101
|
Sias AC, Jafar Y, Goodpaster CM, Ramírez-Armenta K, Wrenn TM, Griffin NK, Patel K, Lamparelli AC, Sharpe MJ, Wassum KM. Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories. Nat Neurosci 2024; 27:728-736. [PMID: 38396258 PMCID: PMC11110430 DOI: 10.1038/s41593-024-01586-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
To make adaptive decisions, we build an internal model of the associative relationships in an environment and use it to make predictions and inferences about specific available outcomes. Detailed, identity-specific cue-reward memories are a core feature of such cognitive maps. Here we used fiber photometry, cell-type and pathway-specific optogenetic manipulation, Pavlovian cue-reward conditioning and decision-making tests in male and female rats, to reveal that ventral tegmental area dopamine (VTADA) projections to the basolateral amygdala (BLA) drive the encoding of identity-specific cue-reward memories. Dopamine is released in the BLA during cue-reward pairing; VTADA→BLA activity is necessary and sufficient to link the identifying features of a reward to a predictive cue but does not assign general incentive properties to the cue or mediate reinforcement. These data reveal a dopaminergic pathway for the learning that supports adaptive decision-making and help explain how VTADA neurons achieve their emerging multifaceted role in learning.
Collapse
Affiliation(s)
- Ana C Sias
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yousif Jafar
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caitlin M Goodpaster
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Tyler M Wrenn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas K Griffin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Keshav Patel
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
102
|
Mohebi A, Wei W, Pelattini L, Kim K, Berke JD. Dopamine transients follow a striatal gradient of reward time horizons. Nat Neurosci 2024; 27:737-746. [PMID: 38321294 PMCID: PMC11001583 DOI: 10.1038/s41593-023-01566-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Animals make predictions to guide their behavior and update those predictions through experience. Transient increases in dopamine (DA) are thought to be critical signals for updating predictions. However, it is unclear how this mechanism handles a wide range of behavioral timescales-from seconds or less (for example, if singing a song) to potentially hours or more (for example, if hunting for food). Here we report that DA transients in distinct rat striatal subregions convey prediction errors based on distinct time horizons. DA dynamics systematically accelerated from ventral to dorsomedial to dorsolateral striatum, in the tempo of spontaneous fluctuations, the temporal integration of prior rewards and the discounting of future rewards. This spectrum of timescales for evaluative computations can help achieve efficient learning and adaptive motivation for a broad range of behaviors.
Collapse
Affiliation(s)
- Ali Mohebi
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Wei Wei
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lilian Pelattini
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kyoungjun Kim
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Joshua D Berke
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
103
|
Wang Y, Lak A, Manohar SG, Bogacz R. Dopamine encoding of novelty facilitates efficient uncertainty-driven exploration. PLoS Comput Biol 2024; 20:e1011516. [PMID: 38626219 PMCID: PMC11051659 DOI: 10.1371/journal.pcbi.1011516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 03/23/2024] [Indexed: 04/18/2024] Open
Abstract
When facing an unfamiliar environment, animals need to explore to gain new knowledge about which actions provide reward, but also put the newly acquired knowledge to use as quickly as possible. Optimal reinforcement learning strategies should therefore assess the uncertainties of these action-reward associations and utilise them to inform decision making. We propose a novel model whereby direct and indirect striatal pathways act together to estimate both the mean and variance of reward distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our model of the basal ganglia, and we fitted exploration strategies derived from the neural model to data from behavioural experiments. We also compared the performance of directed exploration strategies inspired by our basal ganglia model with other exploration algorithms including classic variants of upper confidence bound (UCB) strategy in simulation. The exploration strategies inspired by the basal ganglia model can achieve overall superior performance in simulation, and we found qualitatively similar results in fitting model to behavioural data compared with the fitting of more idealised normative models with less implementation level detail. Overall, our results suggest that transient dopamine levels in the basal ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives exploration in reinforcement learning.
Collapse
Affiliation(s)
- Yuhao Wang
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Armin Lak
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
104
|
Izowit G, Walczak M, Drwięga G, Solecki W, Błasiak T. Brain state-dependent responses of midbrain dopaminergic neurons to footshock under urethane anaesthesia. Eur J Neurosci 2024; 59:1536-1557. [PMID: 38233998 DOI: 10.1111/ejn.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.
Collapse
Affiliation(s)
- Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Magdalena Walczak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Gniewosz Drwięga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Cracow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
105
|
Millidge B, Tang M, Osanlouy M, Harper NS, Bogacz R. Predictive coding networks for temporal prediction. PLoS Comput Biol 2024; 20:e1011183. [PMID: 38557984 PMCID: PMC11008833 DOI: 10.1371/journal.pcbi.1011183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 04/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
One of the key problems the brain faces is inferring the state of the world from a sequence of dynamically changing stimuli, and it is not yet clear how the sensory system achieves this task. A well-established computational framework for describing perceptual processes in the brain is provided by the theory of predictive coding. Although the original proposals of predictive coding have discussed temporal prediction, later work developing this theory mostly focused on static stimuli, and key questions on neural implementation and computational properties of temporal predictive coding networks remain open. Here, we address these questions and present a formulation of the temporal predictive coding model that can be naturally implemented in recurrent networks, in which activity dynamics rely only on local inputs to the neurons, and learning only utilises local Hebbian plasticity. Additionally, we show that temporal predictive coding networks can approximate the performance of the Kalman filter in predicting behaviour of linear systems, and behave as a variant of a Kalman filter which does not track its own subjective posterior variance. Importantly, temporal predictive coding networks can achieve similar accuracy as the Kalman filter without performing complex mathematical operations, but just employing simple computations that can be implemented by biological networks. Moreover, when trained with natural dynamic inputs, we found that temporal predictive coding can produce Gabor-like, motion-sensitive receptive fields resembling those observed in real neurons in visual areas. In addition, we demonstrate how the model can be effectively generalized to nonlinear systems. Overall, models presented in this paper show how biologically plausible circuits can predict future stimuli and may guide research on understanding specific neural circuits in brain areas involved in temporal prediction.
Collapse
Affiliation(s)
- Beren Millidge
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Mufeng Tang
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Mahyar Osanlouy
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Nicol S. Harper
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
106
|
Secer G, Knierim JJ, Cowan NJ. Continuous Bump Attractor Networks Require Explicit Error Coding for Gain Recalibration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579874. [PMID: 38562699 PMCID: PMC10983875 DOI: 10.1101/2024.02.12.579874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Representations of continuous variables are crucial to create internal models of the external world. A prevailing model of how the brain maintains these representations is given by continuous bump attractor networks (CBANs) in a broad range of brain functions across different areas, such as spatial navigation in hippocampal/entorhinal circuits and working memory in prefrontal cortex. Through recurrent connections, a CBAN maintains a persistent activity bump, whose peak location can vary along a neural space, corresponding to different values of a continuous variable. To track the value of a continuous variable changing over time, a CBAN updates the location of its activity bump based on inputs that encode the changes in the continuous variable (e.g., movement velocity in the case of spatial navigation)-a process akin to mathematical integration. This integration process is not perfect and accumulates error over time. For error correction, CBANs can use additional inputs providing ground-truth information about the continuous variable's correct value (e.g., visual landmarks for spatial navigation). These inputs enable the network dynamics to automatically correct any representation error. Recent experimental work on hippocampal place cells has shown that, beyond correcting errors, ground-truth inputs also fine-tune the gain of the integration process, a crucial factor that links the change in the continuous variable to the updating of the activity bump's location. However, existing CBAN models lack this plasticity, offering no insights into the neural mechanisms and representations involved in the recalibration of the integration gain. In this paper, we explore this gap by using a ring attractor network, a specific type of CBAN, to model the experimental conditions that demonstrated gain recalibration in hippocampal place cells. Our analysis reveals the necessary conditions for neural mechanisms behind gain recalibration within a CBAN. Unlike error correction, which occurs through network dynamics based on ground-truth inputs, gain recalibration requires an additional neural signal that explicitly encodes the error in the network's representation via a rate code. Finally, we propose a modified ring attractor network as an example CBAN model that verifies our theoretical findings. Combining an error-rate code with Hebbian synaptic plasticity, this model achieves recalibration of integration gain in a CBAN, ensuring accurate representation for continuous variables.
Collapse
Affiliation(s)
- Gorkem Secer
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noah J Cowan
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
107
|
Jahn CI, Markov NT, Morea B, Daw ND, Ebitz RB, Buschman TJ. Learning attentional templates for value-based decision-making. Cell 2024; 187:1476-1489.e21. [PMID: 38401541 PMCID: PMC11574977 DOI: 10.1016/j.cell.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.
