101
|
Risi CM, Belknap B, White HD, Dryden K, Pinto JR, Chase PB, Galkin VE. High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state. PNAS NEXUS 2023; 2:pgac298. [PMID: 36712934 PMCID: PMC9832952 DOI: 10.1093/pnasnexus/pgac298] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cardiac contraction depends on molecular interactions among sarcomeric proteins coordinated by the rising and falling intracellular Ca2+ levels. Cardiac thin filament (cTF) consists of two strands composed of actin, tropomyosin (Tm), and equally spaced troponin (Tn) complexes forming regulatory units. Tn binds Ca2+ to move Tm strand away from myosin-binding sites on actin to enable actomyosin cross-bridges required for force generation. The Tn complex has three subunits-Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. Tm strand is comprised of adjacent Tm molecules that overlap "head-to-tail" along the actin filament. The N-terminus of TnT (e.g., TnT1) binds to the Tm overlap region to form the cTF junction region-the region that connects adjacent regulatory units and confers to cTF internal cooperativity. Numerous studies have predicted interactions among actin, Tm, and TnT1 within the junction region, although a direct structural description of the cTF junction region awaited completion. Here, we report a 3.8 Å resolution cryo-EM structure of the native cTF junction region at relaxing (pCa 8) Ca2+ conditions. We provide novel insights into the "head-to-tail" interactions between adjacent Tm molecules and interactions between the Tm junction with F-actin. We demonstrate how TnT1 stabilizes the Tm overlap region via its interactions with the Tm C- and N-termini and actin. Our data show that TnT1 works as a joint that anchors the Tm overlap region to actin, which stabilizes the relaxed state of the cTF. Our structure provides insight into the molecular basis of cardiac diseases caused by missense mutations in TnT1.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
102
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
103
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
104
|
Ranu N, Laitila J, Dugdale HF, Mariano J, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Fiorillo C, Zanoteli E, Auranen M, Jokela M, Tasca G, Claeys KG, Voermans NC, Palmio J, Huovinen S, Moggio M, Beck TN, Kontrogianni-Konstantopoulos A, Granzier H, Ochala J. NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy. Acta Neuropathol Commun 2022; 10:185. [PMID: 36528760 PMCID: PMC9758823 DOI: 10.1186/s40478-022-01491-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.
Collapse
Affiliation(s)
- Natasha Ranu
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jenni Laitila
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannah F. Dugdale
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK ,grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jennifer Mariano
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Justin S. Kolb
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Carina Wallgren-Pettersson
- grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- grid.84393.350000 0001 0360 9602Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Chiara Fiorillo
- grid.5606.50000 0001 2151 3065Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Edmar Zanoteli
- grid.11899.380000 0004 1937 0722Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Mari Auranen
- grid.7737.40000 0004 0410 2071Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, NeurologyHelsinki, Finland
| | - Manu Jokela
- grid.1374.10000 0001 2097 1371Neurology, Clinical Medicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland ,grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Kristl G. Claeys
- grid.410569.f0000 0004 0626 3338Department of Neurology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nicol C. Voermans
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Palmio
- grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- grid.412330.70000 0004 0628 2985Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Maurizio Moggio
- grid.414818.00000 0004 1757 8749Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Nyegaard Beck
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henk Granzier
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Julien Ochala
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
105
|
Gerzen OP, Votinova VO, Potoskueva IK, Nabiev SR, Nikitina LV. Characteristics of Actin—Myosin Interaction in Different Regions of Rat Heart. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
106
|
Gong HM, Ma W, Regnier M, Irving TC. Thick filament activation is different in fast- and slow-twitch skeletal muscle. J Physiol 2022; 600:5247-5266. [PMID: 36342015 PMCID: PMC9772099 DOI: 10.1113/jp283574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The contractile properties of fast-twitch and slow-twitch skeletal muscles are primarily determined by the myosin isoform content and modulated by a variety of sarcomere proteins. X-ray diffraction studies of regulatory mechanisms in muscle contraction have focused predominately on fast- or mixed-fibre muscle with slow muscle being much less studied. Here, we used time-resolved X-ray diffraction to investigate the dynamic behaviour of the myofilament proteins in relatively pure slow-twitch-fibre rat soleus (SOL) and pure fast-twitch-fibre rat extensor digitorum longus (EDL) muscle during twitch and tetanic contractions at optimal length. During twitch contractions the diffraction signatures indicating a transition in the myosin heads from ordered OFF states, where heads are held close to the thick filament backbone, to disordered ON states, where heads are free to bind to thin filaments, were found in EDL and not in SOL muscle. During tetanic contraction, changes in the disposition of myosin heads as active tension develops is a quasi-stepwise process in EDL muscle whereas in SOL muscle this relationship appears to be linear. The observed reduced extensibility of the thick filaments in SOL muscle as compared to EDL muscles indicates a molecular basis for this behaviour. These data indicate that for the EDL, thick filament activation is a cooperative strain-induced mechano-sensing mechanism, whereas for the SOL, thick filament activation has a more graded response. These different approaches to thick filament regulation in fast- and slow-twitch muscles may be adaptations for short-duration, strong contractions versus sustained, finely controlled contractions, respectively. KEY POINTS: Fast-twitch muscle and slow-twitch muscle are optimized for strong, short-duration contractions and for tonic postural activity, respectively. Structural events (OFF to ON transitions) in the myosin-containing thick filaments in fast muscle help determine the timing and strength of contractions, but these have not been studied in slow-twitch muscle. The X-ray diffraction signatures of structural OFF to ON transitions are different in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle, being completely absent during twitches in soleus muscle and blunted during tetanic contractions SOL as compared to EDL Quasi-stepwise thick filament structural OFF to ON transitions in fast twitch muscle may be an adaptation for rapid, ballistic movements, whereas more graded OFF to ON structural transitions in slow-twitch muscle may be an adaptation for slower, finer motions.
Collapse
Affiliation(s)
- Henry M. Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
107
|
Lindsay C, Musgaard M, Russell AJ, Sitsapesan R. Statin activation of skeletal ryanodine receptors (RyR1) is a class effect but separable from HMG-CoA reductase inhibition. Br J Pharmacol 2022; 179:4941-4957. [PMID: 35703154 PMCID: PMC9804224 DOI: 10.1111/bph.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Statins, inhibitors of HMG-CoA reductase, are mainstay treatment for hypercholesterolaemia. However, muscle pain and weakness prevent many patients from benefiting from their cardioprotective effects. We previously demonstrated that simvastatin activates skeletal ryanodine receptors (RyR1), an effect that could be important in initiating myopathy. Using a range of structurally diverse statin analogues, we examined structural features associated with RyR1 activation, aiming to identify statins lacking this property. EXPERIMENTAL APPROACH Compounds were screened for RyR1 activity utilising [3 H]ryanodine binding. Mechanistic insight into RyR1 activity was studied by incorporating RyR1 channels from sheep, mouse or rabbit skeletal muscle into bilayers. KEY RESULTS All UK-prescribed statins activated RyR1 at nanomolar concentrations. Cerivastatin, withdrawn from the market due to life-threatening muscle-related side effects, was more effective than currently-prescribed statins and possessed the unique ability to open RyR1 channels independently of cytosolic Ca2+ . We synthesised the one essential structural moiety that all statins must possess for HMG-CoA reductase inhibition, the R-3,5-dihydroxypentanoic acid unit, and it did not activate RyR1. We also identified five analogues retaining potent HMG-CoA reductase inhibition that inhibited RyR1 and four that lacked the ability to modulate RyR1. CONCLUSION AND IMPLICATIONS That cerivastatin activates RyR1 most strongly supports the hypothesis that RyR1 activation is implicated in statin-induced myopathy. Demonstrating that statin regulation of RyR1 and HMG-CoA reductase are separable effects will allow the role of RyR1 in statin-induced myopathy to be further elucidated by the tool compounds we have identified, allowing development of effective cardioprotective statins with improved patient tolerance.
