesis, neointimal hyperplasia, and pulmonary hypertension. The pathophysiology involves a decreased bioavailability of NO within the vessel wall by competitive utilization of L-arginine by arginase and “eNOS uncoupling.” Generation of NO through reduction of nitrate and nitrite represents an alternative pathway that may be utilized to increase the bioavailability of NO within the vessel wall. We review the therapeutic potential of the nitrate/nitrite/NO pathway in vascular dysfunction.
Collapse
|
122
|
Pereira C, Ferreira NR, Rocha BS, Barbosa RM, Laranjinha J. The redox interplay between nitrite and nitric oxide: From the gut to the brain. Redox Biol 2013; 1:276-84. [PMID: 24024161 PMCID: PMC3757698 DOI: 10.1016/j.redox.2013.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/09/2013] [Indexed: 02/09/2023] Open
Abstract
The reversible redox conversion of nitrite and nitric oxide ((•)NO) in a physiological setting is now widely accepted. Nitrite has long been identified as a stable intermediate of (•)NO oxidation but several lines of evidence support the reduction of nitrite to nitric oxide in vivo. In the gut, this notion implies that nitrate from dietary sources fuels the longstanding production of nitrite in the oral cavity followed by univalent reduction to (•)NO in the stomach. Once formed, (•)NO boosts a network of reactions, including the production of higher nitrogen oxides that may have a physiological impact via the post-translational modification of proteins and lipids. Dietary compounds, such as polyphenols, and different prandial states (secreting specific gastric mediators) modulate the outcome of these reactions. The gut has unusual characteristics that modulate nitrite and (•)NO redox interplay: (1) wide range of pH (neutral vs acidic) and oxygen tension (c.a. 70 Torr in the stomach and nearly anoxic in the colon), (2) variable lumen content and (3) highly developed enteric nervous system (sensitive to (•)NO and dietary compounds, such as glutamate). The redox interplay of nitrite and (•)NO might also participate in the regulation of brain homeostasis upon neuronal glutamatergic stimulation in a process facilitated by ascorbate and a localized and transient decrease of oxygen tension. In a way reminiscent of that occurring in the stomach, a nitrite/(•)NO/ascorbate redox interplay in the brain at glutamatergic synapses, contributing to local (•)NO increase, may impact on (•)NO-mediated process. We here discuss the implications of the redox conversion of nitrite to (•)NO in the gut, how nitrite-derived (•)NO may signal from the digestive to the central nervous system, influencing brain function, as well as a putative ascorbate-driven nitrite/NO pathway occurring in the brain.
Collapse
Affiliation(s)
- Cassilda Pereira
- Department of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
123
|
Timoshin AA, Lakomkin VL, Drobotova DY, Ruuge EK, Vanin AF. Transformations of dinitrosyl iron complexes in an isolated rat heart after introduction of this substance into perfusion medium. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
124
|
Dada J, Pinder AG, Lang D, James PE. Oxygen mediates vascular smooth muscle relaxation in hypoxia. PLoS One 2013; 8:e57162. [PMID: 23451175 PMCID: PMC3579807 DOI: 10.1371/journal.pone.0057162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
The activation of soluble guanylate cyclase (sGC) by nitric oxide (NO) and other ligands has been extensively investigated for many years. In the present study we considered the effect of molecular oxygen (O2) on sGC both as a direct ligand and its affect on other ligands by measuring cyclic guanosine monophosphate (cGMP) production, as an index of activity, as well as investigating smooth muscle relaxation under hypoxic conditions. Our isolated enzyme studies confirm the function of sGC is impaired under hypoxic conditions and produces cGMP in the presence of O2, importantly in the absence of NO. We also show that while O2 could partially affect the magnitude of sGC stimulation by NO when the latter was present in excess, activation by the NO independent, haem-dependent sGC stimulator 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1) was unaffected. Our in vitro investigation of smooth muscle relaxation confirmed that O2 alone in the form of a buffer bolus (equilibrated at 95% O2/5% CO2) had the ability to dilate vessels under hypoxic conditions and that this was dependent upon sGC and independent of eNOS. Our studies confirm that O2 can be a direct and important mediator of vasodilation through an increase in cGMP production. In the wider context, these observations are key to understanding the relative roles of O2 versus NO-induced sGC activation.
