101
|
Nguyen L, Castro O, De Dios R, Sandoval J, McKenna S, Wright CJ. Sex-differences in LPS-induced neonatal lung injury. Sci Rep 2019; 9:8514. [PMID: 31186497 PMCID: PMC6560218 DOI: 10.1038/s41598-019-44955-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
Being of the male sex has been identified as a risk factor for multiple morbidities associated with preterm birth, including bronchopulmonary dysplasia (BPD). Exposure to inflammatory stress is a well-recognized risk factor for developing BPD. Whether there is a sex difference in pulmonary innate immune TLR4 signaling, lung injury and subsequent abnormal lung development is unknown. Neonatal (P0) male and female mice (ICR) were exposed to systemic LPS (5 mg/kg, IP) and innate immune signaling, and the transcriptional response were assessed (1 and 5 hours), along with lung development (P7). Male and female mice demonstrated a similar degree of impaired lung development with decreased radial alveolar counts, increased surface area, increased airspace area and increased mean linear intercept. We found no differences between male and female mice in the baseline pulmonary expression of key components of TLR4-NFκB signaling, or in the LPS-induced pulmonary expression of key mediators of neonatal lung injury. Finally, we found no difference in the kinetics of LPS-induced pulmonary NFκB activation between male and female mice. Together, these data support the conclusion that the innate immune response to early postnatal LPS exposure and resulting pulmonary sequelae is similar in male and female mice.
Collapse
Affiliation(s)
- Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Odalis Castro
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jeryl Sandoval
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
102
|
Will JP, Hirani D, Thielen F, Klein F, Vohlen C, Dinger K, Dötsch J, Alejandre Alcázar MA. Strain-dependent effects on lung structure, matrix remodeling, and Stat3/Smad2 signaling in C57BL/6N and C57BL/6J mice after neonatal hyperoxia. Am J Physiol Regul Integr Comp Physiol 2019; 317:R169-R181. [PMID: 31067073 DOI: 10.1152/ajpregu.00286.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, characterized by lung growth arrest and matrix remodeling. Various animal models provide mechanistic insights in the pathogenesis of BPD. Since there is increasing evidence that genetic susceptibility modifies the response to lung injury, we investigated strain-dependent effects in hyperoxia (HYX)-induced lung injury of newborn mice. To this end, we exposed newborn C57BL/6N and C57BL/6J mice to 85% O2 (HYX) or normoxia (NOX; 21% O2) for 28 days, followed by lung excision for histological and molecular measurements. BL/6J-NOX mice exhibited a lower body and lung weight than BL/6N-NOX mice; hyperoxia reduced body weight in both strains and increased lung weight only in BL/6J-HYX mice. Quantitative histomorphometric analyses revealed reduced alveolar formation in lungs of both strains after HYX, but the effect was greater in BL/6J-HYX mice than BL/6N-HYX mice. Septal thickness was lower in BL/6J-NOX mice than BL/6N-NOX mice but increased in both strains after HYX. Elastic fiber density was significantly greater in BL/6J-HYX mice than BL/6N-HYX mice. Lungs of BL/6J-HYX mice were protected from changes in gene expression of fibrillin-1, fibrillin-2, fibulin-4, fibulin-5, and surfactant proteins seen in BL/6N-HYX mice. Finally, Stat3 was activated by HYX in both strains; in contrast, activation of Smad2 was markedly greater in lungs of BL/6N mice than BL/6J mice after HYX. In summary, we demonstrate strain-dependent differences in lung structure and matrix, alveolar epithelial cell markers, and Smad2 (transforming growth factor β) signaling in neonatal HYX-induced lung injury. Strain-dependent effects and genetic susceptibility need be taken into consideration for reproducibility and reliability of results in animal models.
Collapse
Affiliation(s)
- Johannes P Will
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Dharmesh Hirani
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Thielen
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Fabian Klein
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Christina Vohlen
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Katharina Dinger
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Miguel A Alejandre Alcázar
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
103
|
Eldredge LC, Creasy RS, Tanaka S, Lai JF, Ziegler SF. Imbalance of Ly-6C hi and Ly-6C lo Monocytes/Macrophages Worsens Hyperoxia-Induced Lung Injury and Is Rescued by IFN-γ. THE JOURNAL OF IMMUNOLOGY 2019; 202:2772-2781. [PMID: 30944158 DOI: 10.4049/jimmunol.1801374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022]
Abstract
Inflammation in response to oxygen exposure is a major contributing factor in neonatal lung injury leading to bronchopulmonary dysplasia. Although increased levels of proinflammatory cytokines are seen in airway samples and blood from bronchopulmonary dysplasia patients, the innate immune responses in this common neonatal lung condition have not been well characterized. We previously reported that depletion of murine CD11b-expressing mononuclear phagocytes at birth led to severe acute hyperoxia-induced lung injury (HILI) and significant mortality. In this study, we further define the mononuclear phagocyte populations that are present in the neonatal lung and characterize their responses to hyperoxia exposure. We used myeloid depleter mice (CD11b-DTR and CCR2-DTR) to contrast the effects of depleting different monocyte/macrophage subpopulations on the innate immune response to hyperoxia. Using RNA sequencing and subsequent data analysis, we identified an IFN-γ-mediated role for interstitial monocytes/macrophages in acute HILI, in which decreased IFN-γ expression led to increased disease severity and increased Mmp9 mRNA expression. Importantly, intranasal administration of rIFN-γ largely rescued CD11b-DTR+ mice from severe HILI and decreased Mmp9 mRNA expression in Ly-6Clo and Ly-6Chi interstitial monocyte/macrophages. We conclude that the proinflammatory effects of hyperoxia exposure are, at least in part, because of the modulation of effectors downstream of IFN-γ by pulmonary monocytes/macrophages.
Collapse
Affiliation(s)
- Laurie C Eldredge
- Division of Pulmonology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98105.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA 98121; and.,Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Rane S Creasy
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Shigeru Tanaka
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Jen-Feng Lai
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| |
Collapse
|
104
|
Kindermann A, Baier J, Simm A, Haase R, Bartling B. Receptor for advanced glycation end-products modulates lung development and lung sensitivity to hyperoxic injury in newborn mice. Pflugers Arch 2019; 471:983-994. [PMID: 30879195 DOI: 10.1007/s00424-019-02267-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products is mainly expressed in type I alveolar epithelial cells but its importance in lung development and response to neonatal hyperoxia is unclear. Therefore, our study aimed at the analysis of young wildtype and RAGE knockout mice which grew up under normoxic or hyperoxic air conditions for the first 14 days followed by a longer period of normoxic conditions. Lung histology, expression of lung-specific proteins, and respiratory mechanics were analyzed when the mice reached an age of 2 or 4 months. These analyses indicated less but larger and thicker alveoli in RAGE knockout mice, reverse differences in the mRNA and protein amount of pro-surfactant proteins (pro-SP-B, pro-SP-C) and aquaporin-5, and differences in the amount of elastin and CREB, a pro-survival transcription factor, as well as higher lung compliance. Despite this potential disadvantages, RAGE knockout lungs showed less long-term damages mediated by neonatal hyperoxia. In detail, the hyperoxia-mediated reduction in alveoli, enlargement of airspaces, fragmentation of elastic fibers, and increased lung compliance combined with reduced peak airflows was less pronounced in RAGE knockout mice. In conclusion, RAGE supports the alveolarization but makes the lung more susceptible to hyperoxic injury shortly after birth. Blocking RAGE function could still be a helpful tool in reducing hyperoxia-mediated lung pathologies during alveolarization.
Collapse
Affiliation(s)
- Anke Kindermann
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Jan Baier
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Roland Haase
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
105
|
Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr Res 2019; 85:432-441. [PMID: 30464331 DOI: 10.1038/s41390-018-0228-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most prevalent chronic lung disease in infants and presents as a consequence of preterm birth. Due to the lack of effective preventive and treatment strategies, BPD currently represents a major therapeutic challenge that requires continued research efforts at the basic, translational, and clinical levels. However, not all very low birth weight premature babies develop BPD, which suggests that in addition to known gestational age and intrauterine and extrauterine risk factors, other unknown factors must be involved in this disease's development. One of the main goals in BPD research is the early prediction of very low birth weight infants who are at risk of developing BPD in order to initiate the adequate preventive strategies. Other benefits of determining the risk of BPD include providing prognostic information and stratifying infants for clinical trial enrollment. In this article, we describe new opportunities to address BPD's complex pathophysiology by identifying prognostic biomarkers and develop novel, complex in vitro human lung models in order to develop effective therapies. These therapies for protecting the immature lung from injury can be developed by taking advantage of recent scientific progress in -omics, 3D organoids, and regenerative medicine.
Collapse
|
106
|
Li H, Wang G, Lin S, Wang C, Zha J. Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice. Exp Ther Med 2019; 17:3101-3107. [PMID: 30936981 PMCID: PMC6434258 DOI: 10.3892/etm.2019.7315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
In bronchopulmonary dysplasia (BPD), decreased angiogenesis and alveolarization is associated with pulmonary cell death and inflammation. It is commonly observed in premature infants who required mechanical ventilation and oxygen therapy. Since enhanced interleukin-6 (IL-6) expression has been reported in infants with BPD, it was hypothesized that a decrease in IL-6 may enhance lung inflammation and decrease hyperoxia-induced neonatal lung injury in mice. In the current study, newborn wild-type (WT) and IL-6 null mice were treated with 85% O2 (hyperoxia) or 21% O2 (normoxia) for 96 h. Although the increased volume and decreased quantity of alveoli was triggered by hyperoxia in WT and IL-6 null mice, transcription and translation of proinflammatory cytokines (monocyte chemoattractant protein-1, IL-10, IL-12 and tumor necrosis factor-α) and pulmonary cell death (caspase stimulation and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining) were significantly enhanced in IL-6 null mice compared with WT mice. These results suggest that the crosstalk between inflammation and cell death may be involved in hyperoxia-induced lung injury in BPD. Future treatment approaches for bronchopulmonary dysplasia should be based on the suppression of cytokine expression.
