101
|
Minami D, Takigawa N, Takeda H, Takata M, Ochi N, Ichihara E, Hisamoto A, Hotta K, Tanimoto M, Kiura K. Synergistic effect of olaparib with combination of cisplatin on PTEN-deficient lung cancer cells. Mol Cancer Res 2012; 11:140-8. [PMID: 23239809 DOI: 10.1158/1541-7786.mcr-12-0401] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PARP enzyme plays a key role in the cellular machinery responsible for DNA damage repair. PTEN is a tumor-suppressor gene deactivating PI3K downstream of EGFR signaling. We hypothesize that PTEN-deficient lung cancer cells suppressed DNA damage signaling and that the absence of PTEN can sensitize these cells to a concurrent treatment of a DNA-damaging agent (cisplatin) and a PARP inhibitor (olaparib). To investigate the effect of olaparib and cisplatin on PTEN-deficient lung tumors, two EGFR-mutant (deletion in exon19) non-small cell lung cancer (NSCLC) cell lines, PC-9 (PTEN wild-type) and H1650 (PTEN loss), were used. We transfected intact PTEN gene into H1650 cells (H1650(PTEN+)) and knocked down PTEN expression in the PC-9 cells (PC-9(PTEN-)) using short hairpin RNA (shRNA). Combination of cisplatin with olaparib showed a synergistic effect in vitro according to the combination index in H1650 cells. Restoration of PTEN in the H1650 cells decreased sensitivity to the combination. Ablation of PTEN in PC-9 cells increased sensitivity to olaparib and cisplatin. We also examined the effectiveness of cisplatin and olaparib in a xenograft model using H1650 and PC-9(PTEN-) cells. The combination of cisplatin with olaparib was more effective than each agent individually. This effect was not observed in a xenograft model using H1650(PTEN+) and PC-9 cells. Mechanistic investigations revealed that PTEN deficiency caused reductions in nuclear RAD51 and RPA focus formation and phosphorylated Chk1 and Mre11. Thus, genetic inactivation of PTEN led to the suppression of DNA repair.
Collapse
Affiliation(s)
- Daisuke Minami
- Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical ciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
Collapse
|
103
|
Ford JM. Lupus antibody tops cancer cells. Sci Transl Med 2012; 4:157fs38. [PMID: 23100623 DOI: 10.1126/scitranslmed.3004955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A lupus causing anti-DNA antibody penetrates living cells and targets DNA repair for therapeutic advantage in human cancer cells.
Collapse
Affiliation(s)
- James M Ford
- Departments of Medicine and Genetics, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
104
|
Wang ZC, Birkbak NJ, Culhane AC, Drapkin R, Fatima A, Tian R, Schwede M, Alsop K, Daniels KE, Piao H, Liu J, Etemadmoghadam D, Miron A, Salvesen HB, Mitchell G, DeFazio A, Quackenbush J, Berkowitz RS, Iglehart JD, Bowtell DD, Matulonis UA. Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome. Clin Cancer Res 2012; 18:5806-15. [PMID: 22912389 PMCID: PMC4205235 DOI: 10.1158/1078-0432.ccr-12-0857] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE High-grade serous cancer (HGSC) is the most common cancer of the ovary and is characterized by chromosomal instability. Defects in homologous recombination repair (HRR) are associated with genomic instability in HGSC, and are exploited by therapy targeting DNA repair. Defective HRR causes uniparental deletions and loss of heterozygosity (LOH). Our purpose is to profile LOH in HGSC and correlate our findings to clinical outcome, and compare HGSC and high-grade breast cancers. EXPERIMENTAL DESIGN We examined LOH and copy number changes using single nucleotide polymorphism array data from three HGSC cohorts and compared results to a cohort of high-grade breast cancers. The LOH profiles in HGSC were matched to chemotherapy resistance and progression-free survival (PFS). RESULTS LOH-based clustering divided HGSC into two clusters. The major group displayed extensive LOH and was further divided into two subgroups. The second group contained remarkably less LOH. BRCA1 promoter methylation was associated with the major group. LOH clusters were reproducible when validated in two independent HGSC datasets. LOH burden in the major cluster of HGSC was similar to triple-negative, and distinct from other high-grade breast cancers. Our analysis revealed an LOH cluster with lower treatment resistance and a significant correlation between LOH burden and PFS. CONCLUSIONS Separating HGSC by LOH-based clustering produces remarkably stable subgroups in three different cohorts. Patients in the various LOH clusters differed with respect to chemotherapy resistance, and the extent of LOH correlated with PFS. LOH burden may indicate vulnerability to treatment targeting DNA repair, such as PARP1 inhibitors.
