101
|
Liao F, Jan YK. Using Modified Sample Entropy to Characterize Aging-Associated Microvascular Dysfunction. Front Physiol 2016; 7:126. [PMID: 27148065 PMCID: PMC4828462 DOI: 10.3389/fphys.2016.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/22/2016] [Indexed: 11/13/2022] Open
Abstract
Cutaneous microvascular function can be assessed by skin blood flow (SBF) response to thermal stimuli. Usually, the activities of the regulatory mechanisms are quantified by means of spectral analysis of the response. However, spectral measures are unable to characterize the nonlinear dynamics of SBF signal. Sample entropy (SampEn) is a commonly used nonlinear measure of the degree of regularity of time series. However, SampEn value depends on the relationship between the frequency of the studied dynamics and sampling rate. Hence, when time series data are oversampled, SampEn may give misleading results. We modified the definition of SampEn by including a lag between successive data points of the vectors to be compared to address the oversampled issue. The lag could be chosen as the first minimum of the auto mutual information function of the time series. We tested the performance of modified SampEn using simulated signals and SBF data in the young and old groups. The results indicated that modified SampEn yields consistent results for different sampling rates in simulated data, but SampEn cannot. Blood flow data showed a higher degree of regularity during the maximal vasodilation period as compared to the baseline in both groups and a higher degree of regularity in the older group as compared to the young group. Furthermore, our results showed that during the second peak the more regular behavior of blood flow oscillations (BFO) is mainly attributed to enhanced cardiac oscillations. This study suggests that the modified SampEn approach may be useful for assessing microvascular function.
Collapse
Affiliation(s)
- Fuyuan Liao
- Department of Biomedical Engineering, Xi'an Technological UniversityXi'an, China; Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-ChampaignChampaign, IL, USA
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-ChampaignChampaign, IL, USA; Computational Science and Engineering Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
102
|
Nieuwenhoff MD, Wu Y, Huygen FJPM, Schouten AC, van der Helm FCT, Niehof SP. Reproducibility of axon reflex-related vasodilation assessed by dynamic thermal imaging in healthy subjects. Microvasc Res 2016; 106:1-7. [PMID: 26956622 DOI: 10.1016/j.mvr.2016.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Small nerve fiber dysfunction is an early feature of diabetic neuropathy. There is a strong clinical need for a non-invasive method to assess small nerve fiber function. Small nerve fibers mediate axon reflex-related vasodilation and play an important role in thermoregulation. Assessing the reflex vasodilation after local heating might elucidate some aspects of small fiber functioning. In this study, we determined the reproducibility of the reflex vasodilation after short local heating in healthy subjects, assessed with thermal imaging and laser Doppler imaging. METHODS Healthy subjects underwent six heating rounds in one session (protocol I, N=10) or spread over two visits (protocol II, N=20). Reflex vasodilation was elicited by heating the skin to 42°C with an infrared lamp. Skin temperature and skin blood flow were recorded during heating and recovery with a thermal imaging camera and a laser Doppler imager. Skin temperature curves were fitted with a mathematical model to describe the heating and recovery phase with time constant tau (tauHeat and tauCool1). RESULTS The reproducibility of tau within a session was moderate to excellent (intra-class correlation coefficient 0.42-0.86) and good (0.71-0.72) between different sessions. Within one session the differences in tauHeat were small (bias±SD -1.3±18.9s); the bias between two visits was -1.2±12.2s. For tauCool1 the differences were also small, 1.4±6.6s within a session and between visits -1.4±11.6s. CONCLUSIONS The heat induced axon reflex-related vasodilation, assessed with thermal imaging and laser Doppler imaging, was reproducible both within a session and between different sessions. Tau describes the temporal profile in one parameter and represents the effects of all changes including blood flow and as such, is an indicator of the vasodilator function. TauHeat and tauCool1 can accurately describe the dynamics of the axon reflex-related vasodilator response in the heating and recovery phase respectively.
Collapse
Affiliation(s)
- M D Nieuwenhoff
- Department of Anesthesiology and Pain Medicine, Erasmus MC University Medical Center, Room Ba-430, P.O. box 2040, 3000CA Rotterdam, The Netherlands.
| | - Y Wu
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands.
| | - F J P M Huygen
- Department of Anesthesiology and Pain Medicine, Erasmus MC University Medical Center, Room Ba-430, P.O. box 2040, 3000CA Rotterdam, The Netherlands.
| | - A C Schouten
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands; Department of Biomechanical Engineering, MIRA Institute, University of Twente, Building Zuidhorst, P.O. box 217, 7500AE Enschede, The Netherlands.
| | - F C T van der Helm
- Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands.
| | - S P Niehof
- Department of Anesthesiology and Pain Medicine, Erasmus MC University Medical Center, Room Ba-430, P.O. box 2040, 3000CA Rotterdam, The Netherlands.
| |
Collapse
|
103
|
Paparde A, Plakane L, Circenis K, Aivars JI. Effect of acute systemic hypoxia on human cutaneous microcirculation and endothelial, sympathetic and myogenic activity. Microvasc Res 2015. [DOI: 10.1016/j.mvr.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
104
|
Diller KR. Heat Transfer in Health and Healing. JOURNAL OF HEAT TRANSFER 2015; 137:1030011-10300112. [PMID: 26424899 PMCID: PMC4462861 DOI: 10.1115/1.4030424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/01/2015] [Indexed: 05/08/2023]
Abstract
Our bodies depend on an exquisitely sensitive and refined temperature control system to maintain a state of health and homeostasis. The exceptionally broad range of physical activities that humans engage in and the diverse array of environmental conditions we face require remarkable strategies and mechanisms for regulating internal and external heat transfer processes. On the occasions for which the body suffers trauma, therapeutic temperature modulation is often the approach of choice for reversing injury and inflammation and launching a cascade of healing. The focus of human thermoregulation is maintenance of the body core temperature within a tight range of values, even as internal rates of energy generation may vary over an order of magnitude, environmental convection, and radiation heat loads may undergo large changes in the absence of any significant personal control, surface insulation may be added or removed, all occurring while the body's internal thermostat follows a diurnal circadian cycle that may be altered by illness and anesthetic agents. An advanced level of understanding of the complex physiological function and control of the human body may be combined with skill in heat transfer analysis and design to develop life-saving and injury-healing medical devices. This paper will describe some of the challenges and conquests the author has experienced related to the practice of heat transfer for maintenance of health and enhancement of healing processes.