Collapse
Affiliation(s)
- Hengtao Li
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Genzai Wang
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Shuzhu Lin
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Chunyan Wang
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Jianzhong Zha
- Department of Pediatrics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
107
|
Leary S, Das P, Ponnalagu D, Singh H, Bhandari V. Genetic Strain and Sex Differences in a Hyperoxia-Induced Mouse Model of Varying Severity of Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:999-1014. [PMID: 30794808 DOI: 10.1016/j.ajpath.2019.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease prevalent in preterm babies with a need for supplemental oxygen, resulting in impaired lung development and dysregulated vascularization. Epidemiologic studies have shown that males are more prone to BPD and have a delayed recovery compared with females, for reasons unknown. Herein, we tried to recapitulate mild, moderate, and severe BPD, using two different strains of mice, in males and females: CD1 (outbred) and C57BL/6 (inbred). Aside from higher body weight in the CD1 strain, there were no other gross morphologic differences with respect to alveolar development between the two strains. With respect to lung morphology after oxygen exposure, females had less injury with better preservation of alveolar chord length and decreased alveolar protein leak and inflammatory cells in the bronchoalveolar lavage fluid. In addition, housekeeping genes, which are routinely used as loading controls, were expressed differently in males and females. In the BPD mouse model, gonadotropin-releasing hormone was increased in females compared with males. Specific miRNAs (miR-146 and miR-34a) were expressed differently in the sexes. In the severe BPD mouse model, administering miR-146 mimic to males attenuated lung damage, whereas administering miR-146 inhibitor to females increased pulmonary injury.
Collapse
Affiliation(s)
- Sean Leary
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania; Division of Neonatology, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.
| |
Collapse
|
108
|
McGrath-Morrow SA, Collaco JM. Bronchopulmonary dysplasia: what are its links to COPD? Ther Adv Respir Dis 2019; 13:1753466619892492. [PMID: 31818194 PMCID: PMC6904782 DOI: 10.1177/1753466619892492] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that adverse early life events can affect long-term health trajectories throughout life. Preterm birth, in particular, is a significant early life event that affects approximately 10% of live births. Worldwide, prematurity is the number one cause of death in children less than 5 years of age and has been shown to disrupt normal lung development with lasting effects into adult life. Along with impaired lung development, interventions used to support gas exchange and other sequelae of prematurity can lead to the development of bronchopulmonary dysplasia (BPD). BPD is a chronic respiratory disease of infancy characterized by alveolar simplification, small airways disease, and pulmonary vascular changes. Although many survivors of BPD improve with age, survivors of BPD often have chronic lung disease characterized by airflow obstruction and intermittent pulmonary exacerbations. Long-term lung function trajectories as measured by FEV1 can be lower in children and adults with a history BPD. In this review, we discuss the epidemiology and manifestations of BPD and its long-term consequences throughout childhood and into adulthood. Available evidence suggests that disrupted lung development, genetic susceptibility and subsequent environment and infectious events that occur in prenatal and postnatal life likely increase the predisposition of children with BPD to develop early onset chronic obstructive pulmonary disease (COPD). The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Sharon A. McGrath-Morrow
- Eudowood Division of Pediatric Respiratory
Sciences, David M. Rubenstein Building, Suite 3075B, 200 North Wolfe Street,
Baltimore, MD, 21287-2533, USA
| | - Joseph M. Collaco
- Department of Pediatrics, Eudowood Division of
Respiratory Sciences, Johns Hopkins University School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
109
|
Zou D, Li J, Fan Q, Zheng X, Deng J, Wang S. Reactive oxygen and nitrogen species induce cell apoptosis via a mitochondria‐dependent pathway in hyperoxia lung injury. J Cell Biochem 2018; 120:4837-4850. [PMID: 30592322 DOI: 10.1002/jcb.27382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Dongmei Zou
- Department of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China
| | - Jing Li
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Qianqian Fan
- Neonatal Intensive Care Unit, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xuemei Zheng
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| | - Jian Deng
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| | - Shaohua Wang
- Neonatal Intensive Care Unit, Women and Children Health Institute Futian, Shenzhen, China
| |
Collapse
|
110
|
Buczynski BW, Mai N, Yee M, Allen JL, Prifti L, Cory-Slechta DA, Halterman MW, O'Reilly MA. Lung-Specific Extracellular Superoxide Dismutase Improves Cognition of Adult Mice Exposed to Neonatal Hyperoxia. Front Med (Lausanne) 2018; 5:334. [PMID: 30619855 PMCID: PMC6295554 DOI: 10.3389/fmed.2018.00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Lung and brain development is often altered in infants born preterm and exposed to excess oxygen, and this can lead to impaired lung function and neurocognitive abilities later in life. Oxygen-derived reactive oxygen species and the ensuing inflammatory response are believed to be an underlying cause of disease because over-expression of some anti-oxidant enzymes is protective in animal models. For example, neurodevelopment is preserved in mice that ubiquitously express human extracellular superoxide dismutase (EC-SOD) under control of an actin promoter. Similarly, oxygen-dependent changes in lung development are attenuated in transgenic SftpcEC−SOD mice that over-express EC-SOD in pulmonary alveolar epithelial type II cells. But whether anti-oxidants targeted to the lung provide protection to other organs, such as the brain is not known. Here, we use transgenic SftpcEC−SOD mice to investigate whether lung-specific expression of EC-SOD also preserves neurodevelopment following exposure to neonatal hyperoxia. Wild type and SftpcEC−SOD transgenic mice were exposed to room air or 100% oxygen between postnatal days 0–4. At 8 weeks of age, we investigated neurocognitive function as defined by novel object recognition, pathologic changes in hippocampal neurons, and microglial cell activation. Neonatal hyperoxia impaired novel object recognition memory in adult female but not male mice. Behavioral deficits were associated with microglial activation, CA1 neuron nuclear contraction, and fiber sprouting within the hilus of the dentate gyrus (DG). Over-expression of EC-SOD in the lung preserved novel object recognition and reduced the observed changes in neuronal nuclear size and myelin basic protein fiber density. It had no effect on the extent of microglial activation in the hippocampus. These findings demonstrate pulmonary expression of EC-SOD preserves short-term memory in adult female mice exposed to neonatal hyperoxia, thus suggesting anti-oxidants designed to alleviate oxygen-induced lung disease such as in preterm infants may also be neuroprotective.
Collapse
Affiliation(s)
- Bradley W Buczynski
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| | - Nguyen Mai
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Joshua L Allen
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| | - Landa Prifti
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| | - Marc W Halterman
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
111
|
Moon S, Im SK, Kim N, Youn H, Park UH, Kim JY, Kim AR, An SJ, Kim JH, Sun W, Hwang JT, Kim EJ, Um SJ. Asxl1 exerts an antiproliferative effect on mouse lung maturation via epigenetic repression of the E2f1-Nmyc axis. Cell Death Dis 2018; 9:1118. [PMID: 30389914 PMCID: PMC6215009 DOI: 10.1038/s41419-018-1171-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 11/26/2022]
Abstract
Although additional sex combs-like 1 (ASXL1) has been extensively described in hematologic malignancies, little is known about the molecular role of ASXL1 in organ development. Here, we show that Asxl1 ablation in mice results in postnatal lethality due to cyanosis, a respiratory failure. This lung defect is likely caused by higher proliferative potential and reduced expression of surfactant proteins, leading to reduced air space and defective lung maturation. By microarray analysis, we identified E2F1-responsive genes, including Nmyc, as targets repressed by Asxl1. Nmyc and Asxl1 are reciprocally expressed during the fetal development of normal mouse lungs, whereas Nmyc downregulation is impaired in Asxl1-deficient lungs. Together with E2F1 and ASXL1, host cell factor 1 (HCF-1), purified as an Asxl1-bound protein, is recruited to the E2F1-binding site of the Nmyc promoter. The interaction occurs between the C-terminal region of Asxl1 and the N-terminal Kelch domain of HCF-1. Trimethylation (me3) of histone H3 lysine 27 (H3K27) is enriched in the Nmyc promoter upon Asxl1 overexpression, whereas it is downregulated in Asxl1-deleted lung and -depleted A549 cells, similar to H3K9me3, another repressive histone marker. Overall, these findings suggest that Asxl1 modulates proliferation of lung epithelial cells via the epigenetic repression of Nmyc expression, deficiency of which may cause hyperplasia, leading to dyspnea.
Collapse
Affiliation(s)
- Seungtae Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Sun-Kyoung Im
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 06273, Korea
| | - Nackhyoung Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Hyesook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Ui-Hyun Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Joo-Yeon Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - A-Reum Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - So-Jung An
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Ji-Hoon Kim
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, Jeonju, Jeonbuk, 55365, Korea
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Chungnam, 31116, Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
112
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
113
|
Bhandari V, Walsh MC. Bronchopulmonary dysplasia or chronic lung disease: an appeal to standardize nomenclature. Pediatr Res 2018; 84:589-590. [PMID: 30143779 DOI: 10.1038/s41390-018-0152-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 01/27/2023]
Abstract
Authors tend to use the nomenclature bronchopulmonary dysplasia (BPD) interchangeably with chronic lung disease (CLD). We propose that the preferred term be BPD and explain the rationale for the same in the attached commentary.