Collapse
MESH Headings
- DNA Copy Number Variations/genetics
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- Humans
- Loss of Heterozygosity/genetics
- Neoplasm Grading
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neoplasms, Cystic, Mucinous, and Serous/therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Polymorphism, Single Nucleotide
- Precision Medicine
- Prognosis
- Treatment Outcome
Collapse
Affiliation(s)
- Zhigang C. Wang
- Department of Cancer Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nicolai Juul Birkbak
- Department of Cancer Biology, Brigham and Women’s Hospital, Boston, Massachusetts
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Aedín C. Culhane
- Department of Biostatistics and Computational Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ronny Drapkin
- Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Aquila Fatima
- Department of Cancer Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ruiyang Tian
- Department of Cancer Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Matthew Schwede
- Department of Biostatistics and Computational Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Kathryn Alsop
- Familial Cancer Centre, Peter MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
| | - Kathryn E. Daniels
- Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Huiying Piao
- Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Joyce Liu
- Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Dariush Etemadmoghadam
- Cancer Genomics Program, Peter, MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
- Department of Biochemistry, Peter MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
- Department of Pathology, Peter MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
| | - Alexander Miron
- Department of Cancer Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Helga B. Salvesen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gillian Mitchell
- Familial Cancer Centre, Peter MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
| | - Anna DeFazio
- Department of Gynaecological Oncology and Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ross S. Berkowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - J. Dirk Iglehart
- Department of Cancer Biology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David D.L. Bowtell
- Cancer Genomics Program, Peter, MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
- Department of Biochemistry, Peter MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
- Department of Pathology, Peter MacCallum Cancer Centre and the University of Melbourne, Parkville, Melbourne, Victoria
| | | | - Ursula A. Matulonis
- Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
105
|
Borson R, Harker G, Reeves J, Beck T, Hager S, Horvath W, Jones M, Tillinghast G, Arrowsmith E, Harrer G, Kudrik FJ, Malamud SC, Bromund J, Zeigler H, Tai DF, Kornberg LJ, Obasaju C, Orlando M, Yardley DA. Phase II Study of Gemcitabine and Bevacizumab As First-Line Treatment in Taxane-Pretreated, HER2-Negative, Locally Recurrent or Metastatic Breast Cancer. Clin Breast Cancer 2012; 12:322-30. [DOI: 10.1016/j.clbc.2012.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/26/2012] [Accepted: 07/09/2012] [Indexed: 10/27/2022]
|
106
|
Polotskaia A, Hoffman S, Krett NL, Shanmugam M, Rosen ST, Bargonetti J. 8-Amino-adenosine activates p53-independent cell death of metastatic breast cancers. Mol Cancer Ther 2012; 11:2495-504. [PMID: 22973058 DOI: 10.1158/1535-7163.mct-12-0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
8-Amino-adenosine (8-NH(2)-Ado) is a ribose sugar nucleoside analogue that reduces cellular ATP levels and inhibits mRNA synthesis. Estrogen receptor-negative (ER-) metastatic breast cancers often contain mutant p53; therefore, we asked if 8-NH(2)-Ado could kill breast cancer cells without activating the p53-pathway. Regardless of the breast cancer subtype tested or the p53 status of the cells, 8-NH(2)-Ado was more cytotoxic than either gemcitabine or etoposide. 8-NH(2)-Ado treatment inhibited cell proliferation, activated cell death, and did not activate transcription of the p53 target gene p21 or increase protein levels of either p53 or p21. This occurred in the estrogen receptor-positive (ER+) MCF-7 cells that express wild-type p53, the ER+ T47-D cells that express mutant p53, and the ER- MDA-MB-468 cells or MDA-MB-231 cells that both express mutant p53. 8-NH(2)-Ado induced apoptotic death of MCF-7 cells and apoptosis was not inhibited by knockdown of functional p53. Moreover, the pan-caspase inhibitor Z-VAD blocked the 8-NH(2)-Ado-induced MCF-7 cell death. Interestingly, 8-NH(2)-Ado caused the MDA-MB-231 cells to detach from the plate with only limited evidence of apoptotic cell death markers and the cell death was not inhibited by Z-VAD. Inhibition of MDA-MB-231 cell autophagy, by reduction of ATG7 or 3-methyladenine treatment, did not block this 8-NH(2)-Ado-mediated cytotoxicity. Importantly 8-NH(2)-Ado was highly cytotoxic to triple-negative breast cancer cells and worked through a pathway that did not require wild-type p53 for cytoxicity. Therefore, 8-NH(2)-Ado should be considered for the treatment of triple-negative breast cancers that are chemotherapy resistant.
