101
|
Chakraborty AA, Scuoppo C, Dey S, Thomas LR, Lorey SL, Lowe SW, Tansey WP. A common functional consequence of tumor-derived mutations within c-MYC. Oncogene 2015; 34:2406-9. [PMID: 24998853 PMCID: PMC4286529 DOI: 10.1038/onc.2014.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
The relevance of changes to the coding sequence of the c-MYC oncogene to malignancy is controversial. Overexpression of a pristine form of MYC is observed in many cancers and is sufficient to drive tumorigenesis in most contexts. Yet missense changes to MYC are found in ~50% of Burkitt's lymphomas, aggregate within an amino-terminal degron important for proteasomal destruction of MYC, and where examined profoundly enhance the tumorigenic properties of MYC in vitro and in vivo. Much of the controversy surrounding these mutants stems from the limited number of mutations that have been evaluated and their clustering within a single region of the MYC protein; the highly-conserved Myc box I (MbI) element. Here, by analysis of extant genomic data sets, we identify a previously unrecognized hotspot for tumor-associated MYC mutations, located in a conserved central portion of the protein. We show that, despite their distal location in MYC, mutations in this region precisely phenocopy those in MbI in terms of stability, in vitro transformation, growth-promoting properties, in vivo tumorigenesis and ability to escape p53-dependent tumor surveillance mechanisms. The striking parallels between the behavior of tumor-derived mutations in disparate regions of the MYC protein reveals that a common molecular process is disrupted by these mutations, implying an active role for these mutations in tumorigenesis and suggesting that different therapeutic strategies may be needed for treatment of lymphomas expressing wild type versus mutant forms of MYC protein.
Collapse
Affiliation(s)
- A A Chakraborty
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA [2] Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C Scuoppo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - S Dey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - L R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S W Lowe
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA [2] Howard Hughes Medical Institute, New York, NY, USA
| | - W P Tansey
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA [2] Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
102
|
Wang W, Liao P, Shen M, Chen T, Chen Y, Li Y, Lin X, Ge X, Wang P. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 2015; 35:491-500. [PMID: 25893300 DOI: 10.1038/onc.2015.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Serine 62 (Ser62) phosphorylation affects the c-Myc protein stability in cancer cells. However, the mechanism for dephosphorylating c-Myc is not well understood. In this study, we identified carboxyl-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (SCP1) as a novel phosphatase specifically dephosphorylating c-Myc Ser62. Ectopically expressed SCP1 strongly dephosphorylated c-Myc Ser62, destabilized c-Myc protein and suppressed c-Myc transcriptional activity. Knockdown of SCP1 increased the c-Myc protein levels in liver cancer cells. SCP1 interacted with c-Myc both in vivo and in vitro. In addition, Ser245 at the C-terminus of SCP1 was essential for its phosphatase activity towards c-Myc. Functionally, SCP1 negatively regulated the cancer cell proliferation. Collectively, our findings indicate that SCP1 is a potential tumor suppressor for liver cancers through dephosphorylating c-Myc Ser62.
Collapse
Affiliation(s)
- W Wang
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - P Liao
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - M Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - T Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Y Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Y Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - X Lin
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - X Ge
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - P Wang
- Department of Central Laboratory, Shanghai 10th People's Hospital, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
103
|
Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K, Rassool FV. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias. Mol Cancer Res 2015; 13:699-712. [PMID: 25828893 DOI: 10.1158/1541-7786.mcr-14-0422] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. IMPLICATIONS In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets.
Collapse
Affiliation(s)
- Nidal Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shannon Kelley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carine Robert
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland. Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | - Curt Civin
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kara Scheibner
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
104
|
Bäumer S, Bäumer N, Appel N, Terheyden L, Fremerey J, Schelhaas S, Wardelmann E, Buchholz F, Berdel WE, Müller-Tidow C. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin Cancer Res 2015; 21:1383-94. [PMID: 25589625 DOI: 10.1158/1078-0432.ccr-13-2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE KRAS mutations are frequent driver mutations in multiple cancers. KRAS mutations also induce anti-EGFR antibody resistance in adenocarcinoma such as colon cancer. The aim of this study was to overcome anti-EGFR antibody resistance by coupling the antibody to KRAS-specific siRNA. EXPERIMENTAL DESIGN The anti-EGFR antibody was chemically coupled to siRNA. The resulting complex was tested for antibody binding efficiency, serum stability and ability to deliver siRNA to EGFR-expressing cells. Western blotting, viability, apoptosis, and colony formation assays were performed for efficacy evaluation in vitro. Furthermore, therapeutic activity of the antibody-KRAS-siRNA complexes was examined in in vivo xenograft mouse tumor models. RESULTS Antibody-siRNA complexes were targeted and internalized via the EGFR receptor. Upon internalization, target gene expression was strongly and specifically repressed, followed by a reduced proliferation and viability, and induced apoptosis of the cells in vitro. Clonogenic growth of mutant KRAS-bearing cells was suppressed by KRAS-siRNA-anti-EGFR antibody complexes. In xenograft mouse models, anti-EGFR antibody-KRAS-siRNA complexes significantly slowed tumor growth in anti-EGFR-resistant cells. CONCLUSIONS The coupling of siRNA against KRAS to anti-EGFR antibodies provides a novel therapy approach for KRAS-mutated EGFR-positive cancer cells in vitro and in vivo. These findings provide an innovative approach for cancer-specific siRNA application and for enhanced therapeutic potential of monoclonal antibody therapy and personalized treatment of cancer entities.