Collapse
Affiliation(s)
- Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Michele C Walsh
- Division of Neonatology, Department of Pediatrics, University Hospitals Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
114
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
115
|
Olave N, Lal CV, Halloran B, Bhandari V, Ambalavanan N. Iloprost attenuates hyperoxia-mediated impairment of lung development in newborn mice. Am J Physiol Lung Cell Mol Physiol 2018; 315:L535-L544. [PMID: 29952221 PMCID: PMC6230878 DOI: 10.1152/ajplung.00125.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase-2 (COX-2/PTGS2) mediates hyperoxia-induced impairment of lung development in newborn animals and is increased in the lungs of human infants with bronchopulmonary dysplasia (BPD). COX-2 catalyzes the production of cytoprotective prostaglandins, such as prostacyclin (PGI2), as well as proinflammatory mediators, such as thromboxane A2. Our objective was to determine whether iloprost, a synthetic analog of PGI2, would attenuate hyperoxia effects in the newborn mouse lung. To test this hypothesis, newborn C57BL/6 mice along with their dams were exposed to normoxia (21% O2) or hyperoxia (85% O2) from 4 to 14 days of age in combination with daily intraperitoneal injections of either iloprost 200 µg·kg-1·day-1, nimesulide (selective COX-2 antagonist) 100 mg·kg-1·day-1, or vehicle. Alveolar development was estimated by radial alveolar counts and mean linear intercepts. Lung function was determined on a flexiVent, and multiple cytokines and myeloperoxidase (MPO) were quantitated in lung homogenates. Lung vascular and microvascular morphometry was performed, and right ventricle/left ventricle ratios were determined. We determined that iloprost (but not nimesulide) administration attenuated hyperoxia-induced inhibition of alveolar development and microvascular density in newborn mice. Iloprost and nimesulide both attenuated hyperoxia-induced, increased lung resistance but did not improve lung compliance that was reduced by hyperoxia. Iloprost and nimesulide reduced hyperoxia-induced increases in MPO and some cytokines (IL-1β and TNF-α) but not others (IL-6 and KC/Gro). There were no changes in pulmonary arterial wall thickness or right ventricle/left ventricle ratios. We conclude that iloprost improves lung development and reduces lung inflammation in a newborn mouse model of BPD.
Collapse
Affiliation(s)
- Nelida Olave
- Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
| | | | - Brian Halloran
- Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | | |
Collapse
|
116
|
Wang J, Dong W. Oxidative stress and bronchopulmonary dysplasia. Gene 2018; 678:177-183. [PMID: 30098433 DOI: 10.1016/j.gene.2018.08.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
Abstract
With the progress of modern medicine, oxygen therapy has become a crucial measure for the treatment of premature infants. As an environmental stimulus, in the normal development of lungs, oxygen plays a very important regulatory role. However, the problem is that long-term exposure to hyperoxia can interfere with the development of lungs, leading to irreversible developmental abnormalities. Now, the incidence of bronchopulmonary dysplasia (BPD) is increasing year by year. The existing related research shows that although BPD is a multi-factor triggered disease, its main risk factors are the premature exposure to hyperoxia and the role of reactive oxygen species (ROS). As for premature infants, especially very premature babies and those with very low birth weight, prolonged exposure to high oxygen can affect and alter the normal developmental trajectories of lung tissue and vascular beds, triggering developmental disorders, such as BPD. In the relevant studies about human BPD, a large number of them support that ROS is associated with impaired lung development. Neonates, due to the damage in the development of alveolar, are specific to hyperoxia-induced inflammatory damage. This review while focusing on the role of oxidative stress in the pathogenesis of BPD, suggests that antioxidant measures may be effective to guard against BPD of preterm infants.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, Sichuan 646000, People's Republic of China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, Sichuan 646000, People's Republic of China.
| |
Collapse
|
117
|
Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, Singh H, Bhandari V. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther 2018; 9:173. [PMID: 29941022 PMCID: PMC6019224 DOI: 10.1186/s13287-018-0903-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising tools for the treatment of human lung disease and other pathologies relevant to newborn medicine. Recent studies have established MSC exosomes (EXO), as one of the main therapeutic vectors of MSCs in mouse models of multifactorial chronic lung disease of preterm infants, bronchopulmonary dysplasia (BPD). However, the mechanisms underlying MSC-EXO therapeutic action are not completely understood. Using a neonatal mouse model of human BPD, we evaluated the therapeutic efficiency of early gestational age (GA) human umbilical cord (hUC)-derived MSC EXO fraction and its exosomal factor, tumor necrosis factor alpha-stimulated gene-6 (TSG-6). METHODS Conditioned media (CM) and EXO fractions were isolated from 25 and 30 weeks GA hUC-MSC cultures grown in serum-free media (SFM) for 24 h. Newborn mice were exposed to hyperoxia (> 95% oxygen) and were given intraperitoneal injections of MSC-CM or MSC-CM EXO fractions at postnatal (PN) day 2 and PN4. They were then returned to room air until PN14 (in a mouse model of severe BPD). The treatment regime was followed with (rh)TSG-6, TSG-6-neutralizing antibody (NAb), TSG-6 (si)RNA-transfected MSC-CM EXO and their appropriate controls. Echocardiography was done at PN14 followed by harvesting of lung, heart and brain for assessment of pathology parameters. RESULTS Systemic administration of CM or EXO in the neonatal BPD mouse model resulted in robust improvement in lung, cardiac and brain pathology. Hyperoxia-exposed BPD mice exhibited pulmonary inflammation accompanied by alveolar-capillary leakage, increased chord length, and alveolar simplification, which was ameliorated by MSC CM/EXO treatment. Pulmonary hypertension and right ventricular hypertrophy was also corrected. Cell death in brain was decreased and the hypomyelination reversed. Importantly, we detected TSG-6, an immunomodulatory glycoprotein, in EXO. Administration of TSG-6 attenuated BPD and its associated pathologies, in lung, heart and brain. Knockdown of TSG-6 by NAb or by siRNA in EXO abrogated the therapeutic effects of EXO, suggesting TSG-6 as an important therapeutic molecule. CONCLUSIONS Preterm hUC-derived MSC-CM EXO alleviates hyperoxia-induced BPD and its associated pathologies, in part, via exosomal factor TSG-6. The work indicates early systemic intervention with TSG-6 as a robust option for cell-free therapy, particularly for treating BPD.
Collapse
Affiliation(s)
- Sushma Chaubey
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Sam Thueson
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Devasena Ponnalagu
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Mohammad Afaque Alam
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Ciprian P Gheorghe
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, 11370 Anderson Street, Loma Linda, CA, 92354, USA
| | - Zubair Aghai
- Divison of Neonatology, Department of Pediatrics, Thomas Jefferson University Hospital, 132S, 10th Street, Philadelphia, PA, 19107, USA
| | - Harpreet Singh
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA.,Department of Medicine, Division of Cardiology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Vineet Bhandari
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
118
|
The 50/10 Oxygen-Induced Retinopathy Model Serves as a Hyperoxia and Hypoxia Model of Bronchopulmonary Dysplasia. Am J Med Sci 2018; 355:581-587. [DOI: 10.1016/j.amjms.2018.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
|
119
|
Maturu P, Wei-Liang Y, Jiang W, Wang L, Lingappan K, Barrios R, Liang Y, Moorthy B, Couroucli XI. Newborn Mice Lacking the Gene for Cyp1a1 Are More Susceptible to Oxygen-Mediated Lung Injury, and Are Rescued by Postnatal β-Naphthoflavone Administration: Implications for Bronchopulmonary Dysplasia in Premature Infants. Toxicol Sci 2018; 157:260-271. [PMID: 28201809 DOI: 10.1093/toxsci/kfx036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prolonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. β-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice lacking the Cyp1a1 gene would be more susceptible to hyperoxic lung injury than wild-type (WT) mice and that postnatal BNF treatment would rescue this phenotype by mechanisms involving CYP1A and/or NAD(P)H quinone oxidoreductase (NQO1) enzymes. Newborn WT or Cyp1a1-null mice were treated with BNF (10 mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 14 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14 days. Both genotypes showed lung injury, inflammation, and alveolar simplification in hyperoxia, with Cyp1a1-null mice displaying increased susceptibility compared to WT mice. BNF treatment resulted in significant attenuation of lung injury and inflammation, with improved alveolarization in both WT and Cyp1a1-null mice. BNF exposed normoxic or hyperoxic WT mice showed increased expression of hepatic CYP1A1/1A2, pulmonary CYP1A1, and NQO1 expression at both mRNA and protein levels, compared with vehicle controls. However, BNF caused greater induction of hepatic CYP1A2 and pulmonary NQO1 enzymes in the Cyp1a1-null mice, suggesting that BNF protects against hyperoxic lung injury in WT and Cyp1a1-null mice through the induction of CYP1A and NQO1 enzymes. Further studies on the protective role of flavonoids against hyperoxic lung injury in newborns could lead to novel strategies for the prevention and/or treatment of BPD.