Collapse
Affiliation(s)
- Alla Polotskaia
- Department of Biological Sciences, Hunter College, CUNY, 695 Park Ave., New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
107
|
Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 2012; 120:2280-9. [PMID: 22855598 DOI: 10.1182/blood-2012-03-419937] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are aggressive malignancies of mature T lymphocytes with 5-year overall survival rates of only ∼ 35%. Improvement in outcomes has been stymied by poor understanding of the genetics and molecular pathogenesis of PTCL, with a resulting paucity of molecular targets for therapy. We developed bioinformatic tools to identify chromosomal rearrangements using genome-wide, next-generation sequencing analysis of mate-pair DNA libraries and applied these tools to 16 PTCL patient tissue samples and 6 PTCL cell lines. Thirteen recurrent abnormalities were identified, of which 5 involved p53-related genes (TP53, TP63, CDKN2A, WWOX, and ANKRD11). Among these abnormalities were novel TP63 rearrangements encoding fusion proteins homologous to ΔNp63, a dominant-negative p63 isoform that inhibits the p53 pathway. TP63 rearrangements were seen in 11 (5.8%) of 190 PTCLs and were associated with inferior overall survival; they also were detected in 2 (1.2%) of 164 diffuse large B-cell lymphomas. As TP53 mutations are rare in PTCL compared with other malignancies, our findings suggest that a constellation of alternate genetic abnormalities may contribute to disruption of p53-associated tumor suppressor function in PTCL.
Collapse
|
108
|
Reddy S, Raffin M, Kaklamani V. Targeting angiogenesis in metastatic breast cancer. Oncologist 2012; 17:1014-26. [PMID: 22843553 PMCID: PMC3425519 DOI: 10.1634/theoncologist.2012-0043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/13/2012] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis has become an important target in the treatment of several solid tumors, including breast cancer. As monotherapy, antiangiogenic agents have demonstrated limited activity in metastatic breast cancer (MBC); therefore, they have generally been developed for use in combination with chemotherapies. Thus far, the experience with antiangiogenic agents for MBC has been mixed. The results from one study assessing addition of the monoclonal antibody bevacizumab to paclitaxel led to approval of bevacizumab for MBC. However, the modest improvement of progression-free survival rates in subsequent MBC studies has led to reappraisal of bevacizumab. Phase III studies have not produced evidence supporting use of the multikinase inhibitor sunitinib alone or in combination with MBC chemotherapy. Experience with sorafenib in a phase IIb program indicates potential when used in select combinations, particularly with capecitabine; however, phase III confirmatory data are needed. Although antiangiogenic therapies combined with chemotherapy have increased progression-free survival rates for patients with MBC, increases in overall survival times have not been observed. Some studies have tried to combine antiangiogenic agents such as bevacizumab and sunitinib or sorafenib, but that approach has been limited because of toxicity concerns. Sequential use of antiangiogenic agents with differing mechanisms of action may be an effective approach. Despite setbacks, angiogenesis will likely remain an important target of treatment for selected patients with MBC.
Collapse
Affiliation(s)
- Sangeetha Reddy
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Raffin
- Fishawack Communications, North Wales, Pennsylvania, USA
| | - Virginia Kaklamani
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
109
|
Abstract
Identification of germline mutations associated with significant cancer susceptibility has the potential to change all aspects of an individual's care, from screening to cancer treatment. For example, women with germline mutations in BRCA1 and BRCA2 have markedly elevated risks of breast and ovarian cancer and the identification of these germline mutations has led to specific screening and prevention strategies. More recently, advances in the understanding of the biological function of BRCA1 and BRCA2 have led to clinical trials testing targeted therapies in this population, particularly poly(ADP-ribose) polymerase (PARP) inhibitors. Unfortunately, the development of PARP inhibitors has not been as rapid as anticipated and has been more challenging than expected. Somatic mutations identified in many cancer types have allowed the development of therapeutics that target these mutated genes, and many of these agents obtained rapid regulatory approval and are currently in widespread clinical practice. Diagnostic testing has a central role in targeted cancer therapeutics for both somatic and germline mutations. Although the era of molecular medicine and targeted therapies has led to significant changes in the practice of oncology, new challenges continue to arise.
Collapse
|
110
|
Clark CC, Weitzel JN, O'Connor TR. Enhancement of synthetic lethality via combinations of ABT-888, a PARP inhibitor, and carboplatin in vitro and in vivo using BRCA1 and BRCA2 isogenic models. Mol Cancer Ther 2012; 11:1948-58. [PMID: 22778154 DOI: 10.1158/1535-7163.mct-11-0597] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Individuals with an inherited BRCA1 or BRCA2 mutation have an elevated risk of developing breast cancer. The resulting tumors typically lack homologous recombination repair as do a subset of sporadic tumors with acquired BRCA deficiency. Clinical responses to monotherapy with platinum drugs or poly PARP inhibitors (PARPi) have been shown for BRCA-associated cancers. However, there are limited data on combination therapy with PARPi and platinum drugs, the mechanism of action of this combination, and the role of BRCA1 or BRCA2 in chemosensitivity. We compared the efficacy of ABT-888 (a PARPi) with that of cisplatin or carboplatin (platinum drugs) alone or in combinations by examining the survival of treated Brca-proficient and -deficient mouse embryonic stem cells. In addition, drug-induced growth inhibition of a BRCA1 and a BRCA2 null cell line were compared with their isogenic BRCA-complemented lines. Although each monotherapy killed or inhibited proliferation of Brca/BRCA-deficient cells, an enhanced effect was observed after treatment with ABT-888 in combination with carboplatin. Moreover, the ABT-888/carboplatin combination delayed tumor growth in Brca2 xenografts. The drugs caused DNA damage and apoptosis. Along with greater PARP activity in Brca/BRCA-deficient cells, these effects correlated with increased chemosensitivity. Our data suggest that ABT-888 and carboplatin combination treatment will be more successful than monotherapy in addressing many BRCA-associated cancers. A randomized phase II trial has recently been initiated to test this hypothesis to assist in the discovery of more effective therapies for patients with BRCA.