Collapse
Affiliation(s)
- Sebastian Bäumer
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany.
| | - Nicole Bäumer
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Neele Appel
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Lisa Terheyden
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Julia Fremerey
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk Institute for Pathology, University of Muenster, Muenster, Germany
| | - Frank Buchholz
- UCC, Medical Systems Biology, Medical Faculty, TU Dresden, Dresden, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany. Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany.
| |
Collapse
|
105
|
PVT1 dependence in cancer with MYC copy-number increase. Nature 2014; 512:82-6. [PMID: 25043044 DOI: 10.1038/nature13311] [Citation(s) in RCA: 562] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 04/08/2014] [Indexed: 12/22/2022]
Abstract
'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.
Collapse
|
106
|
Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4:a014399. [PMID: 24939054 DOI: 10.1101/cshperspect.a014399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion.
Collapse
Affiliation(s)
- Stephen R Hann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| |
Collapse
|
107
|
Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proc Natl Acad Sci U S A 2014; 111:9157-62. [PMID: 24927563 DOI: 10.1073/pnas.1317630111] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor c-MYC is stabilized and activated by phosphorylation at serine 62 (S62) in breast cancer. Protein phosphatase 2A (PP2A) is a critical negative regulator of c-MYC through its ability to dephosphorylate S62. By inactivating c-MYC and other key signaling pathways, PP2A plays an important tumor suppressor function. Two endogenous inhibitors of PP2A, I2PP2A, Inhibitor-2 of PP2A (SET oncoprotein) and cancerous inhibitor of PP2A (CIP2A), inactivate PP2A and are overexpressed in several tumor types. Here we show that SET is overexpressed in about 50-60% and CIP2A in about 90% of breast cancers. Knockdown of SET or CIP2A reduces the tumorigenic potential of breast cancer cell lines both in vitro and in vivo. Treatment of breast cancer cells in vitro or in vivo with OP449, a novel SET antagonist, also decreases the tumorigenic potential of breast cancer cells and induces apoptosis. We show that this is, at least in part, due to decreased S62 phosphorylation of c-MYC and reduced c-MYC activity and target gene expression. Because of the ubiquitous expression and tumor suppressor activity of PP2A in cells, as well as the critical role of c-MYC in human cancer, we propose that activation of PP2A (here accomplished through antagonizing endogenous inhibitors) could be a novel antitumor strategy to posttranslationally target c-MYC in breast cancer.
Collapse
|
108
|
Phesse TJ, Myant KB, Cole AM, Ridgway RA, Pearson H, Muncan V, van den Brink GR, Vousden KH, Sears R, Vassilev LT, Clarke AR, Sansom OJ. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ 2014; 21:956-66. [PMID: 24583641 PMCID: PMC4013513 DOI: 10.1038/cdd.2014.15] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.
Collapse
Affiliation(s)
- T J Phesse
- School of Biosciences, University of Cardiff.CF10 3US, Cardiff, UK
- Ludwig Institute for Cancer Research, Melbourne, Australia
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - K B Myant
- Beatson Institute for Cancer Research, Glasgow, UK
| | - A M Cole
- Beatson Institute for Cancer Research, Glasgow, UK
| | - R A Ridgway
- Beatson Institute for Cancer Research, Glasgow, UK
| | - H Pearson
- School of Biosciences, University of Cardiff.CF10 3US, Cardiff, UK
| | - V Muncan
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - G R van den Brink
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - K H Vousden
- Beatson Institute for Cancer Research, Glasgow, UK
| | - R Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - L T Vassilev
- Discovery Oncology, Roche Research Center, Nutley, NJ, USA
| | - A R Clarke
- School of Biosciences, University of Cardiff.CF10 3US, Cardiff, UK
| | - O J Sansom
- Beatson Institute for Cancer Research, Glasgow, UK
| |
Collapse
|
109
|
Juan J, Muraguchi T, Iezza G, Sears RC, McMahon M. Diminished WNT -> β-catenin -> c-MYC signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors. Genes Dev 2014; 28:561-75. [PMID: 24589553 PMCID: PMC3967046 DOI: 10.1101/gad.233627.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncogene-induced senescence (OIS) is proposed as a cellular defense mechanism that restrains malignant progression of oncogene-expressing, initiated tumor cells. Consistent with this, expression of BRAF(V600E) in the mouse lung epithelium elicits benign tumors that fail to progress to cancer due to an apparent senescence-like proliferative arrest. Here we demonstrate that nuclear β-catenin → c-MYC signaling is essential for early stage proliferation of BRAF(V600E)-induced lung tumors and is inactivated in the subsequent senescence-like state. Furthermore, either β-catenin silencing or pharmacological blockade of Porcupine, an acyl-transferase essential for WNT ligand secretion and activity, significantly inhibited BRAF(V600E)-initiated lung tumorigenesis. Conversely, sustained activity of β-catenin or c-MYC significantly enhanced BRAF(V600E)-induced lung tumorigenesis and rescued the anti-tumor effects of Porcupine blockade. These data indicate that early stage BRAF(V600E)-induced lung tumors are WNT-dependent and suggest that inactivation of WNT → β-catenin → c-MYC signaling is a trigger for the senescence-like proliferative arrest that constrains the expansion and malignant progression of BRAF(V600E)-initiated lung tumors. Moreover, these data further suggest that the trigger for OIS in initiated BRAF(V600E)-expressing lung tumor cells is not simply a surfeit of signals from oncogenic BRAF but an insufficiency of WNT → β-catenin → c-MYC signaling. These data have implications for understanding how genetic abnormalities cooperate to initiate and promote lung carcinogenesis.