Collapse
Affiliation(s)
- Caroline I Jahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - Nikola T Markov
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Britney Morea
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - R Becket Ebitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
108
|
Alonso-Lozares I, Wilbers P, Asperl L, Teijsse S, van der Neut C, Schetters D, van Mourik Y, McDonald AJ, Heistek T, Mansvelder HD, De Vries TJ, Marchant NJ. Lateral hypothalamic GABAergic neurons encode alcohol memories. Curr Biol 2024; 34:1086-1097.e6. [PMID: 38423016 DOI: 10.1016/j.cub.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
In alcohol use disorder, the alcohol memories persist during abstinence, and exposure to stimuli associated with alcohol use can lead to relapse. This highlights the importance of investigating the neural substrates underlying not only relapse but also encoding and expression of alcohol memories. GABAergic neurons in the lateral hypothalamus (LH-GABA) have been shown to be critical for food-cue memories and motivation; however, the extent to which this role extends to alcohol-cue memories and motivations remains unexplored. In this study, we aimed to describe how alcohol-related memories are encoded and expressed in LH GABAergic neurons. Our first step was to monitor LH-GABA calcium transients during acquisition, extinction, and reinstatement of an alcohol-cue memory using fiber photometry. We trained the rats on a Pavlovian conditioning task, where one conditioned stimulus (CS+) predicted alcohol (20% EtOH) and another conditioned stimulus (CS-) had no outcome. We then extinguished this association through non-reinforced presentations of the CS+ and CS- and finally, in two different groups, we measured relapse under non-primed and alcohol-primed induced reinstatement. Our results show that initially both cues caused increased LH-GABA activity, and after learning only the alcohol cue increased LH-GABA activity. After extinction, this activity decreases, and we found no differences in LH-GABA activity during reinstatement in either group. Next, we inhibited LH-GABA neurons with optogenetics to show that activity of these neurons is necessary for the formation of an alcohol-cue association. These findings suggest that LH-GABA might be involved in attentional processes modulated by learning.
Collapse
Affiliation(s)
- Isis Alonso-Lozares
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Pelle Wilbers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Lina Asperl
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Sem Teijsse
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Charlotte van der Neut
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Dustin Schetters
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Allison J McDonald
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam 1081 HZ, the Netherlands
| | - Taco J De Vries
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam 1081 HZ, the Netherlands; Compulsivity Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam 1081 HZ, the Netherlands.
| |
Collapse
|
109
|
Larry N, Zur G, Joshua M. Organization of reward and movement signals in the basal ganglia and cerebellum. Nat Commun 2024; 15:2119. [PMID: 38459003 PMCID: PMC10923830 DOI: 10.1038/s41467-024-45921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2024] [Indexed: 03/10/2024] Open
Abstract
The basal ganglia and the cerebellum are major subcortical structures in the motor system. The basal ganglia have been cast as the reward center of the motor system, whereas the cerebellum is thought to be involved in adjusting sensorimotor parameters. Recent findings of reward signals in the cerebellum have challenged this dichotomous view. To compare the basal ganglia and the cerebellum directly, we recorded from oculomotor regions in both structures from the same monkeys. We partitioned the trial-by-trial variability of the neurons into reward and eye-movement signals to compare the coding across structures. Reward expectation and movement signals were the most pronounced in the output structure of the basal ganglia, intermediate in the cerebellum, and the smallest in the input structure of the basal ganglia. These findings suggest that reward and movement information is sharpened through the basal ganglia, resulting in a higher signal-to-noise ratio than in the cerebellum.
Collapse
Affiliation(s)
- Noga Larry
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel.
| | - Gil Zur
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
110
|
Morningstar MD, Timme NM, Ma B, Cornwell E, Galbari T, Lapish CC. Proactive Versus Reactive Control Strategies Differentially Mediate Alcohol Drinking in Male Wistars and P Rats. eNeuro 2024; 11:ENEURO.0385-23.2024. [PMID: 38423790 PMCID: PMC10972740 DOI: 10.1523/eneuro.0385-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Problematic alcohol consumption is associated with deficits in decision-making and alterations in prefrontal cortex neural activity likely contribute. We hypothesized that the differences in cognitive control would be evident between male Wistars and a model of genetic risk: alcohol-preferring P rats. Cognitive control is split into proactive and reactive components. Proactive control maintains goal-directed behavior independent of a stimulus, whereas reactive control elicits goal-directed behavior at the time of a stimulus. We hypothesized that Wistars would show proactive control over alcohol seeking whereas P rats would show reactive control over alcohol seeking. Neural activity was recorded from the prefrontal cortex during an alcohol seeking task with two session types. On congruent sessions, the conditioned stimulus (CS+) was on the same side as alcohol access. Incongruent sessions presented alcohol opposite the CS+. Wistars, but not P rats, made more incorrect approaches during incongruent sessions, suggesting that Wistars utilized the previously learned rule. This motivated the hypothesis that neural activity reflecting proactive control would be observable in Wistars but not P rats. While P rats showed differences in neural activity at times of alcohol access, Wistars showed differences prior to approaching the sipper. These results support our hypothesis that Wistars are more likely to engage in proactive cognitive control strategies whereas P rats are more likely to engage in reactive cognitive control strategies. Although P rats were bred to prefer alcohol, the differences in cognitive control may reflect a sequela of behaviors that mirror those in humans at risk for an AUD.
Collapse
Affiliation(s)
- M D Morningstar
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - N M Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - B Ma
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - E Cornwell
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - T Galbari
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - C C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
- Department of Anatomy, Cell Biology, and Physiology, Stark Neurosciences, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
111
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
112
|
Lu X, Xue J, Lai Y, Tang X. Heterogeneity of mesencephalic dopaminergic neurons: From molecular classifications, electrophysiological properties to functional connectivity. FASEB J 2024; 38:e23465. [PMID: 38315491 DOI: 10.1096/fj.202302031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The mesencephalic dopamine (DA) system is composed of neuronal subtypes that are molecularly and functionally distinct, are responsible for specific behaviors, and are closely associated with numerous brain disorders. Existing research has made significant advances in identifying the heterogeneity of mesencephalic DA neurons, which is necessary for understanding their diverse physiological functions and disease susceptibility. Moreover, there is a conflict regarding the electrophysiological properties of the distinct subsets of midbrain DA neurons. This review aimed to elucidate recent developments in the heterogeneity of midbrain DA neurons, including subpopulation categorization, electrophysiological characteristics, and functional connectivity to provide new strategies for accurately identifying distinct subtypes of midbrain DA neurons and investigating the underlying mechanisms of these neurons in various diseases.
Collapse
Affiliation(s)
- Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yudong Lai
- Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xiaolu Tang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
113
|
Malén T, Santavirta S, De Maeyer S, Tuisku J, Kaasinen V, Kankare T, Isojärvi J, Rinne J, Hietala J, Nuutila P, Nummenmaa L. Alterations in type 2 dopamine receptors across neuropsychiatric conditions: A large-scale PET cohort. Neuroimage Clin 2024; 41:103578. [PMID: 38395027 PMCID: PMC10944176 DOI: 10.1016/j.nicl.2024.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Aberrant dopaminergic function is linked with motor, psychotic, and affective symptoms, but studies have typically compared a single patient group with healthy controls. METHODS Here, we investigated the variation in striatal (caudate nucleus, nucleus accumbens, and putamen) and thalamic type 2 dopamine receptor (D2R) availability using [11C]raclopride positron emission tomography (PET) data from a large sample of 437 humans including healthy controls, and subjects with Parkinson's disease (PD), antipsychotic-naïve schizophrenia, severe violent behavior, pathological gambling, depression, and overweight. We analyzed regional group differences in D2R availability. We also analyzed the interregional correlation in D2R availability within each group. RESULTS Subjects with PD showed the clearest decline in D2R availability. Overall, the groups showed high interregional correlation in D2R availability, while this pattern was weaker in violent offenders. Subjects with schizophrenia, pathological gambling, depression, or overweight did not show clear changes in either the regional receptor availability or the interregional correlation. CONCLUSION We conclude that the dopaminergic changes in neuropsychiatric conditions might not only affect the overall receptor availability but also how coupled regions are across people. The region-specific receptor availability more profoundly links to the motor symptoms, while the between-region coupling might be disrupted in violence.
Collapse
Affiliation(s)
- Tuulia Malén
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland.
| | - Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| | | | | | - Valtteri Kaasinen
- Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Neurocenter, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Janne Isojärvi
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland; Department of Endocrinology, Turku University Hospital and University of Turku, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland; Turku University Hospital, Turku, Finland; Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
114
|
Castell L, Le Gall V, Cutando L, Petit CP, Puighermanal E, Makrini-Maleville L, Kim HR, Jercog D, Tarot P, Tassou A, Harrus AG, Rubinstein M, Nouvian R, Rivat C, Besnard A, Trifilieff P, Gangarossa G, Janak PH, Herry C, Valjent E. Dopamine D2 receptors in WFS1-neurons regulate food-seeking and avoidance behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110883. [PMID: 37858736 DOI: 10.1016/j.pnpbp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.