Collapse
Affiliation(s)
- Jessica Dada
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrew G. Pinder
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Derek Lang
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Philip E. James
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
125
|
Hare GMT, Tsui AKY, Crawford JH, Patel RP. Is methemoglobin an inert bystander, biomarker or a mediator of oxidative stress--The example of anemia? Redox Biol 2013; 1:65-9. [PMID: 24024138 PMCID: PMC3757671 DOI: 10.1016/j.redox.2012.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022] Open
Abstract
Acute anemia increases the risk for perioperative morbidity and mortality in critically ill patients who experience blood loss and fluid resuscitation (hemodilution). Animal models of acute anemia suggest that neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) is adaptive and protects against anemia-induced mortality. During acute anemia, we have observed a small but consistent increase in methemoglobin (MetHb) levels that is inversely proportional to the acute reduction in Hb observed during hemodilution in animals and humans. We hypothesize that this increase in MetHb may be a biomarker of anemia-induced tissue hypoxia. The increase in MetHb may occur by at least two mechanisms: (1) direct hemoglobin oxidation by increased nNOS-derived NO within the perivascular tissue and (2) by increased deoxyhemoglobin (DeoxyHb) nitrite reductase activity within the vascular compartment. Both mechanisms reflect a potential increase in NO signaling from the tissue and vascular compartments during anemia. These responses are thought to be adaptive; as deletion of nNOS results in increased mortality in a model of acute anemia. Finally, it is possible that prolonged activation of these mechanisms may lead to maladaptive changes in redox signaling. We hypothesize, increased MetHb in the vascular compartment during acute anemia may reflect activation of adaptive mechanisms which augment NO signaling. Understanding the link between anemia, MetHb and its treatments (transfusion of stored blood) may help us to develop novel treatment strategies to reduce the risk of anemia-induced morbidity and mortality.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, St. Michael's Hospital, University of Toronto, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 ; The Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
126
|
Metzger IF, Luizon MR, Lacchini R, Ishizawa MH, Tanus-Santos JE. Effects of endothelial nitric oxide synthase tagSNPs haplotypes on nitrite levels in black subjects. Nitric Oxide 2013; 28:33-8. [DOI: 10.1016/j.niox.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 11/16/2022]
|
127
|
Erythrocyte storage increases rates of NO and nitrite scavenging: implications for transfusion-related toxicity. Biochem J 2012; 446:499-508. [PMID: 22720637 DOI: 10.1042/bj20120675] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25 days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk.
Collapse
|
128
|
Deonikar P, Kavdia M. Contribution of membrane permeability and unstirred layer diffusion to nitric oxide-red blood cell interaction. J Theor Biol 2012; 317:321-30. [PMID: 23116664 DOI: 10.1016/j.jtbi.2012.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) consumption by red blood cell (RBC) hemoglobin (Hb) in vasculature is critical in regulating the vascular tone. The paradox of NO production at endothelium in close proximity of an effective NO scavenger Hb in RBCs is mitigated by lower NO consumption by RBCs compared to that of free Hb due to transport resistances including membrane resistance, extra- and intra-cellular resistances for NO biotransport to the RBC. Relative contribution of each transport resistance on NO-RBC interactions is still not clear. We developed a mathematical model of NO transport to a single RBC to quantify the contributions from individual transport barriers by analyzing the effect of RBC membrane permeability (P(m)), hematocrit (Hct) and NO-Hb reaction rate constants on NO-RBC interactions. Our results indicated that intracellular diffusion of NO was not a rate limiting step for NO-RBC interactions. The extracellular diffusion contributed 70-90% of total transport resistance for P(m)>1 cm s(-1) whereas membrane resistance accounts for 50-75% of total transport resistance for P(m)<0.1 cm s(-1). We propose a narrow P(m) range of 0.21-0.44 cm s(-1) for 10-45% Hct, respectively, below which membrane resistance is more significant and above which extracellular diffusion is a dominating transport resistance for NO-RBC interactions.
Collapse
Affiliation(s)
- Prabhakar Deonikar
- Department of Biomedical Engineering, Wayne State University, Detroit, 5050 Anthony Wayne Dr., #2152 Engineering, MI 48202, USA.
| | | |
Collapse
|
129
|
Gödecke A, Schrader J, Reinartz M. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology. Proteomics Clin Appl 2012; 2:811-22. [PMID: 21136881 DOI: 10.1002/prca.200780079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
130
|
Salhany JM. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study. Blood Cells Mol Dis 2012; 50:8-19. [PMID: 22981699 DOI: 10.1016/j.bcmd.2012.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/12/2012] [Accepted: 08/14/2012] [Indexed: 01/10/2023]
Abstract
Generation of unbound nitric oxide (NO) via the oxidative denitrosylation (ODN) mechanism is proposed to involve the simultaneous reaction of nitrite with oxy and deoxy hemoglobin (Hb(O2) (k1) and Hb (k13)) to yield respectively, *NO2 and Hb(+2)(NO). These two reaction pathways are coupled when *NO2 reacts with Hb(+2)(NO) to yield Hb(+3)(NO) (k22), a species that releases NO rapidly. Here, I have constructed an experimentally based molecular model of the ODN mechanism (k1-k31), focusing on the high nitrite reductase activity of R-state hemoglobin. This model was used to test the hypothesis that human fetal hemoglobin (HbF) can generate unbound NO faster and to a greater extent than HbA, consequent to a 25-fold larger value of k1, which was determined in an earlier study. The results show that despite the use of identical values for k22, there was a 44-fold larger apparent rate of reaction of *NO2 with HbF(NO) compared to HbA(NO), for reactions simulated at 410 μM nitrite and 100 μM hemoglobin (heme basis), 50% oxygen saturation at pH 7.4 and 37°C. This faster reaction was associated with the generation of about 11 μM peak unbound NO. In contrast, HbA failed to generate unbound NO rapidly under the same conditions. However, raising the concentration of nitrite into the millimolar range did generate unbound NO in the HbA simulation, in agreement with the experimental literature, and that result was associated with acceleration in the rate of reaction of NO2 with HbA(NO). Unbound NO could be generated at 410 μM nitrite in the HbA simulation by lowering the pH. This too was associated with an acceleration in the rate of reaction of NO2 with HbA(NO). Furthermore, generation of unbound NO could be assigned to the pH-dependent increase in k1, independent of the associated increase in k(13). Finally, selective exchange of the HbA value of k1 for the HbF value, keeping all other constants and conditions unchanged, generated kinetic patterns for the various species of the "k1-modified" HbA simulation, which were virtually indistinguishable from those seen in the HbF simulation. Taken together, these findings show that rapid and extensive generation of unbound NO within the ODN mechanism is controlled by the value of k1. The faster and more extensive generation of unbound NO by HbF at micromolar nitrite concentration suggests a possible second function for HbF in sickle cell disease, namely enhanced vasodilation. The failure of 410 μM nitrite to generate unbound NO in the HbA simulation at pH 7.4, contrasts with evidence in the literature showing that exposure of intact red cells to 100 to 200 μM nitrite in PBS, promoted NO release into the gas phase. I point out that this difference in outcome may be due to the higher activity of HbA when bound to the cytoplasmic domain of the red cell membrane anion transport protein SLC4A1 (band 3) and to the demonstrated capacity of band 3 to transport nitrite.