Collapse
Affiliation(s)
- Joseph Juan
- Helen Diller Family Comprehensive Cancer Center
| | | | | | | | | |
Collapse
|
110
|
Rodriguez E, Mannion L, D'Santos P, Griffiths M, Arends MJ, Brindle KM, Lyons SK. Versatile and enhanced tumour modelling in mice via somatic cell transduction. J Pathol 2014; 232:449-457. [PMID: 24307564 PMCID: PMC4288983 DOI: 10.1002/path.4313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/16/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Genetically engineered mouse (GEM) models of cancer currently comprise the most accurate way to experimentally recapitulate the human disease in the laboratory. Given recent advances in genomics and genetic screens, however, as well as an increasing urgency for the translation of effective preclinical treatments into the clinic, there is a pressing need to make these models easier and more efficient to work with. Accordingly, we have developed a versatile lentivirus-based approach to induce tumours from somatic cells of GEMs, add or subtract gene expression and render the tumours imageable from a simple breeding stock. The vectors deliver a tamoxifen-inducible and self-inactivating Cre recombinase, conditional bioluminescent and fluorescent proteins and an shRNA component. Following the transduction of somatic cells, tumours are initiated by Cre-mediated recombination of the inherited floxed alleles. Self-inactivation of Cre expression switches on the expression of luciferase, thereby rendering the recombined cells and resulting tumours bioluminescent. We demonstrate proof of concept of this approach by inducing bioluminescent lung tumours in conditional Kras and p53 mice. We also show that a variant vector expressing shRNA alters tumour growth dynamics and the histological grade associated with the inherited genotype. This approach comprises a versatile means to induce imageable and spontaneous tumour burden in mice. The vectors can be readily customized at the bench to modify reporter readout or tumour phenotype without additional transgenic strain development or breeding. They should also be useful for inducing imageable tumours in organs other than the lung, provided that the inherited conditional genotype is sufficiently penetrant.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Genetic Predisposition to Disease
- Genetic Vectors
- HEK293 Cells
- Humans
- Integrases/genetics
- Integrases/metabolism
- Lentivirus/genetics
- Luciferases/genetics
- Luciferases/metabolism
- Luminescent Measurements
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Grading
- Phenotype
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reproducibility of Results
- Time Factors
- Transduction, Genetic
- Tumor Burden
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Esther Rodriguez
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Liz Mannion
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Paula D'Santos
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Meryl Griffiths
- Histopathology Department, Addenbrookes HospitalCambridge, UK
| | | | - Kevin M Brindle
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| | - Scott K Lyons
- Department of Molecular Imaging, CRUK Cambridge Institute, University of CambridgeUK
| |
Collapse
|
111
|
Abstract
The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitin-proteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting.
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | |
Collapse
|
112
|
Abstract
The MYC family of proteins is a group of basic-helix-loop-helix-leucine zipper transcription factors that feature prominently in cancer. Overexpression of MYC is observed in the vast majority of human malignancies and promotes an extraordinary set of changes that impact cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion, differentiation, and metastasis. The purpose of this review is to introduce the reader to the mammalian family of MYC proteins, highlight important functional properties that endow them with their potent oncogenic potential, describe their mechanisms of action and of deregulation in cancer cells, and discuss efforts to target the unique properties of MYC, and of MYC-driven tumors, to treat cancer.
Collapse
|
113
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
114
|
Andrechek ER. HER2/Neu tumorigenesis and metastasis is regulated by E2F activator transcription factors. Oncogene 2013; 34:217-25. [PMID: 24362522 PMCID: PMC4067469 DOI: 10.1038/onc.2013.540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
HER2 / Neu is amplified and overexpressed in a large proportion of human breast cancers, but the signaling pathways that contribute to tumor development and metastatic progression are not completely understood. Using gene expression data and pathway signatures we predicted a role for activator E2F transcription factors in Neu induced tumors. This was genetically tested by interbreeding Neu transgenics with knockouts of the three activator E2Fs. Loss of any E2F delayed Neu induced tumor onset. E2F1 loss accelerated tumor growth while E2F2 and E2F3 loss did not. Strikingly, it was observed that loss of E2F1 or E2F2 significantly reduced the metastatic capacity of the tumor and this was associated with a reduction in circulating tumor cells in the E2F2 knockout. Gene expression analysis between the tumors in the various E2F mutant backgrounds revealed that there was extensive compensation by other E2F family members in the individual knockouts, underscoring the importance of the E2Fs in HER2 / Neu induced tumors. Extension to HER2 positive human breast cancer revealed a number of HER2+ subtypes based on E2F activity with differences in relapse free survival times. Taken together these data demonstrate that the E2F transcription factors are integral to HER2+ tumor development and progression.
Collapse
Affiliation(s)
- E R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
115
|
CDK/CK1 inhibitors roscovitine and CR8 downregulate amplified MYCN in neuroblastoma cells. Oncogene 2013; 33:5675-87. [PMID: 24317512 DOI: 10.1038/onc.2013.513] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 10/09/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
To understand the mechanisms of action of (R)-roscovitine and (S)-CR8, two related pharmacological inhibitors of cyclin-dependent kinases (CDKs), we applied a variety of '-omics' techniques to the human neuroblastoma SH-SY5Y and IMR32 cell lines: (1) kinase interaction assays, (2) affinity competition on immobilized broad-spectrum kinase inhibitors, (3) affinity chromatography on immobilized (R)-roscovitine and (S)-CR8, (4) whole genome transcriptomics analysis and specific quantitative PCR studies, (5) global quantitative proteomics approach and western blot analysis of selected proteins. Altogether, the results show that the major direct targets of these two molecules belong to the CDKs (1,2,5,7,9,12), DYRKs, CLKs and CK1s families. By inhibiting CDK7, CDK9 and CDK12, these inhibitors transiently reduce RNA polymerase 2 activity, which results in downregulation of a large set of genes. Global transcriptomics and proteomics analysis converge to a central role of MYC transcription factors downregulation. Indeed, CDK inhibitors trigger rapid and massive downregulation of MYCN expression in MYCN-amplified neuroblastoma cells as well as in nude mice xenografted IMR32 cells. Inhibition of casein kinase 1 may also contribute to the antitumoral activity of (R)-roscovitine and (S)-CR8. This dual mechanism of action may be crucial in the use of these kinase inhibitors for the treatment of MYC-dependent cancers, in particular neuroblastoma where MYCN amplification is a strong predictor factor for high-risk disease.