Collapse
Affiliation(s)
- Laia Castell
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France; Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Valentine Le Gall
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Laura Cutando
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Chloé P Petit
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Emma Puighermanal
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | | | - Ha-Rang Kim
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Daniel Jercog
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Pauline Tarot
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Adrien Tassou
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | | | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Régis Nouvian
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Cyril Rivat
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Antoine Besnard
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Pierre Trifilieff
- Université, Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux F-33000, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France; Institut Universitaire de France, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cyril Herry
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Emmanuel Valjent
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France.
| |
Collapse
|
115
|
Barry MLLR, Gerstner W. Fast adaptation to rule switching using neuronal surprise. PLoS Comput Biol 2024; 20:e1011839. [PMID: 38377112 PMCID: PMC10906910 DOI: 10.1371/journal.pcbi.1011839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2024] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signal is extracted from an increase in neural activity after an imbalance of excitation and inhibition. The surprise signal modulates synaptic plasticity via a three-factor learning rule which increases plasticity at moments of surprise. The surprise signal remains small when transitions between sensory events follow a previously learned rule but increases immediately after rule switching. In a spiking network with several modules, previously learned rules are protected against overwriting, as long as the number of modules is larger than the total number of rules-making a step towards solving the stability-plasticity dilemma in neuroscience. Our model relates the subjective notion of surprise to specific predictions on the circuit level.
Collapse
Affiliation(s)
- Martin L. L. R. Barry
- School of Computer and Communication Sciences and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
116
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
117
|
Tang JCY, Paixao V, Carvalho F, Silva A, Klaus A, da Silva JA, Costa RM. Dynamic behaviour restructuring mediates dopamine-dependent credit assignment. Nature 2024; 626:583-592. [PMID: 38092040 PMCID: PMC10866702 DOI: 10.1038/s41586-023-06941-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Animals exhibit a diverse behavioural repertoire when exploring new environments and can learn which actions or action sequences produce positive outcomes. Dopamine release after encountering a reward is critical for reinforcing reward-producing actions1-3. However, it has been challenging to understand how credit is assigned to the exact action that produced the dopamine release during continuous behaviour. Here we investigated this problem in mice using a self-stimulation paradigm in which specific spontaneous movements triggered optogenetic stimulation of dopaminergic neurons. Dopamine self-stimulation rapidly and dynamically changes the structure of the entire behavioural repertoire. Initial stimulations reinforced not only the stimulation-producing target action, but also actions similar to the target action and actions that occurred a few seconds before stimulation. Repeated pairings led to a gradual refinement of the behavioural repertoire to home in on the target action. Reinforcement of action sequences revealed further temporal dependencies of refinement. Action pairs spontaneously separated by long time intervals promoted a stepwise credit assignment, with early refinement of actions most proximal to stimulation and subsequent refinement of more distal actions. Thus, a retrospective reinforcement mechanism promotes not only reinforcement, but also gradual refinement of the entire behavioural repertoire to assign credit to specific actions and action sequences that lead to dopamine release.
Collapse
Affiliation(s)
- Jonathan C Y Tang
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Vitor Paixao
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Kinetikos, Coimbra, Portugal
| | - Filipe Carvalho
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Open Ephys Production Site, Lisbon, Portugal
| | - Artur Silva
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Andreas Klaus
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Joaquim Alves da Silva
- Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Experimental Clinical Research Programme, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rui M Costa
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
- Allen Institute, Seattle, WA, USA.
| |
Collapse
|
118
|
Amo R. Prediction error in dopamine neurons during associative learning. Neurosci Res 2024; 199:12-20. [PMID: 37451506 DOI: 10.1016/j.neures.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dopamine neurons have long been thought to facilitate learning by broadcasting reward prediction error (RPE), a teaching signal used in machine learning, but more recent work has advanced alternative models of dopamine's computational role. Here, I revisit this critical issue and review new experimental evidences that tighten the link between dopamine activity and RPE. First, I introduce the recent observation of a gradual backward shift of dopamine activity that had eluded researchers for over a decade. I also discuss several other findings, such as dopamine ramping, that were initially interpreted to conflict but later found to be consistent with RPE. These findings improve our understanding of neural computation in dopamine neurons.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
119
|
Fudge JL, Kelly EA, Love TM. Amygdalo-nigral inputs target dopaminergic and GABAergic neurons in the primate: a view from dendrites and soma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575910. [PMID: 38293165 PMCID: PMC10827221 DOI: 10.1101/2024.01.16.575910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The central nucleus (CeN) of the amygdala is an important afferent to the DA system that mediates motivated learning. We previously found that CeN terminals in nonhuman primates primarily overlap the elongated lateral VTA (parabrachial pigmented nucleus, PBP, A10), and retrorubral field(A8) subregion. Here, we examined CeN afferent contacts on cell somata and proximal dendrites of DA and GABA neurons, and distal dendrites of each, using confocal and electron microscopy (EM) methods, respectively. At the soma/proximal dendrites, the proportion of TH+ and GAD1+ cells receiving at least one CeN afferent contact was surprisingly similar (TH = 0.55: GAD1=0.55 in PBP; TH = 0.56; GAD1 =0.51 in A8), with the vast majority of contacted TH+ and GAD1+ soma/proximal dendrites received 1-2 contacts. Similar numbers of tracer-labeled terminals also contacted TH-positive and GAD1-positive small dendrites and/or spines (39% of all contacted dendrites were either TH- or GAD1-labeled). Overall, axon terminals had more symmetric (putative inhibitory) axonal contacts with no difference in the relative distribution in the PBP versus A8, or onto TH+ versus GAD1+ dendrites/spines in either region. The striking uniformity in the amygdalonigral projection across the PBP-A8 terminal field suggests that neither neurotransmitter phenotype nor midbrain location dictates likelihood of a terminal contact. We discuss how this afferent uniformity can play out in recently discovered differences in DA:GABA cell densities between the PBP and A8, and affect specific outputs. Significance statement The amygdala's central nucleus (CeN) channels salient cues to influence both appetitive and aversive responses via DA outputs. In higher species, the broad CeN terminal field overlaps the parabrachial pigmented nucleus ('lateral A10') and the retrorubral field (A8). We quantified terminal contacts in each region on DA and GABAergic soma/proximal dendrites and small distal dendrites. There was striking uniformity in contacts on DA and GABAergic cells, regardless of soma and dendritic compartment, in both regions. Most contacts were symmetric (putative inhibitory) with little change in the ratio of inhibitory to excitatory contacts by region.We conclude that post-synaptic shifts in DA-GABA ratios are key to understanding how these relatively uniform inputs can produce diverse effects on outputs.
Collapse
|
120
|
Ma Y, Guo C, Luo Y, Gao S, Sun J, Chen Q, Lv X, Cao J, Lei Z, Fang J. Altered neural activity in the reward-related circuit associated with anhedonia in mild to moderate Major Depressive Disorder. J Affect Disord 2024; 345:216-225. [PMID: 37866737 DOI: 10.1016/j.jad.2023.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Anhedonia is a significant predictor of disease progression and treatment outcomes in Major Depressive Disorder (MDD), linked to reward network dysfunctions. However, understanding of its underlying neural mechanisms remains limited. This study aimed to investigate the brain functional mechanisms underlying MDD with anhedonia using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS The Snaith-Hamilton Pleasure Scale (SHAPS) was used to evaluation MDD with anhedonia (anMDD) and non-anhedonia MDD (non-anMDD). Forty-eight patients with anMDD, Forty-four patients with non-anMDD, and Fifty healthy controls (HCs) were enrolled for the fMRI scans. A seed-based functional connectivity (FC) method was employed to explore reward network abnormalities. RESULTS anMDD patients exhibited lower FC values in Ventral Striatum (VS), right lateral Ventral Tegmental Area (VTA_R), left Thalamus (THA_L), and higher FC values in Ventromedial Prefrontal Cortex (vmPFC), left Anterior Insula (AI_L), and Presupplementary Motor Area (Pre-SMA) compared to HCs. Comparing anMDD to non-anMDD, significant differences were observed in FC values of VS, vmPFC, Pre-SMA, and THA_L regions. Correlation analysis revealed positive correlations between FC values of VS_R and NAc_R, as well as THA_L and Cerebellum_Crus1_L, with SHAPS scores. Negative correlations were observed between FC values of Pre-SMA and the right caudate, and between vmPFC and Frontal_Mid_Orb_L, and SHAPS scores. CONCLUSION Both anMDD and non-anMDD groups demonstrated abnormal FCs in the reward network. These findings indicate distinct roles of reward-related circuits in the two subtypes, contributing to a refined understanding of depression phenotypes and potential directions for targeted interventions.