Collapse
Affiliation(s)
- Caroline C Clark
- Department of Cancer Biology, Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
111
|
Chuang HC, Kapuriya N, Kulp SK, Chen CS, Shapiro CL. Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res Treat 2012; 134:649-59. [PMID: 22678161 DOI: 10.1007/s10549-012-2106-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Despite recent advances in the clinical evaluation of various poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer (TNBC) patients, data defining potential anti-tumor mechanisms beyond PARP inhibition for these agents are lacking. To address this issue, we investigated the effects of four different PARP inhibitors (AG-014699, AZD-2281, ABT-888, and BSI-201) in three genetically distinct TNBC cell lines (MDA-MB-468, MDA-MB-231, and Cal-51). Assays of cell viability and colony formation and flow cytometric analysis were used to determine effects on cell growth and cell cycle progression. PARP-dependent and -independent signaling mechanisms of each PARP inhibitor were investigated by western blotting and shRNA approaches. Potential synergistic interactions between PARP inhibitors and cisplatin in suppressing TNBC cell viability were assessed. These PARP inhibitors exhibited differential anti-tumor activities, with the relative potencies of AG-014699 > AZD-2281 > ABT-888 > BSI-201. The higher potencies of AG-014699 and AZD-2281 were associated with their effects on G(2)/M arrest and DNA damage as manifested by γ-H2AX formation and, for AG-014699, its unique ability to suppress Stat3 phosphorylation. Abilities of individual PARP inhibitors to sensitize TNBC cells to cisplatin varied to a great extent in a cell context- and cell line-specific manner. Differential activation of signaling pathways suggests that the PARP inhibitors currently in clinical trials have different anti-tumor mechanisms beyond PARP inhibition and these PARP-independent mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Hsiao-Ching Chuang
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University (OSU), Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
112
|
Duffy MJ, McGowan PM, Crown J. Targeted therapy for triple-negative breast cancer: where are we? Int J Cancer 2012; 131:2471-7. [PMID: 22581656 DOI: 10.1002/ijc.27632] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/05/2012] [Indexed: 12/29/2022]
Abstract
Breast cancers that are negative for estrogen receptor (ER), progesterone receptors (PR) and HER2, using standard clinical assays, have been dubbed triple-negative (TN). Unlike other molecular subtypes of invasive breast cancer, validated targeted therapies are currently unavailable for patients with TN breast cancer. Preclinical studies however, have identified several potential targets such as epidermal growth factor receptor (EGFR), SRC, MET and poly ADP ribose polymerase 1/2 (PARP1/2). Because of tumor heterogeneity, it is unlikely that any single targeted therapy will be efficacious in all patients with TN breast cancer. The rational way forward for treating these patients is likely to be biomarker-driven, combination targeted therapies or combination of targeted therapy with cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
113
|
Wilkerson MD, Yin X, Walter V, Zhao N, Cabanski CR, Hayward MC, Miller CR, Socinski MA, Parsons AM, Thorne LB, Haithcock BE, Veeramachaneni NK, Funkhouser WK, Randell SH, Bernard PS, Perou CM, Hayes DN. Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS One 2012; 7:e36530. [PMID: 22590557 PMCID: PMC3349715 DOI: 10.1371/journal.pone.0036530] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/03/2012] [Indexed: 12/11/2022] Open
Abstract
Background Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors. Methodology/Principal Findings The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n = 504). A novel validation (n = 116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes. Conclusions/ Significance The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response.
