101
|
Osborne JK, Kinney MA, Han A, Akinnola KE, Yermalovich AV, Vo LT, Pearson DS, Sousa PM, Ratanasirintrawoot S, Tsanov KM, Barragan J, North TE, Metzger RJ, Daley GQ. Lin28 paralogs regulate lung branching morphogenesis. Cell Rep 2021; 36:109408. [PMID: 34289374 PMCID: PMC8371695 DOI: 10.1016/j.celrep.2021.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The molecular mechanisms that govern the choreographed timing of organ development remain poorly understood. Our investigation of the role of the Lin28a and Lin28b paralogs during the developmental process of branching morphogenesis establishes that dysregulation of Lin28a/b leads to abnormal branching morphogenesis in the lung and other tissues. Additionally, we find that the Lin28 paralogs, which regulate post-transcriptional processing of both mRNAs and microRNAs (miRNAs), predominantly control mRNAs during the initial phases of lung organogenesis. Target mRNAs include Sox2, Sox9, and Etv5, which coordinate lung development and differentiation. Moreover, we find that functional interactions between Lin28a and Sox9 are capable of bypassing branching defects in Lin28a/b mutant lungs. Here, we identify Lin28a and Lin28b as regulators of early embryonic lung development, highlighting the importance of the timing of post-transcriptional regulation of both miRNAs and mRNAs at distinct stages of organogenesis. The timing of organogenesis is poorly understood. Here, Osborne et al. show that the Lin28 paralogs (Lin28a and Lin28b) regulate branching morphogenesis in a let-7-independent manner by directly binding to the mRNAs of Sox2, Sox9, and Etv5 to enhance their post-transcriptional processing.
Collapse
Affiliation(s)
- Jihan K Osborne
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Kinney
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Areum Han
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kemi E Akinnola
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alena V Yermalovich
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Pearson
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia M Sousa
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA
| | - Sutheera Ratanasirintrawoot
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaloyan M Tsanov
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Barragan
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA
| | - Trista E North
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA
| | - Ross J Metzger
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - George Q Daley
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
102
|
Alkafaji HA, Raji A, Rahman HS, Zekiy AO, Adili A, Jalili M, Hojjatipour T, Cid‐Arregui A, Shomali N, Tarzi S, Tamjidifar R, Heshmati R, Marofi F, Akbari M, Hasanzadeh A, Deljavanghodrati M, Jarahian M, Sandoghchian Shotorbani S. Up-regulation of KISS1 as a novel target of Let-7i in melanoma serves as a potential suppressor of migration and proliferation in vitro. J Cell Mol Med 2021; 25:6864-6873. [PMID: 34096173 PMCID: PMC8278109 DOI: 10.1111/jcmm.16695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is a kind of skin cancer that is begun by the alteration of melanocytes. miRNAs are small non-coding RNA molecules that regulate a variety of biological processes. KISS1, the metastasis-suppressor gene, encodes kisspeptins which inhibits migration and proliferation of cancers. This study was aimed to determine the role of Let-7i and KISS1 in melanoma cell migration and proliferation. At first, the expression of Let-7i and KISS1 was determined in patients with melanoma. In the in vitro part of the study, Let-7i mimics were transfected and the impact of its restoration on target gene expression, proliferation, migration and apoptosis of SK-MEL-3 melanoma cell line was assessed by real-time PCR and Western blotting, MTT assay, wound-healing assay and flow cytometry, respectively. Besides, KISS1 inhibitor siRNA alone and along with Let-7i was transfected to determine their probable correlation. The results revealed that either Let-7i or KISS1 were down-regulated in patients with melanoma. The results obtained from the in vitro part of the study revealed that restoration of Let-7i reduced the expression of metastasis- and proliferation-related target genes. Moreover, it was revealed that up-regulation of Let-7i attenuated migration and proliferation capability of SK-MEL-3 cells. Besides, it was demonstrated that Let-7i restoration induced apoptosis in melanoma cells. More importantly, the KISS1 inhibitor caused a prominent cell migration and proliferation, attenuated by Let-7i re-expression. To sum up, the present study revealed the impressive role of Let-7i restoration along with its correlation with KISS1 on melanoma carcinogenicity which may be applicable in future in vivo studies.
Collapse
Affiliation(s)
| | - Ahmed Raji
- College of medicineUniversity of BabylonBabylonIraq
| | - Heshu S. Rahman
- Department of PhysiologyCollege of MedicineUniversity of SuleimanyahSuleimanyahIraq
| | - Angelina O. Zekiy
- Sechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ali Adili
- Department of OncologyTabriz University of Medical SciencesTabrizIran
| | | | - Tahereh Hojjatipour
- Department of Hematology and Blood TransfusionStudents Research CentreSchool of Allied MedicineTehran University of Medical SciencesTehranIran
| | - Angel Cid‐Arregui
- Targeted Tumor Vaccines UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Navid Shomali
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Saeed Tarzi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Rozita Tamjidifar
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ramin Heshmati
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Faroogh Marofi
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Morteza Akbari
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ali Hasanzadeh
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | | | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401)German Cancer Research CenterHeidelbergGermany
| | - Siamak Sandoghchian Shotorbani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
103
|
Zolini AM, Block J, Rabaglino MB, Tríbulo P, Hoelker M, Rincon G, Bromfield JJ, Hansen PJ. Molecular fingerprint of female bovine embryos produced in vitro with high competence to establish and maintain pregnancy†. Biol Reprod 2021; 102:292-305. [PMID: 31616926 DOI: 10.1093/biolre/ioz190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The objective was to identify the transcriptomic profile of in vitro-derived embryos with high competence to establish and maintain gestation. Embryos produced with X-sorted sperm were cultured from day 5 to day 7 in serum-free medium containing 10 ng/ml recombinant bovine colony-stimulating factor 2 (CSF2) or vehicle. The CSF2 was administered because this molecule can increase blastocyst competence for survival after embryo transfer. Blastocysts were harvested on day 7 of culture and manually bisected. One demi-embryo from a single blastocyst was transferred into a synchronized recipient and the other half was used for RNA-seq analysis. Using P < 0.01 and a fold change >2-fold or <0.5 fold as cutoffs, there were 617 differentially expressed genes (DEG) between embryos that survived to day 30 of gestation vs those that did not, 470 DEG between embryos that survived to day 60 and those that did not, 432 DEG between embryos that maintained pregnancy from day 30 to day 60 vs those where pregnancy failed after day 30, and 635 DEG regulated by CSF2. Pathways and ontologies in which DEG were overrepresented included many related to cellular responses to stress and cell survival. It was concluded that gene expression in the blastocyst is different between embryos that are competent to establish and maintain pregnancy vs those that are not. The relationship between expression of genes related to cell stress and subsequent embryonic survival probably reflects cellular perturbations caused by embryonic development taking place in the artificial environment associated with cell culture.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - J Block
- Zoetis Inc., Kalamazoo, Michigan, USA
| | - M B Rabaglino
- Department of Applied Mathematics and Computer Science, Instituto de Investigación en Ciencias de la Salud, CONICET, Córdoba, Argentina.,Quantitative Genetics, Bioinformatics and Computational Biology Group, Technical University of Denmark, Kongens Lyngby, Denmark
| | - P Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - M Hoelker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - G Rincon
- Zoetis Inc., Kalamazoo, Michigan, USA
| | - J J Bromfield
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
104
|
Zhu WJ, Chen BJ, Zhu YY, Sun L, Zhang YC, Liu H, Luo FM. Increased microRNA-30a levels in bronchoalveolar lavage fluid as a diagnostic biomarker for lung cancer. PeerJ 2021; 9:e11528. [PMID: 34178448 PMCID: PMC8197034 DOI: 10.7717/peerj.11528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background MicroRNA-30a (miRNA-30a) levels have been shown to increase in the plasma of lung cancer patients. Herein, we evaluated the miRNA-30a levels in the bronchoalveolar lavage fluid (BALF) of lung cancer patients as a potential biomarker for lung cancer diagnosis. Methods BALF miRNA-30a expression of 174 subjects was quantified using quantitative real-time reverse transcription-polymerase chain reaction and compared between lung cancer patients and control patients with benign lung diseases. Moreover, its diagnostic value was evaluated by performing receiver operating characteristic (ROC) curve analysis. Results The relative BALF miRNA-30a expression was significantly higher in the lung cancer patients than in the controls (0.74 ± 0.55 versus 0.07 ± 0.48, respectively, p < 0.001) as well as in lung cancer patients with stage I–IIA disease than in those with stage IIB–IV disease (0.98 ± 0.64 versus 0.66 ± 0.54, respectively, p < 0.05). Additionally, miRNA-30a distinguished benign lung diseases from lung cancers, with an area under the ROC curve (AUC) of 0.822. ROC analysis also revealed an AUC of 0.875 for the Youden index-based optimal cut-off points for stage I–IIA adenocarcinoma. Thus, increased miRNA-30a levels in BALF may be a useful biomarker for non-small-cell lung cancer diagnosis.