Collapse
Affiliation(s)
- Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueyu Lv
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Lei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
121
|
Fan Y, Doi T, Gold JI, Ding L. Neural Representations of Post-Decision Accuracy and Reward Expectation in the Caudate Nucleus and Frontal Eye Field. J Neurosci 2024; 44:e0902232023. [PMID: 37963761 PMCID: PMC10860634 DOI: 10.1523/jneurosci.0902-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023] Open
Abstract
Performance monitoring that supports ongoing behavioral adjustments is often examined in the context of either choice confidence for perceptual decisions (i.e., "did I get it right?") or reward expectation for reward-based decisions (i.e., "what reward will I receive?"). However, our understanding of how the brain encodes these distinct evaluative signals remains limited because they are easily conflated, particularly in commonly used two-alternative tasks with symmetric rewards for correct choices. Previously we used a motion-discrimination task with asymmetric rewards to identify neural substrates of forming reward-biased perceptual decisions in the caudate nucleus (part of the striatum in the basal ganglia) and the frontal eye field (FEF, in prefrontal cortex). Here we leveraged this task design to partially decouple estimates of accuracy and reward expectation and examine their impacts on subsequent decisions and their representations in those two brain areas. We identified distinguishable representations of these two evaluative signals in individual caudate and FEF neurons, with regional differences in their distribution patterns and time courses. We observed that well-trained monkeys (both sexes) used both evaluative signals, infrequently but consistently, to adjust their subsequent decisions. We found further that these behavioral adjustments had reliable relationships with the neural representations of both evaluative signals in caudate, but not FEF. These results suggest that the cortico-striatal decision network may use diverse evaluative signals to monitor and adjust decision-making behaviors, adding to our understanding of the different roles that the FEF and caudate nucleus play in a diversity of decision-related computations.
Collapse
Affiliation(s)
- Yunshu Fan
- Neuroscience Graduate Group, Departments of Neuroscience
| | - Takahiro Doi
- Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joshua I Gold
- Neuroscience Graduate Group, Departments of Neuroscience
| | - Long Ding
- Neuroscience Graduate Group, Departments of Neuroscience
| |
Collapse
|
122
|
Sasaki R, Ohta Y, Onoe H, Yamaguchi R, Miyamoto T, Tokuda T, Tamaki Y, Isa K, Takahashi J, Kobayashi K, Ohta J, Isa T. Balancing risk-return decisions by manipulating the mesofrontal circuits in primates. Science 2024; 383:55-61. [PMID: 38175903 DOI: 10.1126/science.adj6645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Decision-making is always coupled with some level of risk, with more pathological forms of risk-taking decisions manifesting as gambling disorders. In macaque monkeys trained in a high risk-high return (HH) versus low risk-low return (LL) choice task, we found that the reversible pharmacological inactivation of ventral Brodmann area 6 (area 6V) impaired the risk dependency of decision-making. Selective optogenetic activation of the mesofrontal pathway from the ventral tegmental area (VTA) to the ventral aspect of 6V resulted in stronger preference for HH, whereas activation of the pathway from the VTA to the dorsal aspect of 6V led to LL preference. Finally, computational decoding captured the modulations of behavioral preference. Our results suggest that VTA inputs to area 6V determine the decision balance between HH and LL.
Collapse
Affiliation(s)
- Ryo Sasaki
- Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara 630-0192, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8507, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| | - Takeshi Miyamoto
- Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
- Japan Society for the Promotion of Science, Chiyoda-Ku, Tokyo 102-0083, Japan
| | - Takashi Tokuda
- Institute of Innovative Research, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8550, Japan
| | - Yuki Tamaki
- Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| | - Kaoru Isa
- Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto-shi, Kyoto 606-8507, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki-shi, Aichi 444-8585, Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara 630-0192, Japan
| | - Tadashi Isa
- Division of Physiology and Neurobiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| |
Collapse
|
123
|
Coizet V, Al Tannir R, Pautrat A, Overton PG. Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures. Curr Neuropharmacol 2024; 22:1473-1490. [PMID: 37594168 PMCID: PMC11097992 DOI: 10.2174/1570159x21666230818154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 08/19/2023] Open
Abstract
The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animal's repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.
Collapse
Affiliation(s)
- Véronique Coizet
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Racha Al Tannir
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Arnaud Pautrat
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
124
|
Brissenden JA, Scerbak T, Albin RL, Lee TG. Motivational Vigor in Parkinson's Disease Requires the Short and Long Duration Response to Levodopa. Mov Disord 2024; 39:76-84. [PMID: 38062630 PMCID: PMC10842158 DOI: 10.1002/mds.29659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Impaired movement vigor (bradykinesia) is a cardinal feature of Parkinson's disease (PD) and hypothesized to result from abnormal motivational processes-impaired motivation-vigor coupling. Dopamine replacement therapy (DRT) improves bradykinesia, but the response to DRT is multifaceted, comprising a short-duration response (SDR) and a long-duration response (LDR) only manifesting with chronic treatment. Prior experiments assessing motivation-vigor coupling in PD used chronically treated subjects, obscuring the roles of the SDR and LDR. METHODS To disambiguate the SDR and LDR, 11 de novo PD subjects (6 male [M]:5 female [F]; mean age, 67) were studied before treatment, after an acute levodopa (l-dopa) dose, and in both the practical "off" (LDR) and "on" (LDR + SDR) states after chronic stable treatment. At each visit, subjects were characterized with a standard battery including the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and an incentivized joystick task to assess motor performance in response to varying rewards. RESULTS l-Dopa induced a robust SDR and LDR, with further improvement in the combined SDR + LDR state. At baseline, after acute treatment (SDR), and after LDR induction, subjects did not exhibit the normal increase in movement speed with increasing reward. Only in the combined SDR + LDR state was there restoration of motivation-vigor coupling. CONCLUSIONS Although consistent with prior results in chronically treated PD subjects, the significant improvement in motor performance observed with the SDR and LDR suggests that bradykinesia is not solely secondary to deficient modulation of motivational processes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- James A Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Teresa Scerbak
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Service and Geriatric Research Education and Clinical Center, Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
125
|
Vautrelle N, Coizet V, Leriche M, Dahan L, Schulz JM, Zhang YF, Zeghbib A, Overton PG, Bracci E, Redgrave P, Reynolds JN. Sensory Reinforced Corticostriatal Plasticity. Curr Neuropharmacol 2024; 22:1513-1527. [PMID: 37533245 PMCID: PMC11097983 DOI: 10.2174/1570159x21666230801110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Regional changes in corticostriatal transmission induced by phasic dopaminergic signals are an essential feature of the neural network responsible for instrumental reinforcement during discovery of an action. However, the timing of signals that are thought to contribute to the induction of corticostriatal plasticity is difficult to reconcile within the framework of behavioural reinforcement learning, because the reinforcer is normally delayed relative to the selection and execution of causally-related actions. OBJECTIVE While recent studies have started to address the relevance of delayed reinforcement signals and their impact on corticostriatal processing, our objective was to establish a model in which a sensory reinforcer triggers appropriately delayed reinforcement signals relayed to the striatum via intact neuronal pathways and to investigate the effects on corticostriatal plasticity. METHODS We measured corticostriatal plasticity with electrophysiological recordings using a light flash as a natural sensory reinforcer, and pharmacological manipulations were applied in an in vivo anesthetized rat model preparation. RESULTS We demonstrate that the spiking of striatal neurons evoked by single-pulse stimulation of the motor cortex can be potentiated by a natural sensory reinforcer, operating through intact afferent pathways, with signal timing approximating that required for behavioural reinforcement. The pharmacological blockade of dopamine receptors attenuated the observed potentiation of corticostriatal neurotransmission. CONCLUSION This novel in vivo model of corticostriatal plasticity offers a behaviourally relevant framework to address the physiological, anatomical, cellular, and molecular bases of instrumental reinforcement learning.