Collapse
|
116
|
Li N, Abe S, Kurata M, Abe-Suzuki S, Onishi I, Kirimura S, Murayama T, Hidaka M, Kawano F, Kitagawa M. Over-expression of cancerous inhibitor of PP2A (CIP2A) in bone marrow cells from patients with a group of high-risk myelodysplastic syndromes. Pathol Oncol Res 2013; 20:399-407. [PMID: 24163288 DOI: 10.1007/s12253-013-9709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/02/2013] [Indexed: 12/25/2022]
Abstract
Cancerous inhibitor of PP2A (protein phosphatase 2A) (CIP2A) is an inhibitor of PP2A, a phosphatase and tumor suppressor that regulates cell proliferation, differentiation, and survival. The aim of this study was to investigate whether CIP2A plays a role in the progression of myelodysplastic syndromes (MDS). Immunohistochemical analysis revealed that a fraction patients having refractory anemia with excess blasts (RAEB)-1 (4 out of 12) and RAEB-2 (10 out of 14) exhibited significant expression of CIP2A in bone marrow hematopoietic cells, while all patients with refractory cytopenia with unilineage or multilineage dysplasia (RCUD/RCMD) (0 out of 18) and the control group (0 out of 17) were negative. CIP2A was mainly expressed by the MPO-positive myeloid series of cells and partly by the CD34-positive cells in association with the expression of phosphorylated c-MYC (p-c-MYC) protein and the cell cycle-related proteins Ki-67, MCM2, and geminin. The percentage of p-c-MYC-positive cells in the bone marrow of CIP2A-positive MDS cases was significantly higher than that in CIP2A-negative MDS cases (P < 0.01). The expression levels of mRNA for CIP2A and PP2A exhibited positive correlation in MDS/control bone marrow. These results suggest that up-regulated expression of CIP2A might play a role in the proliferation of blasts in the MDS bone marrow and in disease progression in at least some cases.
Collapse
Affiliation(s)
- Na Li
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Akinyeke T, Matsumura S, Wang X, Wu Y, Schalfer ED, Saxena A, Yan W, Logan SK, Li X. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 2013; 34:2823-32. [PMID: 24130167 DOI: 10.1093/carcin/bgt307] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Prostate cancer (PCa) is the second leading cause of cancer-related death in American men and many PCa patients develop skeletal metastasis. Current treatment modalities for metastatic PCa are mostly palliative with poor prognosis. Epidemiological studies indicated that patients receiving the diabetic drug metformin have lower PCa risk and better prognosis, suggesting that metformin may have antineoplastic effects. The mechanism by which metformin acts as chemopreventive agent to impede PCa initiation and progression is unknown. The amplification of c-MYC oncogene plays a key role in early prostate epithelia cell transformation and PCa growth. The purpose of this study is to investigate the effect of metformin on c-myc expression and PCa progression. Our results demonstrated that (i) in Hi-Myc mice that display murine prostate neoplasia and highly resemble the progression of human prostate tumors, metformin attenuated the development of prostate intraepithelial neoplasia (PIN, the precancerous lesion of prostate) and PCa lesions. (ii) Metformin reduced c-myc protein levels in vivo and in vitro. In Myc-CaP mouse PCa cells, metformin decreased c-myc protein levels by at least 50%. (iii) Metformin selectively inhibited the growth of PCa cells by stimulating cell cycle arrest and apoptosis without affecting the growth of normal prostatic epithelial cells (RWPE-1). (iv) Reduced PIN formation by metformin was associated with reduced levels of androgen receptor and proliferation marker Ki-67 in Hi-Myc mouse prostate glands. Our novel findings suggest that by downregulating c-myc, metformin can act as a chemopreventive agent to restrict prostatic neoplasia initiation and transformation. SUMMARY Metformin, an old antidiabetes drug, may inhibit prostate intraepithelial neoplasia transforming to cancer lesion via reducing c-MYC, an 'old' overexpressed oncogene. This study explores chemopreventive efficacy of metformin in prostate cancer and its link to cMYC in vitro and in vivo.
Collapse
Affiliation(s)
- Tunde Akinyeke
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Cunningham JT, Ruggero D. New connections between old pathways: PDK1 signaling promotes cellular transformation through PLK1-dependent MYC stabilization. Cancer Discov 2013; 3:1099-102. [PMID: 24124229 PMCID: PMC3857155 DOI: 10.1158/2159-8290.cd-13-0581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Limited understanding of the functional link between multiple oncogenic pathways is a major barrier in the ongoing effort of cancer biologists to design an effective therapeutic approach to treat malignancies characterized by driver oncogenic network signals. In this issue of Cancer Discovery, Tan and colleagues elucidate a novel PDK1-PLK1-MYC signaling pathway connecting two fundamental oncogenic programs, phosphoinositide 3-kinase and MYC. They define the functional role for PDK1-PLK1-MYC signaling in cancer cell survival and tumor formation and show the therapeutic benefit of inhibiting PDK1 and PLK1 pharmacologically in cancer, tackling the most undruggable tumors defined by elevated levels of the MYC oncoprotein.