Collapse
Affiliation(s)
- Wen-Jun Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Bo-Jiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Ying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Sun
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Chen Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Huan Liu
- Department of General Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Feng-Ming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
105
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
106
|
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13:cancers13112680. [PMID: 34072348 PMCID: PMC8198729 DOI: 10.3390/cancers13112680] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is a complex disease associated with deregulation of numerous genes. In addition, redundant cellular pathways limit efficiency of monotarget drugs in cancer therapy. MicroRNAs are a class of gene expression regulators, which often function by targeting multiple genes. This feature makes them a double-edged sword (a) as attractive targets for anti-tumor therapy and concomitantly (b) as risky targets due to their potential side effects on healthy tissues. As for conventional antitumor drugs, nanocarriers have been developed to circumvent the problems associated with miRNA delivery to tumors. In this review, we highlight studies that have established the pre-clinical proof-of concept of miRNAs as relevant therapeutic targets in oncology. Particular attention was brought to new strategies based on nanovectorization of miRNAs as well as to the perspectives for their applications. Abstract The discovery of microRNAs (miRNAs) in 1993 has challenged the dogma of gene expression regulation. MiRNAs affect most of cellular processes from metabolism, through cell proliferation and differentiation, to cell death. In cancer, deregulated miRNA expression leads to tumor development and progression by promoting acquisition of cancer hallmark traits. The multi-target action of miRNAs, which enable regulation of entire signaling networks, makes them attractive tools for the development of anti-cancer therapies. Hence, supplementing downregulated miRNA by synthetic oligonucleotides or silencing overexpressed miRNAs through artificial antagonists became a common strategy in cancer research. However, the ultimate success of miRNA therapeutics will depend on solving pharmacokinetic and targeted delivery issues. The development of a number of nanocarrier-based platforms holds significant promises to enhance the cell specific controlled delivery and safety profile of miRNA-based therapies. In this review, we provide among the most comprehensive assessments to date of promising nanomedicine platforms that have been tested preclinically, pertaining to the treatment of selected solid tumors including lung, liver, breast, and glioblastoma tumors as well as endocrine malignancies. The future challenges and potential applications in clinical oncology are discussed.
Collapse
Affiliation(s)
- Soha Reda El Sayed
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Justine Cristante
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Laurent Guyon
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Josiane Denis
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Olivier Chabre
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Nadia Cherradi
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Correspondence: ; Tel.: +33-(0)4-38783501; Fax: +33-(0)4-38785058
| |
Collapse
|
107
|
El Founini Y, Chaoui I, Dehbi H, El Mzibri M, Abounader R, Guessous F. MicroRNAs: Key Regulators in Lung Cancer. Microrna 2021; 10:109-122. [PMID: 34047262 DOI: 10.2174/2211536610666210527102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs have emerged as key regulators of the genome upon gene expression profiling and genome-wide sequencing. Among these noncoding RNAs, microRNAs are short noncoding RNAs that regulate a plethora of functions, biological processes and human diseases by targeting the messenger RNA stability through 3'UTR binding, leading to either mRNA cleavage or translation repression, depending on microRNA-mRNA complementarity degree. Additionally, strong evidence has suggested that dysregulation of miRNAs contribute to the etiology and progression of human cancers, such as lung cancer, the most common and deadliest cancer worldwide. Indeed, by acting as oncogenes or tumor suppressors, microRNAs control all aspects of lung cancer malignancy, including cell proliferation, survival, migration, invasion, angiogenesis, cancer stem cells, immune-surveillance escape, and therapy resistance; and their expressions are often associated with clinical parameters. Moreover, several deregulated microRNAs in lung cancer are carried by exosomes, microvesicles and secreted in body fluids, mainly the circulation where they conserve their stable forms. Subsequently, seminal efforts have been focused on extracellular microRNAs levels as noninvasive diagnostic and prognostic biomarkers in lung cancer. In this review, focusing on recent literature, we summarize the deregulation, mechanisms of action, functions and highlight clinical applications of miRNAs for better management and design of future lung cancer targeted therapies.
Collapse
Affiliation(s)
- Younes El Founini
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco.,Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Imane Chaoui
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Mohammed El Mzibri
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Fadila Guessous
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States.,Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| |
Collapse
|
108
|
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, Yu J. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol 2021; 18:2107-2126. [PMID: 33787465 DOI: 10.1080/15476286.2021.1909320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The zinc finger CCHC-type (ZCCHC) superfamily proteins, characterized with the consensus sequence C-X2-C-X4-H-X4-C, are accepted to have high-affinity binding to single-stranded nucleic acids, especially single-stranded RNAs. In human beings 25 ZCCHC proteins have been annotated in the HGNC database. Of interest is that among the family, most members are involved in the multiple steps of RNA metabolism. In this review, we focus on the diverged roles of human ZCCHC proteins on RNA transcription, biogenesis, splicing, as well as translation and degradation.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
109
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
110
|
Trovato M, Sciacchitano S, Facciolà A, Valenti A, Visalli G, Di Pietro A. Interleukin‑6 signalling as a valuable cornerstone for molecular medicine (Review). Int J Mol Med 2021; 47:107. [PMID: 33907833 PMCID: PMC8057292 DOI: 10.3892/ijmm.2021.4940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The biological abilities of interleukin-6 (IL-6) have been under investigation for nearly 40 years. IL-6 works through an interaction with the complex peptide IL-6 receptor (IL-6R). IL-6 is built with four α-chain nanostructures, while two different chains, IL-6Rα (gp80) and gp130/IL6β (gp130), are included in IL-6R. The three-dimensional shapes of the six chains composing the IL-6/IL-6R complex are the basis for the nanomolecular roles of IL-6 signalling. Genes, pseudogenes and competitive endogenous RNAs of IL-6 have been identified. In the present review, the roles played by miRNA in the post-transcriptional regulation of IL-6 expression are evaluated. mRNAs are absorbed via the 'sponge' effect to dynamically balance mRNA levels and this has been assessed with regard to IL-6 transcription efficiency. According to current knowledge on molecular and nanomolecular structures involved in active IL-6 signalling, two different IL-6 models have been proposed. IL-6 mainly has functions in inflammatory processes, as well as in cognitive activities. Furthermore, the abnormal production of IL-6 has been found in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also known as COVID-19). In the present review, both inflammatory and cognitive IL-6 models were analysed by evaluating the cytological and histological locations of IL-6 signalling. The goal of this review was to illustrate the roles of the classic and trans-signalling IL-6 pathways in endocrine glands such as the thyroid and in the central nervous system. Specifically, autoimmune thyroid diseases, disorders of cognitive processes and SARS-CoV-2 virus infection have been examined to determine the contribution of IL-6 to these disease states.
Collapse
Affiliation(s)
- Maria Trovato
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | | | - Alessio Facciolà
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy
| |
Collapse
|
111
|
Danac JMC, Garcia RL. CircPVT1 attenuates negative regulation of NRAS by let-7 and drives cancer cells towards oncogenicity. Sci Rep 2021; 11:9021. [PMID: 33907219 PMCID: PMC8079436 DOI: 10.1038/s41598-021-88539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs have emerged as functional regulatory molecules whose aberrant expression has been linked to diverse pathophysiological processes. Here, we report that circPVT1 interferes with let-7 binding to NRAS, confirming this axis as one route by which circPVT1 can instigate an oncogenic program in A549 lung cancer cells and HCT116 colorectal cancer cells. CircPVT1 knockdown significantly reduced NRAS levels and attenuated cancer hallmark phenotypes such as proliferation, migration, resistance to apoptosis, cytoskeletal disorganization, and epithelial-mesenchymal transition. The effects of circPVT1 knockdown were at least partially rescued by blocking binding of let-7 to NRAS 3′UTR with a target protector, suggesting that a circPVT1/let-7/NRAS axis exists and acts in cells to reverse NRAS downregulation and favor oncogenicity. While the phenotypic effects of circPVT1 knockdown may be attributable to the global action of circPVT1, the target protection assays resolved the relative contribution of the circPVT1/let-7/NRAS axis specifically.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
112
|
Liu Y, Nie H, Ding Y, Hou Y, Mao K, Cui Y. MiRNA, a New Treatment Strategy for Pulmonary Fibrosis. Curr Drug Targets 2021; 22:793-802. [PMID: 32988351 DOI: 10.2174/1874609813666200928141822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
113
|
Zhou QY, Ma RN, Hu CL, Sun F, Jia LP, Zhang W, Shang L, Xue QW, Jia WL, Wang HS. A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease-assisted homogenous target recycling coupling hairpin assembly-triggered double-signal output for the multiple amplified detection of miRNA. Analyst 2021; 146:2705-2711. [PMID: 33751013 DOI: 10.1039/d1an00204j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease (T7 Exo)-assisted homogenous target recycling coupling hairpin assembly triggered dual-signal output was proposed for the accurate and sensitive detection of microRNA-141 (miRNA-141). Concretely, in the presence of target miRNA, abundant signal transduction probes were released via the T7 Exo-assisted homogenous target recycling amplification, which could be captured by the specially designed ferrocene-labeled hairpin probe (Fc-H1) on -electrode interface and triggered the nonenzymatic catalytic hairpin assembly (Fc-H1 + MB-H2) to realize the cascade signal amplification and dual-signal output. Through such a conformational change process, the electrochemical signal of Fc (IFc) and MB (IMB) is proportionally and substantially decreased and increased. Therefore, the signal ratio of IMB/IFc can be employed to accurately reflect the true level of original miRNA. Benefiting from the efficient integration of the T7 Exo-assisted target recycle, nonenzymatic hairpin assembly and dual-signal output mode, the proposed sensor could realize the amplified detection of miRNA-141 effectively with a wide detection range from 1 fM to 100 pM, and a detection limit of 200 aM. Furthermore, it exhibits outstanding sequence specificity to discriminate mismatched RNA, acceptable reproducibility and feasibility for real sample. This strategy effectively integrated the advantages of multiple amplification and ratiometric output modes, which could provide an accurate and efficient method in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Qing-Yun Zhou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Chao-Long Hu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Fei Sun
- Oncology Department, Hospital of Traditional Chinese Medicine of Jinan City, Jinan 250000, Shandong, P.R. China
| | - Li-Ping Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Qing-Wang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Wen-Li Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| |
Collapse
|
114
|
Luo X, Zhu J, Jia W, Fang N, Wu P, Cai C, Zhu JJ. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18301-18313. [PMID: 33821612 DOI: 10.1021/acsami.1c01834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A fundamental challenge, particularly, in surface-enhanced Raman scattering (SERS) analysis is the detection of analytes that are distant from the sensing surface. To tackle this challenge, we herein report a long-range SERS (LR-SERS) substrate supporting an extension of electric field afforded by long-range surface plasmon resonance (LRSPR) excited in symmetrical dielectric environments. The LR-SERS substrate has a sandwich configuration with a triangle-shaped gold nanohole array embedded between two dielectrics with similar refractive indices (i.e., MgF2 and water). The finite-difference time-domain simulation was applied to guide the design of the LR-SERS substrate, which was engineered to have a wavelength-matched LRSPR with 785 nm excitation. The simulations predict that the LR-SERS substrate exhibits great SERS enhancement at distances of more than 10 nm beyond its top surface, and the enhancement factor (EF) has been improved by three orders of magnitude on LR-SERS substrates compared to that on conventional substrates. The experimental results show good agreement with the simulations, an EF of 4.1 × 105 remains available at 22 nm above the LR-SERS substrate surface. The LR-SERS substrate was further applied as a sensing platform to detect microRNA (miRNA) let-7a coupled with a hybridization chain reaction (HCR) strategy. The developed sensor displays a wide linear range from 10 aM to 1 nM and an ultralow detection limit of 8.5 aM, making it the most sensitive among the current detection strategies for miRNAs based on the SERS-HCR combination to the best of our knowledge.