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Yanhong Wei-Liang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, Houston, Texas, USA
| | - Yao Liang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xanthi I Couroucli
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
120
|
Yee M, Cohen ED, Domm W, Porter GA, McDavid AN, O’Reilly MA. Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. Am J Physiol Lung Cell Mol Physiol 2018; 314:L846-L859. [PMID: 29345197 PMCID: PMC6008126 DOI: 10.1152/ajplung.00409.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Supplemental oxygen given to preterm infants has been associated with permanently altering postnatal lung development. Now that these individuals are reaching adulthood, there is growing concern that early life oxygen exposure may also promote cardiovascular disease through poorly understood mechanisms. We previously reported that adult mice exposed to 100% oxygen between postnatal days 0 and 4 develop pulmonary hypertension, defined pathologically by capillary rarefaction, dilation of arterioles and veins, cardiac failure, and a reduced lifespan. Here, Affymetrix Gene Arrays are used to identify early transcriptional changes that take place in the lung before pulmonary capillary rarefaction. We discovered neonatal hyperoxia reduced expression of cardiac muscle genes, including those involved in contraction, calcium signaling, mitochondrial respiration, and vasodilation. Quantitative RT-PCR, immunohistochemistry, and genetic lineage mapping using Myh6CreER; Rosa26RmT/mG mice revealed this reflected loss of pulmonary vein cardiomyocytes. The greatest loss of cadiomyocytes was seen within the lung followed by a graded loss beginning at the hilum and extending into the left atrium. Loss of these cells was seen by 2 wk of age in mice exposed to ≥80% oxygen and was attributed, in part, to reduced proliferation. Administering mitoTEMPO, a scavenger of mitochondrial superoxide during neonatal hyperoxia prevented loss of these cells. Since pulmonary vein cardiomyocytes help pump oxygen-rich blood out of the lung, their early loss following neonatal hyperoxia may contribute to cardiovascular disease seen in these mice, and perhaps in people who were born preterm.
Collapse
Affiliation(s)
- Min Yee
- 1Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Ethan David Cohen
- 2Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - William Domm
- 1Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - George A. Porter
- 1Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Andrew N. McDavid
- 3Biostatistics and Computational Biology, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | | |
Collapse
|
121
|
Maturu P, Wei-Liang Y, Androutsopoulos VP, Jiang W, Wang L, Tsatsakis AM, Couroucli XI. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol 2018; 114:23-33. [PMID: 29432836 DOI: 10.1016/j.fct.2018.02.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Quercetin (QU) is one of the most common flavonoids that are present in a wide variety of fruits, vegetables, and beverages. This compound possesses potent anti-inflammatory and anti-oxidant properties. Supplemental oxygen is routinely administered to premature infants with pulmonary insufficiency. However, hyperoxia is one of the major risk factors for the development of bronchopulmonary dysplasia (BPD), which is also termed chronic lung disease in premature infants. Currently, no preventive approaches have been reported against BPD. The treatment of BPD is notably limited to oxygen administration, ventilatory support, and steroids. Since QU has been shown to be effective in reducing inflammation and oxidative stress in various disease models, we hypothesized that the postnatal QU treatment of newborn mice will protect against hyperoxic lung injury by the upregulation of the phase I (CYP1A/B) and/or phase II, NADPH quinone reductase enzymes. Newborn C57BL/6J mice within 24 h of birth with the nursing dams were exposed to either 21% O2 (air) and/or 85% O2 (hyperoxia) for 7 days. The mice were treated, intraperitoneally (i.p.) once every other day with quercetin, at a concentration of 20 mg/kg, or saline alone from postnatal day (PND) 2-6. The mice were sacrificed on day 7, and lung and liver tissues were collected. The expression levels of CYP1A1, CYP1B1, NQO1 proteins and mRNA as well as the levels of MDA-protein adducts were analyzed in lung and liver tissues. The findings indicated that QU attenuated hyperoxia-mediated lung injury by reducing inflammation and improving alveolarization with decreased number of neutrophil and macrophage infiltration. The attenuation of this lung injury correlated with the upregulation of CYP1A1/CYP1B1/NQO1 mRNA, proteins and the down regulation of NF-kB levels and MDA-protein adducts in lung and liver tissues. The present study demonstrated the potential therapeutic value of quercetin in the prevention and/or treatment of BPD.
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Wei-Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vasilis P Androutsopoulos
- Laboratory of Toxicology, University of Crete, Medical School, Voutes, Heraklion 71409, Crete, Greece
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, University of Crete, Medical School, Voutes, Heraklion 71409, Crete, Greece
| | - Xanthi I Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
122
|
Musharaf I, Hinton M, Yi M, Dakshinamurti S. Hypoxic challenge of hyperoxic pulmonary artery myocytes increases oxidative stress due to impaired mitochondrial superoxide dismutase activity. Pulm Pharmacol Ther 2018; 48:195-202. [DOI: 10.1016/j.pupt.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/14/2023]
|
123
|
Nakanishi H, Morikawa S, Kitahara S, Yoshii A, Uchiyama A, Kusuda S, Ezaki T. Morphological characterization of pulmonary microvascular disease in bronchopulmonary dysplasia caused by hyperoxia in newborn mice. Med Mol Morphol 2018; 51:166-175. [DOI: 10.1007/s00795-018-0182-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
124
|
Lingappan K, Maturu P, Liang YW, Jiang W, Wang L, Moorthy B, Couroucli XI. β-Naphthoflavone treatment attenuates neonatal hyperoxic lung injury in wild type and Cyp1a2-knockout mice. Toxicol Appl Pharmacol 2018; 339:133-142. [PMID: 29180065 PMCID: PMC5758404 DOI: 10.1016/j.taap.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
Exposure to supraphysiological concentrations of oxygen (hyperoxia) leads to bronchopulmonary dysplasia (BPD), one of the most common pulmonary morbidities in preterm neonates, which is more prevalent in males than females. Beta-naphthoflavone (BNF) is protective against hyperoxic lung injury in adult and neonatal wild type (WT) mice and in and mice lacking Cyp1a1gene. In this investigation, we tested the hypothesis that BNF treatment will attenuate neonatal hyperoxic lung injury in WT and Cyp1a2-/- mice, and elucidated the effect of sex-specific differences. Newborn WT or Cyp1a2-/- mice were treated with BNF (10mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 8 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14days. Hyperoxia exposure lead to alveolar simplification and arrest in angiogenesis in WT as well as Cyp1a2-/- mice No significant differences were seen between WT and Cyp1a2-/- mice. Cyp1a2-/- female mice had better preservation of pulmonary angiogenesis at PND15 compared to similarly exposed males. BNF treatment attenuated lung injury and inflammation in both genotypes, and this was accompanied by a significant induction of hepatic and pulmonary CYP1A1 in WT but not in Cyp1a2-/- mice. BNF treatment increased NADPH quinone oxidoreductase (NQO1) mRNA levels in Cyp1a2-/- mouse livers compared to WT mice. These results suggest that BNF is protective in neonatal mice exposed to hyperoxia independent of CYP1A2 and this may entail the protective effect of phase II enzymes like NQO1.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Wei Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Xanthi I Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
125
|
"Good things come in small packages": application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 2018; 83:298-307. [PMID: 28985201 PMCID: PMC5876073 DOI: 10.1038/pr.2017.256] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Infants born at very low gestational age contribute disproportionately to neonatal morbidity and mortality. Advancements in antenatal steroid therapies and surfactant replacement have favored the survival of infants with ever-more immature lungs. Despite such advances in medical care, cardiopulmonary and neurological impairment prevail in constituting the major adverse outcomes for neonatal intensive care unit survivors. With no single effective therapy for either the prevention or treatment of such neonatal disorders, the need for new tools to treat and reduce risk of further complications associated with extreme preterm birth is urgent. Mesenchymal stem/stromal cell (MSC)-based approaches have shown promise in numerous experimental models of lung injury relevant to neonatology. Recent studies have highlighted that the therapeutic potential of MSCs is harnessed in their secretome, and that the therapeutic vector therein is represented by the exosomes released by MSCs. In this review, we summarize the development and significance of stem cell-based therapies for neonatal diseases, focusing on preclinical models of neonatal lung injury. We emphasize the development of MSC exosome-based therapeutics and comment on the challenges in bringing these promising interventions to clinic.
Collapse
|
126
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
127
|
Stark A, Dammann C, Nielsen HC, Volpe MV. A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front Pediatr 2018; 6:125. [PMID: 29951473 PMCID: PMC6008318 DOI: 10.3389/fped.2018.00125] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are common and significant morbidities of prematurely born infants. These diseases have in common altered and pathologic vascular formation in the face of incomplete organ development. Therefore, it is reasonable to question whether factors affecting angiogenesis could have a joint pathogenic role for both diseases. Inhibition or induced expression of a single angiogenic factor is unlikely to be 100% causative or protective of either of BPD or ROP. It is more likely that interactions of multiple factors leading to disordered angiogenesis are present, increasing the likelihood of common pathways in both diseases. This review explores this possibility by assessing the evidence showing involvement of specific angiogenic factors in the vascular development and maldevelopment in each disease. Theoretical interactions of specific factors mutually contributing to BPD and ROP are proposed and, where possible, a timeline of the proposed relationships between BPD and ROP is developed. It is hoped that future research will be inspired by the theories put forth in this review to enhance the understanding of the pathogenesis in both diseases.