Collapse
Affiliation(s)
- Chris Lindsay
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Maria Musgaard
- Structural Bioinformatics and Computational Biochemistry, Department of BiochemistryUniversity of OxfordOxfordUK
- OMass TherapeuticsOxfordUK
| | - Angela J. Russell
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemistry, Chemistry Research LaboratoryUniversity of OxfordOxfordUK
| | | |
Collapse
|
108
|
Martin AA, Thompson BR, Davis JP, Vang H, Hahn D, Metzger JM. Sarcomere dynamics revealed by a myofilament integrated FRET-based biosensor in live skeletal muscle fibers. Sci Rep 2022; 12:18116. [PMID: 36302792 PMCID: PMC9613882 DOI: 10.1038/s41598-022-21425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
The sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions. Here, a skeletal muscle specific, intramolecular FRET-based biosensor was designed and engineered into fast skeletal muscle troponin C (TnC) to investigate the dynamics of sarcomere activation. In transgenic animals, the TnC biosensor incorporated into the skeletal muscle fiber sarcomeres by stoichiometric replacement of endogenous TnC and did not alter normal skeletal muscle contractile form or function. In intact single adult skeletal muscle fibers, real time twitch contractile data showed the TnC biosensor transient preceding the peak amplitude of contraction. Importantly, under physiological temperatures, inactivation of the TnC biosensor transient decayed significantly more slowly than the Ca2+ transient and contraction. The uncoupling of the TnC biosensor transient from the Ca2+ transient indicates the biosensor is not functioning as a Ca2+ transient reporter, but rather reports dynamic sarcomere activation/ inactivation that, in turn, is due to the ensemble effects of multiple activating ligands within the myofilaments. Together, these findings provide the foundation for implementing this new biosensor in future physiological studies investigating the mechanism of activation of the skeletal muscle sarcomere in health and disease.
Collapse
Affiliation(s)
- Ashley A Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Hluechy Vang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Dongwoo Hahn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
109
|
Jaitovich A. Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2022; 323:C974-C989. [PMID: 35993519 PMCID: PMC9484993 DOI: 10.1152/ajpcell.00292.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Locomotor skeletal muscle dysfunction is a relevant comorbidity of chronic obstructive pulmonary disease (COPD) and is strongly associated with worse clinical outcomes including higher mortality. Over the last decades, a large body of literature helped characterize the process, defining the disruptive muscle phenotype caused by COPD that involves reduction in muscle mass, force-generation capacity, fatigue-tolerance, and regenerative potential following injury. A major limitation in the field has been the scarcity of well-calibrated animal models to conduct mechanistic research based on loss- and gain-of-function studies. This article provides an overall description of the process, the tools available to mechanistically investigate it, and the potential role of mitochondrially driven metabolic signals on the regulation muscle regeneration after injury in COPD. Finally, a description of future avenues to further expand on the area is proposed based on very recent evidence involving mitochondrial metabolic cues affecting myogenesis.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
110
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
111
|
Early Divergence of the C-Terminal Variable Region of Troponin T Via a Pair of Mutually Exclusive Alternatively Spliced Exons Followed by a Selective Fixation in Vertebrate Heart. J Mol Evol 2022; 90:452-467. [PMID: 36171395 PMCID: PMC10080876 DOI: 10.1007/s00239-022-10075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Troponin T (TnT) is the thin filament anchoring subunit of troponin complex and plays an organizer role in the Ca2+-regulation of striated muscle contraction. From an ancestral gene emerged ~ 700 million years ago in Bilateria, three homologous genes have evolved in vertebrates to encode muscle type-specific isoforms of TnT. Alternative splicing variants of TnT are present in vertebrate and invertebrate muscles to add functional diversity. While the C-terminal region of TnT is largely conserved, it contains an alternatively spliced segment emerged early in C. elegans, which has evolved into a pair of mutually exclusive exons in arthropods (10A and 10B of Drosophila TpnT gene) and vertebrates (16 and 17 of fast skeletal muscle Tnnt3 gene). The C-terminal alternatively spliced segment of TnT interfaces with the other two subunits of troponin with functional significance. The vertebrate cardiac TnT gene that emerged from duplication of the fast TnT gene has eliminated this alternative splicing by the fixation of an exon 17-like constitutive exon, indicating a functional value in slower and rhythmic contractions. The vertebrate slow skeletal muscle TnT gene that emerged from duplication of the cardiac TnT gene has the exon 17-like structure conserved, indicating its further function in sustained and fatigue resistant contractions. This functionality-based evolution is consistent with the finding that exon 10B-encoded segment of Drosophila TnT homologous to the exon 17-encoded segment of vertebrate fast TnT is selectively expressed in insect heart and leg muscles. The evolution of the C-terminal variable region of TnT demonstrates a submolecular mechanism in modifying striated muscle contractility and for the treatment of muscle and heart diseases.
Collapse
|
112
|
Gerzen OP, Nabiev SR, Klinova SV, Minigalieva IA, Sutunkova MP, Katsnelson BA, Nikitina LV. Molecular mechanisms of mechanical function changes of the rat myocardium under subchronic lead exposure. Food Chem Toxicol 2022; 169:113444. [PMID: 36179994 DOI: 10.1016/j.fct.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
A moderate degree of lead intoxication was observed in male rats after repeated intraperitoneal injections with two doses of lead acetate three times a week during 5 (12.5 mg of Pb per kg body mass) and 6 (6.01 mg of Pb per kg body mass) weeks. Using an in vitro motility assay, we investigated the impact of this intoxication on the characteristics of actin-myosin interaction and its regulation in the atria, right, and left ventricles. Both lead doses exposure decreased the maximum sliding velocity of reconstituted thin filaments over myosin and fraction of motile filaments in all heart chambers, caused the myosin isoforms shift towards slower β-myosin heavy chains in ventricles and decreased regulatory light chain phosphorylation in atria. No statistically significant difference was found in force and calcium regulation of actin-myosin interaction. A dose-dependent effect of lead on myosin functional characteristics was found in all heart chambers, but the degree of this effect varied depending on the heart chamber.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
113
|
Liu Y, Fu Y, Yang Y, Yi G, Lian J, Xie B, Yao Y, Chen M, Niu Y, Liu L, Wang L, Zhang Y, Fan X, Tang Y, Yuan P, Zhu M, Li Q, Zhang S, Chen Y, Wang B, He J, Lu D, Liachko I, Sullivan ST, Pang B, Chen Y, He X, Li K, Tang Z. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. GENETICS SELECTION EVOLUTION 2022; 54:62. [PMID: 36104777 PMCID: PMC9476355 DOI: 10.1186/s12711-022-00754-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics.
Results
We obtained a high-resolution phased chromosome-scale reference genome with a contig N50 of 18.03 Mb for the Luchuan pig breed (a representative eastern breed) and profiled potential selective sweeps in eastern and western pigs by resequencing the genomes of 234 pigs. Multi-tissue transcriptome and chromatin accessibility analyses of these regions suggest that tissue-specific selection pressure is mediated by promoters and distal cis-regulatory elements. Promoter variants that are associated with increased expression of the lysozyme (LYZ) gene in the small intestine might enhance the immunity of the gastrointestinal tract and roughage tolerance in pigs. In skeletal muscle, an enhancer-modulating single-nucleotide polymorphism that is associated with up-regulation of the expression of the troponin C1, slow skeletal and cardiac type (TNNC1) gene might increase the proportion of slow muscle fibers and affect meat quality.
Conclusions
Our work sheds light on the molecular mechanisms by which non-coding variants shape phenotypic differences in pigs and provides valuable resources and novel perspectives to dissect the role of gene regulatory evolution in animal domestication and breeding.