Collapse
Affiliation(s)
- Kenneth R Diller
- Department of Biomedical Engineering, The University of Texas at Austin , 107 West Dean Keeton Street , BME 4.202A , Austin, TX 78712-1084 e-mail:
| |
Collapse
|
105
|
Khoshnevis S, Craik NK, Diller KR. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units. Knee Surg Sports Traumatol Arthrosc 2015; 23:2475-83. [PMID: 24562697 PMCID: PMC4395553 DOI: 10.1007/s00167-014-2911-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 02/09/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. METHODS Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. RESULTS Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10(-8)), Polar Care 300 (PC300, p = 1.1 × 10(-3)), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). CONCLUSIONS The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI.
Collapse
|
106
|
Wingo JE, Low DA, Keller DM, Kimura K, Crandall CG. Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans. Am J Physiol Regul Integr Comp Physiol 2015; 309:R623-7. [PMID: 26157054 PMCID: PMC4591374 DOI: 10.1152/ajpregu.00018.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022]
Abstract
The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively (P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets (P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation (P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets (P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating (P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress.
Collapse
Affiliation(s)
- Jonathan E Wingo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama
| | - David A Low
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - David M Keller
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; Department of Kinesiology, University of Texas at Arlington, Arlington, Texas; and
| | - Kenichi Kimura
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; Department of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas;
| |
Collapse
|
107
|
Mejia N, Dedow K, Nguy L, Sullivan P, Khoshnevis S, Diller KR. An On-Site Thermoelectric Cooling Device for Cryotherapy and Control of Skin Blood Flow. J Med Device 2015; 9:0445021-445026. [PMID: 26421089 DOI: 10.1115/1.4029508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/23/2014] [Indexed: 12/23/2022] Open
Abstract
Cryotherapy involves the surface application of low temperatures to enhance the healing of soft tissue injuries. Typical devices embody a remote source of chilled water that is pumped through a circulation bladder placed on the treatment site. In contrast, the present device uses thermoelectric refrigeration modules to bring the cooling source directly to the tissue to be treated, thereby achieving significant improvements in control of therapeutic temperature while having a reduced size and weight. A prototype system was applied to test an oscillating cooling and heating protocol for efficacy in regulating skin blood perfusion in the treatment area. Data on 12 human subjects indicate that thermoelectric coolers (TECs) delivered significant and sustainable changes in perfusion for both heating (increase by (±SE) 173.0 ± 66.0%, P < 0.005) and cooling (decrease by (±SE) 57.7 ± 4.2%, P < 0.0005), thus supporting the feasibility of a TEC-based device for cryotherapy with local temperature regulation.
Collapse
Affiliation(s)
- Natalia Mejia
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, TX 78712-1081 e-mail:
| | - Karl Dedow
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, TX 78712-1081 e-mail:
| | - Lindsey Nguy
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, TX 78712-1081 e-mail:
| | - Patrick Sullivan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, TX 78712-1081 e-mail:
| | - Sepideh Khoshnevis
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, TX 78712-1081 e-mail:
| | - Kenneth R Diller
- Fellow ASME Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, TX 78712-1081 e-mail:
| |
Collapse
|
108
|
Local and remote thermoregulatory changes affect NIRS measurement in forearm muscles. Eur J Appl Physiol 2015; 115:2281-91. [DOI: 10.1007/s00421-015-3208-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/24/2015] [Indexed: 01/23/2023]
|
109
|
The contribution of sensory nerves to cutaneous vasodilatation of the forearm and leg to local skin heating. Eur J Appl Physiol 2015; 115:2091-8. [PMID: 25998144 DOI: 10.1007/s00421-015-3188-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/09/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The initial cutaneous vasodilatory response to local skin heating is larger in the forearm than the leg. While the initial vasodilatation of the forearm to local heating is primarily dependent on sensory nerves, their role in the leg is unknown. We compared the contribution of sensory nerves in driving the cutaneous vasodilatory response of the forearm and leg to local heating using local anaesthetic (EMLA) cream. METHOD In seven participants, two skin sites were selected on both the dorsal forearm and anterolateral calf; one site on each region received EMLA, with the other an untreated control. All sites were controlled at 33 °C and then locally heated to 42 °C with integrated laser-Doppler local heating probes. RESULTS Cutaneous vascular conductance (CVC) during the initial vasodilatation to local heating was smaller in the leg (47 ± 9% max) compared to the forearm (62 ± 7 % max) (P = 0.012). EMLA reduced the initial vasodilatation at both the leg (27 ± 13 % max) (P = 0.02) and forearm (33 ± 14% max) (P < 0.001). The times to onset of vasodilatation, initial vasodilatory peak, and plateau phase were longer in the leg compared to the forearm (all P < 0.05), and EMLA increased these times in both regions (both P < 0.05). CVC during the plateau phase to sustained local skin heating was higher in the leg compared to the forearm at both the untreated (93 ± 6 vs. 85 ± 4% max) (P = 0.33) and EMLA-treated (94 ± 5 vs. 86 ± 6% max) (P = 0.001) sites; EMLA did not affect CVC (P > 0.05). CONCLUSION The differences in the initial vasodilatory peak to local skin heating between the forearm and the leg are due to the contribution of sensory nerves.
Collapse
|
110
|
Abnormal thermography in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:852-7. [PMID: 26003411 DOI: 10.1016/j.parkreldis.2015.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/25/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND An autonomic denervation and abnormal vasomotor reflex in the skin have been described in Parkinson's disease (PD) and might be evaluable using thermography with cold stress test. METHODS A cross-sectional pilot study was undertaken in 35 adults: 15 patients with PD and abnormal [(123)I]-metaiodobenzylguanidine cardiac scintigraphy and 20 healthy controls. Baseline thermography of both hands was obtained before immersing one in cold water (3 ± 1 °C) for 2 min. Continuous thermography was performed in: non-immersed hand (right or with lesser motor involvement) during immersion of the contralateral hand and for 6 min afterward; and contralateral immersed hand for 6 min post-immersion. The region of interest was the dorsal skin of the third finger, distal phalanx. RESULTS PD patients showed a lower mean baseline hand temperature (p = 0.037) and greater thermal difference between dorsum of wrist and third finger (p = 0.036) and between hands (p = 0.0001) versus controls, regardless of the motor laterality. Both tests evidenced an adequate capacity to differentiate between groups: in the non-immersed hand, the PD patients did not show the normal cooling pattern or final thermal overshoot observed in controls (F = 5.29; p = 0.001), and there was an AUC of 0.897 (95%CI 0.796-0.998) for this cooling; in the immersed hand, thermal recovery at 6 min post-immersion was lesser in patients (29 ± 17% vs. 55 ± 28%, p = 0.002), with an AUC of 0.810 (95%CI 0.662-0.958). CONCLUSIONS PD patients reveal abnormal skin thermal responses in thermography with cold stress test, suggesting cutaneous autonomic dysfunction. This simple technique may be useful to evaluate autonomic dysfunction in PD.