Collapse
Affiliation(s)
- Ashley Stark
- Tufts University School of Medicine, Boston, MA, United States
| | - Christiane Dammann
- Tufts University School of Medicine, Boston, MA, United States.,Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, United States.,Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Heber C Nielsen
- Tufts University School of Medicine, Boston, MA, United States.,Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, United States.,Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - MaryAnn V Volpe
- Tufts University School of Medicine, Boston, MA, United States.,Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
128
|
Dravet-Gounot P, Morin C, Jacques S, Dumont F, Ely-Marius F, Vaiman D, Jarreau PH, Méhats C, Zana-Taïeb E. Lung microRNA deregulation associated with impaired alveolarization in rats after intrauterine growth restriction. PLoS One 2017; 12:e0190445. [PMID: 29287116 PMCID: PMC5747455 DOI: 10.1371/journal.pone.0190445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) was recently described as an independent risk factor of bronchopulmonary dysplasia, the main respiratory sequelae of preterm birth. We previously showed impaired alveolarization in rat pups born with IUGR induced by a low-protein diet (LPD) during gestation. We conducted a genome-wide analysis of gene expression and found the involvement of several pathways such as cell adhesion. Here, we describe our unbiased microRNA (miRNA) profiling by microarray assay and validation by qPCR at postnatal days 10 and 21 (P10 and P21) in lungs of rat pups with LPD-induced lung-alveolarization disorder after IUGR. We identified 13 miRNAs with more than two-fold differential expression between control lungs and LPD-induced IUGR lungs. Validated and predicted target genes of these miRNAs were related to “tissue repair” at P10 and “cellular communication regulation” at P21. We predicted the deregulation of several genes associated with these pathways. Especially, E2F3, a transcription factor involved in cell cycle control, was expressed in developing alveoli, and its mRNA and protein levels were significantly increased at P21 after IUGR. Hence, IUGR affects the expression of selected miRNAs during lung alveolarization. These results provide a basis for deciphering the mechanistic contributions of IUGR to impaired alveolarization.
Collapse
Affiliation(s)
- Pauline Dravet-Gounot
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Maternité Port Royal, Service de Médecine et Réanimation Néonatales, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
| | - Cécile Morin
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
| | - Sébastien Jacques
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Florent Dumont
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Fabiola Ely-Marius
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Daniel Vaiman
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
| | - Pierre-Henri Jarreau
- Université Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Maternité Port Royal, Service de Médecine et Réanimation Néonatales, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
- Inserm U1141, Paris, France
- Premup, Paris, France
| | - Céline Méhats
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
- * E-mail:
| | - Elodie Zana-Taïeb
- Université Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Maternité Port Royal, Service de Médecine et Réanimation Néonatales, Paris, France
- DHU Risques et grossesse, Maternité Port-Royal, Paris, France
- Inserm U1141, Paris, France
- Premup, Paris, France
| |
Collapse
|
129
|
McKenna S, Butler B, Jatana L, Ghosh S, Wright CJ. Inhibition of IκBβ/NFκB signaling prevents LPS-induced IL1β expression without increasing apoptosis in the developing mouse lung. Pediatr Res 2017; 82:1064-1072. [PMID: 28753596 PMCID: PMC5761659 DOI: 10.1038/pr.2017.182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023]
Abstract
BackgroundThe pro-inflammatory consequences of IL1β expression contribute to the pathogenesis of bronchopulmonary dysplasia. Selectively targeting Lipopolysaccharide (LPS)-induced IκBβ/NFκB signaling attenuates IL1β mRNA expression in macrophages. Whether targeting IκBβ/NFκB signaling affects the anti-apoptotic gene expression, a known consequence of global LPS-induced NFκB inhibition, is unknown.MethodsMacrophages (RAW 264.7, bone marrow-derived macrophage) were assessed for LPS-induced IL1β mRNA/protein expression, anti-apoptotic gene expression, cell viability (trypan blue exclusion), and activation of apoptosis (caspase-3 and PARP cleavage) following pharmacologic and genetic attenuation of IκBβ/NFκB signaling. Expressions of IL1β and anti-apoptotic genes were assessed in endotoxemic newborn mice (P0) with intact (WT), absent (IκBβ KO), and attenuated (IκBβ overexpressing) IκBβ/NFκB signaling.ResultsIn cultured macrophages, pharmacologic and genetic inhibition of LPS-induced IκBβ/NFκB signaling significantly attenuated IL1β mRNA and protein expression. Importantly, targeting IκBβ/NFκB signaling did not attenuate LPS-induced expression of anti-apoptotic genes or result in cell death. In endotoxemic neonatal mice, targeting LPS-induced IκBβ/NFκB signaling significantly attenuated pulmonary IL1β expression without affecting the anti-apoptotic gene expression.ConclusionTargeting IκBβ/NFκB signaling prevents LPS-induced IL1β expression without inducing apoptosis in cultured macrophages and in the lungs of endotoxemic newborn mice. Inhibiting this pathway may prevent inflammatory injury without affecting the protective role of NFκB activity in the developing lung.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Brittany Butler
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Laurie Jatana
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Clyde J. Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
130
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
131
|
Alvira CM, Morty RE. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 2017; 190:27-37. [PMID: 29144252 PMCID: PMC5726414 DOI: 10.1016/j.jpeds.2017.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94305
| | - Rory E. Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center campus of the German Center for Lung Research, Giessen, Germany,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
132
|
Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nat Commun 2017; 8:1173. [PMID: 29079808 PMCID: PMC5660088 DOI: 10.1038/s41467-017-01349-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a overexpression. Administration of angiopoietin-1, which is one of the downstream targets of miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three independent cohorts of human samples, we show that miR-34a expression is increased in type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent or ameliorate HALI/BPD in neonates.
Collapse
|
133
|
Shafa M, Ionescu LI, Vadivel A, Collins JJP, Xu L, Zhong S, Kang M, de Caen G, Daneshmand M, Shi J, Fu KZ, Qi A, Wang Y, Ellis J, Stanford WL, Thébaud B. Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury. Cytotherapy 2017; 20:108-125. [PMID: 29056548 DOI: 10.1016/j.jcyt.2017.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/02/2017] [Accepted: 09/02/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted lung growth, is the most common complication in extreme premature infants. BPD leads to persistent pulmonary disease later in life. Alveolar epithelial type 2 cells (AEC2s), a subset of which represent distal lung progenitor cells (LPCs), promote normal lung growth and repair. AEC2 depletion may contribute to persistent lung injury in BPD. We hypothesized that induced pluripotent stem cell (iPSC)-derived AECs prevent lung damage in experimental oxygen-induced BPD. METHODS Mouse AECs (mAECs), miPSCs/mouse embryonic stem sells, human umbilical cord mesenchymal stromal cells (hUCMSCs), human (h)iPSCs, hiPSC-derived LPCs and hiPSC-derived AECs were delivered intratracheally to hyperoxia-exposed newborn mice. Cells were pre-labeled with a red fluorescent dye for in vivo tracking. RESULTS Airway delivery of primary mAECs and undifferentiated murine pluripotent cells prevented hyperoxia-induced impairment in lung function and alveolar growth in neonatal mice. Similar to hUCMSC therapy, undifferentiated hiPSCs also preserved lung function and alveolar growth in hyperoxia-exposed neonatal NOD/SCID mice. Long-term assessment of hiPSC administration revealed local teratoma formation and cellular infiltration in various organs. To develop a clinically relevant cell therapy, we used a highly efficient method to differentiate hiPSCs into a homogenous population of AEC2s. Airway delivery of hiPSC-derived AEC2s and hiPSC-derived LPCs, improved lung function and structure and resulted in long-term engraftment without evidence of tumor formation. CONCLUSIONS hiPSC-derived AEC2 therapy appears effective and safe in this model and warrants further exploration as a therapeutic option for BPD and other lung diseases characterized by AEC injury.
Collapse
Affiliation(s)
- Mehdi Shafa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Arul Vadivel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Jennifer J P Collins
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada; Department of Pediatric Surgery, Erasmus University Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Liqun Xu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shumei Zhong
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Martin Kang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Geneviève de Caen
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Manijeh Daneshmand
- Department of Pathology and Laboratory Medicine, University of Ottawa, Canada
| | - Jenny Shi
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Katherine Z Fu
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Andrew Qi
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Ying Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada.
| |
Collapse
|
134
|
Rath P, Nardiello C, Morty RE. A new target for caffeine in the developing lung: endoplasmic reticulum stress? Am J Physiol Lung Cell Mol Physiol 2017; 313:L659-L663. [DOI: 10.1152/ajplung.00251.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Philipp Rath
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
135
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
136
|
De Paepe ME, V Benny MK, Priolo L, Luks FI, Shapiro S. Florid Intussusceptive-like Microvascular Dysangiogenesis in a Preterm Lung. Pediatr Dev Pathol 2017; 20:432-439. [PMID: 28812466 DOI: 10.1177/1093526616686455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cellular mechanisms underlying the microvascular dysangiogenesis of bronchopulmonary dysplasia (chronic lung disease of the newborn) remain largely undetermined. We report unusual pulmonary vascular findings in a 27-week-gestation male newborn who died on the second day of life from intractable respiratory failure, following a pregnancy complicated by prolonged membrane rupture and persistent severe oligohydramnios. As expected, postmortem examination revealed pulmonary hypoplasia (lung/body weight ratio: 2.23%; 10th percentile for 27 weeks: 2.59%). In addition, lung microscopy revealed complex networks of non-sprouting, tortuous, and bulbously dilated capillaries, randomly distributed in widened airspace septa. Anti-smooth muscle actin immunohistochemistry demonstrated immunoreactive central densities within capillary lumina, suggestive of intravascular pillar formation. The plexus-forming, non-sprouting type of angiogenesis and apparent transluminal pillar formation are consistent with intussusceptive ("longitudinal splitting") angiogenesis. In concordance with previous observations made in human fetal lung xenografts, these findings support the notion that human postcanalicular lungs have the capacity to switch from sprouting to non-sprouting, intussusceptive-like angiogenesis, possibly representing an adaptive response activated by hemodynamic flow alterations and/or hypoxia. The possible relationship between the intussusceptive-like vascular changes observed in this case and the microvascular dysangiogenesis characteristic of bronchopulmonary dysplasia remains to be determined.