Collapse
Affiliation(s)
- Matthew D. Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xiaoying Yin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vonn Walter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ni Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christopher R. Cabanski
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michele C. Hayward
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark A. Socinski
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Internal Medicine, Division of Medical Oncology, Multidisciplinary Thoracic Oncology Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alden M. Parsons
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Leigh B. Thorne
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Benjamin E. Haithcock
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nirmal K. Veeramachaneni
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William K. Funkhouser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott H. Randell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Philip S. Bernard
- Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, University of North Carolina at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, Chapel Hill, North Carolina, United States of America
| | - D. Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Internal Medicine, Division of Medical Oncology, Multidisciplinary Thoracic Oncology Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
114
|
Breast cancers with compromised DNA repair exhibit selective sensitivity to elesclomol. DNA Repair (Amst) 2012; 11:522-4. [DOI: 10.1016/j.dnarep.2012.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022]
|
115
|
Orlando L, Schiavone P, Fedele P, Calvani N, Nacci A, Cinefra M, D'Amico M, Mazzoni E, Marino A, Sponziello F, Morelli F, Lombardi L, Silvestris N, Cinieri S. Poly (ADP-ribose) polymerase (PARP): rationale, preclinical and clinical evidences of its inhibition as breast cancer treatment. Expert Opin Ther Targets 2012; 16 Suppl 2:S83-9. [DOI: 10.1517/14728222.2011.648925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
116
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
117
|
Mukhopadhyay P, Horváth B, Kechrid M, Tanchian G, Rajesh M, Naura AS, Boulares AH, Pacher P. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic Biol Med 2011; 51:1774-1788. [PMID: 21884784 PMCID: PMC3207278 DOI: 10.1016/j.freeradbiomed.2011.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022]
Abstract
Cisplatin is a commonly used chemotherapeutic drug, the clinical use of which is limited by the development of dose-dependent nephrotoxicity. Enhanced inflammatory response, oxidative stress, and cell death have been implicated in the development of cisplatin-induced nephropathy; however, the precise mechanisms are elusive. Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) by oxidative DNA damage under various pathological conditions promotes cell death and up-regulation of key proinflammatory pathways. In this study, using a well-established model of nephropathy, we have explored the role of PARP-1 in cisplatin-induced kidney injury. Genetic deletion or pharmacological inhibition of PARP-1 markedly attenuated the cisplatin-induced histopathological damage, impaired renal function (elevated serum BUN and creatinine levels), and enhanced inflammatory response (leukocyte infiltration; TNF-α, IL-1β, F4/80, adhesion molecules ICAM-1/VCAM-1 expression) and consequent oxidative/nitrative stress (4-HNE, 8-OHdG, and nitrotyrosine content; NOX2/NOX4 expression). PARP inhibition also facilitated the cisplatin-induced death of cancer cells. Thus, PARP activation plays an important role in cisplatin-induced kidney injury, and its pharmacological inhibition may represent a promising approach to preventing the cisplatin-induced nephropathy. This is particularly exciting because several PARP inhibitors alone or in combination with DNA-damaging anticancer agents show considerable promise in clinical trials for treatment of various malignancies (e.g., triple-negative breast cancer).
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Béla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Malek Kechrid
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Galin Tanchian
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarjit S Naura
- The Stanley Scott Cancer Center Department and Department of Pharmacology; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A. Hamid Boulares
- The Stanley Scott Cancer Center Department and Department of Pharmacology; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
118
|
The human immunodeficiency virus protease inhibitor ritonavir inhibits lung cancer cells, in part, by inhibition of survivin. J Thorac Oncol 2011; 6:661-70. [PMID: 21270666 DOI: 10.1097/jto.0b013e31820c9e3c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Ritonavir is a potential therapeutic agent in lung cancer, but its targets in lung adenocarcinoma are unknown, as are candidate biomarkers for its activity. METHODS RNAi was used to identify genes whose expression affects ritonavir sensitivity. Synergy between ritonavir, gemcitabine, and cisplatin was tested by isobologram analysis. RESULTS Ritonavir inhibits growth of K-ras mutant lung adenocarcinoma lines A549, H522, H23, and K-ras wild-type line H838. Ritonavir causes G0/G1 arrest and apoptosis. Associated with G0/G1 arrest, ritonavir down-regulates cyclin-dependent kinases, cyclin D1, and retinoblastoma protein phosphorylation. Associated with induction of apoptosis, ritonavir reduces survivin messenger RNA and protein levels more than twofold. Ritonavir inhibits phosphorylation of c-Src and signal transducer and activator of transcription protein 3, which are important events for survivin gene expression and cell growth, and induces cleavage of PARP1. Although knock down of survivin, c-Src, or signal transducer and activator of transcription protein 3 inhibits cell growth, only survivin knock down enhances ritonavir inhibition of growth and survivin overexpression promotes ritonavir resistance. Ritonavir was tested in combination with gemcitabine or cisplatin, exhibiting synergistic and additive effects, respectively. The combination of ritonavir/gemcitabine/cisplatin is synergistic in the A549 line and additive in the H522 line, at clinically feasible ritonavir concentrations (<10 μM). CONCLUSIONS Ritonavir is of interest for lung adenocarcinoma therapeutics, and survivin is an important target and potential biomarker for its sensitivity. Ritonavir cooperation with gemcitabine/cisplatin might be explained by involvement of PARP1 in repair of cisplatin-mediated DNA damage and survivin in repair of gemcitabine-mediated double-stranded DNA breaks.