Collapse
|
114
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
115
|
Yamaguchi Y, Nishiyama M, Kai H, Kaneko T, Kaihara K, Iribe G, Takai A, Naruse K, Morimatsu M. High hydrostatic pressure induces slow contraction in mouse cardiomyocytes. Biophys J 2022; 121:3286-3294. [PMID: 35841143 PMCID: PMC9463647 DOI: 10.1016/j.bpj.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiomyocytes are contractile cells that regulate heart contraction. Ca2+ flux via Ca2+ channels activates actomyosin interactions, leading to cardiomyocyte contraction, which is modulated by physical factors (e.g., stretch, shear stress, and hydrostatic pressure). We evaluated the mechanism triggering slow contractions using a high-pressure microscope to characterize changes in cell morphology and intracellular Ca2+ concentration ([Ca2+]i) in mouse cardiomyocytes exposed to high hydrostatic pressures. We found that cardiomyocytes contracted slowly without an acute transient increase in [Ca2+]i, while a myosin ATPase inhibitor interrupted pressure-induced slow contractions. Furthermore, transmission electron microscopy showed that, although the sarcomere length was shortened upon the application of 20 MPa, this pressure did not collapse cellular structures such as the sarcolemma and sarcomeres. Our results suggest that pressure-induced slow contractions in cardiomyocytes are driven by the activation of actomyosin interactions without an acute transient increase in [Ca2+]i.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| | - Masayoshi Nishiyama
- Department of Physics, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Hiroaki Kai
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiyuki Kaneko
- Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Keiko Kaihara
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Gentaro Iribe
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Akira Takai
- Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masatoshi Morimatsu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
116
|
Kuo CW, Pratiwi FW, Liu YT, Chueh DY, Chen P. Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging. Front Bioeng Biotechnol 2022; 10:935415. [PMID: 36051583 PMCID: PMC9424828 DOI: 10.3389/fbioe.2022.935415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of bioinspired nanomaterials for therapeutic applications, it is very important to validate the design of nanomaterials in the disease models. Therefore, it is desirable to visualize the change of the cells in the diseased site at the nanoscale. Heart diseases often start with structural, morphological, and functional alterations of cardiomyocyte components at the subcellular level. Here, we developed straightforward technique for long-term real-time intravital imaging of contracting hearts without the need of cardiac pacing and complex post processing images to understand the subcellular structural and dynamic changes in the myocardial infarction model. A two-photon microscope synchronized with electrocardiogram signals was used for long-term in vivo imaging of a contracting heart with subcellular resolution. We found that the structural and dynamic behaviors of organelles in cardiomyocytes closely correlated with heart function. In the myocardial infarction model, sarcomere shortening decreased from ∼15% (healthy) to ∼8% (diseased) as a result of impaired cardiac function, whereas the distances between sarcomeres increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition, T-tubule system regularity analysis revealed that T-tubule structures that were initially highly organized underwent significant remodeling. Morphological remodeling and changes in dynamic activity at the subcellular level are essential to maintain heart function after infarction in a heart disease model.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | | | - Yen-Ting Liu
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- *Correspondence: Peilin Chen,
| |
Collapse
|
117
|
Pavadai E, Rynkiewicz MJ, Yang Z, Gould IR, Marston SB, Lehman W. Modulation of cardiac thin filament structure by phosphorylated troponin-I analyzed by protein-protein docking and molecular dynamics simulation. Arch Biochem Biophys 2022; 725:109282. [PMID: 35577070 PMCID: PMC10680062 DOI: 10.1016/j.abb.2022.109282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.
Collapse
Affiliation(s)
- Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Zeyu Yang
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, Shepard's Bush, London, W12 0BZ, UK
| | - Ian R Gould
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, Shepard's Bush, London, W12 0BZ, UK
| | - Steven B Marston
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, W12 0NN, UK
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
118
|
MRTF specifies a muscle-like contractile module in Porifera. Nat Commun 2022; 13:4134. [PMID: 35840552 PMCID: PMC9287330 DOI: 10.1038/s41467-022-31756-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-based movement is a hallmark of animal biology, but the evolutionary origins of myocytes are unknown. Although believed to lack muscles, sponges (Porifera) are capable of coordinated whole-body contractions that purge debris from internal water canals. This behavior has been observed for decades, but their contractile tissues remain uncharacterized with respect to their ultrastructure, regulation, and development. We examine the sponge Ephydatia muelleri and find tissue-wide organization of a contractile module composed of actin, striated-muscle myosin II, and transgelin, and that contractions are regulated by the release of internal Ca2+ stores upstream of the myosin-light-chain-kinase (MLCK) pathway. The development of this contractile module appears to involve myocardin-related transcription factor (MRTF) as part of an environmentally inducible transcriptional complex that also functions in muscle development, plasticity, and regeneration. As an actin-regulated force-sensor, MRTF-activity offers a mechanism for how the contractile tissues that line water canals can dynamically remodel in response to flow and can re-form normally from stem-cells in the absence of the intrinsic spatial cues typical of animal embryogenesis. We conclude that the contractile module of sponge tissues shares elements of homology with contractile tissues in other animals, including muscles, indicating descent from a common, multifunctional tissue in the animal stem-lineage. Myocytes are a key cell type that enable animal movement, but their evolutionary origins remain unclear. Colgren and Nichols describe molecular and functional similarities between a contractile module in tissues of a sponge and muscle tissues in other animals, indicating a common evolutionary origin.
Collapse
|
119
|
Angelidis A, Vandenboom R. The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCK -/- mouse EDL muscles. J Muscle Res Cell Motil 2022; 43:99-111. [PMID: 35771335 DOI: 10.1007/s10974-022-09620-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Post-tetanic potentiation of fast-twitch skeletal muscle is dependent on muscle length, with greater potentiation observed at shorter compared to longer lengths. The structural effects of the primary potentiation mechanism, phosphorylation of the regulatory light chain (RLC) of myosin, are thought to explain this relationship. The purpose of these experiments was to determine whether the length-dependence of potentiation would be attenuated in the absence of RLC phosphorylation. To this end, we compared isometric twitch potentiation of mouse extensor digitorum longus (EDL) muscles with (wildtype, WT) and without (skeletal myosin light chain kinase knockout, skMLCK-/-) phosphorylation. Force was measured at five muscle lengths (0.90 Lo, 0.95 Lo, Lo, 1.05 Lo, 1.10 Lo, where Lo refers to optimal length) prior to and following a tetanic train. In accordance with prior findings, potentiation was dependent on muscle length, with greater values observed at short (e.g., 44.3 ± 4.6% for WT, 33.5 ± 6.2% for skMLCK-/-, at 0.90 Lo) compared to long lengths (e.g., 16.9 ± 1.3% for WT, 9.1 ± 1.8% for skMLCK-/-, at 1.10 Lo) in both genotypes. WT muscles displayed greater potentiation compared to their skMLCK-/- counterparts across lengths (e.g., 16.9 ± 1.6% vs 7.3 ± 1.5% at Lo). However, the relationship between potentiation and muscle length was not different between genotypes. Thus, the alternative mechanisms of potentiation, present in the skMLCK-/- EDL, display a length-dependence of post-tetanic potentiation similar to RLC phosphorylation-dominant potentiation. Additional mechanisms may be required to explain the length-dependence of potentiation.
Collapse
Affiliation(s)
- Angelos Angelidis
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Rene Vandenboom
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
120
|
Rynkiewicz MJ, Pavadai E, Lehman W. Modeling Human Cardiac Thin Filament Structures. Front Physiol 2022; 13:932333. [PMID: 35812320 PMCID: PMC9257132 DOI: 10.3389/fphys.2022.932333] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
Collapse
|
121
|
Cai F, Kampourakis T, Cockburn KT, Sykes BD. Drugging the Sarcomere, a Delicate Balance: Position of N-Terminal Charge of the Inhibitor W7. ACS Chem Biol 2022; 17:1495-1504. [PMID: 35649123 DOI: 10.1021/acschembio.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