Collapse
Affiliation(s)
- James M Salhany
- Department of Internal Medicine, University of Nebraska Medical Center, 984510 Nebraska Medical Center, Omaha, NE 68198-4510, USA.
| |
Collapse
|
131
|
Masschelein E, Van Thienen R, Wang X, Van Schepdael A, Thomis M, Hespel P. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J Appl Physiol (1985) 2012; 113:736-45. [DOI: 10.1152/japplphysiol.01253.2011] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise tolerance is impaired in hypoxia, and it has recently been shown that dietary nitrate supplementation can reduce the oxygen (O2) cost of muscle contractions. Therefore, we investigated the effect of dietary nitrate supplementation on arterial, muscle, and cerebral oxygenation status, symptoms of acute mountain sickness (AMS), and exercise tolerance at simulated 5,000 m altitude. Fifteen young, healthy volunteers participated in three experimental sessions according to a crossover study design. From 6 days prior to each session, subjects received either beetroot (BR) juice delivering 0.07 mmol nitrate/kg body wt/day or a control drink (CON). One session was in normoxia with CON (NORCON); the two other sessions were in hypoxia (11% O2), with either CON (HYPCON) or BR (HYPBR). Subjects first cycled for 20 min at 45% of peak O2 consumption (VO2peak; EX45%) and thereafter, performed a maximal incremental exercise test (EXmax). Whole-body VO2, arterial O2 saturation (%SpO2) via pulsoximetry, and tissue oxygenation index of both muscle (TOIM) and cerebral (TOIC) tissue by near-infrared spectroscopy were measured. Hypoxia per se substantially reduced VO2peak, %SpO2, TOIM, and TOIC (NORCON vs. HYPCON, P < 0.05). Compared with HYPCON, VO2 at rest and during EX45% was lower in HYPBR ( P < 0.05), whereas %SpO2 was higher ( P < 0.05). TOIM was ∼4-5% higher in HYPBR than in HYPCON both at rest and during EX45% and EXmax ( P < 0.05). TOIC as well as the incidence of AMS symptoms were similar between HYPCON and HYPBR at any time. Hypoxia reduced time to exhaustion in EXmax by 36% ( P < 0.05), but this ergolytic effect was partly negated by BR (+5%, P < 0.05). Short-term dietary nitrate supplementation improves arterial and muscle oxygenation status but not cerebral oxygenation status during exercise in severe hypoxia. This is associated with improved exercise tolerance against the background of a similar incidence of AMS.
Collapse
Affiliation(s)
- Evi Masschelein
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, KU Leuven, Leuven, Belgium; and
| | - Ruud Van Thienen
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, KU Leuven, Leuven, Belgium; and
| | - Xu Wang
- Laboratory for Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Laboratory for Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Martine Thomis
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, KU Leuven, Leuven, Belgium; and
| | - Peter Hespel
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, KU Leuven, Leuven, Belgium; and
| |
Collapse
|
132
|
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 17:684-716. [PMID: 22304560 DOI: 10.1089/ars.2011.4196] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis.