Collapse
Affiliation(s)
- Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jingtian Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wenyu Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ningning Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
115
|
Ouyang B, Pan N, Zhang H, Xing C, Ji W. miR‑146b‑5p inhibits tumorigenesis and metastasis of gallbladder cancer by targeting Toll‑like receptor 4 via the nuclear factor‑κB pathway. Oncol Rep 2021; 45:15. [PMID: 33649824 PMCID: PMC7877004 DOI: 10.3892/or.2021.7966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gallbladder cancer (GBC) is a carcinoma of the biliary tract, which is common in developing countries and is associated with a high fatality rate. The aim of the present study was to investigate the mechanisms underlying the occurrence and development of GBC. A decrease in the expression of miR‑146b‑5p and an increase in the expression of its target gene Toll‑like receptor 4 (TLR4) were first observed in GBC tissues. Further study demonstrated that an increase in TLR4 expression caused by a decrease in miR‑146b‑5p expression led to activation of nuclear factor (NF)‑κB signaling. GBC cells were cultured in vitro, and it was observed that overexpression of miR‑146b‑5p effectively inhibited their viability, proliferation, migration and invasion, and increased their apoptosis. Using a BALB/c nude mouse xenograft model, it was demonstrated that overexpression of miR‑146b‑5p was sufficient to reduce tumor volume and alleviate pathological characteristics. Overall, the results of the present study indicated that the decrease in the expression of miR‑146b‑5p increased TLR4 expression and indirectly activated the NF‑κB signaling pathway, thereby regulating the development of GBC.
Collapse
Affiliation(s)
- Bin Ouyang
- Research Institute of General Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
- Department of General Surgery, Nanjing Central Hospital, Nanjing, Jiangsu 210018, P.R. China
| | - Ningfeng Pan
- Department of Neurology, Nanjing Central Hospital, Nanjing, Jiangsu 210018, P.R. China
| | - Haifeng Zhang
- Department of General Surgery, Nanjing Central Hospital, Nanjing, Jiangsu 210018, P.R. China
| | - Chuanming Xing
- Department of General Surgery, Nanjing Central Hospital, Nanjing, Jiangsu 210018, P.R. China
| | - Wu Ji
- Research Institute of General Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
116
|
Barik S, Mitra S, Suryavanshi M, Dewan A, Kaur I, Kumar D, Mishra M, Vishwakarma G. To study the role of pre-treatment microRNA (micro ribonucleic acid) expression as a predictor of response to chemoradiation in locally advanced carcinoma cervix. Cancer Rep (Hoboken) 2021; 4:e1348. [PMID: 33660436 PMCID: PMC8388174 DOI: 10.1002/cnr2.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
Background Concurrent chemoradiotherapy followed by brachytherapy is the standard of care in locally advanced carcinoma cervix. There is no prognostic factor at present to predict the outcome of disease in locally advanced carcinoma cervix. Aim Differential expression of microRNAs can be used as biomarkers to predict clinical response in locally advanced carcinoma cervix patients. Methods Thirty‐two patients of locally advanced carcinoma cervix with International Federation of Gynecology and Obstetrics Stage IB‐IVA were enrolled from 2017 to 2018. Expression of microRNA‐9 5p, ‐31 3p, ‐100 5p, ‐125a 5p, ‐125b‐5p, and –200a 5p in formalin‐fixed paraffin embedded (FFPE) biopsied tissue were analyzed by real time quantitative reverse transcriptase polymerase chain reaction (RT qPCR). Pretreatment evaluation was done with clinical examination and MRI pelvis. All patients received concurrent chemoradiotherapy followed by brachytherapy. Patients were evaluated for the clinical response after 3 months of treatment, with clinical examination and MRI pelvis scan using RECIST 1.1 criteria. Patients with no residual disease were classified as Complete responders (CR) and with residual or progressive disease were classified as Nonresponders (NR). Results were statistically analyzed using Mann Whiney U test to examine significant difference between the expression of microRNA between complete responders (CR) and nonresponders (NR). Results microRNA‐100 5p was upregulated in complete responders (CR) which showed a trend towards statistical significance (p value = 0.05). Conclusion microRNA‐100 5p can serve as a potential molecular biomarker in predicting clinical response to chemoradiation in locally advanced Carcinoma cervix. Its role should be further investigated in a larger study population.
Collapse
Affiliation(s)
- Soumitra Barik
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Swarupa Mitra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Moushumi Suryavanshi
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Abhinav Dewan
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Inderjeet Kaur
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Dushyant Kumar
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Maninder Mishra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
117
|
Serum Extracellular Vesicle-Derived miRNAs in Patients with Non-Small Cell Lung Cancer-Search for Non-Invasive Diagnostic Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11030425. [PMID: 33802346 PMCID: PMC7998231 DOI: 10.3390/diagnostics11030425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was a search for diagnostic and/or prognostic biomarkers in patients with non-small cell lung cancer (NSCLC) patients, based on circulating microRNAs (miRs: miR-23a, miR-361, miR-1228 and miR-let7i) in extracellular vesicles (EVs). Serum EVs were isolated from NSCLC patients (n = 31) and control subjects (n = 21). RNA was isolated from EVs and reverse transcription reaction was performed. Relative levels of miR-23a, miR-361, miR-1228 and miR-let7i were assessed in real-time qPCR using TaqMan probes. Analysis was based on the 2-ΔΔCT method. Statistically significant lower levels of miR-23a and miR-let7i were observed among NSCLC patients vs. control group: miR-23a, 0.054 vs. 0.107; miR-let7i, 0.193 vs. 0.369 (p = 0.003, p = 0.005, respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential of each individual serum EV-derived miRNA with an area under the curve AUC = 0.744 for miR-23a (p = 0.0003), 0.733 for miR-let7i (p = 0.0007). The decreased level of miR-23a in patients correlated with metastasis to lymph nodes and with AJCC tumor staging system. The results demonstrate that miR-23a and miR-let7i may prove clinically useful as significant, non-invasive markers in NSCLC diagnosis. Additionally, changing profile level of miR-23a that correlates with cancer development may be considered as an NSCLC progression marker.
Collapse
|
118
|
Frasson LT, Dalmaso B, Akamine PS, Kimura ET, Hamassaki DE, Del Debbio CB. Let-7, Lin28 and Hmga2 Expression in Ciliary Epithelium and Retinal Progenitor Cells. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 33749722 PMCID: PMC7991968 DOI: 10.1167/iovs.62.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/24/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Ciliary epithelium (CE) of adult mammalian eyes contains quiescent retinal progenitor/stem cells that generate neurospheres in vitro and differentiate into retinal neurons. This ability doesn't evolve efficiently probably because of regulatory mechanisms, such as microRNAs (miRNAs) that control pluripotent, progenitor, and differentiation genes. Here we investigate the presence of Let-7 miRNAs and its regulator and target, Lin28 and Hmga2, in CE cells from neurospheres, newborns, and adult tissues. Methods Newborn and adult rats CE cells were dissected into pigmented and nonpigmented epithelium (PE and NPE). Newborn PE cells were cultured with growth factors to form neurospheres and we analyzed Let-7, Lin28a, and Hmga2 expression. During the neurospheres formation, we added chemically modified single-stranded oligonucleotides designed to bind and inhibit or mimic endogenous mature Let-7b and Let-7c. After seven days in culture, we analyzed neurospheres size, number and expression of Let-7, Lin28, and Hmga2. Results Let-7 miRNAs were expressed at low rates in newborn CE cells with significant increase in adult tissues, with higher levels on NPE cells, that does not present the stem cells reprogramming ability. The Lin28a and Hmga2 protein and transcripts were more expressed in newborns than adults cells, opposed to Let-7. Neurospheres presented higher Lin28 and Hmga2 expression than newborn and adult, but similar Let-7 than newborns. Let-7b inhibitor upregulated Hmga2 expression, whereas Let-7c mimics upregulated Lin28 and downregulated Hmga2. Conclusions This study shows the dynamic of Lin28-Let-7-Hmga regulatory axis in CE cells. These components may develop different roles during neurospheres formation and postnatal CE cells.