Collapse
|
119
|
Atipairin A, Ratanaphan A. In Vitro Enhanced Sensitivity to Cisplatin in D67Y BRCA1 RING Domain Protein. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:201-8. [PMID: 22084573 PMCID: PMC3201098 DOI: 10.4137/bcbcr.s8184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BRCA1 is a tumor suppressor protein involved in maintaining genomic integrity through multiple functions in DNA damage repair, transcriptional regulation, cell cycle checkpoint, and protein ubiquitination. The BRCA1-BARD1 RING complex has an E3 ubiquitin ligase function that plays essential roles in response to DNA damage repair. BRCA1-associated cancers have been shown to confer a hypersensitivity to chemotherapeutic agents. Here, we have studied the functional consequence of the in vitro E3 ubiquitin ligase activity and cisplatin sensitivity of the missense mutation D67Y BRCA1 RING domain. The D67Y BRCA1 RING domain protein exhibited the reduced ubiquitination function, and was more susceptible to the drug than the D67E or wild-type BRCA1 RING domain protein. This evidence emphasized the potential of using the BRCA1 dysfunction as an important determinant of chemotherapy responses in breast cancer.
Collapse
Affiliation(s)
- Apichart Atipairin
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | | |
Collapse
|
120
|
Alli E, Sharma VB, Hartman AR, Lin PS, McPherson L, Ford JM. Enhanced sensitivity to cisplatin and gemcitabine in Brca1-deficient murine mammary epithelial cells. BMC Pharmacol 2011; 11:7. [PMID: 21771338 PMCID: PMC3146825 DOI: 10.1186/1471-2210-11-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 07/19/2011] [Indexed: 12/01/2022] Open
Abstract
Background Breast cancers due to germline mutations or altered expression of the BRCA1 gene associate with an aggressive clinical course and frequently exhibit a "triple-negative" phenotype, i.e. lack of expression of the estrogen and progesterone hormone receptors and lack of overexpression of the HER2/NEU oncogene, thereby rendering them relatively insensitive to hormonal manipulation and targeted HER2 therapy, respectively. BRCA1 plays a role in multiple DNA repair pathways, and thus, when mutated, results in sensitivity to certain DNA damaging drugs. Results Here, we used a Brca1 murine mammary epithelial cell (MMEC) model to examine the effect of loss of Brca1 on cellular sensitivity to various chemotherapy drugs. To explore novel therapeutic strategies, we included DNA damaging and non-DNA damaging drugs whose mechanisms are dependent and independent of DNA repair, respectively, and drugs that are used in standard and non-standard lines of therapy for breast cancer. To understand the cellular mechanism, we also determined the role that DNA repair plays in sensitivity to these drugs. We found that cisplatin and gemcitabine had the greatest specific therapeutic benefit to Brca1-deficient MMECs, and that when used in combination produced a synergistic effect. This sensitivity may be attributed in part to defective NER, which is one of the DNA repair pathways normally responsible for repairing DNA adducts produced by cisplatin and is shown in this study to be defective in Brca1-deficient MMECs. Brca1-deficient MMECs were not differentially sensitive to the standard breast cancer chemotherapy drugs doxorubicin, docetaxel or 5-FU. Conclusions Both cisplatin and gemcitabine should be explored in clinical trials for first line regimens for BRCA1-associated and triple-negative breast cancer.