Collapse
Affiliation(s)
- Nicoletta Castiglione
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
133
|
Owusu BY, Stapley R, Patel RP. Nitric oxide formation versus scavenging: the red blood cell balancing act. J Physiol 2012; 590:4993-5000. [PMID: 22687616 DOI: 10.1113/jphysiol.2012.234906] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a key modulator of vascular homeostasis controlling critical functions related to blood flow, respiration, cell death and proliferation, and protecting the vasculature from pro-inflammatory and coagulative stresses. Inhibition of NO formation, and/or diversion of NO away from its physiological signalling targets lead to dysregulated NO bioavailability, a hallmark of numerous vascular and pulmonary diseases. Current concepts suggest that the balance between NO formation and NO scavenging is critical in disease development, with the corollary being that redressing the balance offers a target for therapeutic intervention. Evidence presented over the last two decades has seen red blood cells (RBCs) and haemoglobin specifically emerge as prominent effectors in this paradigm. In this symposium review article, we discuss recent insights into the mechanisms by which RBCs may modulate the balance between NO-formation and inhibition. We discuss how these mechanisms may become dysfunctional to cause disease, highlight key questions that remain, and discuss the potential impact of these insights on therapeutic opportunities.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street South, BMRII 532, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
134
|
Moon-Massat P, Scultetus A, Arnaud F, Brown A, Haque A, Saha B, Kim B, Sagini E, McGwin G, Auker C, McCarron R, Freilich D. The effect HBOC-201 and sodium nitrite resuscitation after uncontrolled haemorrhagic shock in swine. Injury 2012; 43:638-47. [PMID: 21094491 DOI: 10.1016/j.injury.2010.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND Development of Haemoglobin-based oxygen carriers (HBOCs) as blood substitutes has reached an impasse due to clinically adverse outcomes attributed to vasoconstriction secondary to nitric oxide (NO) scavenging. Studies suggest haemoglobin exhibits nitrite reductase activity that generates NO and N(2)O(3); harnessing this property may offset NO scavenging. Therefore, the effects of concomitantly infusing sodium nitrite (NaNO(2)) with HBOC-201 were investigated. METHODS Swine underwent uncontrolled liver haemorrhage before receiving up to three 10min 10ml/kg infusions of HBOC-201 (HBOC) with or without concurrent NaNO(2) (5.4μmol/kg [LD NaNO(2)] or 10.8μmol/kg [HD NaNO(2)]) or 6% Hetastarch (HEX) with or without HD NaNO(2) during "prehospital" resuscitation (15, 30 and 45min after injury). Definitive surgical care occurred at 75min; anaesthetic recovery at 120min. Animals were euthanised at 72h. RESULTS NaNO(2) temporarily reduced systemic and pulmonary blood pressure increases from HBOC in a dose-dependent fashion. There was no significant effect between groups in indices of tissue oxygenation or survival. Adverse clinical signs requiring humane euthanasia occurred with highest frequency after HBOC+HD NaNO(2) (3 of 4 pigs) and HBOC+LD NaNO(2) (2 of 4 pigs). Gross evidence of pulmonary congestion was observed in 5 of 8 swine receiving a HBOC and NaNO(2) combination compared to 1 of 16 swine receiving HBOC alone, HEX alone, or HEX+NaNO(2). Gross lesions correlated with histological evidence of pulmonary oedema and congestion, and in 2 of 4 HBOC+HD NaNO(2) pigs, pulmonary fibrin thrombi also were found. No other pig had similar evidence of thrombi. Asymmetric pre-resuscitation cardiac index was a potential confounder. CONCLUSIONS A significant interaction between NaNO(2) and HBOC-201 ameliorated HBOC-201 vasoconstrictive effects, consistent with HBOC possessing a nitrite reductase activity that generates vasodilator NO equivalents. Results were relatively equivalent in survival and markers of tissue oxygenation. The highest dose of NaNO(2) was the most effective in reducing HBOC-associated pulmonary and systemic vasoactivity but also with the highest incidence of adverse events. In this model, the transient nature of NaNO(2) in off-setting HBOC-201 vasoconstriction makes it less clinically promising than anticipated and the combination of NaNO(2) and HBOC appear to increase the risk of pulmonary complications in a dose-dependent fashion independently of haemodilutional effects on haemostatic components.
Collapse
Affiliation(s)
- Paula Moon-Massat
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, MD 20910-7500, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Kelpke SS, Chen B, Bradley KM, Teng X, Chumley P, Brandon A, Yancey B, Moore B, Head H, Viera L, Thompson JA, Crossman DK, Bray MS, Eckhoff DE, Agarwal A, Patel RP. Sodium nitrite protects against kidney injury induced by brain death and improves post-transplant function. Kidney Int 2012; 82:304-13. [PMID: 22534964 PMCID: PMC3412933 DOI: 10.1038/ki.2012.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Renal injury induced by brain death is characterized by ischemia and inflammation and limiting it is a therapeutic goal that could improve outcomes in kidney transplantation. Brain death resulted in decreased circulating nitrite levels and increased infiltrating inflammatory cell infiltration into the kidney. Since nitrite stimulates nitric oxide signaling in ischemic tissues, we tested whether nitrite therapy was beneficial in a rat model of brain death followed by kidney transplantation. Nitrite, administered over 2 hours of brain death, blunted the increased inflammation without affecting brain death-induced alterations in hemodynamics. Kidneys were transplanted after 2 hours of brain death and renal function followed over 7 days. Allografts collected from nitrite-treated brain dead rats showed significant improvement in function over the first 2 to 4 days post transplantation compared to untreated brain dead animals. Gene microarray analysis after 2 hours of brain death without or with nitrite therapy showed the latter significantly altered the expression of about 400 genes. Ingenuity Pathway analysis indicated multiple signaling pathways were affected by nitrite, including those related to hypoxia, transcription and genes related to humoral immune responses. Thus, nitrite-therapy attenuates brain death-induced renal injury by regulating responses to ischemia and inflammation, ultimately leading to better post-transplant kidney function.