W7 is a sarcomere inhibitor that decreases the calcium sensitivity of force development in cardiac muscle. W7 binds to the interface of the regulatory domain of cardiac troponin C (cNTnC) and the switch region of troponin I (cTnI), decreasing the binding of cTnI to cNTnC, presumably by electrostatic repulsion between the -NH3+ group of W7 and basic amino acids in cTnI. W7 analogs with a -CO2- tail are inactive. To evaluate the importance of the location of the charged -NH3+, we used a series of compounds W4, W6, W8, and W9, which have three less, one less, one more, and two more methylene groups in the tail region than W7. W6, W8, and W9 all bind tighter to cNTnC-cTnI chimera (cChimera) than W7, while W4 binds weaker. W4 and, strikingly, W6 have no effect on calcium sensitivity of force generation, while W8 and W9 decrease calcium sensitivity, but less than W7. The structures of the cChimera-W6 and cChimera-W8 complexes reveal that W6 and W8 bind to the same hydrophobic cleft as W7, with the aliphatic tail taking a similar route to the surface. NMR relaxation data show that internal flexibility in the tail of W7 is very limited. Alignment of the cChimera-W7 structure with the recent cryoEM structures of the cardiac sarcomere in the diastolic and systolic states reveals the critical location of the amino group. Small molecule induced structural changes can therefore affect the tightly balanced equilibrium between tethered components required for rapid contraction.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Kieran T Cockburn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
122
|
Zhang Y, Gao J, Nie Z, Zhu H, Du J, Cao L, Shao N, Sun Y, Su S, Xu G, Xu P. Microcystin-LR induces apoptosis in Juvenile Eriocheir sinensis via the mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113528. [PMID: 35500400 DOI: 10.1016/j.ecoenv.2022.113528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR), the toxic substance of cyanobacteria secondary metabolism, widely exists in water environments and poses great risks to living organisms. Some toxicological assessments of MC-LR have performed at physiological and biochemical levels. However, plenty of blanks about the potential mechanism in aquatic crustacean remains. In this study, we firstly assessed the exposure toxicity of MC-LR to juvenile E. sinensis and clarified that the 96 h LD50 of MC-LR was 73.23 μg/kg. Then, hepatopancreas transcriptome profiles of MC-LR stressed crabs were constructed at 6 h post-injection and 37 differential expressed genes (DEGs) were identified. These DEGs were enriched in cytoskeleton, peroxisome and apoptosis pathways. To further reveal the toxicity of MC-LR, oxidative stress parameters (SOD, CAT, GSH-px and MDA), apoptosis genes (caspase 3, bcl-2 and bax) and apoptotic cells were detected. Significant accumulated MDA and rise-fall enzyme activities verified the oxidative stress caused by MC-LR. It is noteworthy that quantitative real-time PCR and TUNEL assay indicated that MC-LR stress-induced apoptosis via the mitochondrial pathway. Interestingly, activator protein-1 may play a crucial role in mediating the hepatotoxicity of MC-LR by regulating apoptosis and oxidative stress. Taken together, our study investigated the toxic effects and the potential molecular mechanisms of MC-LR on juvenile E. sinensis. It provided useful data for exploring the toxicity of MC-LR to aquatic crustaceans at molecular levels.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
123
|
du Fay de Lavallaz J, Prepoudis A, Wendebourg MJ, Kesenheimer E, Kyburz D, Daikeler T, Haaf P, Wanschitz J, Löscher WN, Schreiner B, Katan M, Jung HH, Maurer B, Hammerer-Lercher A, Mayr A, Gualandro DM, Acket A, Puelacher C, Boeddinghaus J, Nestelberger T, Lopez-Ayala P, Glarner N, Shrestha S, Manka R, Gawinecka J, Piscuoglio S, Gallon J, Wiedemann S, Sinnreich M, Mueller C. Skeletal Muscle Disorders: A Noncardiac Source of Cardiac Troponin T. Circulation 2022; 145:1764-1779. [PMID: 35389756 PMCID: PMC10069758 DOI: 10.1161/circulationaha.121.058489] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cardiac troponin (cTn) T and cTnI are considered cardiac specific and equivalent in the diagnosis of acute myocardial infarction. Previous studies suggested rare skeletal myopathies as a noncardiac source of cTnT. We aimed to confirm the reliability/cardiac specificity of cTnT in patients with various skeletal muscle disorders (SMDs). METHODS We prospectively enrolled patients presenting with muscular complaints (≥2 weeks) for elective evaluation in 4 hospitals in 2 countries. After a cardiac workup, patients were adjudicated into 3 predefined cardiac disease categories. Concentrations of cTnT/I and resulting cTnT/I mismatches were assessed with high-sensitivity (hs-) cTnT (hs-cTnT-Elecsys) and 3 hs-cTnI assays (hs-cTnI-Architect, hs-cTnI-Access, hs-cTnI-Vista) and compared with those of control subjects without SMD presenting with adjudicated noncardiac chest pain to the emergency department (n=3508; mean age, 55 years; 37% female). In patients with available skeletal muscle biopsies, TNNT/I1-3 mRNA differential gene expression was compared with biopsies obtained in control subjects without SMD. RESULTS Among 211 patients (mean age, 57 years; 42% female), 108 (51%) were adjudicated to having no cardiac disease, 44 (21%) to having mild disease, and 59 (28%) to having severe cardiac disease. hs-cTnT/I concentrations significantly increased from patients with no to those with mild and severe cardiac disease for all assays (all P<0.001). hs-cTnT-Elecsys concentrations were significantly higher in patients with SMD versus control subjects (median, 16 ng/L [interquartile range (IQR), 7-32.5 ng/L] versus 5 ng/L [IQR, 3-9 ng/L]; P<0.001), whereas hs-cTnI concentrations were mostly similar (hs-cTnI-Architect, 2.5 ng/L [IQR, 1.2-6.2 ng/L] versus 2.9 ng/L [IQR, 1.8-5.0 ng/L]; hs-cTnI-Access, 3.3 ng/L [IQR, 2.4-6.1 ng/L] versus 2.7 ng/L [IQR, 1.6-5.0 ng/L]; and hs-cTnI-Vista, 7.4 ng/L [IQR, 5.2-13.4 ng/L] versus 7.5 ng/L [IQR, 6-10 ng/L]). hs-cTnT-Elecsys concentrations were above the upper limit of normal in 55% of patients with SMD versus 13% of control subjects (P<0.01). mRNA analyses in skeletal muscle biopsies (n=33), mostly (n=24) from individuals with noninflammatory myopathy and myositis, showed 8-fold upregulation of TNNT2, encoding cTnT (but none for TNNI3, encoding cTnI) versus control subjects (n=16, PWald<0.001); the expression correlated with pathological disease activity (R=0.59, Pt-statistic<0.001) and circulating hs-cTnT concentrations (R=0.26, Pt-statistic=0.031). CONCLUSIONS In patients with active chronic SMD, elevations in cTnT concentrations are common and not attributable to cardiac disease in the majority. This was not observed for cTnI and may be explained in part by re-expression of cTnT in skeletal muscle. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03660969.
Collapse
Affiliation(s)
- Jeanne du Fay de Lavallaz
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Alexandra Prepoudis
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Maria Janina Wendebourg
- Neurology Clinic and Policlinic (M.J.W., E.K., M.S.), University Hospital of Basel, Switzerland
| | - Eva Kesenheimer
- Neurology Clinic and Policlinic (M.J.W., E.K., M.S.), University Hospital of Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology (D.K., T.D.), University Hospital of Basel, Switzerland.,University of Basel, Switzerland (D.K., M.S., C.M.)
| | - Thomas Daikeler
- Department of Rheumatology (D.K., T.D.), University Hospital of Basel, Switzerland
| | - Philip Haaf
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Julia Wanschitz
- Departments of Neurology (J.W., W.N.L.), Medical University of Innsbruck, Austria
| | - Wolfgang N Löscher
- Departments of Neurology (J.W., W.N.L.), Medical University of Innsbruck, Austria
| | - Bettina Schreiner
- Departments of Neurology (B.S., M.K., H.H.J.), University Hospital of Zürich, Switzerland
| | - Mira Katan
- Departments of Neurology (B.S., M.K., H.H.J.), University Hospital of Zürich, Switzerland
| | - Hans H Jung
- Departments of Neurology (B.S., M.K., H.H.J.), University Hospital of Zürich, Switzerland
| | - Britta Maurer
- Rheumatology (B.M.), University Hospital of Zürich, Switzerland.,Department of Rheumatology and Immunology, Inselspital Bern, Switzerland (B.M.)
| | | | - Agnes Mayr
- Radiology (A.M.), Medical University of Innsbruck, Austria
| | - Danielle M Gualandro
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Annemarie Acket
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Neurology Clinic and Policlinic (M.J.W., E.K., M.S.), University Hospital of Basel, Switzerland
| | - Christian Puelacher
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Jasper Boeddinghaus
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Thomas Nestelberger
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Division of Cardiology, Vancouver General Hospital, University of British Columbia, Canada (T.N.)
| | - Pedro Lopez-Ayala
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Noemi Glarner
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Samyut Shrestha
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland
| | - Robert Manka
- Cardiology (R.M.), University Hospital of Zürich, Switzerland
| | - Joanna Gawinecka
- Institute of Clinical Chemistry (J. Gawinecka), University Hospital of Zürich, Switzerland
| | - Salvatore Piscuoglio
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Biomedicine (S.P., J. Gallon, S.W.), University Hospital of Basel, Switzerland
| | - John Gallon
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Biomedicine (S.P., J. Gallon, S.W.), University Hospital of Basel, Switzerland
| | - Sophia Wiedemann
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Biomedicine (S.P., J. Gallon, S.W.), University Hospital of Basel, Switzerland
| | - Michael Sinnreich
- Neurology Clinic and Policlinic (M.J.W., E.K., M.S.), University Hospital of Basel, Switzerland.,University of Basel, Switzerland (D.K., M.S., C.M.)
| | - Christian Mueller
- Cardiovascular Research Institute Basel (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,Department of Cardiology (J.d.F.d.L., A.P., P.H., D.M.G., A.A., C.P., J.B., T.N., P.L.-A., N.G., S.S., S.P., J. Gallon, S.W., C.M.), University Hospital of Basel, Switzerland.,University of Basel, Switzerland (D.K., M.S., C.M.)