Collapse
Affiliation(s)
- John T. Cunningham
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| |
Collapse
|
119
|
Wasylishen AR, Chan-Seng-Yue M, Bros C, Dingar D, Tu WB, Kalkat M, Chan PK, Mullen PJ, Huang L, Meyer N, Raught B, Boutros PC, Penn LZ. MYC phosphorylation at novel regulatory regions suppresses transforming activity. Cancer Res 2013; 73:6504-15. [PMID: 24030976 DOI: 10.1158/0008-5472.can-12-4063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite its central role in human cancer, MYC deregulation is insufficient by itself to transform cells. Because inherent mechanisms of neoplastic control prevent precancerous lesions from becoming fully malignant, identifying transforming alleles of MYC that bypass such controls may provide fundamental insights into tumorigenesis. To date, the only activated allele of MYC known is T58A, the study of which led to identification of the tumor suppressor FBXW7 and its regulator USP28 as a novel therapeutic target. In this study, we screened a panel of MYC phosphorylation mutants for their ability to promote anchorage-independent colony growth of human MCF10A mammary epithelial cells, identifying S71A/S81A and T343A/S344A/S347A/S348A as more potent oncogenic mutants compared with wild-type (WT) MYC. The increased cell-transforming activity of these mutants was confirmed in SH-EP neuroblastoma cells and in three-dimensional MCF10A acini. Mechanistic investigations initiated by a genome-wide mRNA expression analysis of MCF10A acini identified 158 genes regulated by the mutant MYC alleles, compared with only 112 genes regulated by both WT and mutant alleles. Transcriptional gain-of-function was a common feature of the mutant alleles, with many additional genes uniquely dysregulated by individual mutant. Our work identifies novel sites of negative regulation in MYC and thus new sites for its therapeutic attack.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Authors' Affiliations: Department of Medical Biophysics, University of Toronto; Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre; and Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Cowling VH, Turner SA, Cole MD. Burkitt's lymphoma-associated c-Myc mutations converge on a dramatically altered target gene response and implicate Nol5a/Nop56 in oncogenesis. Oncogene 2013; 33:3519-27. [PMID: 24013231 PMCID: PMC5003617 DOI: 10.1038/onc.2013.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 12/13/2022]
Abstract
Burkitt’s Lymphomas (BLs) acquire consistent point mutations in a conserved domain of Myc, Myc Box I. We report that the enhanced transforming activity of BL-associated Myc mutants can be uncoupled from loss of phosphorylation and increased protein stability. Furthermore, two different BL-associated Myc mutations induced similar gene expression profiles independently of T58 phosphorylation, and these profiles are dramatically different from MycWT. Nol5a/Nop56, which is required for rRNA methylation, was identified as a gene hyperactivated by the BL-associated Myc mutants. We show that Nol5a is necessary for Myc-induced cell transformation, enhances MycWT-induced cell transformation, and increases the size of MycWT induced tumors. Thus, Nol5a expands the link between Myc-induced regulation of nucleolar target genes which are rate-limiting for cell transformation and tumor growth.
Collapse
Affiliation(s)
- V H Cowling
- Department of Pharmacology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| | - S A Turner
- Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| | - M D Cole
- 1] Department of Pharmacology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA [2] Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, USA
| |
Collapse
|
121
|
Bruyère C, Meijer L. Targeting cyclin-dependent kinases in anti-neoplastic therapy. Curr Opin Cell Biol 2013; 25:772-9. [PMID: 24011867 DOI: 10.1016/j.ceb.2013.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
Cell cycle progression is controlled by sequential activation of cyclin-dependent kinases (CDKs), which are often deregulated in cancer. Consequently numerous pharmacological inhibitors of CDKs have been developed with the aim of treating cancers. The article briefly reviews CDK inhibitors and their use to treat cancers, with specific focus on the use of biomarkers and drugs combination to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Céline Bruyère
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | | |
Collapse
|
122
|
Van Sinderen M, Cuman C, Winship A, Menkhorst E, Dimitriadis E. The chrondroitin sulfate proteoglycan (CSPG4) regulates human trophoblast function. Placenta 2013; 34:907-12. [PMID: 23953863 DOI: 10.1016/j.placenta.2013.07.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Trophoblast growth and invasion of the uterine endometrium are critical events during placentation and are tightly regulated by locally produced factors. Abnormal placentation can result in early miscarriage or preeclampsia and intrauterine growth restriction, leading to impaired fetal and/or maternal health. Chondroitin sulfate proteoglycan 4 (CSPG4) is involved in cancer cell migration and invasion, processes which are critical during placentation but unlike in cancer, trophoblast invasion is highly regulated. CSPG4 expression and function in trophoblast is unknown. We determined CSPG4 expression in human first trimester placenta and implantation sites, and investigated whether CSPG4 influenced proliferation, migration and invasion of a human extravillous trophoblast (EVT) cell line (HTR8/SVneo cells) as a model for extravillous trophoblast (EVT). METHODS AND RESULTS Immunoreactive CSPG4 localized to EVT cells in the trophoblast shell, subpopulations of interstitial EVT cells within the decidua and cytotrophoblast cells in placental villi. In HTR8/SVneo cells, siRNA knockdown of CSPG4 stimulated proliferation and decreased migration/invasion. In primary first trimester placental villi explants two cytokines, interleukin 11 (IL11) and leukemia inhibitory factor (LIF) with known roles in trophoblast function, stimulated CSPG4 mRNA expression and immunoreactive protein in the cyotrophoblast. DISCUSSION AND CONCLUSION This is the first demonstration of the production and function of CSPG4 in human placentation. These data suggest that locally produced CSPG4 stimulates human EVT migration and invasion and suggests that IL11 and LIF regulate villous cytotrophoblast differentiation towards the invasive phenotype at least in part via CSPG4.