Collapse
Affiliation(s)
- Elizabeth Alli
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Center for Clinical Sciences Research, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
121
|
Wilkerson PM, Dedes KJ, Wetterskog D, Mackay A, Lambros MB, Mansour M, Frankum J, Lord CJ, Natrajan R, Ashworth A, Reis-Filho JS. Functional characterization of EMSY
gene amplification in human cancers. J Pathol 2011; 225:29-42. [DOI: 10.1002/path.2944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022]
|
122
|
Lu X, Wang QQ, Xu FJ, Tang GP, Yang WT. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors. Biomaterials 2011; 32:4849-56. [DOI: 10.1016/j.biomaterials.2011.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/09/2011] [Indexed: 12/24/2022]
|
123
|
Jing G, Yuan K, Turk AN, Jhala NC, Arnoletti JP, Zhang K, McDonald JM, Chen Y. Tamoxifen enhances therapeutic effects of gemcitabine on cholangiocarcinoma tumorigenesis. J Transl Med 2011; 91:896-904. [PMID: 21464824 DOI: 10.1038/labinvest.2011.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma is a highly malignant tumor with limited therapeutic options. We have previously reported that tamoxifen (TMX) induces apoptosis of cholangiocarcinoma cells and reduces cholangiocarcinoma tumorigenesis in mice. In the present studies, we determined the effect of combination therapy of TMX and gemcitabine (GMT), another chemotherapeutical reagent for many cancers, on cholangiocarcinoma tumorigenesis and investigated the responsible mechanisms. GMT inhibited cell growth and induced apoptosis of cholangiocarcinoma cells in a concentration-dependent manner. TMX enhanced GMT-induced apoptosis of cholangiocarcinoma cells. Consistently, GMT (15 mg/kg) inhibited cholangiocarcinoma tumorigenesis in nude mice by 50%. TMX (15 mg/kg) enhanced the inhibitory effect of GMT on tumorigenesis by 33%. The inhibition of tumor growth correlated with enhanced apoptosis in tumor tissues. To elucidate the mechanisms underlying the additive effects of TMX on GMT-induced apoptosis, we determined the activation of caspases in cholangiocarcinoma cells exposed to GMT, TMX, or both. Activation of caspases 9 and 3, as well as cytochrome c release to the cytosol, was demonstrated in cells exposed to both reagents. In contrast, TMX activated caspase 2, whereas GMT had no effect. Inhibition of caspase 2 activation decreased TMX-, but not GMT-, induced activation of caspase 3 and apoptosis of cholangiocarcinoma cells. Similarly, activation of caspase 2 was found in tumors from TMX-treated mice, but not GMT-treated mice. Therefore, the enhanced effect of TMX on GMT-induced cholangiocarcinoma cell death is partially mediated by activation of caspase 2. TMX and GMT both induce apoptosis and inhibit cholangiocarcinoma tumorigenesis, which may be attributed to the activation of distinct apoptosis signals by TMX and GMT. Our studies provide in vivo evidence and molecular insight to support the use of TMX and GMT in combination as an effective therapy for cholangiocarcinoma.
Collapse
Affiliation(s)
- Gu Jing
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP. J Hematol Oncol 2011; 4:16. [PMID: 21504625 PMCID: PMC3103487 DOI: 10.1186/1756-8722-4-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/20/2011] [Indexed: 01/13/2023] Open
Abstract
We reviewed preclinical data and clinical development of MDM2 (murine double minute 2), ALK (anaplastic lymphoma kinase) and PARP (poly [ADP-ribose] polymerase) inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC). Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.
Collapse
Affiliation(s)
- Yuan Yuan
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Yu-Min Liao
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, China
| | - Chung-Tsen Hsueh
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Hamid R Mirshahidi
- Division of Medical Oncology and Hematology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
125
|
Davies E, Hiscox S. New therapeutic approaches in breast cancer. Maturitas 2011; 68:121-8. [DOI: 10.1016/j.maturitas.2010.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 01/29/2023]
|
126
|
O'Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 2011; 364:205-14. [PMID: 21208101 DOI: 10.1056/nejmoa1011418] [Citation(s) in RCA: 595] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Triple-negative breast cancers have inherent defects in DNA repair, making this cancer a rational target for therapy based on poly(adenosine diphosphate-ribose) polymerase (PARP) inhibition. METHODS We conducted an open-label, phase 2 study to compare the efficacy and safety of gemcitabine and carboplatin with or without iniparib, a small molecule with PARP-inhibitory activity, in patients with metastatic triple-negative breast cancer. A total of 123 patients were randomly assigned to receive gemcitabine (1000 mg per square meter of body-surface area) and carboplatin (at a dose equivalent to an area under the concentration-time curve of 2) on days 1 and 8--with or without iniparib (at a dose of 5.6 mg per kilogram of body weight) on days 1, 4, 8, and 11--every 21 days. Primary end points were the rate of clinical benefit (i.e., the rate of objective response [complete or partial response] plus the rate of stable disease for ≥6 months) and safety. Additional end points included the rate of objective response, progression-free survival, and overall survival. RESULTS The addition of iniparib to gemcitabine and carboplatin improved the rate of clinical benefit from 34% to 56% (P=0.01) and the rate of overall response from 32% to 52% (P=0.02). The addition of iniparib also prolonged the median progression-free survival from 3.6 months to 5.9 months (hazard ratio for progression, 0.59; P=0.01) and the median overall survival from 7.7 months to 12.3 months (hazard ratio for death, 0.57; P=0.01). The most frequent grade 3 or 4 adverse events in either treatment group included neutropenia, thrombocytopenia, anemia, fatigue or asthenia, leukopenia, and increased alanine aminotransferase level. No significant difference was seen between the two groups in the rate of adverse events. CONCLUSIONS The addition of iniparib to chemotherapy improved the clinical benefit and survival of patients with metastatic triple-negative breast cancer without significantly increased toxic effects. On the basis of these results, a phase 3 trial adequately powered to evaluate overall survival and progression-free survival is being conducted. (Funded by BiPar Sciences [now owned by Sanofi-Aventis]; ClinicalTrials.gov number, NCT00540358.).