| | | |
Collapse
|
124
|
Deranek AE, Baldo AP, Lynn ML, Schwartz SD, Tardiff JC. Structure and Dynamics of the Flexible Cardiac Troponin T Linker Domain in a Fully Reconstituted Thin Filament. Biochemistry 2022; 61:1229-1242. [PMID: 35696530 DOI: 10.1021/acs.biochem.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural analysis of large protein complexes has been greatly enhanced through the application of electron microscopy techniques. One such multiprotein complex, the cardiac thin filament (cTF), has cyclic interactions with thick filament proteins to drive contraction of the heart that has recently been the subject of such studies. As important as these studies are, they provide limited or no information on highly flexible regions that in isolation would be characterized as inherently disordered. One such region is the extended cardiac troponin T (cTnT) linker between the regions of cTnT which have been labeled TNT1 and TNT2. It comprises a hinge region (residues 158-166) and a highly flexible region (residues 167-203). Critically, this region modulates the troponin/tropomyosin complex's position across the actin filament. Thus, the cTnT linker structure and dynamics are central to the regulation of the function of cardiac muscles, but up to now, it was ill-understood. To establish the cTnT linker structure, we coupled an atomistic computational cTF model with time-resolved fluorescence resonance energy transfer measurements in both ±Ca2+ conditions utilizing fully reconstituted cTFs. We mapped the cTnT linker's positioning across the actin filament, and by coupling the experimental results to computation, we found mean structures and ranges of motion of this part of the complex. With this new insight, we can now address cTnT linker structural dynamics in both myofilament activation and disease.
Collapse
Affiliation(s)
- Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Anthony P Baldo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
125
|
Liang HF, Li XD. Locusta migratoria flight muscle troponin partially activates thin filament in a calcium-dependent manner. INSECT MOLECULAR BIOLOGY 2022; 31:346-355. [PMID: 35084070 DOI: 10.1111/imb.12763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The troponin (Tn) complex, the sensor for Ca2+ to regulate contraction of striated muscle, is composed of three subunits, that is, TnT, TnI and TnC. Different isoforms of TnI and TnC are expressed in the thorax dorsal longitudinal muscle (flight muscle) and the hind leg extensor tibiae muscle (jump muscle) of the migratory locust, Locusta migratoria. The major Tn complexes in the flight muscle and the jump muscle are Tn-171 (TnT1/TnI7/TnC1) and Tn-153 (TnT1/TnI5/TnC3), respectively. Here, we prepared a number of recombinant Tn complexes and the reconstituted thin filaments, and investigated their regulation on thin filament. Although both Tn-171 and Tn-153 regulate thin filament in a Ca2+ -dependent manner, the extent of Ca2+ activation mediated by Tn-171 was significantly lower than that by Tn-153. We demonstrated that TnC1 and TnC3, rather than TnI5 and TnI7, are responsible for the different levels of the thin filament activation. Mutagenesis of TnC1 and TnC3 shows that the low level of TnC1-mediated thin filament activation can be attributed to the noncanonical residue Leu60 in the EF-hand-II of TnC1. We therefore propose that, in addition to Ca2+ , other regulatory mechanism(s) is required for the full activation of locust flight muscle.
Collapse
Affiliation(s)
- Hui-Fang Liang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
126
|
Abstract
Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.
Collapse
Affiliation(s)
- Sarah J Lehman
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
127
|
Transcriptome analysis revealed hub genes for muscle growth in Indian major carp, Catla catla (Hamilton, 1822). Genomics 2022; 114:110393. [DOI: 10.1016/j.ygeno.2022.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/15/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022]
|
128
|
Pioner JM, Vitale G, Gentile F, Scellini B, Piroddi N, Cerbai E, Olivotto I, Tardiff J, Coppini R, Tesi C, Poggesi C, Ferrantini C. Genotype-Driven Pathogenesis of Atrial Fibrillation in Hypertrophic Cardiomyopathy: The Case of Different TNNT2 Mutations. Front Physiol 2022; 13:864547. [PMID: 35514357 PMCID: PMC9062294 DOI: 10.3389/fphys.2022.864547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Atrial dilation and atrial fibrillation (AF) are common in Hypertrophic CardioMyopathy (HCM) patients and associated with a worsening of prognosis. The pathogenesis of atrial myopathy in HCM remains poorly investigated and no specific association with genotype has been identified. By re-analysis of our cohort of thin-filament HCM patients (Coppini et al. 2014) AF was identified in 10% of patients with sporadic mutations in the cardiac Troponin T gene (TNNT2), while AF occurrence was much higher (25-75%) in patients carrying specific "hot-spot" TNNT2 mutations. To determine the molecular basis of arrhythmia occurrence, two HCM mouse models expressing human TNNT2 variants (a "hot-spot" one, R92Q, and a "sporadic" one, E163R) were selected according to the different pathophysiological pathways previously demonstrated in ventricular tissue. Echocardiography studies showed a significant left atrial dilation in both models, but more pronounced in the R92Q. In E163R atrial trabeculae, in line with what previously observed in ventricular preparations, the energy cost of tension generation was markedly increased. However, no changes of twitch amplitude and kinetics were observed, and there was no atrial arrhythmic propensity. R92Q atrial trabeculae, instead, displayed normal ATP consumption but markedly increased myofilament calcium sensitivity, as previously observed in ventricular preparations. This was associated with reduced inotropic reserve and slower kinetics of twitch contractions and, importantly, with an increased occurrence of spontaneous beats and triggered contractions that represent an intrinsic arrhythmogenic mechanism promoting AF. The association of specific TNNT2 mutations with AF occurrence depends on the mutation-driven pathomechanism (i.e., increased atrial myofilament calcium sensitivity rather than increased myofilament tension cost) and may influence the individual response to treatment.
Collapse
Affiliation(s)
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jil Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
129
|
Klinova SV, Minigalieva IA, Protsenko YL, Sutunkova MP, Gurvich VB, Ryabova JV, Valamina IE, Gerzen OP, Nabiev SR, Balakin AA, Lookin ON, Lisin RV, Kuznetsov DA, Privalova LI, Panov VG, Katsnelson LB, Nikitina LV, Katsnelson BA. Changes in the Cardiotoxic Effects of Lead Intoxication in Rats Induced by Muscular Exercise. Int J Mol Sci 2022; 23:ijms23084417. [PMID: 35457235 PMCID: PMC9029617 DOI: 10.3390/ijms23084417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to lead is associated with an increased risk of cardiovascular diseases. Outbred white male rats were injected with lead acetate intraperitoneally three times a week and/or were forced to run at a speed of 25 m/min for 10 min 5 days a week. We performed noninvasive recording of arterial pressure, electrocardiogram and breathing parameters, and assessed some biochemical characteristics. Electrophoresis in polyacrylamide gel was used to determine the ratio of myosin heavy chains. An in vitro motility assay was employed to measure the sliding velocity of regulated thin filaments on myosin. Isolated multicellular preparations of the right ventricle myocardium were used to study contractility in isometric and physiological modes of contraction. Exercise under lead intoxication normalized the level of calcium and activity of the angiotensin-converting enzyme in the blood serum, normalized the isoelectric line voltage and T-wave amplitude on the electrocardiogram, increased the level of creatine kinase-MB and reduced the inspiratory rate. Additionally, the maximum sliding velocity and the myosin heavy chain ratio were partly normalized. The effect of exercise under lead intoxication on myocardial contractility was found to be variable. In toto, muscular loading was found to attenuate the effects of lead intoxication, as judged by the indicators of the cardiovascular system.
Collapse
Affiliation(s)
- Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Yuri L. Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Vladimir B. Gurvich
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Julia V. Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Irene E. Valamina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Oksana P. Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Salavat R. Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Alexander A. Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Oleg N. Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Ruslan V. Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Daniil A. Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
| | - Vladimir G. Panov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Leonid B. Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Larisa V. Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (Y.L.P.); (O.P.G.); (S.R.N.); (A.A.B.); (O.N.L.); (R.V.L.); (D.A.K.); (L.B.K.); (L.V.N.)
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia; (S.V.K.); (I.A.M.); (M.P.S.); (V.B.G.); (J.V.R.); (I.E.V.); (L.I.P.); (V.G.P.)