Collapse
Affiliation(s)
- Stacey S Kelpke
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 2012; 26:274-84. [PMID: 22484629 DOI: 10.1016/j.niox.2012.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 02/11/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Doxorubicin (DOX) is one of the most powerful and widely prescribed chemotherapeutic agents to treat divergent human cancers. However, the clinical use of DOX is restricted due to its severe cardiotoxic side-effects. There has been ongoing search for cardioprotectants against DOX toxicity. Inorganic nitrate has emerged as a bioactive compound that can be reduced into nitrite and nitric oxide in vivo and in turn plays a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. In this review, we describe a novel concept of using dietary supplementation of inorganic nitrate to reduce DOX-induced cardiac cellular damage and dysfunction, based on our recent promising studies in a mouse model of DOX cardiotoxicity. Our data show that chronic oral ingestion of sodium nitrate, at a dose equivalent to ~400% of the Acceptable Daily Intake of the World Health Organization, alleviated DOX-induced left ventricular dysfunction and mitochondrial respiratory chain damage. Such cardioprotective effects were associated with reduction of cardiomyocyte necrosis/apoptosis, tissue lipid peroxidation, and mitochondrial H(2)O(2) generation following DOX treatment. Furthermore, proteomic studies revealed enhanced cardiac expression of mitochondrial antioxidant enzyme - peroxiredoxin 5 in the nitrate-treated animals. These studies suggest that inorganic nitrate could be an inexpensive therapeutic agent for long-term oral administration in preventing DOX-induced cardiac toxicity and myopathy during the prolonged pathological process. Future clinical trials in the cancer patients undergoing DOX chemotherapy are warranted to translate these experimental findings into an effective new therapy in preventing the DOX-induced cardiomyopathy.
Collapse
|
137
|
Hare GMT, Mu A, Romaschin A, Tsui AKY, Shehata N, Beattie WS, Mazer CD. Plasma methemoglobin as a potential biomarker of anemic stress in humans. Can J Anaesth 2012; 59:348-56. [DOI: 10.1007/s12630-011-9663-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 12/21/2011] [Indexed: 11/30/2022] Open
|
138
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
139
|
Lui FE, Yu B, Baron DM, Lei C, Zapol WM, Kluger R. Hemodynamic responses to a hemoglobin bis-tetramer and its polyethylene glycol conjugate. Transfusion 2011; 52:974-82. [DOI: 10.1111/j.1537-2995.2011.03421.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
140
|
Metzger IF, Sandrim VC, Tanus-Santos JE. Endogenous nitric oxide formation correlates negatively with circulating matrix metalloproteinase (MMP)-2 and MMP-9 levels in black subjects. Mol Cell Biochem 2011; 360:393-9. [PMID: 21956669 DOI: 10.1007/s11010-011-1079-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
Deficient formation of endogenous nitric oxide (NO) contributes to cardiovascular diseases, and this may be associated with increased circulating levels of matrix metalloproteinase-9 (MMP-9), as previously shown in white subjects. Because interethnic differences exist with respect to risk factors, prevalence, and severity of cardiovascular diseases, we designed this study to examine whether the circulating levels of nitrites (a marker of endogenous NO formation) are associated with the plasma levels of MMP-9 and MMP-2 in healthy black subjects. We studied 198 healthy subjects self-reported as blacks not taking any medications. Venous blood samples were collected and plasma and whole blood nitrite levels were measured using an ozone-based chemiluminescence assay. Plasma MMP-2 and MMP-9 levels were determined by gelatin zymography. We found a positive correlation between plasma MMP-9 and MMP-2 levels (P < 0.0001, rs = 0.556). Interestingly, we found a negative relationship between the plasma MMP-9 levels and the plasma or whole blood nitrites levels (P = 0.04, rs = -0.149; and P < 0.0001, rs = -0.349, respectively). In parallel, we found similar negative relationships between plasma MMP-2 levels and plasma or whole blood nitrites levels (P = 0.02, rs = -0.172; and P < 0.0001, rs = -0.454, respectively). This is the first study to show that endogenous nitric oxide formation correlates negatively with the circulating levels of both MMP-2 and MMP-9 in black subjects. Our findings suggest a mechanistic link between deficient NO formation and increased MMPs levels, which may promote cardiovascular diseases.