Collapse
|
127
|
In brief. Nat Rev Clin Oncol 2010. [DOI: 10.1038/nrclinonc.2010.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
128
|
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors, a novel class of drugs that target tumors with DNA repair defects, have received tremendous enthusiasm. Early preclinical studies identified BRCA1 and BRCA2 tumors to be highly sensitive to PARP inhibitors as a result of homologous recombination defect. Based on this premise, PARP inhibitors have been tested in early phase clinical trials as a single agent in BRCA1 or BRCA2 mutation carriers and in combination with chemotherapy in triple-negative breast cancer patients. For high-risk populations, use of PARP inhibition as a prevention agent has been postulated, but no robust preclinical or clinical studies exist yet. We review the preclinical and clinical studies in treatment of breast cancer and rationale for use of PARP inhibitors as a prevention agent for high-risk populations. Of significance, PARP inhibitors vary significantly in mechanism of action, dosing intervals, and toxicities, which are highlighted in this review.
Collapse
|
129
|
D'Onofrio G, Tramontano F, Dorio AS, Muzi A, Maselli V, Fulgione D, Graziani G, Malanga M, Quesada P. Poly(ADP-ribose) polymerase signaling of topoisomerase 1-dependent DNA damage in carcinoma cells. Biochem Pharmacol 2010; 81:194-202. [PMID: 20875401 DOI: 10.1016/j.bcp.2010.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
A molecular approach to enhance the antitumour activity of topoisomerase 1 (TOP1) inhibitors relies on the use of chemical inhibitors of poly(ADP-ribose)polymerases (PARP). Poly(ADP-ribosyl)ation is involved in the regulation of many cellular processes such as DNA repair, cell cycle progression and cell death. Recent findings showed that poly(ADP-ribosyl)ated PARP-1 and PARP-2 counteract camptothecin action facilitating resealing of DNA strand breaks. Moreover, repair of DNA strand breaks induced by poisoned TOP1 is slower in the presence of PARP inhibitors, leading to increased toxicity. In the present study we compared the effects of the camptothecin derivative topotecan (TPT), and the PARP inhibitor PJ34, in breast (MCF7) and cervix (HeLa) carcinoma cells either PARP-1 proficient or silenced, both BRCA1/2(+/+) and p53(+/+). HeLa and MCF7 cell lines gave similar results: (i) TPT-dependent cell growth inhibition and cell cycle perturbation were incremented by the presence of PJ34 and a 2 fold increase in toxicity was observed in PARP-1 stably silenced HeLa cells; (ii) higher levels of DNA strand breaks were found in cells subjected to TPT+PJ34 combined treatment; (iii) PARP-1 and -2 modification was evident in TPT-treated cells and was reduced by TPT+PJ34 combined treatment; (iv) concomitantly, a reduction of soluble/active TOP1 was observed. Furthermore, TPT-dependent induction of p53, p21 and apoptosis were found 24-72h after treatment and were increased by PJ34 both in PARP-1 proficient and silenced cells. The characterization of such signaling network can be relevant to a strategy aimed at overcoming acquired chemoresistance to TOP1 inhibitors.
Collapse
Affiliation(s)
- Giovanna D'Onofrio
- Department of Structural and Functional Biology, University Federico II of Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA. Poly(ADP-Ribose) polymerase inhibition: "targeted" therapy for triple-negative breast cancer. Clin Cancer Res 2010; 16:4702-10. [PMID: 20858840 DOI: 10.1158/1078-0432.ccr-10-0939] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In contrast to endocrine-sensitive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer, novel agents capable of treating advanced triple-negative breast cancer (TNBC) are lacking. Poly(ADP-ribose) polymerase (PARP) inhibitors are emerging as one of the most promising "targeted" therapeutics to treat TNBC, with the intended "target" being DNA repair. PARPs are a family of enzymes involved in multiple cellular processes, including DNA repair. TNBC shares multiple clinico-pathologic features with BRCA-mutated breast cancers, which harbor dysfunctional DNA repair mechanisms. Investigators hypothesized that PARP inhibition, in conjunction with the loss of DNA repair via BRCA-dependent mechanisms, would result in synthetic lethality and augmented cell death. This hypothesis has borne out in both preclinical models and in clinical trials testing PARP inhibitors in both BRCA-deficient and triple-negative breast cancer. The focus of this review includes an overview of the preclinical rationale for evaluating PARP inhibitors in TNBC, the presumed mechanism of action of this novel therapeutic class, promising results from several influential clinical trials of PARP inhibition in advanced breast cancer (both TNBC and BRCA deficient), proposed mechanisms of acquired resistance to PARP inhibitors, and, finally, concludes with current challenges and future directions for the development of PARP inhibitors in the treatment of breast cancer.
Collapse
|