- Correspondence: ; Tel.: +7-343-253-04-21 or +7-922-126-30-90; Fax: +7-343-3717-740
| |
Collapse
|
130
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
131
|
Nitric oxide and skeletal muscle contractile function. Nitric Oxide 2022; 122-123:54-61. [PMID: 35405336 PMCID: PMC10167965 DOI: 10.1016/j.niox.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is complex modulator of skeletal muscle contractile function, capable of increasing or decreasing force and power output depending on multiple factors. This review explores the effects and potential mechanisms for modulation of skeletal muscle contractile function by NO, from pharmacological agents in isolated muscle preparations to dietary nitrate supplementation in humans and animals. Pharmacological manipulation in vitro suggests that NO signaling diminishes submaximal isometric force, whereas dietary manipulation in vivo suggest that NO enhances submaximal force. The bases for these different responses are unknown but could reflect dose-dependent effects. Maximal isometric force is unaffected by physiologically relevant levels of NO, which do not induce overt protein oxidation. Pharmacological and dietary manipulation of NO signaling enhances the maximal rate of isometric force development, unloaded shortening velocity, and peak power. We hypothesize that these effects are mediated by post-translational modifications of myofibrillar proteins that modulate thick filament regulation of contraction (e.g., mechanosensing and strain-dependence of cross-bridge kinetics). NO effects on contractile function appear to have some level of fiber type and sex-specificity. The mechanisms behind NO-mediated changes in skeletal muscle function need to be explored through proteomics analysis and advanced biophysical assays to advance the development of small molecules and open intriguing therapeutic and ergogenic possibilities for aging, disease, and athletic performance.
Collapse
|
132
|
Transcriptomic and Proteomic Analysis of Marine Nematode Litoditis marina Acclimated to Different Salinities. Genes (Basel) 2022; 13:genes13040651. [PMID: 35456458 PMCID: PMC9025465 DOI: 10.3390/genes13040651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Salinity is a critical abiotic factor for all living organisms. The ability to adapt to different salinity environments determines an organism’s survival and ecological niches. Litoditis marina is a euryhaline marine nematode widely distributed in coastal ecosystems all over the world, although numerous genes involved in its salinity response have been reported, the adaptive mechanisms underlying its euryhalinity remain unexplored. Here, we utilized worms which have been acclimated to either low-salinity or high-salinity conditions and evaluated their basal gene expression at both transcriptomic and proteomic levels. We found that several conserved regulators, including osmolytes biosynthesis genes, transthyretin-like family genes, V-type H+-transporting ATPase and potassium channel genes, were involved in both short-term salinity stress response and long-term acclimation processes. In addition, we identified genes related to cell volume regulation, such as actin regulatory genes, Rho family small GTPases and diverse ion transporters, which might contribute to hyposaline acclimation, while the glycerol biosynthesis genes gpdh-1 and gpdh-2 accompanied hypersaline acclimation in L. marina. This study paves the way for further in-depth exploration of the adaptive mechanisms underlying euryhalinity and may also contribute to the study of healthy ecosystems in the context of global climate change.
Collapse
|
133
|
Knight WE, Woulfe KC. Dysfunctional sarcomeric relaxation in the heart. CURRENT OPINION IN PHYSIOLOGY 2022; 26:100535. [PMID: 35603011 PMCID: PMC9119547 DOI: 10.1016/j.cophys.2022.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since cardiac relaxation is commonly impaired in heart failure caused by many different etiologies, identifying druggable targets is a common goal. While many factors contribute to cardiac relaxation, this review focuses on sarcomeric relaxation and dysfunction. Any alteration in how sarcomeric proteins interact can lead to significant shifts in sarcomeric relaxation that may contribute to diastolic dysfunction. Considering examples of sarcomeric dysfunction that have been reported in 3 different pathologies, hypertrophic cardiomyopathy, restrictive cardiomyopathy, and heart failure with preserved ejection fraction, will provide insights into the role sarcomeric dysfunction plays in impaired cardiac relaxation. This will ultimately improve our understanding of sarcomeric physiology and uncover new therapeutic targets.
Collapse
Affiliation(s)
- Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19 Ave, Aurora, CO 80045
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19 Ave, Aurora, CO 80045
| |
Collapse
|
134
|
Rasmussen M, Jin JP. Monoclonal Antibodies as Probes to Study Ligand-Induced Conformations of Troponin Subunits. Front Physiol 2022; 13:828144. [PMID: 35399275 PMCID: PMC8990283 DOI: 10.3389/fphys.2022.828144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Striated muscle contraction and relaxation is regulated by Ca2+ at the myofilament level via conformational modulations of the troponin complex. To understand the structure-function relationship of troponin in normal muscle and in myopathies, it is necessary to study the functional effects of troponin isoforms and mutations at the level of allosteric conformations of troponin subunits. Traditional methodologies assessing such conformational studies are laborious and require significant amounts of purified protein, while many current methodologies require non-physiological conditions or labeling of the protein, which may affect their physiological conformation and function. To address these issues, we developed a novel approach using site-specific monoclonal antibodies (mAb) as molecular probes to detect and monitor conformational changes of proteins. Here, we present examples for its application in studies of two subunits of troponin: the Ca2+-binding subunit, TnC, and the tropomyosin-binding/thin filament-anchoring subunit, TnT. Studies using a high-throughput microplate assay are compared with that using localized surface plasmon resonance (LSPR) to demonstrate the effectiveness of using mAb probes to assess ligand-induced conformations of troponin subunits in physiological conditions. The assays utilize relatively small amounts of protein and are free of protein modification, which may bias results. Detailed methodologies using various monoclonal antibodies (mAbs) are discussed with considerations for the optimization of assay conditions and the broader application in studies of other proteins as well as in screening of therapeutic reagents that bind a specific target site with conformational and functional effects.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
135
|
Stachowski-Doll MJ, Papadaki M, Martin TG, Ma W, Gong HM, Shao S, Shen S, Muntu NA, Kumar M, Perez E, Martin JL, Moravec CS, Sadayappan S, Campbell SG, Irving T, Kirk JA. GSK-3β Localizes to the Cardiac Z-Disc to Maintain Length Dependent Activation. Circ Res 2022; 130:871-886. [PMID: 35168370 PMCID: PMC8930626 DOI: 10.1161/circresaha.121.319491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3β (glycogen synthase kinase 3β) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3β's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS Inducible cardiomyocyte-specific GSK-3β knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3β. Agreeing with the localization of its targets, GSK-3β that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3β in neonatal rat ventricular cardiomyocytes. One of GSK-3β's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3β. Last, GSK-3β myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS We identified a novel mechanism by which GSK-3β localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3β levels were reduced in patients with heart failure, indicating z-disc localized GSK-3β is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.
Collapse
Affiliation(s)
- Marisa J Stachowski-Doll
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Weikang Ma
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Henry M Gong
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Stephanie Shao
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Shi Shen
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
| | - Nitha Aima Muntu
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Edith Perez
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| | - Jody L Martin
- Department of Pharmacology, Cardiovascular Research Institute, UC Davis School of Medicine, CA (J.L.M.)
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, OH (C.S.M.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung, and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Stuart G Campbell
- Department of Bioengineering, Yale University, New Haven, CT (S. Shao, S. Shen, S.G.C.)
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT (S.G.C.)
| | - Thomas Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.M.G., T.I.)
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL (M.J.S.-D., M.P., T.G.M., N.A.M., E.P., J.A.K.)
| |
Collapse
|
136
|
Ma W, Irving TC. Small Angle X-ray Diffraction as a Tool for Structural Characterization of Muscle Disease. Int J Mol Sci 2022; 23:3052. [PMID: 35328477 PMCID: PMC8949570 DOI: 10.3390/ijms23063052] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Small angle X-ray fiber diffraction is the method of choice for obtaining molecular level structural information from striated muscle fibers under hydrated physiological conditions. For many decades this technique had been used primarily for investigating basic biophysical questions regarding muscle contraction and regulation and its use confined to a relatively small group of expert practitioners. Over the last 20 years, however, X-ray diffraction has emerged as an important tool for investigating the structural consequences of cardiac and skeletal myopathies. In this review we show how simple and straightforward measurements, accessible to non-experts, can be used to extract biophysical parameters that can help explain and characterize the physiology and pathology of a given experimental system. We provide a comprehensive guide to the range of the kinds of measurements that can be made and illustrate how they have been used to provide insights into the structural basis of pathology in a comprehensive review of the literature. We also show how these kinds of measurements can inform current controversies and indicate some future directions.