Collapse
|
111
|
Progress in Huntington’s disease: the search for markers of disease onset and progression. J Neurol 2015; 262:1990-5. [DOI: 10.1007/s00415-015-7700-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/26/2022]
|
112
|
Abstract
Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview.
Collapse
Affiliation(s)
- Xiaojiang Xu
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
113
|
|
114
|
Greyling A, Schreuder THA, Landman T, Draijer R, Verheggen RJHM, Hopman MTE, Thijssen DHJ. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes. J Appl Physiol (1985) 2015; 118:579-85. [PMID: 25593286 DOI: 10.1152/japplphysiol.00936.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P < 0.001). Forearm skin temperature, brachial artery BF, and shear rate significantly increased in the heated arm (P < 0.001), and to a greater extent compared with the nonheated arm in both groups (interaction effect P < 0.001). The glucose load caused a transient decrease in FMD% (P < 0.05), whereas heating significantly prevented the decline (interaction effect P < 0.01). Also, when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P < 0.05). These effects on FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia.
Collapse
Affiliation(s)
- Arno Greyling
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Unilever R&D Vlaardingen, The Netherlands; and
| | - Tim H A Schreuder
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thijs Landman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Maria T E Hopman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
115
|
Liao F, Jan YK. Assessing skin blood flow dynamics in older adults using a modified sample entropy approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:722-5. [PMID: 25570060 DOI: 10.1109/embc.2014.6943692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aging process may result in attenuated microvascular reactivity in response to environmental stimuli, which can be evaluated by analyzing skin blood flow (SBF) signals. Among various methods for analyzing physiological signals, sample entropy (SE) is commonly used to quantify the degree of regularity of time series. However, we found that for temporally correlated data, SE value depends on the sampling rate. When data are oversampled, SE may give misleading results. To address this problem, we propose to modify the definition of SE by using time-lagged vectors in the calculation of the conditional probability that any two vectors of successive data points are within a tolerance r for m points remain within the tolerance at the next point. The lag could be chosen as the first minimum of the auto mutual information function. We tested the performance of modified SE using simulated signals and SBF data. The results showed that modified SE is able to quantify the degree of regularity of the signals regardless of sampling rate. Using this approach, we observed a more regular behavior of blood flow oscillations (BFO) during local heating-induced maximal vasodilation period compared to the baseline in young and older adults and a more regular behavior of BFO in older adults compared to young adults. These results suggest that modified SE may be useful in the study of SBF dynamics.
Collapse
|
116
|
Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction. Microvasc Res 2015; 97:109-14. [DOI: 10.1016/j.mvr.2014.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
|
117
|
Del Pozzi AT, Hodges GJ. To reheat, or to not reheat: that is the question: The efficacy of a local reheating protocol on mechanisms of cutaneous vasodilatation. Microvasc Res 2015; 97:47-54. [DOI: 10.1016/j.mvr.2014.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
|
118
|
Cheung SS. Responses of the hands and feet to cold exposure. Temperature (Austin) 2015; 2:105-20. [PMID: 27227009 PMCID: PMC4843861 DOI: 10.1080/23328940.2015.1008890] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
An initial response to whole-body or local exposure of the extremities to cold is a strong vasoconstriction, leading to a rapid decrease in hand and foot temperature. This impairs tactile sensitivity, manual dexterity, and muscle contractile characteristics while increasing pain and sympathetic drive, decreasing gross motor function, occupational performance, and survival. A paradoxical and cyclical vasodilatation often occurs in the fingers, toes, and face, and this has been termed the hunting response or cold-induced vasodilatation (CIVD). Despite being described almost a century ago, the mechanisms of CIVD are still disputed; research in this area has remained largely descriptive in nature. Recent research into CIVD has brought increased standardization of methodology along with new knowledge about the impact of mediating factors such as hypoxia and physical fitness. Increasing mechanistic analysis of CIVD has also emerged along with improved modeling and prediction of CIVD responses. The present review will survey work conducted during this century on CIVD, its potential mechanisms and modeling, and also the broader context of manual function in cold conditions.