Collapse
Affiliation(s)
- Ingrid F Metzger
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Ribeirao Preto, Brazil
| | | | | |
Collapse
|
141
|
Griffin K, Polichnowski A, Licea-Vargas H, Picken M, Long J, Williamson G, Bidani A. Large BP-dependent and -independent differences in susceptibility to nephropathy after nitric oxide inhibition in Sprague-Dawley rats from two major suppliers. Am J Physiol Renal Physiol 2011; 302:F173-82. [PMID: 21937607 DOI: 10.1152/ajprenal.00070.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The N(ω)-nitro-l-arginine methyl ester (l-NAME) model is widely employed to investigate the role of nitric oxide (NO) in renal injury. The present studies show that Sprague-Dawley rats from Harlan (H) and Charles River (CR) exhibit strikingly large differences in susceptibility to l-NAME nephropathy. After 4 wk of l-NAME (∼50 mg·kg(-1)·day(-1) in drinking water), H rats (n = 13) exhibited the expected hypertension [average radiotelemetric systolic blood pressure (BP), 180 ± 3 mmHg], proteinuria (136 ± 17 mg/24 h), and glomerular injury (GI) (12 ± 2%). By contrast, CR rats developed less hypertension (142 ± 4), but surprisingly no proteinuria or GI, indicating a lack of glomerular hypertension. Additional studies showed that conscious H, but not CR, rats exhibit dose-dependent renal vasoconstriction after l-NAME. To further investigate these susceptibility differences, l-NAME was given 2 wk after 3/4 normotensive nephrectomy (NX) and comparably impaired renal autoregulation in CR-NX and H-NX rats. CR-NX rats, nevertheless, still failed to develop proteinuria and GI despite moderate hypertension (144 ± 2 mmHg, n = 29). By contrast, despite an 80-90% l-NAME dose reduction and lesser BP increases (169 ± 4 mmHg), H-NX rats (n = 20) developed greater GI (26 ± 3%) compared with intact H rats. Linear regression analysis showed significant (P < 0.01) differences in the slope of the relationship between BP and GI between H-NX (slope 0.56 ± 0.14; r = 0.69; P < 0.008) and CR-NX (slope 0.09 ± 0.06; r = 0.29; P = 0.12) rats. These data indicate that blunted BP responses to l-NAME in the CR rats are associated with BP-independent resistance to nephropathy, possibly mediated by a resistance to the renal (efferent arteriolar) vasoconstrictive effects of NO inhibition.
Collapse
Affiliation(s)
- Karen Griffin
- Department of Medicine, Loyola Univ. Chicago, 2160 S. First Ave., Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
142
|
Pereira A, Paulo M, Araújo A, Rodrigues G, Bendhack L. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds. Braz J Med Biol Res 2011; 44:947-57. [DOI: 10.1590/s0100-879x2011007500084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/01/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - M. Paulo
- Universidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
143
|
Salgado MT, Ramasamy S, Tsuneshige A, Manoharan PT, Rifkind JM. A new paramagnetic intermediate formed during the reaction of nitrite with deoxyhemoglobin. J Am Chem Soc 2011; 133:13010-22. [PMID: 21755997 PMCID: PMC3166623 DOI: 10.1021/ja1115088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reduction of nitrite by deoxygenated hemoglobin chains has been implicated in red cell-induced vasodilation, although the mechanism for this process has not been established. We have previously demonstrated that the reaction of nitrite with deoxyhemoglobin produces a hybrid intermediate with properties of Hb(II)NO(+) and Hb(III)NO that builds up during the reaction retaining potential NO bioactivity. To explain the unexpected stability of this intermediate, which prevents NO release from the Hb(III)NO component, we had implicated the transfer of an electron from the β-93 thiol to NO(+) producing ·SHb(II)NO. To determine if this species is formed and to characterize its properties, we have investigated the electron paramagnetic resonance (EPR) changes taking place during the nitrite reaction. The EPR effects of blocking the thiol group with N-ethyl-maleimide and using carboxypeptidase-A to stabilize the R-quaternary conformation have demonstrated that ·SHb(II)NO is formed and that it has the EPR spectrum expected for NO bound to the heme in the β-chain plus that of a thiyl radical. This new NO-related paramagnetic species is in equilibrium with the hybrid intermediate "Hb(II)NO(+) ↔ Hb(III)NO", thereby further inhibiting the release of NO from Hb(III)NO. The formation of an NO-related paramagnetic species other than the tightly bound NO in Hb(II)NO was also confirmed by a decrease in the EPR signal by -20 °C incubation, which shifts the equilibrium back to the "Hb(II)NO(+) ↔ Hb(III)NO" intermediate. This previously unrecognized NO hemoglobin species explains the stability of the intermediates and the buildup of a pool of potentially bioactive NO during nitrite reduction. It also provides a pathway for the formation of β-93 cysteine S-nitrosylated hemoglobin [SNOHb:S-nitrosohemoglobin], which has been shown to induce vasodilation, by a rapid radical-radical reaction of any free NO with the thiyl radical of this new paramagnetic intermediate.
Collapse
Affiliation(s)
- Maria T. Salgado
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| | - Somasundaram Ramasamy
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| | - Antonio Tsuneshige
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
| | | | - Joseph M. Rifkind
- Molecular Dynamics Section, National Institute on Aging, NIH, Baltimore, MD 21224 USA
| |
Collapse
|
144
|
Vitturi DA, Patel RP. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic Biol Med 2011; 51:805-12. [PMID: 21683783 PMCID: PMC3148353 DOI: 10.1016/j.freeradbiomed.2011.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 12/20/2022]
Abstract
Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO signaling, especially during hypoxia. This concept has been discussed in the context of nitrite serving a role as an endogenous modulator of NO homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replenish NO signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology, and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology.