Collapse
Affiliation(s)
- M Van Sinderen
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
123
|
Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol Cell Biol 2013; 33:2930-49. [PMID: 23716601 DOI: 10.1128/mcb.01455-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Myc oncoprotein is considered a master regulator of gene transcription by virtue of its ability to modulate the expression of a large percentage of all genes. However, mechanisms that direct Myc's recruitment to DNA and target gene selection to elicit specific cellular functions have not been well elucidated. Here, we report that the Pin1 prolyl isomerase enhances recruitment of serine 62-phosphorylated Myc and its coactivators to select promoters during gene activation, followed by promoting Myc's release associated with its degradation. This facilitates Myc's activation of genes involved in cell growth and metabolism, resulting in enhanced proproliferative activity, even while controlling Myc levels. In cancer cells with impaired Myc degradation, Pin1 still enhances Myc DNA binding, although it no longer facilitates Myc degradation. Thus, we find that Pin1 and Myc are cooverexpressed in cancer, and this drives a gene expression pattern that we show is enriched in poor-outcome breast cancer subtypes. This study provides new insight into mechanisms regulating Myc DNA binding and oncogenic activity, it reveals a novel role for Pin1 in the regulation of transcription factors, and it elucidates a mechanism that can contribute to oncogenic cooperation between Pin1 and Myc.
Collapse
|
124
|
Morton JP, Sansom OJ. MYC-y mice: from tumour initiation to therapeutic targeting of endogenous MYC. Mol Oncol 2013; 7:248-58. [PMID: 23523308 PMCID: PMC5528411 DOI: 10.1016/j.molonc.2013.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 12/15/2022] Open
Abstract
MYC is one of the best-studied oncogenes in terms of mouse models of malignancy. MYC overexpression has been targeted to several tissues using transgenic constructs, and more recently as mouse models have evolved, conditional systems have been developed to allow the regulation of MYC expression or activity in vivo. The ability to target MYC expression to specific tissues and cell lineages, as well as the ability to regulate that expression, has made genetically engineered mouse models (GEMM) a valuable resource for studying the importance of MYC in the process of tumourigenesis. Here we review how these models have been used to address the role of MYC in tumour initiation and maintenance, how subtle changes in levels of MYC can influence tumourigenesis, and finally the ongoing efforts to target endogenous MYC genetically and with novel therapies.
Collapse
Affiliation(s)
- Jennifer P Morton
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK
| | | |
Collapse
|
125
|
Hunk negatively regulates c-myc to promote Akt-mediated cell survival and mammary tumorigenesis induced by loss of Pten. Proc Natl Acad Sci U S A 2013; 110:6103-8. [PMID: 23520049 DOI: 10.1073/pnas.1217415110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The protooncogenes Akt and c-myc each positively regulate cell growth and proliferation, but have opposing effects on cell survival. These oncogenes cooperate to promote tumorigenesis, in part because the prosurvival effects of Akt offset the proapoptotic effects of c-myc. Akt's ability to counterbalance c-myc's proapoptotic effects has primarily been attributed to Akt-induced stimulation of prosurvival pathways that indirectly antagonize the effects of c-myc. We report a more direct mechanism by which Akt modulates the proapoptotic effects of c-myc. Specifically, we demonstrate that Akt up-regulates the adenosine monophosphate-associated kinase (AMPK)-related protein kinase, Hormonally up-regulated neu-associated kinase (Hunk), which serves as an effector of Akt prosurvival signaling by suppressing c-myc expression in a kinase-dependent manner to levels that are compatible with cell survival. Consequently, Akt pathway activation in the mammary glands of Hunk(-/-) mice results in induction of c-myc expression to levels that induce apoptosis. c-myc knockdown rescues the increase in apoptosis induced by Hunk deletion in cells in which Akt has been activated, indicating that repression of c-myc is a principal mechanism by which Hunk mediates the prosurvival effects of Akt. Consistent with this mechanism of action, we find that Hunk is required for c-myc suppression and mammary tumorigenesis induced by phosphatase and tensin homolog (Pten) deletion in mice. Together, our findings establish a prosurvival function for Hunk in tumorigenesis, define an essential mechanism by which Akt suppresses c-myc-induced apoptosis, and identify Hunk as a previously unrecognized link between the Akt and c-myc oncogenic pathways.
Collapse
|
126
|
Wasylishen AR, Kalkat M, Kim SS, Pandyra A, Chan PK, Oliveri S, Sedivy E, Konforte D, Bros C, Raught B, Penn LZ. MYC activity is negatively regulated by a C-terminal lysine cluster. Oncogene 2013; 33:1066-72. [PMID: 23435422 DOI: 10.1038/onc.2013.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
The MYC oncogene is not only deregulated in cancer through abnormally high levels of expression, but also through oncogenic lesions in upstream signalling cascades. Modelling MYC deregulation using signalling mutants is a productive research strategy. For example, the MYC threonine-58 to alanine substitution mutant (T58A) within MYC-homology box 1 is more transforming than wild-type (WT) MYC, because of decreased apoptosis and increased protein stability. Understanding the regulatory mechanisms controlling T58 phosphorylation has led to new approaches for the development of MYC inhibitors. In this manuscript, we have extensively characterized a MYC signalling mutant in which six lysine residues near the highly conserved MYC homology box IV and basic region have been substituted to arginines (6KR). Previous literature suggests these lysines can undergo both ubiquitylation and acetylation. We show MYC 6KR is able to fully rescue the slow growth phenotype of HO15.19 MYC-null fibroblasts, and promote cell cycle entry of serum-starved MCF10A cells. Remarkably, 6KR increased anchorage-independent colony growth compared with WT MYC in both SH-EP and MCF10A cells. Moreover, it was also more potent in promoting xenograft tumour growth of Rat1A and SH-EP cells. Combined, our data identify this region and these six lysines as important residues for the negative regulation of MYC-induced transformation. Mechanistically, we demonstrate that, unlike T58A, the increased transformation is not a result of increased protein stability or a reduced capacity for 6KR to induce apoptosis. Through expression analysis and luciferase reporter assays, we show that 6KR has increased transcriptional activity compared with WT MYC. Combined, through a comprehensive evaluation across multiple cell types, we identify an important regulatory region within MYC. A better understanding of the full scope of signalling through these residues will provide further insights into the mechanisms contributing to MYC-induced tumorigenesis and may unveil novel therapeutic strategies to target Myc in cancer.