Collapse
Affiliation(s)
- Nicolas Vautrelle
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Véronique Coizet
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
- Institut des Neurosciences de Grenoble, Université Joseph Fourier, Inserm, U1216, 38706 La Tronche Cedex, France
| | - Mariana Leriche
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Lionel Dahan
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, UPS, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Jan M. Schulz
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Biomedicine, University of Basel, CH - 4056 Basel, Switzerland
| | - Yan-Feng Zhang
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Abdelhafid Zeghbib
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Enrico Bracci
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | - John N.J. Reynolds
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
126
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
127
|
Li L, Rana AN, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. Cell Rep 2023; 42:113566. [PMID: 38100349 PMCID: PMC11090260 DOI: 10.1016/j.celrep.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together, these findings provide a more complete understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Akshay N Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
128
|
H Z R, H J S, R C S B, Kr R, R RD, M E B. Physical Exercise Promotes Beneficial Changes on Neurotrophic Factors in Mesolimbic Brain Areas After AMPH Relapse: Involvement of the Endogenous Opioid System. Neurotox Res 2023; 41:741-751. [PMID: 37904065 DOI: 10.1007/s12640-023-00675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Addiction is a serious public health problem, and the current pharmacotherapy is unable to prevent drug use reinstatement. Studies have focused on physical exercise as a promising coadjuvant treatment. Our research group recently showed beneficial neuroadaptations in the dopaminergic system related to amphetamine-relapse prevention involving physical exercise-induced endogenous opioid system activation (EXE-OS activation). In this context, additional mechanisms were explored to understand the exercise benefits on drug addiction. Male rats previously exposed to amphetamine (AMPH, 4.0 mg/kg) for 8 days were submitted to physical exercise for 5 weeks. EXE-OS activation was blocked by naloxone administration (0.3 mg/kg) 5 min before each physical exercise session. After the exercise protocol, the rats were re-exposed to AMPH for 3 days, and in sequence, euthanasia was performed and the VTA and NAc were dissected. In the VTA, our findings showed increased immunocontent of proBDNF, BDNF, and GDNF and decreased levels of AMPH-induced TrkB; therefore, EXE-OS activation increased all these markers and naloxone administration prevented this exercise-induced effect. In the NAc, the same molecular markers were also increased by AMPH and decreased by EXE-OS activation. In this study, we propose a close relation between EXE-OS activation beneficial influence and a consequent neuroadaptation on neurotrophins and dopaminergic system levels in the mesolimbic brain area, preventing the observed AMPH-relapse behavior. Our outcomes bring additional knowledge concerning addiction neurobiology understanding and show that EXE-OS activation may be a potential adjuvant tool in drug addiction therapy.
Collapse
Affiliation(s)
- Rosa H Z
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Segat H J
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Barcelos R C S
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roversi Kr
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Rossato D R
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Burger M E
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
129
|
Park H, Doh H, Lee E, Park H, Ahn WY. The neurocognitive role of working memory load when Pavlovian motivational control affects instrumental learning. PLoS Comput Biol 2023; 19:e1011692. [PMID: 38064498 PMCID: PMC10732416 DOI: 10.1371/journal.pcbi.1011692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/20/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
Research suggests that a fast, capacity-limited working memory (WM) system and a slow, incremental reinforcement learning (RL) system jointly contribute to instrumental learning. Thus, situations that strain WM resources alter instrumental learning: under WM loads, learning becomes slow and incremental, the reliance on computationally efficient learning increases, and action selection becomes more random. It is also suggested that Pavlovian learning influences people's behavior during instrumental learning by providing hard-wired instinctive responses including approach to reward predictors and avoidance of punishment predictors. However, it remains unknown how constraints on WM resources affect instrumental learning under Pavlovian influence. Thus, we conducted a functional magnetic resonance imaging (fMRI) study (N = 49) in which participants completed an instrumental learning task with Pavlovian-instrumental conflict (the orthogonalized go/no-go task) both with and without extra WM load. Behavioral and computational modeling analyses revealed that WM load reduced the learning rate and increased random choice, without affecting Pavlovian bias. Model-based fMRI analysis revealed that WM load strengthened RPE signaling in the striatum. Moreover, under WM load, the striatum showed weakened connectivity with the ventromedial and dorsolateral prefrontal cortex when computing reward expectations. These results suggest that the limitation of cognitive resources by WM load promotes slow and incremental learning through the weakened cooperation between WM and RL; such limitation also makes action selection more random, but it does not directly affect the balance between instrumental and Pavlovian systems.
Collapse
Affiliation(s)
- Heesun Park
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Hoyoung Doh
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Eunhwi Lee
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Harhim Park
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
130
|
van der Merwe R, Nadel J, Copes-Finke D, Pawelko S, Scott J, Ghanem M, Fox M, Morehouse C, McLaughlin R, Maddox C, Albert-Lyons R, Malaki G, Groce V, Turocy A, Aggadi N, Jin X, Howard C. Characterization of striatal dopamine projections across striatal subregions in behavioral flexibility. Eur J Neurosci 2023; 58:4466-4486. [PMID: 36617434 PMCID: PMC10329096 DOI: 10.1111/ejn.15910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Behavioural flexibility is key to survival in a dynamic environmentWhile flexible, goal-directed behaviours are initially dependent on dorsomedial striatum, they become dependent on lateral striatum as behaviours become inflexible. Similarly, lesions of dopamine terminals in lateral striatum disrupt the development of inflexible habits. This work suggests that dopamine release in lateral striatum may drive inflexible behaviours, though few studies have investigated a causative role of subpopulations of striatal dopamine terminals in reversal learning, a measure of flexibility. Here, we performed two optogenetic experiments to activate dopamine terminals in dorsomedial (DMS), dorsolateral (DLS) or ventral (nucleus accumbens [NAc]) striatum in DAT-Cre mice that expressed channelrhodopsin-2 via viral injection (Experiment I) or through transgenic breeding with an Ai32 reporter line (Experiment II) to determine how specific dopamine subpopulations impact reversal learning. Mice performed a reversal task in which they self-stimulated DMS, DLS, or NAc dopamine terminals by pressing one of two levers before action-outcome lever contingencies were reversed. Largely consistent with presumed ventromedial/lateral striatal function, we found that mice self-stimulating medial dopamine terminals reversed lever preference following contingency reversal, while mice self-stimulating NAc showed parial flexibility, and DLS self-stimulation resulted in impaired reversal. Impairments in DLS mice were characterized by more regressive errors and reliance on lose-stay strategies following reversal, as well as reduced within-session learning, suggesting reward insensitivity and overreliance on previously learned actions. This study supports a model of striatal function in which DMS and ventral dopamine facilitate goal-directed responding, and DLS dopamine supports more inflexible responding.
Collapse
Affiliation(s)
- R.K. van der Merwe
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - J.A. Nadel
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
- Northwestern University Interdepartmental Neuroscience Program (NUIN), Evanston, IL, USA
| | - D. Copes-Finke
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - S. Pawelko
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - J.S. Scott
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - M. Ghanem
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - M. Fox
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - C. Morehouse
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - R. McLaughlin
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - C. Maddox
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - R. Albert-Lyons
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - G. Malaki
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - V. Groce
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - A. Turocy
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - N. Aggadi
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - X. Jin
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
- NYU–ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - C.D. Howard
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| |
Collapse
|
131
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
132
|
Hernández-Ortiz E, Luis-Islas J, Tecuapetla F, Gutierrez R, Bermúdez-Rattoni F. Top-down circuitry from the anterior insular cortex to VTA dopamine neurons modulates reward-related memory. Cell Rep 2023; 42:113365. [PMID: 37924513 DOI: 10.1016/j.celrep.2023.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.
Collapse
Affiliation(s)
- Eduardo Hernández-Ortiz
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Jorge Luis-Islas
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Fatuel Tecuapetla
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
133
|
Sugawara SK, Yamamoto T, Nakayama Y, Hamano YH, Fukunaga M, Sadato N, Nishimura Y. Premovement activity in the mesocortical system links peak force but not initiation of force generation under incentive motivation. Cereb Cortex 2023; 33:11408-11419. [PMID: 37814358 PMCID: PMC10690858 DOI: 10.1093/cercor/bhad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Motivation facilitates motor performance; however, the neural substrates of the psychological effects on motor performance remain unclear. We conducted a functional magnetic resonance imaging experiment while human subjects performed a ready-set-go task with monetary incentives. Although subjects were only motivated to respond quickly, increasing the incentives improved not only reaction time but also peak grip force. However, the trial-by-trial correlation between reaction time and peak grip force was weak. Extensive areas in the mesocortical system, including the ventral midbrain (VM) and cortical motor-related areas, exhibited motivation-dependent activity in the premovement "Ready" period when the anticipated monetary reward was displayed. This premovement activity in the mesocortical system correlated only with subsequent peak grip force, whereas the activity in motor-related areas alone was associated with subsequent reaction time and peak grip force. These findings suggest that the mesocortical system linking the VM and motor-related regions plays a role in controlling the peak of force generation indirectly associated with incentives but not the initiation of force generation.