Collapse
Affiliation(s)
- Lorena Teixeira Frasson
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Barbara Dalmaso
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla Sayami Akamine
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Edna Teruko Kimura
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Beltrame Del Debbio
- Department of Cell Biology and Development, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
119
|
Fu C, Lou S, Zhu G, Fan L, Yu X, Zhu W, Ma L, Wang L, Pan Y. Identification of New miRNA-mRNA Networks in the Development of Non-syndromic Cleft Lip With or Without Cleft Palate. Front Cell Dev Biol 2021; 9:631057. [PMID: 33732700 PMCID: PMC7957012 DOI: 10.3389/fcell.2021.631057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Objective: To identify new microRNA (miRNA)-mRNA networks in non-syndromic cleft lip with or without cleft palate (NSCL/P). Materials and Methods: Overlapping differentially expressed miRNAs (DEMs) were selected from cleft palate patients (GSE47939) and murine embryonic orofacial tissues (GSE20880). Next, the target genes of DEMs were predicted by Targetscan, miRDB, and FUNRICH, and further filtered through differentially expressed genes (DEGs) from NSCL/P patients and controls (GSE42589), MGI, MalaCards, and DECIPHER databases. The results were then confirmed by in vitro experiments. NSCL/P lip tissues were obtained to explore the expression of miRNAs and their target genes. Results: Let-7c-5p and miR-193a-3p were identified as DEMs, and their overexpression inhibited cell proliferation and promoted cell apoptosis. PIGA and TGFB2 were confirmed as targets of let-7c-5p and miR-193a-3p, respectively, and were involved in craniofacial development in mice. Negative correlation between miRNA and mRNA expression was detected in the NSCL/P lip tissues. They were also associated with the occurrence of NSCL/P based on the MGI, MalaCards, and DECIPHER databases. Conclusions: Let-7c-5p-PIGA and miR-193a-3p-TGFB2 networks may be involved in the development of NSCL/P.
Collapse
Affiliation(s)
- Chengyi Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Weihao Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
120
|
Braga L, Ali H, Secco I, Giacca M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res 2021; 117:674-693. [PMID: 32215566 PMCID: PMC7898953 DOI: 10.1093/cvr/cvaa071] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.
Collapse
Affiliation(s)
- Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ilaria Secco
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
121
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
122
|
Johnson DT, Davis AG, Zhou JH, Ball ED, Zhang DE. MicroRNA let-7b downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3'UTR. Exp Hematol Oncol 2021; 10:8. [PMID: 33531067 PMCID: PMC7856722 DOI: 10.1186/s40164-021-00204-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Acute myeloid leukemia (AML) with the t(8;21)(q22;q22) chromosomal translocation is among the most common subtypes of AML and produces the AML1-ETO (RUNX1-ETO, RUNX1-RUNX1T1) oncogenic fusion gene. AML1-ETO functions as an aberrant transcription factor which plays a key role in blocking normal hematopoiesis. Thus, the expression of AML1-ETO is critical to t(8;21) AML leukemogenesis and maintenance. Post-transcriptional regulation of gene expression is often mediated through interactions between trans-factors and cis-elements within transcript 3′-untranslated regions (UTR). AML1-ETO uses the 3′UTR of the ETO gene, which is not normally expressed in hematopoietic cells. Therefore, the mechanisms regulating AML1-ETO expression via the 3’UTR are attractive therapeutic targets. Methods We used RNA-sequencing of t(8;21) patients and cell lines to examine the 3′UTR isoforms used by AML1-ETO transcripts. Using luciferase assay approaches, we test the relative contribution of 3′UTR cis elements to AML1-ETO expression. We further use let-7b microRNA mimics and anti-let-7b sponges for functional studies of t(8;21) AML cell lines. Results In this study, we examine the regulation of AML1-ETO via the 3’UTR. We demonstrate that AML1-ETO transcripts primarily use a 3.7 kb isoform of the ETO 3′UTR in both t(8;21) patients and cell lines. We identify a negative regulatory element within the AML1-ETO 3′UTR. We further demonstrate that the let-7b microRNA directly represses AML1-ETO through this site. Finally, we find that let-7b inhibits the proliferation of t(8;21) AML cell lines, rescues expression of AML1-ETO target genes, and promotes differentiation. Conclusions AML1-ETO is post-transcriptionally regulated by let-7b, which contributes to the leukemic phenotype of t(8;21) AML and may be important for t(8;21) leukemogenesis and maintenance.
Collapse
Affiliation(s)
- Daniel T Johnson
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jie-Hua Zhou
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,BMT Division, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Edward D Ball
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,BMT Division, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA. .,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA. .,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA. .,Department of Pathology, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
123
|
MicroRNAs: Emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in lung cancer. Cancer Lett 2021; 502:71-83. [PMID: 33453304 DOI: 10.1016/j.canlet.2020.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-related deaths, causing a devastating impact on human health. The clinical prognosis of lung cancer is usually restricted by delayed diagnosis and resistance to anticancer therapies. MicroRNAs, a range of small endogenous noncoding RNAs 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence reveals pivotal roles of microRNAs in regulating cell proliferation, migration, invasion and metastasis in lung cancer. An increasing number of preclinical and clinical studies have also explored the potential of microRNAs as promising biomarkers and new therapeutic targets for lung cancer. The current review summarizes the most recent progress on the functional mechanisms of microRNAs involved in lung cancer development and progression and further discusses the clinical application of miRNAs as putative therapeutic targets for molecular diagnosis and prognostic prediction in lung cancer.
Collapse
|
124
|
Petrek H, Yan Ho P, Batra N, Tu MJ, Zhang Q, Qiu JX, Yu AM. Single bioengineered ncRNA molecule for dual-targeting toward the control of non-small cell lung cancer patient-derived xenograft tumor growth. Biochem Pharmacol 2021; 189:114392. [PMID: 33359565 DOI: 10.1016/j.bcp.2020.114392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the leading cause of cancer deaths worldwide and accounts for more than 22% of all cancer-related deaths in the US. Developing new therapies is essential to combat against deadly lung cancer, especially the most common type, non-small cell lung cancer (NSCLC). With the discovery of genome-derived functional small noncoding RNA (ncRNA), namely microRNAs (miRNA or miR), restoration of oncolytic miRNAs lost or downregulated in NSCLC cells represents a new therapeutic strategy. Very recently, we have developed a novel technology that achieves in vivo fermentation production of bioengineered miRNA agents (BERA) for research and development. In this study, we aimed at simultaneously introducing two miRNAs into NSCLC cells by using single recombinant "combinatorial BERA" (CO-BERA) molecule. Our studies show that single CO-BERA molecule (e.g., let-7c/miR-124) was successfully processed to two miRNAs (e.g., let-7c-5p and miR-124-3p) to combinatorially regulate the expression of multiple targets (e.g., RAS, VAMP3 and CDK6) in human NSCLC cells, exhibiting greater efficacy than respective BERA miRNAs in the inhibition of cell viability and colony formation. Furthermore, we demonstrate that CO-BERA let-7c/miR-124-loaded lipopolyplex nanomedicine was the most effective among tested RNAs in the control of tumor growth in NSCLC patient-derived xenograft mouse models. The anti-tumor activity of CO-BERA let-7c/miR-124 was associated with the suppression of RAS and CDK6 expression, and enhancement of apoptosis. These results support the concept to use single ncRNA agent for dual-targeting and offer insight into developing new RNA therapeutics for the treatment of lethal NSCLC.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Pui Yan Ho
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Qianyu Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jing-Xin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
125
|
Fortunato O, Iorio MV. The Therapeutic Potential of MicroRNAs in Cancer: Illusion or Opportunity? Pharmaceuticals (Basel) 2020; 13:E438. [PMID: 33271894 PMCID: PMC7761241 DOI: 10.3390/ph13120438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The functional involvement of microRNAs in human neoplasia has raised in the last years an increasing interest in the scientific community toward the potential application in clinics as therapeutic tools. Indeed, the possibility to modulate their expression to re-establish a lost equilibrium and counteract tumor growth and dissemination, and/or to improve responsiveness to standard therapies, is promising and fascinating. However, several issues need to be taken into account such as factors related to miRNA stability in the blood, tissue penetration and potential off-target effects, which might affect safety, tolerability and efficacy of an miRNA-based therapy. Here we describe the most relevant challenges related to miRNA-based therapy, review the delivery strategies exploited to date and the on-going clinical trials.
Collapse
Affiliation(s)
- Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milan, Italy
| | - Marilena V. Iorio
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
126
|
Gharanei S, Shabir K, Brown JE, Weickert MO, Barber TM, Kyrou I, Randeva HS. Regulatory microRNAs in Brown, Brite and White Adipose Tissue. Cells 2020; 9:cells9112489. [PMID: 33207733 PMCID: PMC7696849 DOI: 10.3390/cells9112489] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - James E. Brown
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- Correspondence:
| |
Collapse
|
127
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
128
|
Miao P, Tang Y. DNA Walking and Rolling Nanomachine for Electrochemical Detection of miRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004518. [PMID: 33140572 DOI: 10.1002/smll.202004518] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
miRNAs, a class of endogenous noncoding RNAs, are involved in many crucial biological processes, which have emerged as a new set of biomarkers for disease theranostics. Exploring efficient signal amplification strategy is highly desired to pursue a highly sensitive miRNA biosensing platform. DNA nanotechnology shows great promise in the fabrication of amplified miRNA biosensors. In this work, a novel DNA walking and rolling nanomachine is developed for highly sensitive and selective detection of miRNA. Particularly, this approach programs two forms of dynamic DNA nanomachines powered by corresponding enzymes, which are well integrated. It is able to achieve a limit of detection as low as 39 × 10-18 m, along with excellent anti-interfering performance and clinical applications. In addition, by designing pH-controlled detachable intermolecular DNA triplex, the main sensing elements can be conveniently reset, which fulfills the requirements of point-of-care profiling of miRNA. The high consistency between the proposed approach and quantitative real-time polymerase chain reaction validates the robustness and reliability. Therefore, it is anticipated that the DNA walking and rolling nanomachine has attractive application prospects in miRNA assay for biological researches and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
129
|
miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 2020; 11:929. [PMID: 33116120 PMCID: PMC7595188 DOI: 10.1038/s41419-020-03135-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat's kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3'UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.