Collapse
Affiliation(s)
- Stephen S Cheung
- Environmental Ergonomics Laboratory; Department of Kinesiology ; Brock University; St. Catharines , Canada
| |
Collapse
|
119
|
Vionnet J, Calero-Romero I, Heim A, Rotaru C, Engelberger RP, Dischl B, Noël B, Liaudet L, Waeber B, Feihl F. No Major Impact of Skin Aging on the Response of Skin Blood Flow to a Submaximal Local Thermal Stimulus. Microcirculation 2014; 21:730-7. [DOI: 10.1111/micc.12154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Julien Vionnet
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Irene Calero-Romero
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Abigaël Heim
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Corina Rotaru
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Rolf Peter Engelberger
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Benoît Dischl
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Bernard Noël
- Service de Dermatologie et Vénéréologie; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Lucas Liaudet
- Service de Médecine Intensive de l'Adulte; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - Bernard Waeber
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| | - François Feihl
- Division de Physiopathologie Clinique; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne Switzerland
| |
Collapse
|
120
|
Toda N, Okamura T. Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflugers Arch 2014; 467:1165-78. [PMID: 25339222 DOI: 10.1007/s00424-014-1621-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/29/2022]
Abstract
Cerebral vascular resistance and blood flow were widely considered to be regulated solely by tonic innervation of vasoconstrictor adrenergic nerves. However, pieces of evidence suggesting that parasympathetic nitrergic nerve activation elicits vasodilatation in dog and monkey cerebral arteries were found in 1990. Nitric oxide (NO) as a neurotransmitter liberated from parasympathetic postganglionic neurons decreases cerebral vascular tone and resistance and increases cerebral blood flow, which overcome vasoconstrictor responses to norepinephrine liberated from adrenergic nerves. Functional roles of nitrergic vasodilator nerves are found also in peripheral vasculature, including pulmonary, renal, mesenteric, hepatic, ocular, uterine, nasal, skeletal muscle, and cutaneous arteries and veins; however, adrenergic nerve-induced vasoconstriction is evidently greater than nitrergic vasodilatation in these vasculatures. In coronary arteries, neurogenic NO-mediated vasodilatation is not clearly noted; however, vasodilatation is induced by norepinephrine released from adrenergic nerves that activates β1-adrenoceptors. Impaired actions of NO liberated from the endothelium and nitrergic neurons are suggested to participate in cerebral hypoperfusion, leading to brain dysfunction, like that in Alzheimer's disease. Nitrergic neural dysfunction participates in impaired circulation in peripheral organs and tissues and also in systemic blood pressure increase. NO and vasodilator peptides, as sensory neuromediators, are involved in neurogenic vasodilatation in the skin. Functioning of nitrergic vasodilator nerves is evidenced not only in a variety of mammals, including humans and monkeys, but also in non-mammals. The present review article includes recent advances in research on the functional importance of nitrergic nerves concerning the control of cerebral blood flow, as well as other regions, and vascular resistance. Although information is still insufficient, the nitrergic nerve histology and function in vasculatures of non-mammals are also summarized.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Cho-me, Azuchi-machi, Chuo-ku, Osaka, 541-0052, Japan,
| | | |
Collapse
|
121
|
Temperature-Modulated Photodynamic Therapy for the Treatment of Actinic Keratosis on the Extremities. Dermatol Surg 2014; 40:1094-102. [DOI: 10.1097/01.dss.0000452662.69539.57] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
122
|
Del Rosso JQ. Management of cutaneous rosacea: emphasis on new medical therapies. Expert Opin Pharmacother 2014; 15:2029-38. [DOI: 10.1517/14656566.2014.945423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
123
|
Salgado MAM, Salgado-Filho MF, Reis-Brito JO, Lessa MA, Tibirica E. Effectiveness of laser Doppler perfusion monitoring in the assessment of microvascular function in patients undergoing on-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth 2014; 28:1211-6. [PMID: 25125374 DOI: 10.1053/j.jvca.2014.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To evaluate the effectiveness of single-point laser Doppler perfusion monitoring (LDPM) in the assessment of microvascular reactivity in the skin during cardiopulmonary bypass (CPB). DESIGN Cross-sectional observational study. SETTING Government-affiliated teaching hospital. PARTICIPANTS Twenty male patients aged 60 ± 2 years who underwent coronary artery bypass grafting under CPB. INTERVENTIONS The authors assessed the endothelium-dependent vasodilation of the skin microcirculation at the forehead and forearm using LDPM coupled with thermal hyperemia. This measurement was performed before and after the induction of anesthesia, during and after CPB, and 24 h after the end of the surgical procedure. RESULTS The basal values of microvascular flow before the induction of anesthesia were significantly higher in the skin of the forehead compared with that of the forearm. There were no significant alterations in microvascular reactivity throughout the recording periods for both recording sites, as assessed by the vasodilation range expressed as cutaneous vascular conductance (arbitrary perfusion units/mean arterial pressure). CONCLUSIONS Using LDPM, the authors showed that the microcirculatory bed of the skin of the forehead, which is readily accessible during cardiac surgery, is a suitable model for the study of microvascular reactivity and tissue perfusion in cardiovascular surgical procedures using CPB. This technique could, thus, be suitable for evaluating the effects of drugs or technical procedures on tissue perfusion during cardiac surgery under cardiopulmonary bypass.
Collapse
Affiliation(s)
| | | | | | - Marcos A Lessa
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Eduardo Tibirica
- National Institute of Cardiology, Ministry of Health; Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
124
|
Stanhewicz AE, Greaney JL, Kenney WL, Alexander LM. Sex- and limb-specific differences in the nitric oxide-dependent cutaneous vasodilation in response to local heating. Am J Physiol Regul Integr Comp Physiol 2014; 307:R914-9. [PMID: 25100074 DOI: 10.1152/ajpregu.00269.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Local heating of the skin is commonly used to assess cutaneous microvasculature function. Controversy exists as to whether there are limb or sex differences in the nitric oxide (NO)-dependent contribution to this vasodilation, as well as the NO synthase (NOS) isoform mediating the responses. We tested the hypotheses that 1) NO-dependent vasodilation would be greater in the calf compared with the forearm; 2) total NO-dependent dilation would not be different between sexes within limb; and 3) women would exhibit greater neuronal NOS (nNOS)-dependent vasodilation in the calf. Two microdialysis fibers were placed in the skin of the ventral forearm and the calf of 19 (10 male and 9 female) young (23 ± 1 yr) adults for the local delivery of Ringer solution (control) or 5 mM N(ω)-propyl-l-arginine (NPLA; nNOS inhibition). Vasodilation was induced by local heating (42°C) at each site, after which 20 mM N(G)-nitro-l-arginine methyl ester (l-NAME) was perfused for within-site assessment of NO-dependent vasodilation. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and normalized to maximum (28 mM sodium nitroprusside, 43°C). Total NO-dependent vasodilation in the calf was lower compared with the forearm in both sexes (Ringer: 42 ± 5 vs. 62 ± 4%; P < 0.05; NPLA: 37 ± 3 vs. 59 ± 5%; P < 0.05) and total NO-dependent vasodilation was lower in the forearm for women (Ringer: 52 ± 6 vs. 71 ± 4%; P < 0.05; NPLA: 47 ± 6 vs. 68 ± 5%; P < 0.05). NPLA did not affect total or NO-dependent vasodilation across limbs in either sex (P > 0.05). These data suggest that the NO-dependent component of local heating-induced cutaneous vasodilation is lower in the calf compared with the forearm. Contrary to our original hypothesis, there was no contribution of nNOS to NO-dependent vasodilation in either limb during local heating.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania
| | - Jody L Greaney
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
125
|
Abstract
The purpose of this review is to describe the unique anatomical and physiological features of the hands and feet that support heat conservation and dissipation, and in so doing, highlight the importance of these appendages in human thermoregulation. For instance, the surface area to mass ratio of each hand is 4-5 times greater than that of the body, whilst for each foot, it is ~3 times larger. This characteristic is supported by vascular responses that permit a theoretical maximal mass flow of thermal energy of 6.0 W (136 W m(2)) to each hand for a 1 °C thermal gradient. For each foot, this is 8.5 W (119 W m(2)). In an air temperature of 27 °C, the hands and feet of resting individuals can each dissipate 150-220 W m(2) (male-female) of heat through radiation and convection. During hypothermia, the extremities are physiologically isolated, restricting heat flow to <0.1 W. When the core temperature increases ~0.5 °C above thermoneutral (rest), each hand and foot can sweat at 22-33 mL h(-1), with complete evaporation dissipating 15-22 W (respectively). During heated exercise, sweat flows increase (one hand: 99 mL h(-1); one foot: 68 mL h(-1)), with evaporative heat losses of 67-46 W (respectively). It is concluded that these attributes allow the hands and feet to behave as excellent radiators, insulators and evaporators.