Collapse
Affiliation(s)
- A R Wasylishen
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - M Kalkat
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - S S Kim
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - A Pandyra
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - P-K Chan
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - S Oliveri
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - E Sedivy
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - D Konforte
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - C Bros
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - B Raught
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - L Z Penn
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Ontario Cancer Institute, Campbell Family Institute for Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| |
Collapse
|
127
|
Daniel CJ, Zhang X, Sears RC. Detection of c-Myc protein-protein interactions and phosphorylation status by immunoprecipitation. Methods Mol Biol 2013; 1012:65-76. [PMID: 24006058 DOI: 10.1007/978-1-62703-429-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Co-immunoprecipitation is an invaluable technique in evaluating native protein-protein interactions in vitro and in vivo. However, it can be difficult to detect interactions of a very transient nature, particularly interactions with phosphatases and kinases. The evaluation of the phosphorylation status of c-Myc can also be challenging with the current commercially available phosphorylation sensitive antibodies. Here, we describe two protocols: one for the co-immunoprecipitation of endogenous c-Myc to detect protein-protein interactions and second, for the immunoprecipitation of endogenous c-Myc to probe for phosphorylation status.
Collapse
Affiliation(s)
- Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | | |
Collapse
|
128
|
A critical role for Mnt in Myc-driven T-cell proliferation and oncogenesis. Proc Natl Acad Sci U S A 2012; 109:19685-90. [PMID: 23150551 DOI: 10.1073/pnas.1206406109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mnt (Max's next tango) is a Max-interacting transcriptional repressor that can antagonize both the proproliferative and proapoptotic functions of Myc in vitro. To ascertain the physiologically relevant functions of Mnt and to help define the relationship between Mnt and Myc in vivo, we generated a series of mouse strains in which Mnt was deleted in T cells in the absence of endogenous c-Myc or in the presence of ectopic c-Myc. We found that apoptosis caused by loss of Mnt did not require Myc but that ectopic Myc expression dramatically decreased the survival of both Mnt-deficient T cells in vivo and Mnt-deficient MEFs in vitro. Consequently, Myc-driven proliferative expansion of T cells in vitro and thymoma formation in vivo were prevented by the absence of Mnt. Consistent with T-cell models, mouse embryo fibroblasts (MEFs) lacking Mnt were refractory to oncogenic transformation by Myc. Tumor suppression caused by loss of Mnt was linked to increased apoptosis mediated by reactive oxygen species (ROS). Thus, although theoretically and experimentally a Myc antagonist, the dominant physiological role of Mnt appears to be suppression of apoptosis. Our results redefine the physiological relationship between Mnt and Myc and requirements for Myc-driven oncogenesis.
Collapse
|
129
|
Imran M, Park TJ, Lim IK. TIS21/BTG2/PC3 enhances downregulation of c-Myc during differentiation of HL-60 cells by activating Erk1/2 and inhibiting Akt in response to all-trans-retinoic acid. Eur J Cancer 2012; 48:2474-85. [DOI: 10.1016/j.ejca.2012.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/29/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
130
|
Amatangelo MD, Goodyear S, Varma D, Stearns ME. c-Myc expression and MEK1-induced Erk2 nuclear localization are required for TGF-beta induced epithelial-mesenchymal transition and invasion in prostate cancer. Carcinogenesis 2012; 33:1965-75. [PMID: 22791812 DOI: 10.1093/carcin/bgs227] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the initial mechanisms by which epithelial cells transform to an invasive phenotype is critical to the development of diagnostics that can identify the metastatic potential of cancers as well as therapeutic agents that can prevent metastases. Changes in cellular response to the transforming growth factor-beta (TGF-β) cytokine are known to promote epithelial cell invasion and metastasis in part through induction of epithelial-mesenchymal transitions (EMTs). In this report, we demonstrate that non-metastatic human prostate cancer cell lines of increasing Gleason score can be induced to undergo EMT when treated with TGF-β in combination with epidermal growth factor. Mechanistic studies revealed that in cells stably transfected with activated Ras, TGF-β alone induced EMT and that a Ras-Raf-MEK1, but not MEK2, signaling cascade is necessary and sufficient for Erk2 nuclear localization that works in concert with TGF-β to promote EMT. Furthermore, we show for the first time that expression of the transcription factor c-myc, which is phosphorlyated by Erk2, is required for EMT. Characteristically, EMT involved adoption of a spindle-shaped morphology, loss of E-cadherin and increased expression of Vimentin, Fibronectin and Fibroblast Specific Protein-1 (S100A4). Prostate cells undergoing EMT became invasive and expressed several genes associated with metastasis, including MT-MMP1, MMP-2/9, the MMP-9 homodimer, Slug and Twist2. In sum, we demonstrate a novel mechanism by which non-invasive primary prostate tumor cells transition to an invasive phenotype characteristic of malignant tumor cells in response to TGF-β signaling.