Collapse
Affiliation(s)
- Sho K Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 340-0193, Japan
| | - Tetsuya Yamamoto
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yoshihisa Nakayama
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Yuki H Hamano
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 340-0193, Japan
| | - Norihiro Sadato
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 340-0193, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
134
|
Prévost ED, Phillips A, Lauridsen K, Enserro G, Rubinstein B, Alas D, McGovern DJ, Ly A, Banks M, McNulty C, Kim YS, Fenno LE, Ramakrishnan C, Deisseroth K, Root DH. Monosynaptic inputs to ventral tegmental area glutamate and GABA co-transmitting neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535959. [PMID: 37066408 PMCID: PMC10104150 DOI: 10.1101/2023.04.06.535959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A unique population of ventral tegmental area (VTA) neurons co-transmits glutamate and GABA as well as functionally signals rewarding and aversive outcomes. However, the circuit inputs to VTA VGluT2+VGaT+ neurons are unknown, limiting our understanding of the functional capabilities of these neurons. To identify the inputs to VTA VGluT2+VGaT+ neurons, we coupled monosynaptic rabies tracing with intersectional genetic targeting of VTA VGluT2+VGaT+ neurons in mice. We found that VTA VGluT2+VGaT+ neurons received diverse brain-wide inputs. The largest numbers of monosynaptic inputs to VTA VGluT2+VGaT+ neurons were from superior colliculus, lateral hypothalamus, midbrain reticular nucleus, and periaqueductal gray, whereas the densest inputs relative to brain region volume were from dorsal raphe nucleus, lateral habenula, and ventral tegmental area. Based on these and prior data, we hypothesized that lateral hypothalamus and superior colliculus inputs were glutamatergic neurons. Optical activation of glutamatergic lateral hypothalamus neurons robustly activated VTA VGluT2+VGaT+ neurons regardless of stimulation frequency and resulted in flee-like ambulatory behavior. In contrast, optical activation of glutamatergic superior colliculus neurons activated VTA VGluT2+VGaT+ neurons for a brief period of time at high stimulation frequency and resulted in head rotation and arrested ambulatory behavior (freezing). For both pathways, behaviors induced by stimulation were uncorrelated with VTA VGluT2+VGaT+ neuron activity. However, stimulation of glutamatergic lateral hypothalamus neurons, but not glutamatergic superior colliculus neurons, was associated with VTA VGluT2+VGaT+ footshock-induced activity. We interpret these results such that inputs to VTA VGluT2+VGaT+ neurons may integrate diverse signals related to the detection and processing of motivationally-salient outcomes. Further, VTA VGluT2+VGaT+ neurons may signal threat-related outcomes, possibly via input from lateral hypothalamus glutamate neurons, but not threat-induced behavioral kinematics.
Collapse
Affiliation(s)
- Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Alysabeth Phillips
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Kristoffer Lauridsen
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Gunnar Enserro
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Bodhi Rubinstein
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Daniel Alas
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Makaila Banks
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Connor McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Yoon Seok Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Lief E. Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Current address: Department of Neuroscience, Dell Medical School, The University of Texas at Austin 78712
| | - Charu Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
135
|
Luján MÁ, Covey DP, Young-Morrison R, Zhang L, Kim A, Morgado F, Patel S, Bass CE, Paladini C, Cheer JF. Mobilization of endocannabinoids by midbrain dopamine neurons is required for the encoding of reward prediction. Nat Commun 2023; 14:7545. [PMID: 37985770 PMCID: PMC10662422 DOI: 10.1038/s41467-023-43131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Brain levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) shape motivated behavior and nucleus accumbens (NAc) dopamine release. However, it is not clear whether mobilization of 2-AG specifically from midbrain dopamine neurons is necessary for dopaminergic responses to external stimuli predicting forthcoming reward. Here, we use a viral-genetic strategy to prevent the expression of the 2-AG-synthesizing enzyme diacylglycerol lipase α (DGLα) from ventral tegmental area (VTA) dopamine cells in adult mice. We find that DGLα deletion from VTA dopamine neurons prevents depolarization-induced suppression of excitation (DSE), a form of 2-AG-mediated synaptic plasticity, in dopamine neurons. DGLα deletion also decreases effortful, cue-driven reward-seeking but has no effect on non-cued or low-effort operant tasks and other behaviors. Moreover, dopamine recording in the NAc reveals that deletion of DGLα impairs the transfer of accumbal dopamine signaling from a reward to its earliest predictors. These results demonstrate that 2-AG mobilization from VTA dopamine neurons is a necessary step for the generation of dopamine-based predictive associations that are required to direct and energize reward-oriented behavior.
Collapse
Affiliation(s)
- Miguel Á Luján
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dan P Covey
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Reana Young-Morrison
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - LanYuan Zhang
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew Kim
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fiorella Morgado
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Carlos Paladini
- UTSA Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Joseph F Cheer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
136
|
Kim D, Wang Z, Sakagami M, Sasaki Y, Watanabe T. Only cortical prediction error signals are involved in visual learning, despite availability of subcortical prediction error signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566726. [PMID: 38014275 PMCID: PMC10680585 DOI: 10.1101/2023.11.13.566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Both the midbrain systems, encompassing the ventral striatum (VS), and the cortical systems, including the dorsal anterior cingulate cortex (dACC), play roles in reinforcing and enhancing learning. However, the specific contributions of signals from these regions in learning remains unclear. To investigate this, we examined how VS and dACC are involved in visual perceptual learning (VPL) through an orientation discrimination task. In the primary experiment, subjects fasted for 5 hours before each of 14 days of training sessions and 3 days of test sessions. Subjects were rewarded with water for accurate trial responses. During the test sessions, BOLD signals were recorded from regions including VS and dACC. Although BOLD signals in both areas were associated with positive and negative RPEs, only those in dACC associated with negative RPE showed a significant correlation with performance improvement. Additionally, no significant correlation was observed between BOLD signals associated with RPEs in VS and dACC. These results suggest that although signals associated with positive and negative RPEs from both midbrain and cortical systems are readily accessible, only RPE signals in the prefrontal system, generated without linking to RPE signals in VS, are utilized for the enhancement of VPL.
Collapse
|
137
|
Iannucci J, O’Neill K, Wang X, Mukherjee S, Wang J, Shapiro LA. Sex-Specific and Traumatic Brain Injury Effects on Dopamine Receptor Expression in the Hippocampus. Int J Mol Sci 2023; 24:16084. [PMID: 38003274 PMCID: PMC10671736 DOI: 10.3390/ijms242216084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health concern. Each year, over 50 million individuals worldwide suffer from TBI, and this leads to a number of acute and chronic health issues. These include affective and cognitive impairment, as well as an increased risk of alcohol and drug use. The dopaminergic system, a key component of reward circuitry, has been linked to alcohol and other substance use disorders, and previous research indicates that TBI can induce plasticity within this system. Understanding how TBI modifies the dopaminergic system may offer insights into the heightened substance use and reward-seeking behavior following TBI. The hippocampus, a critical component of the reward circuit, is responsible for encoding and integrating the spatial and salient aspects of rewarding stimuli. This study explored TBI-related changes in neuronal D2 receptor expression within the hippocampus, examining the hypothesis that sex differences exist in both baseline hippocampal D2 receptor expression and its response to TBI. Utilizing D2-expressing tdTomato transgenic male and female mice, we implemented either a sham injury or the lateral fluid percussion injury (FPI) model of TBI and subsequently performed a region-specific quantification of D2 expression in the hippocampus. The results show that male mice exhibit higher baseline hippocampal D2 expression compared to female mice. Additionally, there was a significant interaction effect between sex and injury on the expression of D2 in the hippocampus, particularly in regions of the dentate gyrus. Furthermore, TBI led to significant reductions in hippocampal D2 expression in male mice, while female mice remained mostly unaffected. These results suggest that hippocampal D2 expression varies between male and female mice, with the female dopaminergic system demonstrating less susceptibility to TBI-induced plasticity.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Katherine O’Neill
- Department of Biological Science, Texas A&M University, College Station, TX 77843, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Sanjib Mukherjee
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| | - Lee A. Shapiro
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA; (J.I.)
| |
Collapse
|
138
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
139
|
Gholston AS, Thurmann KE, Chiew KS. Contributions of transient and sustained reward to memory formation. PSYCHOLOGICAL RESEARCH 2023; 87:2477-2498. [PMID: 37079090 PMCID: PMC10116487 DOI: 10.1007/s00426-023-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Reward benefits to memory formation have been robustly linked to dopaminergic activity. Despite the established characterization of dopaminergic mechanisms as operating at multiple timescales, potentially supporting distinct functional outcomes, the temporal dynamics by which reward might modulate memory encoding are just beginning to be investigated. In the present study, we leveraged a mixed block/event experimental design to disentangle transient and sustained reward influences on task engagement and subsequent recognition memory in an adapted monetary-incentive-encoding (MIE) paradigm. Across three behavioral experiments, transient and sustained reward modulation of item and context memory was probed, at both 24-h and ~ 15-min retention intervals, to investigate the importance of overnight consolidation. In general, we observed that transient reward was associated with enhanced item memory encoding, while sustained reward modulated response speed but did not appear to benefit subsequent recognition accuracy. Notably, reward effects on item memory performance and response speed were somewhat inconsistent across the three experiments, with suggestions that RT speeding might also be related to time on task, and we did not observe reward modulation of context memory performance or amplification of reward benefits to memory by overnight consolidation. Taken together, the observed pattern of behavior is consistent with potentially distinct roles for transient and sustained reward in memory encoding and cognitive performance and suggests that further investigation of the temporal dynamics of dopaminergic contributions to memory formation will advance the understanding of motivated memory.