Collapse
|
126
|
Hands and feet: physiological insulators, radiators and evaporators. Eur J Appl Physiol 2014; 114:2037-60. [DOI: 10.1007/s00421-014-2940-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
|
127
|
Trangmar SJ, Chiesa ST, Stock CG, Kalsi KK, Secher NH, González-Alonso J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J Physiol 2014; 592:3143-60. [PMID: 24835170 PMCID: PMC4214665 DOI: 10.1113/jphysiol.2014.272104] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle cerebral artery velocity (MCA Vmean), arterial–venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38.3 ± 0.1 vs. 36.8 ± 0.1°C), impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA Vmean by 12–23% without compromising CCA blood flow. During euhydrated incremental exercise on a separate day, however, exercise capacity and ICA, MCA Vmean and CCA dynamics were preserved. The fast decline in cerebral perfusion with dehydration was accompanied by increased O2 extraction (P < 0.05), resulting in a maintained cerebral metabolic rate for oxygen (CMRO2). In all conditions, reductions in ICA and MCA Vmean were associated with declining cerebral vascular conductance, increasing jugular venous noradrenaline, and falling arterial carbon dioxide tension () (R2 ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were related to elevated blood temperature. In conclusion, dehydration accelerated the decline in CBF by decreasing and enhancing vasoconstrictor activity. However, the circulatory strain on the human brain during maximal exercise does not compromise CMRO2 because of compensatory increases in O2 extraction.
Collapse
Affiliation(s)
- Steven J Trangmar
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Scott T Chiesa
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Christopher G Stock
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Kameljit K Kalsi
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK
| | - Niels H Secher
- Centre for Sports Medicine and Human Performance, Brunel University, London, UK Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
128
|
Caldwell JN, Matsuda-Nakamura M, Taylor NAS. Three-dimensional interactions of mean body and local skin temperatures in the control of hand and foot blood flows. Eur J Appl Physiol 2014; 114:1679-89. [DOI: 10.1007/s00421-014-2894-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/15/2014] [Indexed: 11/29/2022]
|
129
|
Three-dimensional interactions of mean body and local skin temperatures in the control of hand and foot blood flows. Eur J Appl Physiol 2014. [PMID: 24819447 DOI: 10.1007/s00421‐014‐2894‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
PURPOSE Much is known about the control of blood flow, yet gaps remain concerning the interactions of deep-body and peripheral thermal feedback. In this experiment, changes in the vascular tone of the hands and feet were mapped to demonstrate the separate and combined influences of mean body and local skin temperature changes. METHODS Eight males participated in three trials. Three pre-experimental conditions were established via water immersion (oesophageal temperatures: 36.1, 37.0, 38.5 °C), with core and mean skin temperatures then clamped (water-perfusion garment) whilst five thermal treatments were applied to the right hand and left foot (5, 15, 25, 33, 40 °C). This yielded 15 thermal combinations under which hand and foot blood flows were measured (displacement plethysmography). RESULTS Lower volume-specific blood flows were observed at the foot for almost all temperature combinations. When thermoneutral and moderately hyperthermic, the cutaneous thermosensitivity of the hand was significantly greater: thermoneutral: 0.2 vs. 0.1 (foot) mL 100 mL(-1) min(-1) °C(-1) (P < 0.05); moderate hyperthermia: 0.4 vs. 0.2 (foot) mL 100 mL(-1) min(-1) °C(-1) (P < 0.05). The hand was 13 times more responsive to core temperature elevations than an equivalent local skin temperature change. For the foot, this thermosensitivity differed by a factor of 26. CONCLUSION These observations identified the hands as heat radiators, with the feet resisting heat loss, and reinforce the dominance of central thermal feedback, particularly in controlling foot blood flow. However, thermosensitivity to local skin temperature changes was highly plastic, site-specific and dictated by thermal and regional variations in vaso- and venoconstrictor tone.
Collapse
|
130
|
Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation. Microvasc Res 2014; 93:87-91. [DOI: 10.1016/j.mvr.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/25/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
|
131
|
Thermal body patterns for healthy Brazilian adults (male and female). J Therm Biol 2014; 42:1-8. [DOI: 10.1016/j.jtherbio.2014.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/19/2022]
|
132
|
Lawley JS, Oliver SJ, Mullins PG, Macdonald JH, Moore JP. Prolonged (9 h) poikilocapnic hypoxia (12% O2) augments cutaneous thermal hyperaemia in healthy humans. Exp Physiol 2014; 99:909-20. [PMID: 24706191 DOI: 10.1113/expphysiol.2013.076562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The primary aim of this study was to investigate the effect of systemic poikilocapnic hypoxia on forearm cutaneous thermal hyperaemia. A secondary aim was to examine the relationship between the individual susceptibility to oxygen desaturation and cutaneous vasodilator capacity. Twelve healthy participants (seven male) were exposed to 9 h of normoxia and 12% poikilocapnic hypoxia in a temperature- and humidity-controlled environmental chamber. Skin blood flow was assessed at the ventral forearm using laser Doppler flowmetry combined with rapid local heating. After 6 min at baseline (skin temperature clamped at 33°C), local skin temperature was elevated at a rate of 0.5°C every 5 s up to 42°C to elicit a sensory axon response and then held constant for 30 min to cause a plateau. Skin blood flow was calculated as cutaneous vascular conductance [CVC; in perfusion units/mean arterial blood pressure (APU mmHg(-1))] and expressed in raw format and relative to heating at 44°C in normoxia (%CVC44). During hypoxaemia, vasodilatation was greater during the initial peak (raw, Δ0.35 APU mmHg(-1), P = 0.09; %CVC44, Δ18%, P = 0.05) and the plateau phase (raw, Δ0.55 APU mmHg(-1), P = 0.03; %CVC44, Δ26%, P = 0.02). The rate of rise in cutaneous blood flow during the initial peak was significantly greater during poikilocapnic hypoxia (P < 0.01). We observed a negative relationship between oxygen saturation in poikilocapnic hypoxia and the change in baseline (P = 0.06), initial peak (P = 0.01) and plateau phase of thermal hyperaemia (P = 0.01). Prolonged poikilocapnic hypoxia causes robust increases in CVC during both phases of thermal hyperaemia that are dependent on the oxygen saturation of the individual.