Collapse
|
130
|
Shen L, Zeng J, Ma L, Li S, Chen C, Jia J, Liang X. Helicobacter pylori Induces a Novel NF-kB/LIN28A/let-7a/hTERT Axis to Promote Gastric Carcinogenesis. Mol Cancer Res 2020; 19:74-85. [PMID: 33004623 DOI: 10.1158/1541-7786.mcr-19-0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/18/2019] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
Reactivated telomerase is a crucial event in the development and progression of a variety of tumors. However, how telomerase is activated in gastric carcinogenesis has not been fully uncovered yet. Here, we identified a key role of the NF-κB/LIN28A/let-7a axis to promote human telomerase reverse transcriptase (hTERT) expression for gastric cancer initiation. Mechanistically, LIN28A expression was upregulated by H. pylori-induced NF-κB activation. And LIN28A, in turn, suppressed let-7a expression, forming the NF-κB/LIN28A/let-7a axis to regulate gene expression upon H. pylori infection. Of note, we first discovered hTERT as a direct target of let-7a, which inhibited hTERT expression by binding to its 3'UTR of mRNA. Therefore, H. pylori-triggered let-7a downregulation enhanced hTERT protein translation, resulting in telomerase reactivation. Furthermore, hTERT enhanced LIN28A expression, forming the positive feedback regulation between hTERT and NF-κB/LIN28A/let-7a axis to maintain the sustained overexpression of hTERT in gastric cancer. IMPLICATIONS: The NF-κB/LIN28A/Let-7a axis was crucial for the overexpression of hTERT upon H. pylori infection during gastric cancer development and may serve as a potential target to suppress hTERT expression for gastric cancer prevention and treatment.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Jiping Zeng
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China.,Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China. .,Cancer Research Laboratory, Shandong University-Karolinska Institutet collaborative Laboratory, School of Basic Medical Science, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
131
|
MicroRNA expression profiles in molecular subtypes of clear-cell renal cell carcinoma are associated with clinical outcome and repression of specific mRNA targets. PLoS One 2020; 15:e0238809. [PMID: 32915890 PMCID: PMC7485767 DOI: 10.1371/journal.pone.0238809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Clear-cell renal cell carcinomas (ccRCC) can be divided into four transcriptomic subtypes, two of which have a favorable and two an unfavorable prognosis. To assess mechanisms driving these subtypes, we investigated their miRNA expression patterns. miRNAs are master regulators of mRNAs, that are widely deregulated in cancer. Unsupervised clustering in our dataset (n = 128) and The Cancer Genome Atlas (TCGA) validation set identified two distinct miRNA clusters that overlapped with the transcriptomic subtypes, underscoring the validity of these subtypes on a multi-omics level and suggesting a driving role for miRNAs. Discriminatory miRNAs for the favorable subtypes repressed epithelial-to-mesenchymal transition, based on gene set enrichment analysis and target-mRNA expression levels. Strikingly, throughout the entire dataset, miRNAs associated with favorable subtypes were also associated with longer overall survival after diagnosis, and miRNAs associated with unfavorable subtypes with shorter overall survival (Pearson r = -0.54, p<0.0001). These findings indicate a general shift in miRNA expression between more and less aggressive tumors. This adds to current literature, which usually suggests only a small subset of miRNAs as markers of aggressive disease. In conclusion, this study reveals distinct mRNA expression patterns underlying transcriptomic ccRCC-subtypes, whereby miRNAs associated with favorable subtypes counteract epithelial-to-mesenchymal transition. There is a general shift in miRNA expression in ccRCC, between more and less aggressive tumors.
Collapse
|
132
|
Yang Z, Ma H, Liu W. In silico identification of common and specific signatures in coronary heart diseases. Exp Ther Med 2020; 20:3595-3614. [PMID: 32905032 PMCID: PMC7464937 DOI: 10.3892/etm.2020.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 12/03/2022] Open
Abstract
Coronary heart disease (CHD) is on the increase in developing countries, where lifestyle choices such as smoking, bad diet, and no exercise contribute and increase the incidence of high blood pressure and high cholesterol levels to cause CHD. Through utilization of a biomarker-based approach for developing interventions, the aim of the study was to identify differentially expressed genes (DEGs) and their association and impact on various bio-targets. The microarray datasets of both healthy and CHD patients were analyzed to identify the DEGs and their interactions using Gene Ontology, PANTHER, Reactome, and STRING (for the possible associated genes with multiple targets). Our data mining approach suggests that the DEGs were associated with molecular functions, including protein binding (75%) and catalytic activity (56%); biological processes such as cellular process (83%), biological regulation (57%), and metabolic process (44%); and cellular components such as cell (65%) and organelle (58%); as well as other associations including apoptosis, inflammatory, cell development and metabolic pathways. The molecular functions were further analyzed, and protein binding in particular was analyzed using network analysis to determine whether there was a clear association with CHD and disease. The ingenuity pathway analysis revealed pathways related to cell cholesterol biosynthesis, the immune system including cytokinin signaling, in which, the understanding of DEGs is crucial to predict the advancement of preventive strategies. Results of the present study showed that, there is a need to validate the top DEGs to rule out their molecular mechanism in heart failure caused by CHD.
Collapse
Affiliation(s)
- Zhijia Yang
- The Third Department of Cardiovascular Medicine, Handan Central Hospital, Handan, Hebei 056002, P.R. China
| | - Haifang Ma
- The First Department of Cardiovascular Medicine, Affiliated Hospital of Hebei University of Technology, Handan, Hebei 056002, P.R. China
| | - Wei Liu
- The First Department of Cardiovascular Medicine, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| |
Collapse
|
133
|
Foster DJ, Chang HM, Haswell JR, Gregory RI, Slack FJ. TRIM71 binds to IMP1 and is capable of positive and negative regulation of target RNAs. Cell Cycle 2020; 19:2314-2326. [PMID: 32816599 DOI: 10.1080/15384101.2020.1804232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
TRIM71 is an important RNA-binding protein in development and disease, yet its direct targets have not been investigated globally. Here we describe a number of disease and developmentally-relevant TRIM71 RNA targets such as the MBNL family, LIN28B, MDM2, and TCF7L2. We describe a new role for TRIM71 as capable of positive or negative RNA regulation depending on the RNA target. We found that TRIM71 co-precipitated with IMP1 which could explain its multiple mechanisms of RNA regulation, as IMP1 is typically thought to stabilize RNAs. Deletion of the NHL domain of TRIM71 impacted its ability to bind to RNA and RNAs bound by congenital hydrocephalus-associated point mutations in the RNA-binding NHL domain of TRIM71 clustered closely with RNAs bound by the NHL deletion mutant. Our work expands the possible mechanisms by which TRIM71 may regulate RNAs and elucidates further potential RNA targets.
Collapse
Affiliation(s)
- Daniel J Foster
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Hao-Ming Chang
- Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute , Boston, MA, USA
| | - Jeffrey R Haswell
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute , Boston, MA, USA.,Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
134
|
LincRNA-Cox2 promotes pulmonary arterial hypertension by regulating the let-7a-mediated STAT3 signaling pathway. Mol Cell Biochem 2020; 475:239-247. [PMID: 32803651 DOI: 10.1007/s11010-020-03877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
It is well supported by the literature that the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are critical for the development of pulmonary arterial hypertension (PAH). Long intergenic noncoding RNA COX2 (lincRNA-COX2) is a regulator of inflammation and might be conducive to the progression of atherosclerosis, while its role in PAH is still unclear. This study was performed to explore the role and mechanism of lincRNA-COX2 in PASMCs proliferation and migration in an anaerobic environment. PASMCs were treated by hypoxia to construct PAH cell models. RT-PCR and western blot were recruited to evaluate the expression levels of lincRNA-COX2, miR-let-7a and STAT3. Their roles in proliferation and cell and migration of PASMCs were determined by the CCK-8 assay, wound-healing assay, and flow cytometry. In peripheral blood samples from PAH patients and hypoxic PASMCs, lincRNA-COX2 expression was enhanced. Silencing lincRNA-COX2 inhibited hypoxia-induced PASMCs proliferation by influencing the G2/M phase of the cell cycle. Meanwhile, lincRNA-COX2 regulated STAT3 through miR-let-7a and its effects on hypoxic PASMCs worked through miR-let-7a/STAT3 axis. To conclude, silencing lincRNA-COX2 attenuated the development of hypoxic PASMCs. LincRNA-COX2/miR-let-7a/STAT3 axis might be considered as a novel target to treat PAH.
Collapse
|
135
|
Likhitrattanapisal S, Kumkate S, Ajawatanawong P, Wongprasert K, Tohtong R, Janvilisri T. Dysregulation of microRNA in cholangiocarcinoma identified through a meta-analysis of microRNA profiling. World J Gastroenterol 2020; 26:4356-4371. [PMID: 32848339 PMCID: PMC7422534 DOI: 10.3748/wjg.v26.i29.4356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the past decades, the potential of microRNA (miRNA) in cancer diagnostics and prognostics has gained a lot of interests. In this study, a meta-analysis was conducted upon the pooled miRNA microarray data of cholangiocarcinoma (CCA). AIM To identify differentially expressed (DE) miRNAs and perform functional analyses in order to gain insights to understanding miRNA-target interactions involved in tumorigenesis pathways of CCA. METHODS Raw data from 8 CCA miRNA microarray datasets, consisting of 443 samples in total, were integrated and statistically analyzed to identify DE miRNAs via comparison of levels of miRNA expression between CCA and normal bile duct samples using t-tests (P < 0.001). The 10-fold cross validation was performed in order to increase the robustness of the t-test results. RESULTS Our data showed 70 up-regulated and 48 down-regulated miRNAs in CCA. Gene Ontology and pathway enrichment analyses revealed that mRNA targets of DE miRNAs were significantly involved in several biological processes. The most prominent dysregulated pathways included phosphatidylinositol-3 kinases/Akt, mitogen-activated protein kinase and Ras signaling pathways. CONCLUSION DE miRNAs found in our meta-analysis revealed dysregulation in major cancer pathways involved in the development of CCA. These results indicated the necessity of understanding the miRNA-target interactions and the significance of dysregulated miRNAs in terms of diagnostics and prognostics of cancers.