Collapse
Affiliation(s)
- Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
145
|
Zhu SG, Kukreja RC, Das A, Chen Q, Lesnefsky EJ, Xi L. Dietary nitrate supplementation protects against Doxorubicin-induced cardiomyopathy by improving mitochondrial function. J Am Coll Cardiol 2011; 57:2181-9. [PMID: 21596234 DOI: 10.1016/j.jacc.2011.01.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to test the hypothesis that long-term dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving ventricular function and reducing mitochondrial respiratory chain damage. BACKGROUND Doxorubicin is a powerful anthracycline antibiotic used to treat divergent human neoplasms. Its clinical use is limited because of severe cardiotoxic side effects. Dietary nitrate and nitrite are essential nutrients for maintenance of steady-state tissue levels of nitric oxide and may play a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. Dietary nitrate and nitrite supplementation alleviates myocardial injury caused by ischemia-reperfusion and cardiac arrest-resuscitation. METHODS Adult male CF-1 mice were given a single dose of doxorubicin (15 mg/kg intraperitoneally), and left ventricular contractile function was assessed 5 days later using both echocardiography and pressure-volume Millar catheterization. A nitrate supplementation regimen (1 g/l sodium nitrate in drinking water) was started 7 days before doxorubicin injection and continued thereafter. Cardiomyocyte necrosis and apoptosis, tissue lipid peroxidation, and plasma nitrate and nitrite levels were assessed. In addition, mitochondrial complex I activity, oxidative phosphorylation capacity, and hydrogen peroxide generation were determined in parallel experiments. RESULTS Doxorubicin caused impairment of ventricular contractility and cell death, which were significantly reduced by nitrate supplementation (p < 0.05). These cardioprotective effects were associated with a significant decrease in tissue lipid peroxidation. Nitrate supplementation significantly preserved mitochondrial complex I activity and oxidative phosphorylation and attenuated hydrogen peroxide generation after doxorubicin treatment. CONCLUSIONS Long-term oral intake of inorganic nitrate attenuates doxorubicin-induced ventricular dysfunction, cell death, oxidative stress, and mitochondrial respiratory chain damage. Nitrate could be a promising therapeutic agent against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shu-Guang Zhu
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia 23298-0204, USA
| | | | | | | | | | | |
Collapse
|
146
|
Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 2011; 51:576-93. [PMID: 21619929 PMCID: PMC4414241 DOI: 10.1016/j.freeradbiomed.2011.04.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one-electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability, which is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO-based therapeutic agent through the unique action of sodium nitrite as an NO prodrug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities for nitrite-based therapies.
Collapse
Affiliation(s)
- Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
147
|
Thorn CE, Kyte H, Slaff DW, Shore AC. An association between vasomotion and oxygen extraction. Am J Physiol Heart Circ Physiol 2011; 301:H442-9. [PMID: 21602466 PMCID: PMC3154677 DOI: 10.1152/ajpheart.01316.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 05/12/2011] [Indexed: 02/08/2023]
Abstract
Vasomotion is defined as a spontaneous local oscillation in vascular tone whose function is unclear but may have a beneficial effect on tissue oxygenation. Optical reflectance spectroscopy and laser Doppler fluximetry provide unique insights into the possible mechanisms of vasomotion in the cutaneous microcirculation through the simultaneous measurement of changes in concentration of oxyhemoglobin ([HbO(2)]), deoxyhemoglobin ([Hb]), and mean blood saturation (S(mb)O(2)) along with blood volume and flux. The effect of vasomotion at frequencies <0.02 Hz attributed to endothelial activity was studied in the dorsal forearm skin of 24 healthy males. Fourier analysis identified periodic fluctuations in S(mb)O(2) in 19 out of 24 subjects, predominantly where skin temperatures were >29.3°C (X(2) = 6.19, P < 0.02). A consistent minimum threshold in S(mb)O(2) (mean: 39.4%, range: 24.0-50.6%) was seen to precede a sudden transient surge in flux, inducing a fast rise in S(mb)O(2). The integral increase in flux correlated with the integral increase in [HbO(2)] (Pearson's correlation r(2) = 0.50, P < 0.001) and with little change in blood volume suggests vasodilation upstream, responding to a low S(mb)O(2) downstream. This transient surge in flux was followed by a sustained period where blood volume and flux remained relatively constant and a steady decrease in [HbO(2)] and equal and opposite increase in [Hb] was considered to provide a measure of oxygen extraction. A measure of this oxygen extraction has been approximated by the mean half-life of the decay in S(mb)O(2) during this period. A comparison of the mean half-life in the 8 normal subjects [body mass index (BMI) <26.0 kg/m(2)] of 12.2 s and the 11 obese subjects (BMI >29.5 kg/m(2)) of 18.8 s was statistically significant (Mann Whitney, P < 0.004). The S(mb)O(2) fluctuated spontaneously in this saw tooth manner by an average of 9.0% (range 4.0-16.2%) from mean S(mb)O(2) values ranging from 30 to 52%. These observations support the hypothesis that red blood cells may act as sensors of local tissue hypoxia, through the oxygenation status of the hemoglobin, and initiate improved local perfusion to the tissue through hypoxic vasodilation.