Collapse
Affiliation(s)
- Monique E De Paepe
- 1 Department of Pathology, Women and Infants Hospital of Rhode Island, USA.,2 Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Rhode Island, USA
| | | | - Lauren Priolo
- 3 Department of Pediatrics, Women and Infants Hospital of Rhode Island, USA
| | - Francois I Luks
- 4 Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island, USA
| | - Svetlana Shapiro
- 1 Department of Pathology, Women and Infants Hospital of Rhode Island, USA
| |
Collapse
|
137
|
Natarajan V, Ha AW, Dong Y, Reddy NM, Ebenezer DL, Kanteti P, Reddy SP, Usha Raj J, Lei Z, Maienschein-Cline M, Arbieva Z, Harijith A. Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia. BMC Genomics 2017; 18:664. [PMID: 28851267 PMCID: PMC5576338 DOI: 10.1186/s12864-017-4048-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sphingosine- 1-Phosphate (S1P) is a bioactive lipid and an intracellular as well as an extracellular signaling molecule. S1P ligand specifically binds to five related cell surface G-protein-coupled receptors (S1P1-5). S1P levels are tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and catabolism by S1P phosphatases, lipid phosphate phosphatases and S1P lyase. We previously reported that knock down of SphK1 (Sphk1 -/- ) in a neonatal mouse BPD model conferred significant protection against hyperoxia induced lung injury. To better understand the underlying molecular mechanisms, genome-wide gene expression profiling was performed on mouse lung tissue using Affymetrix MoGene 2.0 array. RESULTS Two-way ANOVA analysis was performed and differentially expressed genes under hyperoxia were identified using Sphk1 -/- mice and their wild type (WT) equivalents. Pathway (PW) enrichment analyses identified several signaling pathways that are likely to play a key role in hyperoxia induced lung injury in the neonates. These included signaling pathways that were anticipated such as those involved in lipid signaling, cell cycle regulation, DNA damage/apoptosis, inflammation/immune response, and cell adhesion/extracellular matrix (ECM) remodeling. We noted hyperoxia induced downregulation of the expression of genes related to mitotic spindle formation in the WT which was not observed in Sphk1 -/- neonates. Our data clearly suggests a role for SphK1 in neonatal hyperoxic lung injury through elevated inflammation and apoptosis in lung tissue. Further, validation by RT-PCR on 24 differentially expressed genes showed 83% concordance both in terms of fold change and vectorial changes. Our findings are in agreement with previously reported human BPD microarray data and completely support our published in vivo findings. In addition, the data also revealed a significant role for additional unanticipitated signaling pathways involving Wnt and GADD45. CONCLUSION Using SphK1 knockout mice and differential gene expression analysis, we have shown here that S1P/SphK1 signaling plays a key role in promoting hyperoxia induced DNA damage, inflammation, apoptosis and ECM remodeling in neonatal lungs. It also appears to suppress pro-survival cellular responses involved in normal lung development. We therefore propose SphK1 as a therapeutic target for the development drugs to combat BPD.
Collapse
Affiliation(s)
- Viswanathan Natarajan
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
- Department of Biochemistry and Molecular genetics, University of Illinois, Chicago, IL 60612 USA
| | - Alison W. Ha
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - Yangbasai Dong
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - Narsa M. Reddy
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
| | - David L. Ebenezer
- Department of Biochemistry and Molecular genetics, University of Illinois, Chicago, IL 60612 USA
| | - Prasad Kanteti
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
| | - Sekhar P. Reddy
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - J. Usha Raj
- Departments of Medicine, University of Illinois, Chicago, IL 60612 USA
| | - Zhengdeng Lei
- Department of Center for Research Informatics, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mark Maienschein-Cline
- Department of Center for Research Informatics, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Zarema Arbieva
- Department of CoreGenomics Facility, University of Illinois, Chicago, IL 60612 USA
| | - Anantha Harijith
- Department of Pharmacology, University of Illinois, Chicago, IL 60612 USA
- Department of Pediatrics, University of Illinois, Room # 3140, COMRB Building, 909, South Wolcott Avenue, Chicago, IL 60612 USA
| |
Collapse
|
138
|
Li H, Karmouty-Quintana H, Chen NY, Mills T, Molina J, Blackburn MR, Davies J. Loss of CD73-mediated extracellular adenosine production exacerbates inflammation and abnormal alveolar development in newborn mice exposed to prolonged hyperoxia. Pediatr Res 2017; 82:pr2017176. [PMID: 28832580 DOI: 10.1038/pr.2017.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
BackgroundHyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response and it disrupts normal alveolarization in the developing newborn lung. Adenosine is a signaling molecule that is generated extracellularly by ecto-5'-nucleotidase (CD73) in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to have a protective role in acute injury situations; however, chronic elevations have been associated with detrimental changes in chronic lung diseases. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which are detrimental to the newborn lung.MethodsC57Bl/6 and CD73-/- mice were exposed to 95% oxygen, 70% oxygen, or room air. Adenosine concentration and markers of pulmonary inflammation and lung development were measured.ResultsExposure to hyperoxia caused pulmonary inflammation and disrupted normal alveolar development in association with increased pulmonary adenosine levels. Loss of CD73-mediated extracellular adenosine production led to decreased survival with exposure to 95% oxygen, and exacerbated pulmonary inflammation and worsened lung development with 70% oxygen exposure.ConclusionExposure to hyperoxia causes lung injury associated with an increase in adenosine concentration, and loss of CD73-mediated adenosine production leads to worsening of hyperoxic lung injury.Pediatric Research advance online publication, 23 August 2017; doi:10.1038/pr.2017.176.
Collapse
Affiliation(s)
- Huiling Li
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
139
|
Coarfa C, Zhang Y, Maity S, Perera DN, Jiang W, Wang L, Couroucli X, Moorthy B, Lingappan K. Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway. Am J Physiol Lung Cell Mol Physiol 2017; 313:L991-L1005. [PMID: 28818871 DOI: 10.1152/ajplung.00230.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar secondary septation and vascular growth. Exposure to high concentrations of oxygen (hyperoxia) contributes to the development of BPD. The male sex is considered an independent risk factor for the development of BPD. The reasons underlying sexually dimorphic outcomes in premature neonates are not known. We hypothesized that sex-specific modulation of biological processes in the lung under hyperoxic conditions contributes to sex-based differences. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% [Formula: see text], postnatal day (PND) 1-5: saccular stage of lung development] and euthanized on PND 7 or 21. Pulmonary gene expression was studied using RNA-Seq on the Illumina HiSeq 2500 platform. Analysis of the pulmonary transcriptome revealed differential sex-specific modulation of crucial pathways such as angiogenesis, response to hypoxia, inflammatory response, and p53 pathway. Candidate genes from these pathways were validated at the mRNA level by qPCR. Analysis also revealed sex-specific differences in the modulation of crucial transcription factors. Focusing on the differential modulation of the angiogenesis pathway, we also showed sex-specific differential activation of Hif-1α-regulated genes using ChIP-qPCR and differences in expression of crucial genes (Vegf, VegfR2, and Phd2) modulating angiogenesis. We demonstrate the translational relevance of our findings by showing that our murine sex-specific differences in gene expression correlate with those from a preexisting human BPD data set. In conclusion, we provide novel molecular insights into differential sex-specific modulation of the pulmonary transcriptome in neonatal hyperoxic lung injury and highlight angiogenesis as one of the crucial differentially modulated pathways.
Collapse
Affiliation(s)
- Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas; and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yuhao Zhang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Suman Maity
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas; and
| | - Dimuthu N Perera
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas; and
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Xanthi Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
140
|
Perez M, Lee KJ, Cardona HJ, Taylor JM, Robbins ME, Waypa GB, Berkelhamer SK, Farrow KN. Aberrant cGMP signaling persists during recovery in mice with oxygen-induced pulmonary hypertension. PLoS One 2017; 12:e0180957. [PMID: 28792962 PMCID: PMC5549891 DOI: 10.1371/journal.pone.0180957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 06/23/2017] [Indexed: 12/25/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), a common complication of preterm birth, is associated with pulmonary hypertension (PH) in 25% of infants with moderate to severe BPD. Neonatal mice exposed to hyperoxia for 14d develop lung disease similar to BPD, with evidence of associated PH. The cyclic guanosine monophosphate (cGMP) signaling pathway has not been well studied in BPD-associated PH. In addition, there is little data about the natural history of hyperoxia-induced PH in mice or the utility of phosphodiesterase-5 (PDE5) inhibition in established disease. C57BL/6 mice were placed in room air or 75% O2 within 24h of birth for 14d, followed by recovery in room air for an additional 7 days (21d). Additional pups were treated with either vehicle or sildenafil for 7d during room air recovery. Mean alveolar area, pulmonary artery (PA) medial wall thickness (MWT), RVH, and vessel density were evaluated at 21d. PA protein from 21d animals was analyzed for soluble guanylate cyclase (sGC) activity, PDE5 activity, and cGMP levels. Neonatal hyperoxia exposure results in persistent alveolar simplification, RVH, decreased vessel density, increased MWT, and disrupted cGMP signaling despite a period of room air recovery. Delayed treatment with sildenafil during room air recovery is associated with improved RVH and decreased PA PDE5 activity, but does not have significant effects on alveolar simplification, PA remodeling, or vessel density. These data are consistent with clinical studies suggesting inconsistent effects of sildenafil treatment in infants with BPD-associated PH.