Collapse
Affiliation(s)
- Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pravech Ajawatanawong
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
136
|
Gary JM, Simmons JK, Xu J, Zhang S, Peat TJ, Watson N, Gamache BJ, Zhang K, Kovalchuk AL, Michalowski AM, Chen JQ, Thaiwong T, Kiupel M, Gaikwad S, Etienne M, Simpson RM, Dubois W, Testa JR, Mock BA. Hypomorphic mTOR Downregulates CDK6 and Delays Thymic Pre-T LBL Tumorigenesis. Mol Cancer Ther 2020; 19:2221-2232. [PMID: 32747423 DOI: 10.1158/1535-7163.mct-19-0671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/14/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
PI3K/AKT/mTOR pathway hyperactivation is frequent in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL). To model inhibition of mTOR, pre-T-cell lymphoblastic leukemia/lymphoma (pre-T LBL) tumor development was monitored in mice with T lymphocyte-specific, constitutively active AKT (Lck-MyrAkt2) that were either crossed to mTOR knockdown (KD) mice or treated with the mTOR inhibitor everolimus. Lck-MyrAkt2;mTOR KD mice lived significantly longer than Lck-MyrAkt2;mTOR wild-type (WT) mice, although both groups ultimately developed thymic pre-T LBL. An increase in survival was also observed when Lck-MyrAkt2;mTOR WT mice were treated for 8 weeks with everolimus. The transcriptional profiles of WT and KD thymic lymphomas were compared, and Ingenuity Pathway Upstream Regulator Analysis of differentially expressed genes in tumors from mTOR WT versus KD mice identified let-7 and miR-21 as potential regulatory genes. mTOR KD mice had higher levels of let-7a and miR-21 than mTOR WT mice, and rapamycin induced their expression in mTOR WT cells. CDK6 was one of the most downregulated targets of both let-7 and miR21 in mTOR KD tumors. CDK6 overexpression and decreased expression of let-7 in mTOR KD cells rescued a G1 arrest phenotype. Combined mTOR (rapamycin) and CDK4/6 (palbociclib) inhibition decreased tumor size and proliferation in tumor flank transplants, increased survival in an intravenous transplant model of disseminated leukemia compared with single agent treatment, and cooperatively decreased cell viability in human T-ALL/LBL cell lines. Thus, mTOR KD mice provide a model to explore drug combinations synergizing with mTOR inhibitors and can be used to identify downstream targets of inhibition.
Collapse
Affiliation(s)
- Joy M Gary
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland.,Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - John K Simmons
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Jinfei Xu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Tyler J Peat
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Nicholas Watson
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Benjamin J Gamache
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland.,American University, Washington, DC
| | - Ke Zhang
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | | | | | - Jin-Qiu Chen
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Tuddow Thaiwong
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Maudeline Etienne
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
137
|
Pozza DH, De Mello RA, Araujo RL, Velcheti V. MicroRNAs in Lung Cancer Oncogenesis and Tumor Suppression: How it Can Improve the Clinical Practice? Curr Genomics 2020; 21:372-381. [PMID: 33093800 PMCID: PMC7536806 DOI: 10.2174/1389202921999200630144712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer (LC) development is a process that depends on genetic mutations. The DNA methylation, an important epigenetic modification, is associated with the expression of non-coding RNAs, such as microRNAs. MicroRNAs are particularly essential for cell physiology, since they play a critical role in tumor suppressor gene activity. Furthermore, epigenetic disruptions are the primary event in cell modification, being related to tumorigenesis. In this context, microRNAs can be a useful tool in the LC suppression, consequently improving prognosis and predicting treatment. CONCLUSION This manuscript reviews the main microRNAs involved in LC and its potential clinical applications to improve outcomes, such as survival and better quality of life.
Collapse
Affiliation(s)
| | - Ramon Andrade De Mello
- Address correspondence to this author at the Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; Tel/Fax: +351 289 244 420; E-mail:
| | | | | |
Collapse
|
138
|
Modulatory Effect of Indoles on the Expression of miRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl Biochem Biotechnol 2020; 192:1208-1223. [PMID: 32710170 DOI: 10.1007/s12010-020-03378-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Indole-3-carbinol (I3C) is a naturally occurring glucosinolate found in Brassica vegetables that is usually converted in gastric acidic environment to the efficient metabolite 3,3'-diindolylmethane (DIM). Both indoles (I3C and DIM) are known chemopreventive agents for various cancers including breast cancer. This study aimed to investigate the influence of both indoles on the tumor suppressor miRNAs (let-7a-e, miR-15a, miR-16, miR-17-5p, miR-19a, and miR-20a) and oncomiRs (miR-181a, miR-181b, miR-210, miR-221, and miR-106a), which are controlling the cell cycle key regulators: cyclin-dependent kinases (CDKs), CDK inhibitor p27Kip1, and cyclin D1. Our results indicated that both indoles generally elevated the expression of the tumor suppressor miRNAs let-7a-e, miR-19a, miR-17-5p, and miR-20a and decreased the expression of the oncomiR list. Both indoles were able to significantly suppress the expression of CDK4 and CDK6 as well as the apoptotic markers Bcl-2 and survivin. Both indoles decreased cyclin-D1 protein, where I3C decreased cytoplasmic and nuclear cyclin-D1 significantly. Cytoplasmic and nuclear P27Kip1 showed overexpression following treatment with I3C higher than that detected following DIM treatment. This study provides a mechanistic elucidation of the previously reported cell cycle arrest by I3C and DIM in breast cancer cells suggesting that this effect could be through modulation of miRNAs expression that, in turn, regulates the genetic network controlling the G1/S phase in cell cycle progression.
Collapse
|
139
|
Zhang B, Tian L, Xie J, Chen G, Wang F. Targeting miRNAs by natural products: A new way for cancer therapy. Biomed Pharmacother 2020; 130:110546. [PMID: 32721631 DOI: 10.1016/j.biopha.2020.110546] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through mRNA degradation or translation inhibition. MiRNAs play important roles in a variety of biological processes, and dysregulation of miRNA expression is highly associated with cancer development. Individual miRNA regulates multiple gene expressions, enabling them to regulate multiple cellular signaling pathways simultaneously. Hence, miRNAs could be served as cancer biomarkers for diagnosis and prognosis, and also therapeutic targets. Recently, more and more evidences showed that natural products such as paclitaxel, curcumin, resveratrol, genistein or epigallocatechin-3-gallate exert their anti-proliferative and/or pro-apoptotic effects through regulating one or more miRNAs, leading to the inhibition of cancer cell growth, induction of apoptosis or enhancement of conventional cancer therapeutic efficacy. Herein, we outlined the recent advances in the regulation of miRNAs expression by the natural products and highlight the importance of these natural drugs as a potential strategy in cancer treatment. This review will help us better understand how natural products modulate miRNAs and contribute to the development of effective and safe natural drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| |
Collapse
|
140
|
Gohir W, Klement W, Singer LG, Palmer SM, Mazzulli T, Keshavjee S, Husain S. Identifying host microRNAs in bronchoalveolar lavage samples from lung transplant recipients infected with Aspergillus. J Heart Lung Transplant 2020; 39:1228-1237. [PMID: 32771440 DOI: 10.1016/j.healun.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs of ∼22 nucleotides that play a crucial role in post-transcriptional regulation of gene expression. Dysregulation of miRNA expression has been shown during microbial infections. We sought to identify miRNAs that distinguish invasive aspergillosis (IA) from non-IA in lung transplant recipients (LTRs). METHODS We used NanoString nCounter Human miRNA, version 3, panel to measure miRNAs in bronchoalveolar lavage (BAL) samples from LTRs with Aspergillus colonization (ASP group) (n = 10), those with Aspergillus colonization and chronic lung allograft dysfunction (CLAD) (ASPCLAD group) (n = 7), those with IA without CLAD (IA group) (n = 10), those who developed IA with CLAD (IACLAD group) (n = 9), and control patients (controls) (n = 9). The miRNA profile was compared using the permutation test of 100,000 trials for each of the comparisons. We used mirDIP to obtain their gene targets and pathDIP to determine the pathway enrichment. RESULTS We performed pairwise comparisons between patient groups to identify differentially expressed miRNAs. A total of 5 miRNAs were found to be specific to IA, including 4 (miR-145-5p, miR-424-5p, miR-99b-5p, and miR-4488) that were upregulated and the pair (miR-4454 + miR-7975) that was downregulated in IA group vs controls. The expression change for these miRNAs was specific to patients with IA; they were not significantly differentiated between IACLAD and IA groups. Signaling pathways associated with an immunologic response to IA were found to be significantly enriched. CONCLUSIONS We report a set of 5 differentially expressed miRNAs in the BAL of LTRs with IA that might help in the development of diagnostic and prognostic tools for IA in LTRs. However, further investigation is needed in a larger cohort to validate the findings.