Collapse
Affiliation(s)
- Avery S Gholston
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208, USA
| | - Kyle E Thurmann
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208, USA
| | - Kimberly S Chiew
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208, USA.
| |
Collapse
|
140
|
Heitmeier M, Chuang YY, Baayen RH. How trial-to-trial learning shapes mappings in the mental lexicon: Modelling lexical decision with linear discriminative learning. Cogn Psychol 2023; 146:101598. [PMID: 37716109 PMCID: PMC10589761 DOI: 10.1016/j.cogpsych.2023.101598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
Trial-to-trial effects have been found in a number of studies, indicating that processing a stimulus influences responses in subsequent trials. A special case are priming effects which have been modelled successfully with error-driven learning (Marsolek, 2008), implying that participants are continuously learning during experiments. This study investigates whether trial-to-trial learning can be detected in an unprimed lexical decision experiment. We used the Discriminative Lexicon Model (DLM; Baayen et al., 2019), a model of the mental lexicon with meaning representations from distributional semantics, which models error-driven incremental learning with the Widrow-Hoff rule. We used data from the British Lexicon Project (BLP; Keuleers et al., 2012) and simulated the lexical decision experiment with the DLM on a trial-by-trial basis for each subject individually. Then, reaction times were predicted with Generalized Additive Models (GAMs), using measures derived from the DLM simulations as predictors. We extracted measures from two simulations per subject (one with learning updates between trials and one without), and used them as input to two GAMs. Learning-based models showed better model fit than the non-learning ones for the majority of subjects. Our measures also provide insights into lexical processing and individual differences. This demonstrates the potential of the DLM to model behavioural data and leads to the conclusion that trial-to-trial learning can indeed be detected in unprimed lexical decision. Our results support the possibility that our lexical knowledge is subject to continuous changes.
Collapse
|
141
|
Abstract
The nervous system coordinates various motivated behaviors such as feeding, drinking, and escape to promote survival and evolutionary fitness. Although the precise behavioral repertoires required for distinct motivated behaviors are diverse, common features such as approach or avoidance suggest that common brain substrates are required for a wide range of motivated behaviors. In this Review, I describe a framework by which neural circuits specified for some innate drives regulate the activity of ventral tegmental area (VTA) dopamine neurons to reinforce ongoing or planned actions to fulfill motivational demands. This framework may explain why signaling from VTA dopamine neurons is ubiquitously involved in many types of diverse volitional motivated actions, as well as how sensory and interoceptive cues can initiate specific goal-directed actions.
Collapse
Affiliation(s)
- Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
142
|
Rourk C. Comment on Albantakis et al. Computing the Integrated Information of a Quantum Mechanism. Entropy 2023, 25, 449. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1436. [PMID: 37895557 PMCID: PMC10606108 DOI: 10.3390/e25101436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Integrated information theory (IIT) is a powerful tool that provides a framework for evaluating consciousness, whether in the human brain or in other systems. In Computing the Integrated Information of a Quantum Mechanism, the authors extend IIT from digital gates to a quantum CNOT logic gate, and while they explicitly distinguish the analysis from quantum theories of consciousness, they nonetheless provide an analytical road map for extending IIT not only to other quantum mechanisms but also to hybrid computing structures like the brain. This comment provides additional information relating to an adiabatic quantum mechanical energy routing mechanism that is part of a hybrid biological computer that provides an action selection mechanism, which has been hypothesized to exist in the human brain and for which predicted evidence has been subsequently observed, and it hopes to motivate the further evaluation and extension of IIT not only to that hypothesized mechanism but also to other hybrid biological computers.
Collapse
|
143
|
Vinceti G, Carbone C, Gallingani C, Fiondella L, Salemme S, Zucchi E, Martinelli I, Gianferrari G, Tondelli M, Mandrioli J, Chiari A, Zamboni G. The association between lifelong personality and clinical phenotype in the FTD-ALS spectrum. Front Neurosci 2023; 17:1248622. [PMID: 37859765 PMCID: PMC10582748 DOI: 10.3389/fnins.2023.1248622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two phenotypes of the same neurodegenerative disease, the FTD-ALS spectrum. What determines the development of one rather than the other phenotype is still unknown. Based on the clinical observation that patients' personality seems to differ between the two phenotypes, i.e., ALS patients tend to display kind, prosocial behaviors whereas FTD patients tend to present anti-social behaviors, and that these traits are often reported as pre-existing the disease onset by caregivers, we set up to study experimentally patients' personality in their premorbid life. Methods We first tested for differences between groups, then tested the association between premorbid personality and current functional organization of the brain. Premorbid personality of a cohort of forty patients, 27 FTD and 13 ALS, was explored through the NEO Personality Inventory 3 (NEO-PI-3), which analyses the five main personality factors, completed by the caregiver with reference to patient's personality 20 years before symptoms onset (premorbid). A subgroup of patients underwent a brain MRI including structural and resting-state functional MRI (rsfMRI). Results A significant difference between FTD and ALS in premorbid personality emerged in the Openness (133.92 FTD vs. 149.84 ALS, p = 0.01) and Extraversion (136.55 FTD vs. 150.53 ALS, p = 0.04) factors. This suggests that ALS patients had been, in their premorbid life, more open to new experiences, more sociable and optimistic than FTD patients. They also showed greater functional connectivity than both FTD and a control group in the Salience resting state network, over and above differences in gray matter atrophy. Finally, there was a positive correlation between premorbid Openness and functional connectivity in the Salience network across all patients, suggesting a possible association between premorbid personality and current functional organization of the brain, irrespective of the degree of atrophy. Discussion Our proof-of-concept results suggest that premorbid personality may eventually predispose to the development of one, rather than the other, phenotype in the FTD-ALS spectrum.
Collapse
Affiliation(s)
- Giulia Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Gallingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Luigi Fiondella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Simone Salemme
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Ilaria Martinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Primary Care, Azienda Unità Sanitaria Locale di Modena, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| |
Collapse
|
144
|
Fitzpatrick C, Lemieux A, Smith J, West GL, Bohbot V, Asbridge M. Is adolescent internet use a risk factor for the development of depression symptoms or vice-versa? Psychol Med 2023; 53:6773-6779. [PMID: 36825394 PMCID: PMC10600816 DOI: 10.1017/s0033291723000284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND The extent to which digital media use by adolescents contributes to poor mental health, or vice-versa, remains unclear. The purpose of the present study is to clarify the strength and direction of associations between adolescent internet use and the development of depression symptoms using a longitudinal modeling approach. We also examine whether associations differ for boys and girls. METHODS Data are drawn from (N = 1547) participants followed for the Quebec longitudinal Study of Child Development (QLSCD 1998-2020). Youth self-reported internet use in terms of the average hours of use per week at the ages of 13, 15, and 17. Youth also self-reported depression symptoms at the same ages. RESULTS After testing sex-invariance, random intercepts cross-lagged panel models stratified by sex, revealed that internet use by girls was associated with significant within-person (time-varying) change in depression symptoms. Girl's internet use at age 13 was associated with increased depression symptoms at age 15 (ß = 0.12) and internet use at age 15 increased depression at age 17 (ß = 0.10). For boys, internet use was not associated with significant time varying change in depression symptoms. CONCLUSIONS The present findings support the hypothesis that internet use by adolescents can represent a significant risk factor for the development of depressive symptoms, particularly in girls.
Collapse
Affiliation(s)
- Caroline Fitzpatrick
- Department of Preschool and Elementary School Education, University of Sherbrooke, Sherbrooke, Canada
- Department of Childhood Education, University of Johannesburg, Johannesburg, South Africa
| | - Annie Lemieux
- Department of Preschool and Elementary School Education, University of Sherbrooke, Sherbrooke, Canada
| | - Jonathan Smith
- Department of Preschool and Elementary School Education, University of Sherbrooke, Sherbrooke, Canada
| | - Greg L. West
- Department of Childhood Education, University of Johannesburg, Johannesburg, South Africa
| | - Véronique Bohbot
- Department of Psychology, University of Montreal, Montreal, Canada
| | - Mark Asbridge
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Canada
| |
Collapse
|
145
|
Azcorra M, Gaertner Z, Davidson C, He Q, Kim H, Nagappan S, Hayes CK, Ramakrishnan C, Fenno L, Kim YS, Deisseroth K, Longnecker R, Awatramani R, Dombeck DA. Unique functional responses differentially map onto genetic subtypes of dopamine neurons. Nat Neurosci 2023; 26:1762-1774. [PMID: 37537242 PMCID: PMC10545540 DOI: 10.1038/s41593-023-01401-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Dopamine neurons are characterized by their response to unexpected rewards, but they also fire during movement and aversive stimuli. Dopamine neuron diversity has been observed based on molecular expression profiles; however, whether different functions map onto such genetic subtypes remains unclear. In this study, we established that three genetic dopamine neuron subtypes within the substantia nigra pars compacta, characterized by the expression of Slc17a6 (Vglut2), Calb1 and Anxa1, each have a unique set of responses to rewards, aversive stimuli and accelerations and decelerations, and these signaling patterns are highly correlated between somas and axons within subtypes. Remarkably, reward responses were almost entirely absent in the Anxa1+ subtype, which instead displayed acceleration-correlated signaling. Our findings establish a connection between functional and genetic dopamine neuron subtypes and demonstrate that molecular expression patterns can serve as a common framework to dissect dopaminergic functions.