Collapse
Affiliation(s)
- Michael D Amatangelo
- Department ofPathology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
131
|
Dang CV. MYC on the path to cancer. Cell 2012; 149:22-35. [PMID: 22464321 DOI: 10.1016/j.cell.2012.03.003] [Citation(s) in RCA: 2536] [Impact Index Per Article: 195.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/30/2012] [Accepted: 03/07/2012] [Indexed: 11/30/2022]
Abstract
The MYC oncogene contributes to the genesis of many human cancers. Recent insights into its expression and function have led to therapeutic opportunities. MYC's activation by bromodomain proteins could be inhibited by drug-like molecules, resulting in tumor inhibition in vivo. Tumor growth can also be curbed by pharmacologically uncoupling bioenergetic pathways involving glucose or glutamine metabolism from Myc-induced cellular biomass accumulation. Other approaches to halt Myc on the path to cancer involve targeting Myc-Max dimerization or Myc-induced microRNA expression. Here the richness of our understanding of MYC is reviewed, highlighting new biological insights and opportunities for cancer therapies.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology-Oncology, Department of Medicine, Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
132
|
A mouse model with T58A mutations in Myc reduces the dependence on KRas mutations and has similarities to claudin-low human breast cancer. Oncogene 2012; 32:1296-304. [DOI: 10.1038/onc.2012.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
133
|
Andresen C, Helander S, Lemak A, Farès C, Csizmok V, Carlsson J, Penn LZ, Forman-Kay JD, Arrowsmith CH, Lundström P, Sunnerhagen M. Transient structure and dynamics in the disordered c-Myc transactivation domain affect Bin1 binding. Nucleic Acids Res 2012; 40:6353-66. [PMID: 22457068 PMCID: PMC3401448 DOI: 10.1093/nar/gks263] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The crucial role of Myc as an oncoprotein and as a key regulator of cell growth makes it essential to understand the molecular basis of Myc function. The N-terminal region of c-Myc coordinates a wealth of protein interactions involved in transformation, differentiation and apoptosis. We have characterized in detail the intrinsically disordered properties of Myc-1–88, where hierarchical phosphorylation of S62 and T58 regulates activation and destruction of the Myc protein. By nuclear magnetic resonance (NMR) chemical shift analysis, relaxation measurements and NOE analysis, we show that although Myc occupies a very heterogeneous conformational space, we find transiently structured regions in residues 22–33 and in the Myc homology box I (MBI; residues 45–65); both these regions are conserved in other members of the Myc family. Binding of Bin1 to Myc-1–88 as assayed by NMR and surface plasmon resonance (SPR) revealed primary binding to the S62 region in a dynamically disordered and multivalent complex, accompanied by population shifts leading to altered intramolecular conformational dynamics. These findings expand the increasingly recognized concept of intrinsically disordered regions mediating transient interactions to Myc, a key transcriptional regulator of major medical importance, and have important implications for further understanding its multifaceted role in gene regulation.
Collapse
Affiliation(s)
- Cecilia Andresen
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Narisawa-Saito M, Inagawa Y, Yoshimatsu Y, Haga K, Tanaka K, Egawa N, Ohno SI, Ichikawa H, Yugawa T, Fujita M, Kiyono T. A critical role of MYC for transformation of human cells by HPV16 E6E7 and oncogenic HRAS. Carcinogenesis 2012; 33:910-7. [DOI: 10.1093/carcin/bgs104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
135
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
Mechanistic insight into Myc stabilization in breast cancer involving aberrant Axin1 expression. Proc Natl Acad Sci U S A 2011; 109:2790-5. [PMID: 21808024 DOI: 10.1073/pnas.1100764108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High expression of the oncoprotein Myc has been linked to poor outcome in human tumors. Although MYC gene amplification and translocations have been observed, this can explain Myc overexpression in only a subset of human tumors. Myc expression is in part controlled by its protein stability, which can be regulated by phosphorylation at threonine 58 (T58) and serine 62 (S62). We now report that Myc protein stability is increased in a number of breast cancer cell lines and this correlates with increased phosphorylation at S62 and decreased phosphorylation at T58. Moreover, we find this same shift in phosphorylation in primary breast cancers. The signaling cascade that controls phosphorylation at T58 and S62 is coordinated by the scaffold protein Axin1. We therefore examined Axin1 in breast cancer and report decreased AXIN1 expression and a shift in the ratio of expression of two naturally occurring AXIN1 splice variants. We demonstrate that this contributes to increased Myc protein stability, altered phosphorylation at S62 and T58, and increased oncogenic activity of Myc in breast cancer. Thus, our results reveal an important mode of Myc activation in human breast cancer and a mechanism contributing to Myc deregulation involving unique insight into inactivation of the Axin1 tumor suppressor in breast cancer.
Collapse
|
137
|
Mangos JA, Boyd RL, Loughlin GM, Cockrell A, Fucci R. Transductal fluxes of water and monovalent ions in ferret salivary glands. J Dent Res 1981; 130:231-246. [PMID: 6934197 DOI: 10.1172/jci126390] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
The net transductal fluxes of water and monovalent ions were measured in the parotid and submandibular salivary glands of the ferret, Mustela putorius furo, during stimulation of secretion with pilocarpine. The duct systems of these glands were found to be impermeable to water using the split-oil droplet method for stationary microperfusion of lobular and main ducts. The net transductal fluxes of Na+, K+, Cl-, and HCO3- were characterized by analysis of ductal fluid samples obtained simultaneously from the intercalated, lobular, and main ducts of these glands.
Collapse
|