Collapse
Affiliation(s)
- Wajiha Gohir
- Transplant Infectious Diseases, Ajmera Family Transplant Centre
| | - William Klement
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Scott M Palmer
- Division of Pulmonary and Critical Care Medicine, Duke University, Durham, North Carolina; Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Tony Mazzulli
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Family Transplant Centre.
| |
Collapse
|
141
|
Mikedis MM, Fan Y, Nicholls PK, Endo T, Jackson EK, Cobb SA, de Rooij DG, Page DC. DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors. eLife 2020; 9:56523. [PMID: 32686646 PMCID: PMC7445011 DOI: 10.7554/elife.56523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
Fertility across metazoa requires the germline-specific DAZ family of RNA-binding proteins. Here we examine whether DAZL directly regulates progenitor spermatogonia using a conditional genetic mouse model and in vivo biochemical approaches combined with chemical synchronization of spermatogenesis. We find that the absence of Dazl impairs both expansion and differentiation of the spermatogonial progenitor population. In undifferentiated spermatogonia, DAZL binds the 3' UTRs of ~2,500 protein-coding genes. Some targets are known regulators of spermatogonial proliferation and differentiation while others are broadly expressed, dosage-sensitive factors that control transcription and RNA metabolism. DAZL binds 3' UTR sites conserved across vertebrates at a UGUU(U/A) motif. By assessing ribosome occupancy in undifferentiated spermatogonia, we find that DAZL increases translation of its targets. In total, DAZL orchestrates a broad translational program that amplifies protein levels of key spermatogonial and gene regulatory factors to promote the expansion and differentiation of progenitor spermatogonia.
Collapse
Affiliation(s)
| | - Yuting Fan
- Whitehead Institute, Cambridge, United States.,Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Emily K Jackson
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | | | | | - David C Page
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, United States
| |
Collapse
|
142
|
Hetta HF, Zahran AM, Shafik EA, El-Mahdy RI, Mohamed NA, Nabil EE, Esmaeel HM, Alkady OA, Elkady A, Mohareb DA, Hosni A, Mostafa MM, Elkady A. Circulating miRNA-21 and miRNA-23a Expression Signature as Potential Biomarkers for Early Detection of Non-Small-Cell Lung Cancer. Microrna 2020; 8:206-215. [PMID: 30652656 DOI: 10.2174/1573399815666190115151500] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIM Lung Cancer (LC) is a major cancer killer worldwide, and 5-yr survival is extremely poor (≤15%), accentuating the need for more effective diagnostic and therapeutic strategies. Studies have shown cell-free microRNAs (miRNAs) circulating in the serum and plasma with specific expression in cancer, indicating the potential of using miRNAs as biomarkers for cancer diagnosis and therapy. This study aimed to identify differentially-expressed two miRNAs in the plasma of Non-Small Cell Lung Cancer (NSCLC) patients that might be a clinically useful tool for lung cancer early detection. miRNA-21 is one of the most abundant oncomirs. miRNA-23a functions as an oncogene in several human cancers, however, its clinical value has not been investigated in NSCLC. MATERIALS AND METHODS A case-control study was conducted in Assiut University Hospital, Egypt, from 2017 to 2018. Plasma samples were obtained from 45 NSCLC patients. The expression level of miR-21 and miRNA-23a was detected by qRT-PCR and compared to 40 healthy control subjects. The relation between both miRNAs and clinicopathological parameters was evaluated. RESULTS The expression level of miR-21 and miRNA-23a was significantly up-regulated (36.9 ± 18.7 vs. 1.12 ± 0.84 and 24.7 ± 19.09 vs. 1.16 ± 0.45) in NSCLC compared to matched controls (P<0.0001each). There was a significant difference in the level of plasma miRNA-21 and miRNA- 23a expression between the different grades of the disease (P = 0.032 and P = 0.001, respectively). The plasma miRNA-21 and miRNA-23a levels in the lung cancer patients with distant metastasis (n = 20) were significantly higher than those in the patients without metastasis (n = 25) (P<0.0001 each), the expression of miR-21 and miRNA-23a was significantly associated with tumor size (P = 0.001, P = 0.0001, respectively), but not significantly related to lymph node metastasis (P = 0.687 and 0.696, respectively). A positive correlation was observed between miRNA-21 and miRNA-23a (r = 0.784, P<0.01), There was no significant difference in the plasma miRNA-21 and miRNA-23a levels in the lung cancer patients with different histopathological types. CONCLUSION miR-21 and miR-23a might play an oncogenic role in LC and is a poor prognostic factor. Switching off miRNA-21 and miRNA-23a may improve the treatment of LC. Our results must be verified by large-scale prospective studies with standardized methodology.
Collapse
Affiliation(s)
- Helal Fouad Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, United States.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Engy A Shafik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Reham I El-Mahdy
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nahed A Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad Eldin Nabil
- Department of Clinical Oncology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Hend M Esmaeel
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ola A Alkady
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Dina A Mohareb
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Hosni
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Mahmoud Mostafa
- Department of Cardiothoracic Surgery, Assiut University Hospital, Assiut University, Assiut, Egypt
| | - Abeer Elkady
- Department of Clinical and Chemical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
143
|
Hui L, Zheng F, Bo Y, Sen-Lin M, Ai-Jun L, Wei-Ping Z, Yong-Jie Z, Lei Y. MicroRNA let-7b inhibits cell proliferation via upregulation of p21 in hepatocellular carcinoma. Cell Biosci 2020; 10:83. [PMID: 32626571 PMCID: PMC7329548 DOI: 10.1186/s13578-020-00443-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumor types and has a high incidence and mortality. Many miRNAs play important roles in the development of HCC. Identification of these miRNAs and their targets is increasingly urgent for a better understandingof miRNA function in both physiological and pathological contexts. Many studies have shown that the expression of let-7 is often downregulated in the process of tumorigenesis, suggesting that let-7 may participate in this process as an oncogene. Methods Immunochemistry staining was used to observe the expression of let-7b in HCC tissues. A CCK-8 assay was employed to detect the role of let-7b in the proliferation of HCC cells. The cell cycle of HCC cells was examined by flow cytometry. BALB/c nu/nu mice were used to detect the tumorigenesis potential of HCC cells; western blot and real-time PCR were employed to observe the expression of p21 in HCC cells. Results In our previous studies investigating HCC tissue samples obtained from the national tissue samples bank of liver cancer in Eastern Hepatobiliary Surgery Hospital, we found one abnormal expression of miRNA (let-7b), which was significantly downregulated in HCC tissue. In the current work, we studied the relationship between let-7b and HCC to potentially provide invaluable information for developing novel therapeutic strategies for treating HCC. Based on our findings, let-7b expression was absent in HCC tumors, and its lower expression was associated with poor prognosis of HCC. In further experiments, we found that let-7b inhibited HCC cell proliferation through upregulation of p21. Conclusion The results of our study suggested that let-7b might inhibit the proliferation of HCC cells by upregulating p21.
Collapse
Affiliation(s)
- Li Hui
- The Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Fang Zheng
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Yuan Bo
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Ma Sen-Lin
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Li Ai-Jun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Zhou Wei-Ping
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Zhang Yong-Jie
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Yin Lei
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| |
Collapse
|
144
|
Early microRNA indicators of PPARα pathway activation in the liver. Toxicol Rep 2020; 7:805-815. [PMID: 32642447 PMCID: PMC7334544 DOI: 10.1016/j.toxrep.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA species that play key roles in post-transcriptional regulation of gene expression. MiRNAs also serve as a promising source of early biomarkers for different environmental exposures and health effects, although there is limited information linking miRNA changes to specific target pathways. In this study, we measured liver miRNAs in male B6C3F1 mice exposed to a known chemical activator of the peroxisome proliferator-activated receptor alpha (PPARα) pathway, di(2-ethylhexyl) phthalate (DEHP), for 7 and 28 days at concentrations of 0, 750, 1500, 3000, or 6000 ppm in feed. At the highest dose tested, DEHP altered 61 miRNAs after 7 days and 171 miRNAs after 28 days of exposure, with 48 overlapping miRNAs between timepoints. Analysis of these 48 common miRNAs indicated enrichment in PPARα–related targets and other pathways related to liver injury and cancer. Four of the 10 miRNAs exhibiting a clear dose trend were linked to the PPARα pathway: mmu-miRs-125a-5p, -182−5p, -20a−5p, and -378a−3p. mmu-miRs-182−5p and -378a−3p were subsequently measured using digital drop PCR across a dose range for DEHP and two related phthalates with weaker PPARα activity, di-n-octyl phthalate and n-butyl benzyl phthalate, following 7-day exposures. Analysis of mmu-miRs-182−5p and -378a−3p by transcriptional benchmark dose analysis correctly identified DEHP as having the greatest potency. However, benchmark dose estimates for DEHP based on these miRNAs (average 163; range 126−202 mg/kg-day) were higher on average than values for PPARα target genes (average 74; range 29−183 mg/kg-day). These findings identify putative miRNA biomarkers of PPARα pathway activity and suggest that early miRNA changes may be used to stratify chemical potency.