Collapse
Affiliation(s)
- Marta Perez
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Keng Jin Lee
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
| | - Herminio J. Cardona
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
| | - Joann M. Taylor
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
| | - Mary E. Robbins
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
| | - Gregory B. Waypa
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
| | - Sara K. Berkelhamer
- Department of Pediatrics, University at Buffalo, Buffalo, NY, United States of America
| | - Kathryn N. Farrow
- Department of Pediatrics, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
141
|
Chen X, Orriols M, Walther FJ, Laghmani EH, Hoogeboom AM, Hogen-Esch ACB, Hiemstra PS, Folkerts G, Goumans MJTH, Ten Dijke P, Morrell NW, Wagenaar GTM. Bone Morphogenetic Protein 9 Protects against Neonatal Hyperoxia-Induced Impairment of Alveolarization and Pulmonary Inflammation. Front Physiol 2017; 8:486. [PMID: 28751863 PMCID: PMC5507999 DOI: 10.3389/fphys.2017.00486] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Aim: Effective treatment of premature infants with bronchopulmonary dysplasia (BPD) is lacking. We hypothesize that bone morphogenetic protein 9 (BMP9), a ligand of the TGF-β family that binds to the activin receptor-like kinase 1 (ALK1)-BMP receptor type 2 (BMPR2) receptor complex, may be a novel therapeutic option for BPD. Therefore, we investigated the cardiopulmonary effects of BMP9 in neonatal Wistar rats with hyperoxia-induced BPD. Methods: Directly after birth Wistar rat pups were exposed to 100% oxygen for 10 days. From day 2 rat pups received BMP9 (2.5 μg/kg, twice a day) or 0.9% NaCl by subcutaneous injection. Beneficial effects of BMP9 on aberrant alveolar development, lung inflammation and fibrosis, and right ventricular hypertrophy (RVH) were investigated by morphometric analysis and cytokine production. In addition, differential mRNA expression of BMP9 and its receptor complex: ALK1, BMPR2, and Endoglin, and of the ALK1 downstream target transmembrane protein 100 (TMEM100) were studied during the development of experimental BPD. Expression of the BMP9 receptor complex and TMEM100 was studied in human endothelial and epithelial cell cultures and the effect of BMP9 on inflammatory cytokine production and TMEM100 expression was studied in endothelial cell cultures. Results:ALK1, ALK2, BMPRII, TMEM100, and Endoglin were differentially expressed in experimental BPD, suggesting a role for BMP9-dependent signaling in the development of (experimental) BPD. TMEM100 was expressed in the wall of blood vessels, showing an elastin-like expression pattern in arterioles. Expression of TMEM100 mRNA and protein was decreased after exposure to hyperoxia. BMP9 treatment of rat pups with hyperoxia-induced experimental BPD reduced alveolar enlargement, lung septal thickness and fibrosis, and prevented inflammation, but did not attenuate vascular remodeling and RVH. The anti-inflammatory effect of BMP9 was confirmed in vitro. Highest expression of ALK1, BMPR2, and TMEM100 was observed in human endothelial cell cultures. Stimulation of human endothelial cell cultures with BMP9 reduced their pro-inflammatory cytokine response and induced TMEM100 expression in pulmonary arterial endothelial cells. Conclusion: BMP9 protects against neonatal hyperoxia-induced BPD by improving aberrant alveolar development, inflammation and fibrosis, demonstrating its therapeutic potential for premature infants with severe BPD.
Collapse
Affiliation(s)
- Xueyu Chen
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Mar Orriols
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands, Leiden University Medical CenterLeiden, Netherlands
| | - Frans J Walther
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands.,Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical CenterTorrance, CA, United States
| | - El Houari Laghmani
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Annemarie M Hoogeboom
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Anne C B Hogen-Esch
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeiden, Netherlands
| | - Gert Folkerts
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrecht, Netherlands
| | - Marie-José T H Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands, Leiden University Medical CenterLeiden, Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center Netherlands, Leiden University Medical CenterLeiden, Netherlands
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth HospitalsCambridge, United Kingdom
| | - Gerry T M Wagenaar
- Division of Neonatology, Department of Pediatrics, Leiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
142
|
Menden HL, Xia S, Mabry SM, Navarro A, Nyp MF, Sampath V. Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 Regulates LPS-Induced Inflammation and Alveolar Remodeling in the Developing Lung. Am J Respir Cell Mol Biol 2017; 55:767-778. [PMID: 27438994 DOI: 10.1165/rcmb.2016-0006oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In premature infants, sepsis is associated with alveolar simplification manifesting as bronchopulmonary dysplasia. The redox-dependent mechanisms underlying sepsis-induced inflammation and alveolar remodeling in the immature lung remain unclear. We developed a neonatal mouse model of sepsis-induced lung injury to investigate whether nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) regulates Toll-like receptor (TLR)-mediated inflammation and alveolar remodeling. Six-day-old NOX2+/+ and NOX2-/- mice were injected with intraperitoneal LPS to induce sepsis. Lung inflammation and canonical TLR signaling were assessed 24 hours after LPS. Alveolar development was examined in 15-day-old mice after LPS on Day 6. The in vivo efficacy of a NOX2 inhibitor (NOX2-I) on NOX2 complex assembly and sepsis-induced lung inflammation were examined. Lung cytokine expression and neutrophil influx induced with sepsis in NOX2+/+ mice was decreased by >50% in NOX2-/- mice. LPS-induced TLR4 signaling evident by inhibitor of NF-κB kinase-β and mitogen-activated protein kinase phosphorylation, and nuclear factor-κB/AP-1 translocation were attenuated in NOX2-/- mice. LPS increased matrix metalloproteinase 9 while decreasing elastin and keratinocyte growth factor levels in NOX2+/+ mice. An LPS-induced increase in matrix metalloproteinase 9 and decrease in fibroblast growth factor 7 and elastin were not evident in NOX2-/- mice. An LPS-induced reduction in radial alveolar counts and increased mean linear intercepts were attenuated in NOX2-/- mice. LPS-induced NOX2 assembly evident by p67phox/gp91phox coimmunoprecipitation was disrupted with NOX2-I. NOX2-I also mitigated LPS-induced cytokine expression, TLR pathway signaling, and alveolar simplification. In a mouse model of neonatal sepsis, NOX2 regulates proinflammatory TLR signaling and alveolar remodeling induced by a single dose of LPS. Our results provide mechanistic insight into the regulation of sepsis-induced alveolar remodeling in the developing lung.
Collapse
Affiliation(s)
- Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Sheng Xia
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Angels Navarro
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Michael F Nyp
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
143
|
Role of the Nrf2/HO-1 axis in bronchopulmonary dysplasia and hyperoxic lung injuries. Clin Sci (Lond) 2017; 131:1701-1712. [PMID: 28667068 DOI: 10.1042/cs20170157] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic illness that usually originates in preterm newborns. Generally, BPD is a consequence of respiratory distress syndrome (RDS) which, in turn, comes from the early arrest of lung development and the lack of pulmonary surfactant. The need of oxygen therapy to overcome premature newborns' compromised respiratory function generates an increasing amount of reactive oxygen species (ROS), the onset of sustained oxidative stress (OS) status, and inflammation in the pulmonary alveoli deputies to respiratory exchanges. BPD is a severe and potentially life-threatening disorder that in the most serious cases, can open the way to neurodevelopmental delay. More importantly, there is no adequate intervention to hamper or treat BPD. This perspective article seeks to review the most recent and relevant literature describing the very early stages of BPD and hyperoxic lung injuries focussing on nuclear factor erythroid derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis. Indeed, Nrf2/HO1 activation in response to OS induced lung injury in preterm concurs to the induction of certain number of antioxidant, anti-inflammatory, and detoxification pathways that seem to be more powerful than the activation of one single antioxidant gene. These elicited protective effects are able to counteract/mitigate all multifaceted aspects of the disease and may support novel approaches for the management of BPD.
Collapse
|
144
|
Royce SG, Nold MF, Bui C, Donovan C, Lam M, Lamanna E, Rudloff I, Bourke JE, Nold-Petry CA. Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1 Receptor Antagonist. Am J Respir Cell Mol Biol 2017; 55:858-868. [PMID: 27482635 DOI: 10.1165/rcmb.2016-0031oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic disease of extreme prematurity that has serious long-term consequences including increased asthma risk. We earlier identified IL-1 receptor antagonist (IL-1Ra) as a potent inhibitor of murine BPD induced by combining perinatal inflammation (intraperitoneal LPS to pregnant dams) and exposure of pups to hyperoxia (fraction of inspired oxygen = 0.65). In this study, we determined whether airway remodeling and hyperresponsiveness similar to asthma are evident in this model, and whether IL-1Ra is protective. During 28-day exposure to air or hyperoxia, pups received vehicle or 10 mg/kg IL-1Ra by daily subcutaneous injection. Lungs were then prepared for histology and morphometry of alveoli and airways, or for real-time PCR, or inflated with agarose to prepare precision-cut lung slices to visualize ex vivo intrapulmonary airway contraction and relaxation by phase-contrast microscopy. In pups reared under normoxic conditions, IL-1Ra treatment did not affect alveolar or airway structure or airway responses. Pups reared in hyperoxia developed a severe BPD-like lung disease, with fewer, larger alveoli, increased subepithelial collagen, and increased expression of α-smooth muscle actin and cyclin D1. After hyperoxia, methacholine elicited contraction with similar potency but with an increased maximum reduction in lumen area (air, 44%; hyperoxia, 89%), whereas dilator responses to salbutamol were maintained. IL-1Ra treatment prevented hyperoxia-induced alveolar disruption and airway fibrosis but, surprisingly, not the increase in methacholine-induced airway contraction. The current study is the first to demonstrate ex vivo airway hyperreactivity caused by systemic maternal inflammation and postnatal hyperoxia, and it reveals further preclinical mechanistic insights into IL-1Ra as a treatment targeting key pathophysiological features of BPD.