Collapse
Affiliation(s)
- Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C. Irving
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
137
|
The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7714542. [PMID: 35047109 PMCID: PMC8763515 DOI: 10.1155/2022/7714542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
This review is aimed at providing an overview of the key hallmarks of cardiomyocytes in physiological and pathological conditions. The main feature of cardiac tissue is the force generation through contraction. This process requires a conspicuous energy demand and therefore an active metabolism. The cardiac tissue is rich of mitochondria, the powerhouses in cells. These organelles, producing ATP, are also the main sources of ROS whose altered handling can cause their accumulation and therefore triggers detrimental effects on mitochondria themselves and other cell components thus leading to apoptosis and cardiac diseases. This review highlights the metabolic aspects of cardiomyocytes and wanders through the main systems of these cells: (a) the unique structural organization (such as different protein complexes represented by contractile, regulatory, and structural proteins); (b) the homeostasis of intracellular Ca2+ that represents a crucial ion for cardiac functions and E-C coupling; and (c) the balance of Zn2+, an ion with a crucial impact on the cardiovascular system. Although each system seems to be independent and finely controlled, the contractile proteins, intracellular Ca2+ homeostasis, and intracellular Zn2+ signals are strongly linked to each other by the intracellular ROS management in a fascinating way to form a "functional tetrad" which ensures the proper functioning of the myocardium. Nevertheless, if ROS balance is not properly handled, one or more of these components could be altered resulting in deleterious effects leading to an unbalance of this "tetrad" and promoting cardiovascular diseases. In conclusion, this "functional tetrad" is proposed as a complex network that communicates continuously in the cardiomyocytes and can drive the switch from physiological to pathological conditions in the heart.
Collapse
|
138
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
139
|
Ovejero JG, Fusi L, Park-Holohan SJ, Ghisleni A, Narayanan T, Irving M, Brunello E. Cooling intact and demembranated trabeculae from rat heart releases myosin motors from their inhibited conformation. J Gen Physiol 2022; 154:212988. [PMID: 35089319 PMCID: PMC8823665 DOI: 10.1085/jgp.202113029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions.
Collapse
Affiliation(s)
- Jesus G Ovejero
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.,Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - So-Jin Park-Holohan
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Andrea Ghisleni
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
140
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
141
|
Bevere M, Morabito C, Guarnieri S, Mariggiò MA. Mice lacking growth-associated protein 43 develop cardiac remodeling and hypertrophy. Histochem Cell Biol 2022; 157:547-556. [PMID: 35201398 PMCID: PMC9114049 DOI: 10.1007/s00418-022-02089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Growth-associated protein 43 (GAP43) is found in skeletal muscle, localized near the calcium release units. In interaction with calmodulin (CaM), it indirectly modulates the activity of dihydropyridine and ryanodine Ca2+ channels. GAP43–CaM interaction plays a key role in intracellular Ca2+ homeostasis and, consequently, in skeletal muscle activity. The control of intracellular Ca2+ signaling is also an important functional requisite in cardiac physiology. The aim of this study is to define the impact of GAP43 on cardiac tissue at macroscopic and cellular levels, using GAP43 knockout (GAP43−/−) newborn C57/BL6 mice. Hearts from newborn GAP43−/− mice were heavier than hearts from wild-type (WT) ones. In these GAP43−/− hearts, histological section analyses revealed a thicker ventricular wall and interventricular septum with a reduced ventricular chamber area. In addition, increased collagen deposits between fibers and increased expression levels of myosin were observed in hearts from GAP43−/− mice. Cardiac tropism and rhythm are controlled by multiple intrinsic and extrinsic factors, including cellular events such those linked to intracellular Ca2+ dynamics, in which GAP43 plays a role. Our data revealed that, in the absence of GAP43, there were cardiac morphological alterations and signs of hypertrophy, suggesting that GAP43 could play a role in the functional processes of the whole cardiac muscle. This paves the way for further studies investigating GAP43 involvement in signaling dynamics at the cellular level.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
142
|
Wu NC, Seebacher F. Physiology can predict animal activity, exploration, and dispersal. Commun Biol 2022; 5:109. [PMID: 35115649 PMCID: PMC8814174 DOI: 10.1038/s42003-022-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Physiology can underlie movement, including short-term activity, exploration of unfamiliar environments, and larger scale dispersal, and thereby influence species distributions in an environmentally sensitive manner. We conducted meta-analyses of the literature to establish, firstly, whether physiological traits underlie activity, exploration, and dispersal by individuals (88 studies), and secondly whether physiological characteristics differed between range core and edges of distributions (43 studies). We show that locomotor performance and metabolism influenced individual movement with varying levels of confidence. Range edges differed from cores in traits that may be associated with dispersal success, including metabolism, locomotor performance, corticosterone levels, and immunity, and differences increased with increasing time since separation. Physiological effects were particularly pronounced in birds and amphibians, but taxon-specific differences may reflect biased sampling in the literature, which also focussed primarily on North America, Europe, and Australia. Hence, physiology can influence movement, but undersampling and bias currently limits general conclusions.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
143
|
Rasmussen M, Feng HZ, Jin JP. Evolution of the N-Terminal Regulation of Cardiac Troponin I for Heart Function of Tetrapods: Lungfish Presents an Example of the Emergence of Novel Submolecular Structure to Lead the Capacity of Adaptation. J Mol Evol 2022; 90:30-43. [PMID: 34966949 PMCID: PMC10926322 DOI: 10.1007/s00239-021-10039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Troponin-based Ca2+ regulation of striated muscle contraction emerged approximately 700 million years ago with largely conserved functions during evolution. Troponin I (TnI) is the inhibitory subunit of troponin and has evolved into three muscle type-specific isoforms in vertebrates. Cardiac TnI is specifically expressed in the adult heart and has a unique N-terminal extension implicating a specific value during natural selection. The N-terminal extension of cardiac TnI in higher vertebrates contains β-adrenergic-regulated protein kinase A (PKA) phosphorylation sites as a mechanism to enhance cardiac muscle relaxation and facilitate ventricular filling. Phylogenic studies showed that the N-terminal extension of cardiac TnI first emerged in the genomes of early tetrapods as well as primordial lobe-finned fishes such as the coelacanth whereas it is absent in ray-finned fish. This apparently rapid evolution of β-adrenergic regulation of cardiac function suggests a high selection value for the heart of vertebrate animals on land to work under higher metabolic demands. Sequencing and PKA phosphorylation data showed that lungfish cardiac TnI has evolved with an amphibian-like N-terminal extension with prototype PKA phosphorylation sites while its overall structure remained fish like. The data demonstrate that the submolecular structure of TnI may evolve ahead of the whole protein for cardiac muscle contractility to adapt to new environmental conditions. Understanding the evolution of the β-adrenergic regulation of TnI and cardiac adaptation to the increased energetic demands of life on land adds knowledge for the treatment of human heart diseases and failure.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
144
|
Prodanovic M, Geeves MA, Poggesi C, Regnier M, Mijailovich SM. Effect of Myosin Isoforms on Cardiac Muscle Twitch of Mice, Rats and Humans. Int J Mol Sci 2022; 23:1135. [PMID: 35163054 PMCID: PMC8835009 DOI: 10.3390/ijms23031135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
To understand how pathology-induced changes in contractile protein isoforms modulate cardiac muscle function, it is necessary to quantify the temporal-mechanical properties of contractions that occur under various conditions. Pathological responses are much easier to study in animal model systems than in humans, but extrapolation between species presents numerous challenges. Employing computational approaches can help elucidate relationships that are difficult to test experimentally by translating the observations from rats and mice, as model organisms, to the human heart. Here, we use the spatially explicit MUSICO platform to model twitch contractions from rodent and human trabeculae collected in a single laboratory. This approach allowed us to identify the variations in kinetic characteristics of α- and β-myosin isoforms across species and to quantify their effect on cardiac muscle contractile responses. The simulations showed how the twitch transient varied with the ratio of the two myosin isoforms. Particularly, the rate of tension rise was proportional to the fraction of α-myosin present, while the β-isoform dominated the rate of relaxation unless α-myosin was >50%. Moreover, both the myosin isoform and the Ca2+ transient contributed to the twitch tension transient, allowing two levels of regulation of twitch contraction.
Collapse
Affiliation(s)
- Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia;
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia
- FilamenTech, Inc., Newtown, MA 02458, USA
| | - Michael A. Geeves
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK;
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, 20134 Florence, Italy;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA;
| | - Srboljub M. Mijailovich
- FilamenTech, Inc., Newtown, MA 02458, USA
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
145
|
Abstract
Super-relaxation is a state of muscle thick filaments in which ATP turnover by myosin is much slower than that of myosin II in solution. This inhibited state, in equilibrium with a faster (relaxed) state, is ubiquitous and thought to be fundamental to muscle function, acting as a mechanism for switching off energy-consuming myosin motors when they are not being used. The structural basis of super-relaxation is usually taken to be a motif formed by myosin in which the two heads interact with each other and with the proximal tail forming an interacting-heads motif, which switches the heads off. However, recent studies show that even isolated myosin heads can exhibit this slow rate. Here, we review the role of head interactions in creating the super-relaxed state and show how increased numbers of interactions in thick filaments underlie the high levels of super-relaxation found in intact muscle. We suggest how a third, even more inhibited, state of myosin (a hyper-relaxed state) seen in certain species results from additional interactions involving the heads. We speculate on the relationship between animal lifestyle and level of super-relaxation in different species and on the mechanism of formation of the super-relaxed state. We also review how super-relaxed thick filaments are activated and how the super-relaxed state is modulated in healthy and diseased muscles.