Collapse
Key Words
- AIC, Akaike Information Criterion
- ALT, alanine aminotransferase
- AOP, adverse outcome pathway
- AST, aspartate aminotransferase
- Acox1, acyl-Coenzyme A oxidase 1
- Adverse outcome pathway (AOP)
- AhR, aryl hydrocarbon receptor
- BBP, n-butyl benzyl phthalate
- BMD, benchmark dose
- BMDA, apical-based benchmark dose
- BMDL, BMD lower confidence interval
- BMDT, transcriptional-based benchmark dose
- BMR, benchmark response
- BROD, benzyloxyresorufin O-debenzylation
- Benchmark dose (BMD)
- Biomarkers
- CAR, constitutive androstane receptor
- DEGs, differentially expressed genes
- DEHP, di (2-thylhexyl) phthalate
- DEmiRs, differentially expressed miRNAs
- DNOP, di-n-octyl phthalate
- EPA, U.S. Environmental Protection Agency
- EROD, ethoxyresorufin O-dealkylation
- GEO, Gene Expression Omnibus
- HCA, hepatocellular adenoma
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- IPA, Ingenuity Pathway Analysis
- Liver toxicity
- MOA, mode of action
- MicroRNAs
- Mode of action (MOA)
- Nrf2, nuclear receptor erythroid 2-like 2
- POD, point-of-departure
- PPARα, peroxisome proliferator-activated receptor alpha
- PROD, pentoxyresorufin O-depentylation
- PXR, pregnane X receptor
- Peroxisome proliferator-activated receptor alpha (PPARα)
- Phthalate
- SDH, sorbitol dehydrogenase
- TMM, trimmed mean of M-values
- ddPCR, droplet digital polymerase chain reaction
- mRNA, messenger RNA
- miRNAs, microRNAs
- mtDNA, mitochondrial
- rRNA, ribosomal RNA
- smallRNA-seq, small RNA sequencing
- tRNA, transfer RNA
Collapse
|
145
|
Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, Norouzi P, Akbari H, Ghahremani MH, Soleimani M, Amini M, Samadi H, Dorkoosh FA. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28:818-830. [PMID: 32452217 DOI: 10.1080/1061186x.2020.1774594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biological mechanisms including cellular metabolism and cell death are regulated by mitochondria known as powerhouse of the cell. Recently, let-7b, a tumour-suppressor microRNA has been detected in mitochondria of human cells targeting several mitochondrial-encoded respiratory chain genes. Triphenylphosphonium cation (TPP) is one of the major classes of mitochondriotropics that possess the ability of specifically targeting the mitochondria. PAMAM dendrimers are one of the most available agents in gene delivery due to their well-defined and beneficial features such as large density of surface functional groups. Hyaluronic acid (HA), a natural polysaccharide has been demonstrated to have the abilities such as good biocompatibility and targeting CD44 overexpressed receptors on non-small cell lung cancer (NSCLC) cells. In this research, let-7b-PAMAM (G5)-TPP and let-7b-PAMAM (G5)-TPP-HA nano-carriers were designed to deliver let-7b miRNA mimic to NSCLC cells' mitochondria as a novel way of cancer cells inhibition. Nano-carriers were capable of being successfully taken up by A549 cells and localised in mitochondria environment. Let-7b loaded nanoparticles reduced cell viability and induced apoptosis significantly. Expression of genes involved in mitochondrial oxidative function was decreased resulting in nanoparticles effect on mitochondria. Application of mitochondria targeted-miRNA delivery systems could regulate cellular functions to inhibit lung cancer.
Collapse
Affiliation(s)
- Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Naderi Sohi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Samadi
- Science and Research Center, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
146
|
Shankar S, Tien JCY, Siebenaler RF, Chugh S, Dommeti VL, Zelenka-Wang S, Wang XM, Apel IJ, Waninger J, Eyunni S, Xu A, Mody M, Goodrum A, Zhang Y, Tesmer JJ, Mannan R, Cao X, Vats P, Pitchiaya S, Ellison SJ, Shi J, Kumar-Sinha C, Crawford HC, Chinnaiyan AM. An essential role for Argonaute 2 in EGFR-KRAS signaling in pancreatic cancer development. Nat Commun 2020; 11:2817. [PMID: 32499547 PMCID: PMC7272436 DOI: 10.1038/s41467-020-16309-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/20/2020] [Indexed: 01/14/2023] Open
Abstract
Both KRAS and EGFR are essential mediators of pancreatic cancer development and interact with Argonaute 2 (AGO2) to perturb its function. Here, in a mouse model of mutant KRAS-driven pancreatic cancer, loss of AGO2 allows precursor lesion (PanIN) formation yet prevents progression to pancreatic ductal adenocarcinoma (PDAC). Precursor lesions with AGO2 ablation undergo oncogene-induced senescence with altered microRNA expression and EGFR/RAS signaling, bypassed by loss of p53. In mouse and human pancreatic tissues, PDAC progression is associated with increased plasma membrane localization of RAS/AGO2. Furthermore, phosphorylation of AGO2Y393 disrupts both the wild-type and oncogenic KRAS-AGO2 interaction, albeit under different conditions. ARS-1620 (G12C-specific inhibitor) disrupts the KRASG12C-AGO2 interaction, suggesting that the interaction is targetable. Altogether, our study supports a biphasic model of pancreatic cancer development: an AGO2-independent early phase of PanIN formation reliant on EGFR-RAS signaling, and an AGO2-dependent phase wherein the mutant KRAS-AGO2 interaction is critical for PDAC progression.
Collapse
Affiliation(s)
- Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ronald F Siebenaler
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seema Chugh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sylvia Zelenka-Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ingrid J Apel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jessica Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice Xu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Malay Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Goodrum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John J Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephanie J Ellison
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
147
|
Dou J, Zhang H, Chen R, Shu Z, Yuan H, Zhao X, Wang Y, Huang J, Zhou A, Yu J. SUMOylation modulates the LIN28A-let-7 signaling pathway in response to cellular stresses in cancer cells. Mol Oncol 2020; 14:2288-2312. [PMID: 32333719 PMCID: PMC7463354 DOI: 10.1002/1878-0261.12694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
LIN28A is a conserved RNA-binding protein that inhibits the biogenesis of let-7 microRNAs, thus promoting cancer progression. However, mechanisms underlying the activation of the LIN28A-let-7 signaling pathway remain poorly understood. Here, we show that LIN28A is SUMOylated in vivo and in vitro at K15, which is increased by hypoxia but reduced by chemotherapy drugs such as Cisplatin and Paclitaxel. SUMOylation of LIN28A aggravates its inhibition of let-7 maturation, resulting in a stark reduction in let-7, which promotes cancer cell proliferation, migration, invasion, and tumor growth in vivo. Mechanistically, SUMOylation of LIN28A increases its binding affinity with the precursor let-7 (pre-let-7), which subsequently enhances LIN28A-mediated recruitment of terminal uridylyltransferase TUT4 and simultaneously blocks DICER processing of pre-let-7, thereby reducing mature let-7 production. These effects are abolished in SUMOylation-deficient mutant LIN28A-K15R. In summary, these findings shed light on a novel mechanism by which SUMOylation could regulate the LIN28A-let-7 pathway in response to cellular stress in cancer cells.
Collapse
Affiliation(s)
- Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zimei Shu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihua Yuan
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
148
|
Sato T, Kataoka K, Ito Y, Yokoyama S, Inui M, Mori M, Takahashi S, Akita K, Takada S, Ueno-Kudoh H, Asahara H. Lin28a/let-7 pathway modulates the Hox code via Polycomb regulation during axial patterning in vertebrates. eLife 2020; 9:53608. [PMID: 32479258 PMCID: PMC7259951 DOI: 10.7554/elife.53608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of Hox genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of Hox genes are not fully understood. In this study, we demonstrated that the Lin28a/let-7 pathway is critical for axial elongation. Lin28a–/– mice exhibited axial shortening with mild skeletal transformations of vertebrae, which were consistent with results in mice with tail bud-specific mutants of Lin28a. The accumulation of let-7 in Lin28a–/– mice resulted in the reduction of PRC1 occupancy at the Hox cluster loci by targeting Cbx2. Consistently, Lin28a loss in embryonic stem-like cells led to aberrant induction of posterior Hox genes, which was rescued by the knockdown of let-7. These results suggest that the Lin28/let-7 pathway is involved in the modulation of the ‘Hox code’ via Polycomb regulation during axial patterning.
Collapse
Affiliation(s)
- Tempei Sato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Metabolism, National Institutes of Health, Bethesda, United States
| | - Masafumi Inui
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Animal Regeneration Systemology, Meiji University, Kanagawa, Japan
| | - Masaki Mori
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical Chemistry, Shiga University of Medical Science, Shiga, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroe Ueno-Kudoh
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Reproduction Center, Yokohama City University, Yokohama, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
149
|
Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell 2020; 179:1033-1055. [PMID: 31730848 DOI: 10.1016/j.cell.2019.10.017] [Citation(s) in RCA: 1056] [Impact Index Per Article: 211.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
For decades, research into cancer biology focused on the involvement of protein-coding genes. Only recently was it discovered that an entire class of molecules, termed non-coding RNA (ncRNA), plays key regulatory roles in shaping cellular activity. An explosion of studies into ncRNA biology has since shown that they represent a diverse and prevalent group of RNAs, including both oncogenic molecules and those that work in a tumor suppressive manner. As a result, hundreds of cancer-focused clinical trials involving ncRNAs as novel biomarkers or therapies have begun and these are likely just the beginning.
Collapse
Affiliation(s)
- Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
150
|
Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics 2020; 12:pharmaceutics12050474. [PMID: 32456070 PMCID: PMC7313713 DOI: 10.3390/pharmaceutics12050474] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSC) are, due to their immunosuppressive and regenerative properties, used as new therapeutic agents in cell-based therapy of inflammatory and degenerative diseases. A large number of experimental and clinical studies revealed that most of MSC-mediated beneficial effects were attributed to the effects of MSC-sourced exosomes (MSC-Exos). MSC-Exos are nano-sized extracellular vesicles that contain MSC-derived bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs)), enzymes, cytokines, chemokines, and growth factors) that modulate phenotype, function and homing of immune cells, and regulate survival and proliferation of parenchymal cells. In this review article, we emphasized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exos-based beneficial effects in experimental models and clinical trials. Additionally, we elaborated on the challenges of conventional MSC-Exos administration and proposed the use of new bioengineering and cellular modification techniques which could enhance therapeutic effects of MSC-Exos in alleviation of inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), Università di Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Correspondence: ; Tel.: +381-34306800; Fax: +381-34306800
| |
Collapse
|