Collapse
Affiliation(s)
- Maite Azcorra
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zachary Gaertner
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Connor Davidson
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Qianzi He
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Hailey Kim
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Shivathmihai Nagappan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cooper K Hayes
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Lief Fenno
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Neuroscience & Psychiatry, The University of Texas at Austin, Austin, TX, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Rajeshwar Awatramani
- Department of Neurology, Northwestern University, Chicago, IL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
146
|
Zanfino G, Puzzo C, de Laurenzi V, Adriani W. Characterization of Behavioral Phenotypes in Heterozygous DAT Rat Based on Pedigree. Biomedicines 2023; 11:2565. [PMID: 37761006 PMCID: PMC10526166 DOI: 10.3390/biomedicines11092565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is an essential neurotransmitter whose key roles include movement control, pleasure and reward, attentional and cognitive skills, and regulation of the sleep/wake cycle. Reuptake is carried out by the dopamine transporter (DAT; DAT1 SLC6A3 gene). In order to study the effects of hyper-dopaminergia syndrome, the gene was silenced in rats. DAT-KO rats show stereotypical behavior, hyperactivity, a deficit in working memory, and an altered circadian cycle. In addition to KO rats, heterozygous (DAT-HET) rats show relative hypofunction of DAT; exact phenotypic effects are still unknown and may depend on whether the sire or the dam was KO. Our goal was to elucidate the potential importance of the parental origin of the healthy or silenced allele and its impact across generations, along with the potential variations in maternal care. We thus generated specular lines to study the effects of (grand) parental roles in inheriting the wild or mutated allele. MAT-HETs are the progeny of a KO sire and a WT dam; by breeding MAT-HET males and KO females, we obtained subjects with a DAT -/- epigenotype, named QULL, to reflect additional epigenetic DAT modulation when embryos develop within a hyper-dopaminergic KO uterus. We aimed to verify if any behavioral anomaly was introduced by a QULL (instead of KO) rat acting as a direct father or indirect maternal grandfather (or both). We thus followed epigenotypes obtained after three generations and observed actual effects on impaired maternal care of the offspring (based on pedigree). In particular, offspring of MAT-HET-dam × QULL-sire breeding showed a compulsive and obsessive phenotype. Although the experimental groups were all heterozygous, the impact of having a sire of epigenotype QULL (who developed in the uterus of a KO grand-dam) has emerged clearly. Along the generations, the effects of the DAT epigenotype on the obsessive/compulsive phenotype do vary as a function of the uterine impact on either allele in one's genealogical line.
Collapse
Affiliation(s)
- Gioia Zanfino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.Z.); (C.P.)
| | - Concetto Puzzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.Z.); (C.P.)
- Faculty of Psychology, International Telematic University Uninettuno, 00186 Rome, Italy
| | - Vincenzo de Laurenzi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.Z.); (C.P.)
- Faculty of Psychology, International Telematic University Uninettuno, 00186 Rome, Italy
| |
Collapse
|
147
|
Ding L. Contributions of the Basal Ganglia to Visual Perceptual Decisions. Annu Rev Vis Sci 2023; 9:385-407. [PMID: 37713277 PMCID: PMC12093413 DOI: 10.1146/annurev-vision-111022-123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The basal ganglia (BG) make up a prominent nexus between visual and motor-related brain regions. In contrast to the BG's well-established roles in movement control and value-based decision making, their contributions to the transformation of visual input into an action remain unclear, especially in the context of perceptual decisions based on uncertain visual evidence. This article reviews recent progress in our understanding of the BG's contributions to the formation, evaluation, and adjustment of such decisions. From theoretical and experimental perspectives, the review focuses on four key stations in the BG network, namely, the striatum, pallidum, subthalamic nucleus, and midbrain dopamine neurons, which can have different roles and together support the decision process.
Collapse
Affiliation(s)
- Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
148
|
Xiao M, Luo Y, Zeng W, Chen H. Support from a Best Friend Makes People Eat Less under Stress: Evidence from Two Experiments. Nutrients 2023; 15:3898. [PMID: 37764682 PMCID: PMC10537042 DOI: 10.3390/nu15183898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
When experiencing acute stress, individuals often turn to eating for comfort, as it provides a sense of satiety and satisfaction that can temporarily alleviate the stressful condition. However, this may increase the risk of obesity, diabetes, cardiovascular disease. In this study, we conducted two behavioral experiments to investigate the effectiveness of social support in reducing stress-induced overeating and the mediative role of negative affect and self-efficacy (Experiment 1), as well as the role of reward sensitivity (Experiment 2). Acute stress was induced using a speech preparation task and then participants were asked to regulate their emotions and cognition, either alone or with the help of pictures and supportive sentences provided by a best friend or stranger. Participants in Experiment 1 then completed the food choice task, and participants in Experiment 2 completed the food incentive delay task and the bogus tasting task. The results of both experiments consistently showed that participants who received support from their friends reported lower levels of perceived stress, chose fewer food portions, and consumed fewer snacks during acute stress, compared to the other three groups. Further mediation analysis using the process macro revealed that the differential influence of social support on the choice of high-calorie foods was due to decreased negative affect and increased self-efficacy. This study provides valuable insights for the development of therapeutic interventions for clinical eating disorders.
Collapse
Affiliation(s)
- Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
| | - Weiyu Zeng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Tiansheng Road No. 2, Beibei District, Chongqing 400715, China
| |
Collapse
|
149
|
Rios A, Nonomura S, Kato S, Yoshida J, Matsushita N, Nambu A, Takada M, Hira R, Kobayashi K, Sakai Y, Kimura M, Isomura Y. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Commun Biol 2023; 6:914. [PMID: 37673949 PMCID: PMC10482957 DOI: 10.1038/s42003-023-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task. Movement-related activity of direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) were enhanced by reward expectation, similarly to the SNc dopaminergic neurons, in both medial and lateral nigrostriatal projections. Given the classical basal ganglia model wherein dopamine stimulates dSPNs and suppresses iSPNs through distinct dopamine receptors, dopamine might not be the primary driver of iSPN activity increasing following higher reward expectation. In contrast, outcome-related activity was affected by reward expectation in line with the classical model and reinforcement learning theory, suggesting purposive effects of reward expectation.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Aichi, 480-1195, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute of Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Aichi, 444-8585, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Minoru Kimura
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan.
| |
Collapse
|
150
|
Stringfellow J, Liran O, Lin MH, Baker TE. Recording neural reward signals in the real-world using mobile-EEG and augmented reality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555757. [PMID: 37693413 PMCID: PMC10491265 DOI: 10.1101/2023.08.31.555757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The electrophysiological response to rewards recorded during laboratory-based tasks has been well documented over the past two decades, yet little is known about the neural response patterns in 'real-world' settings. To address this issue, we combined a mobile-EEG system with an augmented reality headset (which blends high definition "holograms" within the real-world) to record event-related brain potentials (ERP) while participants navigated an operant chamber to find rewards. 25 participants (age = 18-43, Male=6, Female=19) were asked to choose between two floating holograms marking a west or east goal-location in a large room, and once participants reached the goal location, the hologram would turn into a reward (5 cents) or no-reward (0 cents) cue. Following the feedback cue, participants were required to return to a hologram marking the start location, and once standing in it, a 3 second counter hologram would initiate the next trial. This sequence was repeated until participants completed 200 trials. Consistent with previous research, reward feedback evoked the reward positivity, an ERP component believed to index the sensitivity of the anterior cingulate cortex to reward prediction error signals. The reward positivity peaked around 235ms post-feedback with a maximal at channel FCz (M=-2.60μV, SD=1.73μV) and was significantly different than zero (p < 0.01). At a behavioral level, participants took approximately 3.38 seconds to reach the goal-location and exhibited a general lose-shift (68.3% ± 3.5) response strategy and were slightly slower to return to the start location following negative feedback (2.43 sec) compared to positive feedback (2.38 sec), evidence of post-error slowing. Overall, these findings provide the first evidence that combining mobile-EEG with augmented reality technology is a feasible solution to enhance the ecological validity of human electrophysiological studies of goal-directed behavior and a step towards a new era of human cognitive neuroscience research that blurs the line between laboratory and reality.
Collapse
|