Collapse
Affiliation(s)
- Simon G Royce
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Marcel F Nold
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Christine Bui
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Chantal Donovan
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Maggie Lam
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Emma Lamanna
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Ina Rudloff
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Jane E Bourke
- 1 Biomedicine Discovery Institute, Department of Pharmacology
| | - Claudia A Nold-Petry
- 2 Ritchie Centre, Hudson Institute of Medical Research, and.,3 Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
145
|
Ito M, Nagano N, Arai Y, Ogawa R, Kobayashi S, Motojima Y, Go H, Tamura M, Igarashi K, Dennery PA, Namba F. Genetic ablation of Bach1 gene enhances recovery from hyperoxic lung injury in newborn mice via transient upregulation of inflammatory genes. Pediatr Res 2017; 81:926-931. [PMID: 28099425 DOI: 10.1038/pr.2017.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/30/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND BTB and CNC homology 1 (Bach1) is a transcriptional repressor of heme oxygenase (HO)-1. The effects of Bach1 disruption on hyperoxic lung injury in newborn mice have not been determined. We aimed to investigate the role of Bach1 in the newborns exposed to hyperoxia. METHODS Bach1-/- and WT newborn mice were exposed to 21% or 95% oxygen for 4 d and were then allowed to recover in room air. Lung histology was assessed and lung Bach1, HO-1, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 mRNA levels were evaluated using RT-PCR. Lung inflammatory cytokine levels were determined using cytometric bead arrays. RESULTS After 10 d recovery from neonatal hyperoxia, Bach1-/- mice showed improved lung alveolarization compared with WT. HO-1, IL-6, and MCP-1 mRNA levels and IL-6 and MCP-1 protein levels were significantly increased in the Bach1-/- lungs exposed to neonatal hyperoxia. Although an increase in apoptosis was observed in the Bach1-/- and WT lungs after neonatal hyperoxia, there were no differences in apoptosis between these groups. CONCLUSION Bach1-/- newborn mice were well-recovered from hyperoxia-induced lung injury. This effect is likely achieved by the antioxidant/anti-inflammatory activity of HO-1 or by the transient overexpression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Masato Ito
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Nobuhiko Nagano
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yukio Arai
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Ryo Ogawa
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shingo Kobayashi
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yukiko Motojima
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masanori Tamura
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Phyllis A Dennery
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
146
|
Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2017; 312:L586-L598. [PMID: 28213471 PMCID: PMC5451596 DOI: 10.1152/ajplung.00405.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022] Open
Abstract
Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Xigang Jing
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Teresa Michalkiewicz
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Adeleye J Afolayan
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Tzong-Jin Wu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Girija G Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| |
Collapse
|
147
|
Rath P, Nardiello C, Surate Solaligue DE, Agius R, Mižíková I, Hühn S, Mayer K, Vadász I, Herold S, Runkel F, Seeger W, Morty RE. Caffeine administration modulates TGF-β signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia. Pediatr Res 2017; 81:795-805. [PMID: 28141790 DOI: 10.1038/pr.2017.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/27/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Caffeine is widely used to manage apnea of prematurity, and reduces the incidence of bronchopulmonary dysplasia (BPD). Deregulated transforming growth factor (TGF)-β signaling underlies arrested postnatal lung maturation in BPD. It is unclear whether caffeine impacts TGF-β signaling or postnatal lung development in affected lungs. METHODS The impact of caffeine on TGF-β signaling in primary mouse lung fibroblasts and alveolar epithelial type II cells was assessed in vitro. The effects of caffeine administration (25 mg/kg/d for the first 14 d of postnatal life) on aberrant lung development and TGF-β signaling in vivo was assessed in a hyperoxia (85% O2)-based model of BPD in C57BL/6 mice. RESULTS Caffeine downregulated expression of type I and type III TGF-β receptors, and Smad2; and potentiated TGF-β signaling in vitro. In vivo, caffeine administration normalized body mass under hyperoxic conditions, and normalized Smad2 phosphorylation detected in lung homogenates; however, caffeine administration neither improved nor worsened lung structure in hyperoxia-exposed mice, in which postnatal lung maturation was blunted. CONCLUSION Caffeine modulated TGF-β signaling in vitro and in vivo. Caffeine administration was well-tolerated by newborn mice, but did not influence the course of blunted postnatal lung maturation in a hyperoxia-based experimental mouse model of BPD.
Collapse
Affiliation(s)
- Philipp Rath
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen-University of Applied Sciences, Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ronald Agius
- Department of Forensic and Clinical Toxicology, Labor Krone, Bad Salzuflen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Sebastian Hühn
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen-University of Applied Sciences, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen-University of Applied Sciences, Giessen, Germany.,Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
148
|
Cox AM, Gao Y, Perl AKT, Tepper RS, Ahlfeld SK. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function. Pediatr Pulmonol 2017; 52:616-624. [PMID: 28186703 PMCID: PMC5621136 DOI: 10.1002/ppul.23654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) results from alveolar simplification and abnormal development of alveolar and capillary structure. Survivors of BPD display persistent deficits in airflow and membrane and vascular components of alveolar gas diffusion. Despite being the defining feature of BPD, various neonatal hyperoxia models of BPD have not routinely assessed pulmonary gas diffusion. METHODS To simulate the most commonly-utilized neonatal hyperoxia models, we exposed neonatal mice to room air or ≥90% hyperoxia during key stages of distal lung development: through the first 4 (saccular), 7 (early alveolar), or 14 (bulk alveolar) postnatal days, followed by a period of recovery in room air until 8 weeks of age when alveolar septation is essentially complete. We systematically assessed and correlated the effects of neonatal hyperoxia on the degree of alveolar-capillary structural and functional impairment. We hypothesized that the degree of alveolar-capillary simplification would correlate strongly with worsening diffusion impairment. RESULTS Neonatal hyperoxia exposure, of any duration, resulted in alveolar simplification and impaired pulmonary gas diffusion. Mean Linear Intercept increased in proportion to the length of hyperoxia exposure while alveolar and total lung volume increased markedly only with prolonged exposure. Surprisingly, despite having a similar effect on alveolar surface area, only prolonged hyperoxia for 14 days resulted in reduced pulmonary microvascular volume. Estimates of alveolar and capillary structure, in general, correlated poorly with assessment of gas diffusion. CONCLUSION Our results help define the physiological and structural consequences of commonly-employed neonatal hyperoxia models of BPD and inform their clinical utility. Pediatr Pulmonol. 2017;52:616-624. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela M. Cox
- Program in Developmental Biology and Neonatal Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana
- Division of Neonatology, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Gao
- Program in Developmental Biology and Neonatal Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana
- Program in Pulmonary Inflammation, Asthma and Allergic Diseases, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Anne-Karina T. Perl
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Robert S. Tepper
- Program in Pulmonary Inflammation, Asthma and Allergic Diseases, Herman B Wells Center for Pediatric Research, Indianapolis, Indiana
- Division of Pulmonary Medicine, Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shawn K. Ahlfeld
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Correspondence to: Shawn K. Ahlfeld, MD, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229.
| |
Collapse
|
149
|
Schmiedl A, Roolfs T, Tutdibi E, Gortner L, Monz D. Influence of prenatal hypoxia and postnatal hyperoxia on morphologic lung maturation in mice. PLoS One 2017; 12:e0175804. [PMID: 28426693 PMCID: PMC5398543 DOI: 10.1371/journal.pone.0175804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/31/2017] [Indexed: 01/15/2023] Open
Abstract
Background Oxygen supply as a lifesaving intervention is frequently used to treat preterm infants suffering additionally from possible prenatal or perinatal pathogen features. The impact of oxygen and/or physical lung injury may influence the morphological lung development, leading to a chronic postnatal lung disease called bronchopulmonary dysplasia (BPD). At present different experimental BPD models are used. However, there are no systematic comparative studies regarding different influences of oxygen on morphological lung maturation. Objective We investigated the influence of prenatal hypoxia and/or postnatal hyperoxia on morphological lung maturation based on stereological parameters, to find out which model best reflects morphological changes in lung development comparable with alterations found in BPD. Methods Pregnant mice were exposed to normoxia, the offspring to normoxia (No/No) or to hyperoxia (No/Hyper). Furthermore, pregnant mice were exposed to hypoxia and the offspring to normoxia (Hypo/No) or to hyperoxia (Hypo/Hyper). Stereological investigations were performed on all pups at 14 days after birth. Results Compared to controls (No/No) 1) the lung volume was significantly reduced in the No/Hyper and Hypo/Hyper groups, 2) the volume weighted mean volume of the parenchymal airspaces was significantly higher in the Hypo/Hyper group, 3) the total air space volume was significantly lower in the No/Hyper and Hypo/Hyper groups, 4) the total septal surface showed significantly lower values in the No/Hyper and Hypo/Hyper groups, 5) the wall thickness of septa showed the highest values in the Hypo/Hyper group without reaching significance, 6) the volume density and the volume weighted mean volume of lamellar bodies in alveolar epithelial cells type II (AEII) were significantly lower in the Hypo/Hyper group. Conclusion Prenatal hypoxia and postnatal hyperoxia differentially influence the maturation of lung parenchyma. In 14 day old mice a significant retardation of morphological lung development leading to BPD-like alterations indicated by different parameters was only seen after hypoxia and hyperoxia.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage und Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Torge Roolfs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Erol Tutdibi
- Department of Pediatrics and Neonatology, Saarland University, Homburg/Saar, Germany
| | - Ludwig Gortner
- Department of Pediatrics and Neonatology, Saarland University, Homburg/Saar, Germany
| | - Dominik Monz
- Department of Pediatrics and Neonatology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
150
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|