Collapse
Affiliation(s)
- Justin S Lawley
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX, USA
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Paul G Mullins
- Bangor Imaging Center, School of Psychology, Bangor University, Gwynedd, UK
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
133
|
Klasson S, Svensson K, Wollmer P, Velander P, Svensson H. Blood flow dynamics and sensitivity in breasts after reconstruction with DIEP-flap. J Plast Surg Hand Surg 2014; 48:407-11. [DOI: 10.3109/2000656x.2014.903194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
134
|
Roustit M, Khouri C, Blaise S, Villier C, Carpentier P, Cracowski JL. Pharmacologie du phénomène de Raynaud. Therapie 2014; 69:115-28. [DOI: 10.2515/therapie/2013068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/20/2022]
|
135
|
Del Rosso JQ. Management of facial erythema of rosacea: what is the role of topical α-adrenergic receptor agonist therapy? J Am Acad Dermatol 2014; 69:S44-56. [PMID: 24229637 DOI: 10.1016/j.jaad.2013.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 06/16/2013] [Indexed: 12/19/2022]
Abstract
Several more recent advances have led to a better understanding of the pathophysiologic mechanisms involved in rosacea and therapeutic modalities used for treatment. Although the clinical features may vary among patients, there are some unifying mechanisms that appear to relate to the more common presentations of rosacea. Both neurovascular dysregulation and augmented immune detection and response appear to play central roles that lead to many of the signs and symptoms of rosacea. Diffuse central facial erythema is a very common finding that intensifies during flares and persists to varying degrees between flares. This background of facial redness occurs secondary to vasodilation and fixed vascular changes that develop over time. Physical modalities are commonly used to treat the erythema that persists as a result of fixed changes in superficial cutaneous vasculature that do not remit after treatment with agents whose mechanisms are active primarily against some of the inflammatory processes operative in rosacea (ie metronidazole, azelaic acid, tetracyclines). As enlarged superficial cutaneous vessels that contribute to the fixed background facial redness of rosacea remain vasoactive to sympathetic nervous system innervation, topical α-adrenergic receptor agonists, namely brimonidine and oxymetazoline, are currently under evaluation for the treatment of facial erythema of rosacea. This article focuses on the clinical differentiation of facial erythema of rosacea and its management.
Collapse
Affiliation(s)
- James Q Del Rosso
- Dermatology Residency Program, Valley Hospital Medical Center Las Vegas, Las Vegas, Nevada; Dermatology, Touro University College of Osteopathic Medicine, Henderson, Nevada; Dermatology and Cutaneous Surgery, Las Vegas Skin and Cancer Clinics, Las Vegas and Henderson, Nevada.
| |
Collapse
|
136
|
Bruning RS, Kenney WL, Alexander LM. Altered skin flowmotion in hypertensive humans. Microvasc Res 2014; 97:81-7. [PMID: 24418051 DOI: 10.1016/j.mvr.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/11/2013] [Accepted: 01/01/2014] [Indexed: 01/10/2023]
Abstract
Essential hypertensive humans exhibit attenuated cutaneous nitric oxide (NO)-dependent vasodilation. Using spectral analysis (fast Fourier transformation) we aimed to characterize the skin flowmotion contained in the laser-Doppler flowmetry recordings during local heating-induced vasodilation before and after concurrent pharmacological inhibition of nitric oxide synthase (NOS) in hypertensive and age-matched normotensive men and women. We hypothesized that hypertensive subjects would have lower total power spectral densities (PSDs), specifically in the frequency intervals associated with intrinsic endothelial and neurogenic control of the microvasculature. Furthermore, we hypothesized that NOS inhibition would attenuate the endothelial frequency interval. Laser-Doppler flowmetry recordings during local heating experiments from 18 hypertensive (MAP: 108±2mmHg) and 18 normotensive (MAP: 88±2mmHg) men and women were analyzed. Within site NO-dependent vasodilation was assessed by perfusion of a non-specific NOS inhibitor (N(G)-nitro-l-arginine methyl ester; l-NAME) through intradermal microdialysis during the heating-induced plateau in skin blood flow. Local heating-induced vasodilation increased total PSD for all frequency intervals (all p<0.001). Hypertensives had a lower total PSD (p=0.03) and absolute neurogenic frequency intervals (p<0.01) compared to the normotensives. When normalized as a percentage of total PSD, hypertensives had reduced neurogenic (p<0.001) and augmented myogenic contributions (p=0.04) to the total spectrum. NOS inhibition decreased total PSD (p<0.001) for both groups, but hypertensives exhibited lower absolute endothelial (p<0.01), neurogenic (p<0.05), and total PSD (p<0.001) frequency intervals compared to normotensives. These data suggest that essential hypertension results in altered neurogenic and NOS-dependent control of skin flowmotion and support the use of spectral analysis as a non-invasive technique to study vasoreactivity.
Collapse
Affiliation(s)
- R S Bruning
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802-6900, USA
| | - W L Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802-6900, USA
| | - L M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802-6900, USA.