Collapse
Affiliation(s)
- Clare E Thorn
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, National Institute for Health Research Peninsula Clinical Research Facility, Exeter, United Kingdom.
| | | | | | | |
Collapse
|
148
|
Weinberg JA, Barnum SR, Patel RP. Red blood cell age and potentiation of transfusion-related pathology in trauma patients. Transfusion 2011; 51:867-73. [PMID: 21496048 DOI: 10.1111/j.1537-2995.2011.03098.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The specific negative clinical manifestations associated with the transfusion of stored red blood cells (RBCs) and the corresponding mechanisms responsible for such phenomena remain poorly defined. Our recent studies document that leukoreduced older RBC units potentiate transfusion-related toxicity in trauma patients. It is our hypothesis that the transfusion of relatively older blood impedes microvascular perfusion. The central mechanisms proposed to mediate this microcirculatory alteration include: 1) the loss of RBC-dependent control of nitric oxide-mediated homeostasis concerning vasodilation and 2) immune cell and complement activation. In this review, we outline the background for our hypothesis and detail our current investigations toward the understanding of this pathophysiology.
Collapse
Affiliation(s)
- Jordan A Weinberg
- Department of Surgery, University of Tennessee Health Science Center, 910 Madison Avenue, #224, Memphis, TN 38103, USA.
| | | | | |
Collapse
|
149
|
Choe CU, Lewerenz J, Gerloff C, Magnus T, Donzelli S. Nitroxyl in the central nervous system. Antioxid Redox Signal 2011; 14:1699-711. [PMID: 21235347 DOI: 10.1089/ars.2010.3852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nitroxyl (HNO) is the one-electron-reduced and protonated congener of nitric oxide (NO). Compared to NO, it is far more reactive with thiol groups either in proteins or in small antioxidant molecules either converting those into sulfinamides or inducing disulfide bond formation. HNO might mediate cytoprotective changes of protein function through thiol modifications. However, HNO is a strong oxidant that in vitro reacts with glutathione to form glutathione disulfide and glutathione sulfinamide. The resulting oxidative stress might aggravate tissue damage in inflammatory diseases. In this review, we will summarize the current knowledge of how exogenous HNO affects the central nervous system, especially nerve cells and glia in health and disease. Unlike most other organs, the brain is separated from the circulation by the blood-brain barrier, which limits access of many pharmacological compounds. Given that, we will review what is known about the ability of currently used HNO donors to cross the blood-brain barrier. Moreover, considering that the physiology and composition of the brain has unique properties, for example, expression of brain-specific enzymes like neuronal NO synthase, its high iron content, and increased energy metabolism, we will discuss possible sources of endogenous HNO in the brain.
Collapse
Affiliation(s)
- Chi-Un Choe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Germany
| | | | | | | | | |
Collapse
|
150
|
Alef MJ, Vallabhaneni R, Carchman E, Morris SM, Shiva S, Wang Y, Kelley EE, Tarpey MM, Gladwin MT, Tzeng E, Zuckerbraun BS. Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats. J Clin Invest 2011; 121:1646-56. [PMID: 21436585 DOI: 10.1172/jci44079] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 01/26/2011] [Indexed: 12/30/2022] Open
Abstract
Vascular disease, a significant cause of morbidity and mortality in the developed world, results from vascular injury. Following vascular injury, damaged or dysfunctional endothelial cells and activated SMCs engage in vasoproliferative remodeling and the formation of flow-limiting intimal hyperplasia (IH). We hypothesized that vascular injury results in decreased bioavailability of NO secondary to dysregulated arginine-dependent NO generation. Furthermore, we postulated that nitrite-dependent NO generation is augmented as an adaptive response to limit vascular injury/proliferation and can be harnessed for its protective effects. Here we report that sodium nitrite (intraperitoneal, inhaled, or oral) limited the development of IH in a rat model of vascular injury. Additionally, nitrite led to the generation of NO in vessels and SMCs, as well as limited SMC proliferation via p21Waf1/Cip1 signaling. These data demonstrate that IH is associated with increased arginase-1 levels, which leads to decreased NO production and bioavailability. Vascular injury also was associated with increased levels of xanthine oxidoreductase (XOR), a known nitrite reductase. Chronic inhibition of XOR and a diet deficient in nitrate/nitrite each exacerbated vascular injury. Moreover, established IH was reversed by dietary supplementation of nitrite. The vasoprotective effects of nitrite were counteracted by inhibition of XOR. These data illustrate the importance of nitrite-generated NO as an endogenous adaptive response and as a pathway that can be harnessed for therapeutic benefit.
Collapse
Affiliation(s)
- Matthew J Alef
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|