Collapse
Affiliation(s)
- Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA
| | | |
Collapse
|
146
|
Schleicher K, Hester S, Stegmann M, Zaccolo M. Quantitative Phosphoproteomics to Study cAMP Signaling. Methods Mol Biol 2022; 2483:281-296. [PMID: 35286683 DOI: 10.1007/978-1-0716-2245-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) signaling activates multiple downstream cellular targets in response to different stimuli. Specific phosphorylation of key target proteins via activation of the cAMP effector protein kinase A (PKA) is achieved via signal compartmentalization. Termination of the cAMP signal is mediated by phosphodiesterases (PDEs), a diverse group of enzymes comprising several families that localize to distinct cellular compartments. By studying the effects of inhibiting individual PDE families on the phosphorylation of specific targets it is possible to gain information on the subcellular spatial organization of this signaling pathway.We describe a phosphoproteomic approach that can detect PDE family-specific phosphorylation changes in cardiac myocytes against a high phosphorylation background. The method combines dimethyl labeling and titanium dioxide-mediated phosphopeptide enrichment, followed by tandem mass spectrometry.
Collapse
Affiliation(s)
- Katharina Schleicher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Svenja Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Monika Stegmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
147
|
Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, Brundage EA, Johnston JR, Whitson BA, Chase PB, Janssen PML, Regnier M, Biesiadecki BJ, Pinto JR, Parvatiyar MS. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. eLife 2022; 11:74919. [PMID: 35502901 PMCID: PMC9122498 DOI: 10.7554/elife.74919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation and acetylation of sarcomeric proteins are important for fine-tuning myocardial contractility. Here, we used bottom-up proteomics and label-free quantification to identify novel post-translational modifications (PTMs) on β-myosin heavy chain (β-MHC) in normal and failing human heart tissues. We report six acetylated lysines and two phosphorylated residues: K34-Ac, K58-Ac, S210-P, K213-Ac, T215-P, K429-Ac, K951-Ac, and K1195-Ac. K951-Ac was significantly reduced in both ischemic and nonischemic failing hearts compared to nondiseased hearts. Molecular dynamics (MD) simulations show that K951-Ac may impact stability of thick filament tail interactions and ultimately myosin head positioning. K58-Ac altered the solvent-exposed SH3 domain surface - known for protein-protein interactions - but did not appreciably change motor domain conformation or dynamics under conditions studied. Together, K213-Ac/T215-P altered loop 1's structure and dynamics - known to regulate ADP-release, ATPase activity, and sliding velocity. Our study suggests that β-MHC acetylation levels may be influenced more by the PTM location than the type of heart disease since less protected acetylation sites are reduced in both heart failure groups. Additionally, these PTMs have potential to modulate interactions between β-MHC and other regulatory sarcomeric proteins, ADP-release rate of myosin, flexibility of the S2 region, and cardiac myofilament contractility in normal and failing hearts.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Matthew C Childers
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Amanda L Wacker
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| | - Michelle Rodriquez Garcia
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Rakesh Singh
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Bryan A Whitson
- Department of Surgery, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - P Bryant Chase
- Department of Biological Science, The Florida State UniversityTallahasseeUnited States
| | - Paul ML Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Michael Regnier
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| |
Collapse
|
148
|
Kopylova GV, Berg VY, Kochurova AM, Matyushenko AM, Bershitsky SY, Shchepkin DV. The effects of the tropomyosin cardiomyopathy mutations on the calcium regulation of actin-myosin interaction in the atrium and ventricle differ. Biochem Biophys Res Commun 2021; 588:29-33. [PMID: 34942531 DOI: 10.1016/j.bbrc.2021.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms of pathogenesis of atrial myopathy associated with hypertrophic (HCM) and dilated (DCM) mutations of sarcomeric proteins are still poorly understood. For this, one needs to investigate the effects of the mutations on actin-myosin interaction in the atria separately from ventricles. We compared the impact of the HCM and DCM mutations of tropomyosin (Tpm) on the calcium regulation of the thin filament interaction with atrial and ventricular myosin using an in vitro motility assay. We found that the mutations differently affect the calcium regulation of actin-myosin interaction in the atria and ventricles. The DCM E40K Tpm mutation significantly reduced the maximum sliding velocity of thin filaments with ventricular myosin and its Ca2+-sensitivity. With atrial myosin, its effects were less pronounced. The HCM I172T mutation reduced the Ca2+-sensitivity of the sliding velocity of filaments with ventricular myosin but increased it with the atrial one. The HCM L185R mutation did not affect actin-myosin interaction in the atria. The results indicate that the difference in the effects of Tpm mutations on the actin-myosin interaction in the atria and ventricles may be responsible for the difference in pathological changes in the atrial and ventricular myocardium.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Valentina Y Berg
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander M Matyushenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
149
|
Microscale thermophoresis suggests a new model of regulation of cardiac myosin function via interaction with cardiac myosin-binding protein C. J Biol Chem 2021; 298:101485. [PMID: 34915024 PMCID: PMC8733265 DOI: 10.1016/j.jbc.2021.101485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
The cardiac isoform of myosin-binding protein C (cMyBP-C) is a key regulatory protein found in cardiac myofilaments that can control the activation state of both the actin-containing thin and myosin-containing thick filaments. However, in contrast to thin filament–based mechanisms of regulation, the mechanism of myosin-based regulation by cMyBP-C has yet to be defined in detail. To clarify its function in this process, we used microscale thermophoresis to build an extensive interaction map between cMyBP-C and isolated fragments of β-cardiac myosin. We show here that the regulatory N-terminal domains (C0C2) of cMyBP-C interact with both the myosin head (myosin S1) and tail domains (myosin S2) with micromolar affinity via phosphorylation-independent and phosphorylation-dependent interactions of domain C1 and the cardiac-specific m-motif, respectively. Moreover, we show that the interaction sites with the highest affinity between cMyBP-C and myosin S1 are localized to its central domains, which bind myosin with submicromolar affinity. We identified two separate interaction regions in the central C2C4 and C5C7 segments that compete for the same binding site on myosin S1, suggesting that cMyBP-C can crosslink the two myosin heads of a single myosin molecule and thereby stabilize it in the folded OFF state. Phosphorylation of the cardiac-specific m-motif by protein kinase A had no effect on the binding of either the N-terminal or the central segments to the myosin head domain, suggesting this might therefore represent a constitutively bound state of myosin associated with cMyBP-C. Based on our results, we propose a new model of regulation of cardiac myosin function by cMyBP-C.
Collapse
|
150
|
Myofibre Hyper-Contractility in Horses Expressing the Myosin Heavy Chain Myopathy Mutation, MYH1E321G. Cells 2021; 10:cells10123428. [PMID: 34943936 PMCID: PMC8699922 DOI: 10.3390/cells10123428] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Myosinopathies are defined as a group of muscle disorders characterized by mutations in genes encoding myosin heavy chains. Their exact molecular and cellular mechanisms remain unclear. In the present study, we have focused our attention on a MYH1-related E321G amino acid substitution within the head region of the type IIx skeletal myosin heavy chain, associated with clinical signs of atrophy, inflammation and/or profound rhabdomyolysis, known as equine myosin heavy chain myopathy. We performed Mant-ATP chase experiments together with force measurements on isolated IIx myofibres from control horses (MYH1E321G−/−) and Quarter Horses homozygous (MYH1E321G+/+) or heterozygous (MYH1E321G+/−) for the E321G mutation. The single residue replacement did not affect the relaxed conformations of myosin molecules. Nevertheless, it significantly increased its active behaviour as proven by the higher maximal force production and Ca2+ sensitivity for MYH1E321G+/+ in comparison with MYH1E321G+/− and MYH1E321G−/− horses. Altogether, these findings indicate that, in the presence of the E321G mutation, a molecular and cellular hyper-contractile phenotype occurs which could contribute to the development of the myosin heavy chain myopathy.
Collapse
|