| |
Collapse
|
137
|
Holwerda SW, Trowbridge CA, Womochel KS, Keller DM. Effects of cold modality application with static and intermittent pneumatic compression on tissue temperature and systemic cardiovascular responses. Sports Health 2014; 5:27-33. [PMID: 24381698 PMCID: PMC3548661 DOI: 10.1177/1941738112450863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: In the therapeutic setting, cryotherapy with varying levels of intermittent
cyclical compression often replaces an ice bag and elastic wrap. However,
little is known about the cardiovascular strain and tissue temperature
decreases associated with cooling and intermittent compression. Hypothesis: The authors hypothesized that higher levels of intermittent compression will
result in greater reductions of tissue temperature and that all cold
modalities will cause acute increases in cardiovascular strain. Design: Experimental crossover repeated measure design. Methods: Ten healthy subjects (23 ± 3 years) volunteered for 4 cryotherapy sessions
(30-minute treatments with 30-minute passive recovery). Treatments included
ice with elastic wrap and Game Ready (GR) with no, medium (5-50 mmHg), and
high compression (5-75 mmHg). Throughout the experiment, oral, skin surface,
and intramuscular quadriceps temperatures were measured along with mean
arterial pressure, heart rate, rate pressure product, forearm blood flow,
and forearm vascular conductance. Results: Mean arterial pressure increased up to 5 minutes (P <
0.05). Forearm blood flow and forearm vascular conductance decreased after
baseline (P < 0.05), but there were no differences
between treatments. Peak intramuscular changes from baseline were −14 ± 2°C
(ice), −11 ± 6°C (GRHIGH), −10 ± 5°C (GRMED), and −7 ±
3°C (GRNO). Ice cooled the muscle the most, while GR with medium
and high compression cooled more than GR without compression
(P < 0.05). Conclusions: The application of cold and intermittent pneumatic compression using GR did
not produce acute cardiovascular strain that exceeded the strain produced by
standard ice bags/elastic wrap treatment. Greater temperature decreases are
achieved with medium- and high-pressure settings when using the GR
system. Clinical Relevance: Type of cold and amount of compression affect tissue cooling in healthy lean
subjects. All tested cold modalities caused acute increases in
cardiovascular strain; however, these increases are no more than what
healthy subjects experience with the onset of exercise.
Collapse
|
138
|
Abstract
Microvascular dysfunction in diabetes plays a crucial role in the development of diabetic complications. The skin, as one of the most accessible organs, serves as a model for the investigation of microvascular dysfunction. Several non-invasive, mostly laser-Doppler-based methods have been developed lately to assess microvascular function in the skin. Microvascular functional changes occur even in the prediabetic state and become more complex with overt diabetes, being exacerbated by the presence of peripheral and/or autonomic diabetic neuropathy. The present article aims at shedding light on the implication of endothelial and neurovascular dysfunction in microvascular changes in diabetes, highlighting the contribution of different forms of diabetic neuropathy.
Collapse
Affiliation(s)
- Alin Stirban
- Profil Institute for Metabolic Research, Hellersbergstr. 9, 41460, Neuss, Germany,
| |
Collapse
|
139
|
Messere A, Roatta S. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy. Physiol Rep 2013; 1:e00179. [PMID: 24744858 PMCID: PMC3970749 DOI: 10.1002/phy2.179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/27/2022] Open
Abstract
The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near‐infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer–Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS‐based), total hemoglobin concentration (tHb, BL‐based), tissue oxygenation index (TOI, SRS‐based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10‐fold increase in SBF. Contraction‐induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL‐based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. The influence of cutaneous circulation on muscle NIRS monitoring has been seldom investigated and is often overlooked. This study shows that cutaneous dilatation induced by superficial warming produces consistent changes in standard Beer–Lambert (BL) parameters while leaving spatially resolved parameters unaffected. Thus, Beer–Lambert parameters should be interpreted with caution whenever changes in cutaneous perfusion are expected to occur.
Collapse
|
140
|
Bandini A, Orlandi S, Manfredi C, Evangelisti A, Barrella M, Bevilacqua M, Bocchi L. Modelling of Thermal Hyperemia in the Skin of Type 2 Diabetic Patients. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:541-54. [DOI: 10.1260/2040-2295.4.4.541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
141
|
Liao F, O’Brien WD, Jan YK. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: implications for pressure ulcer risk. PHYSICA A 2013; 392:10.1016/j.physa.2013.06.007. [PMID: 24319315 PMCID: PMC3849034 DOI: 10.1016/j.physa.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The objective of this study was to investigate the effects of local heating on complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (Δt = 10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelia related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.
Collapse
Affiliation(s)
- Fuyuan Liao
- Rehabilitation Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL
| | - William D. O’Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yih-Kuen Jan
- Rehabilitation Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL
| |
Collapse
|
142
|
Miyazawa T, Horiuchi M, Komine H, Sugawara J, Fadel PJ, Ogoh S. Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise. Eur J Appl Physiol 2013; 113:2841-8. [DOI: 10.1007/s00421-013-2723-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
143
|
Wang DS, Louie JD, Kothary N, Shah RP, Sze DY. Prophylactic topically applied ice to prevent cutaneous complications of nontarget chemoembolization and radioembolization. J Vasc Interv Radiol 2013; 24:596-600. [PMID: 23522163 DOI: 10.1016/j.jvir.2012.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
Cutaneous complications can result from nontarget deposition during transcatheter arterial chemoembolization or radioembolization. Liver tumors may receive blood supply from parasitized extrahepatic arteries (EHAs) that also perfuse skin or from hepatic arteries located near the origin of the falciform artery (FA), which perfuses the anterior abdominal wall. To vasoconstrict cutaneous vasculature and prevent nontarget deposition, ice packs were topically applied to at-risk skin in nine chemoembolization treatments performed via 14 parasitized EHAs, seven chemoembolization treatments near the FA origin, and five radioembolization treatments in cases in which the FA could not be prophylactically coil-embolized. No postprocedural cutaneous complications were encountered.
Collapse
Affiliation(s)
- David S Wang
- Division of Interventional Radiology, Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, H3630, Stanford, CA 94305-5642, USA.
| | | | | | | | | |
Collapse
|
144
|
Precooling methods and their effects on athletic performance : a systematic review and practical applications. Sports Med 2013; 43:207-25. [PMID: 23329610 DOI: 10.1007/s40279-012-0014-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Precooling is a popular strategy used to combat the debilitating effects of heat-stress-induced fatigue and extend the period in which an individual can tolerate a heat-gaining environment. Interest in precooling prior to sporting activity has increased over the past three decades, with options including the application (external) and ingestion (internal) of cold modalities including air, water and/or ice, separately or in combination, immediately prior to exercise. Although many studies have observed improvements in exercise capacity or performance following precooling, some strategies are more logistically challenging than others, and thus are often impractical for use in competition or field settings. OBJECTIVE The purpose of this article was to comprehensively evaluate the established precooling literature, which addresses the application of cooling strategies that are likely to enhance field-based sports performance, while discussing the practical and logistical issues associated with these methods. We undertook a narrative examination that focused on the practical and event-specific application of precooling and its effect on physiological parameters and performance. DATA SOURCES Relevant precooling literature was located through the PubMed database with second- and third-order reference lists manually cross matched for relevant journal articles. The last day of the literature search was 31 January 2012. STUDY SELECTION Relevant studies were included on the basis of conforming to strict criteria, including the following: (i) cooling was conducted before exercise; (ii) cooling was conducted during the performance task in a manner that was potentially achievable during sports competition; (iii) a measure of athletic performance was assessed; (iv) subjects included were able bodied, and free of diseases or disorders that would affect thermoregulation; (v) subjects were endurance-trained humans (maximal oxygen uptake [[Formula: see text]O(2max)] >50 ml/kg/min for endurance protocols); (vi) cooling was not performed on already hyperthermic subjects that were in immediate danger of heat-related illnesses or had received passive heating treatments; (vii) drink ingestion protocols were used for the intended purpose of benefiting thermoregulation as a result of beverage temperature; and (viii) investigations employed ≥ six subjects. Initial searches yielded 161 studies, but 106 were discarded on failing to meet the established criteria. This final summary evaluated 74 precooling treatments, across 55 studies employing well trained subjects. STUDY APPRAISAL AND SYNTHESIS METHODS Key physiological and performance information from each study was extracted and presented, and includes respective subject characteristics, detailed precooling methods, exercise protocols, environmental conditions, along with physiological and performance outcomes. Data were presented in comparison to respective control treatments. For studies that include more than one treatment intervention, the comparative results between each precooling treatment were also presented. The practical benefits and limitations of employing each strategy in the field and in relation to sports performance were summarized. RESULTS Clear evidence of the benefits for a range of precooling strategies undertaken in the laboratory setting exists, which suggest that these strategies could be employed by athletes who compete in hot environmental conditions to improve exercise safety, reduce their perceived thermal stress and improve sports performance. LIMITATIONS This review did not include a systematic assessment of the study quality rating and provided a subjective assessment of the pooled outcomes of studies, which range in precooling methodologies and exercise outcomes. The wide range of research designs, precooling methods, environmental conditions and exercise protocols make it difficult to integrate all the available research into single findings. CONCLUSION Most laboratory studies have shown improvements in exercise performance following precooling and the emergence of strategies that are practically relevant to the field setting now allow scientists to individualize relevant strategies for teams and individuals at competition locations. Future research is warranted to investigate the effectiveness of practical precooling strategies in competition or field settings.
Collapse
|
145
|
Bandini A, Orlandi S, Manfredi C, Evangelisti A, Barrella M, Bevilacqua M, Bocchi L. Effect of local blood flow in thermal regulation in diabetic patient. Microvasc Res 2013; 88:42-7. [DOI: 10.1016/j.mvr.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/04/2013] [Accepted: 03/17/2013] [Indexed: 01/25/2023]
|
146
|
Roustit M, Cracowski JL. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci 2013; 34:373-84. [DOI: 10.1016/j.tips.2013.05.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/03/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
|
147
|
Kuroki C, Godai K, Hasegawa-Moriyama M, Kuniyoshi T, Matsunaga A, Kanmura Y, Kuwaki T. Perfusion index as a possible predictor for postanesthetic shivering. J Anesth 2013; 28:19-25. [PMID: 23784000 DOI: 10.1007/s00540-013-1658-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Postanesthetic shivering can be triggered by surgical stress and several aspects of anesthetic management and is frequently preceded by a decrease in peripheral blood flow due to thermoregulatory vasoconstriction. As perfusion index correlates with peripheral blood flow, we examined whether perioperative perfusion index, measured using pulse oximetry, might be correlated with postanesthetic shivering. METHODS Twenty-eight patients presenting for elective abdominal surgery were enrolled. Core (esophagus) and peripheral (finger) temperatures and perfusion index were recorded in the perioperative periods. Correlations between perfusion index and peripheral temperature and core-to-peripheral temperature gradient were then explored. Plasma levels of epinephrine and norepinephrine were also measured. The extent of shivering was graded after emergence from anesthesia. RESULTS Perfusion index declined before emergence from anesthesia in patients who then developed postanesthetic shivering. This coincided with the time at which the difference between core and peripheral temperature became dissociated and peripheral temperature declined. Perioperative perfusion index was correlated with peripheral temperature and peripheral-core temperature gradient. Perfusion index at closure of the peritoneum predicted postanesthetic shivering and was significantly correlated with the extent of shivering. Plasma levels of both epinephrine and norepinephrine were significantly elevated after shivering events. CONCLUSIONS Perfusion index was significantly lower in patients with postanesthetic shivering before emergence from anesthesia, indicating that measurement of perfusion index during and before the end of anesthesia might be a useful means of predicting postanesthetic shivering.
Collapse
Affiliation(s)
- Chiharu Kuroki
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
148
|
Albrecht PJ, Hou Q, Argoff CE, Storey JR, Wymer JP, Rice FL. Excessive peptidergic sensory innervation of cutaneous arteriole-venule shunts (AVS) in the palmar glabrous skin of fibromyalgia patients: implications for widespread deep tissue pain and fatigue. PAIN MEDICINE 2013; 14:895-915. [PMID: 23691965 DOI: 10.1111/pme.12139] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. SETTING Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. SUBJECTS Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. METHODS Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. RESULTS AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. CONCLUSIONS The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory modulation of the excess sensory innervation.
Collapse
|
149
|
Skin blood flow dynamics and its role in pressure ulcers. J Tissue Viability 2013; 22:25-36. [PMID: 23602509 DOI: 10.1016/j.jtv.2013.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/20/2022]
Abstract
Pressure ulcers are a significant healthcare problem affecting the quality of life in wheelchair bounded or bed-ridden people and are a major cost to the healthcare system. Various assessment tools such as the Braden scale have been developed to quantify the risk level of pressure ulcers. These tools have provided an initial guideline on preventing pressure ulcers while additional assessments are needed to improve the outcomes of pressure ulcer prevention. Skin blood flow function that determines the ability of the skin in response to ischemic stress has been proposed to be a good indicator for identifying people at risk of pressure ulcers. Wavelet spectral and nonlinear complexity analyses have been performed to investigate the influences of the metabolic, neurogenic and myogenic activities on microvascular regulation in people with various pathological conditions. These findings have contributed to the understanding of the role of ischemia and viability on the development of pressure ulcers. The purpose of the present review is to provide an introduction of the basic concepts and approaches for the analysis of skin blood flow oscillations, and present an overview of the research results obtained so far. We hope this information may contribute to the development of better clinical guidelines for the prevention of pressure ulcers.
Collapse
|
150
|
Cold-induced vasodilation and vasoconstriction in the finger of tropical and temperate indigenes. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2012.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|