101
|
Barrio-Real L, Benedetti LG, Engel N, Tu Y, Cho S, Sukumar S, Kazanietz MG. Subtype-specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with promoter hypomethylation. Breast Cancer Res 2014; 16:441. [PMID: 25248717 PMCID: PMC4303123 DOI: 10.1186/s13058-014-0441-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/01/2014] [Indexed: 01/30/2023] Open
Abstract
Introduction The Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown. Toward the goal of dissecting the mechanistic basis of P-REX1 overexpression in breast cancer, in this study we focused on the analysis of methylation of the PREX1 gene promoter. Methods To determine the methylation status of the PREX1 promoter region, we used bisulfite genomic sequencing and pyrosequencing approaches. Re-expression studies in cell lines were carried out by treatment of breast cancer cells with the demethylating agent 5-aza-2′-deoxycitidine. PREX1 gene methylation in different human breast cancer subtypes was analyzed from the TCGA database. Results We found that the human PREX1 gene promoter has a CpG island located between -1.2 kb and +1.4 kb, and that DNA methylation in this region inversely correlates with P-REX1 expression in human breast cancer cell lines. A comprehensive analysis of human breast cancer cell lines and tumors revealed significant hypomethylation of the PREX1 promoter in ER-positive, luminal subtype, whereas hypermethylation occurs in basal-like breast cancer. Treatment of normal MCF-10A or basal-like cancer cells, MDA-MB-231 with the demethylating agent 5-aza-2′-deoxycitidine in combination with the histone deacetylase inhibitor trichostatin A restores P-REX1 levels to those observed in luminal breast cancer cell lines, suggesting that aberrant expression of P-REX1 in luminal breast cancer is a consequence of PREX1 promoter demethylation. Unlike PREX1, the pro-metastatic Rho/Rac-GEF, VAV3, is not regulated by methylation. Notably, PREX1 gene promoter hypomethylation is a prognostic marker of poor patient survival. Conclusions Our study identified for the first time gene promoter hypomethylation as a distinctive subtype-specific mechanism for controlling the expression of a key regulator of Rac-mediated motility and metastasis in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0441-7) contains supplementary material, which is available to authorized users.
Collapse
|
102
|
de Aberasturi AL, Calvo A. TMPRSS4: an emerging potential therapeutic target in cancer. Br J Cancer 2014; 112:4-8. [PMID: 25203520 PMCID: PMC4453593 DOI: 10.1038/bjc.2014.403] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 01/07/2023] Open
Abstract
Altered expression and activity of proteases is a key event in cancer, particularly in relation to invasion, modification of the extracellular matrix and metastasis. The transmembrane protease, serine 4 (TMPRSS4) is closely related to other cancer-associated proteases, such as hepsin, TMPRSS2 and matriptase. We review in this study up-to-date information about expression, role, regulation and clinical relevance of TMPRSS4 in cancer. Increased expression of this protease is associated with acquisition of epithelial to mesenchymal transition, invasion and metastasis in vivo. Signalling in cancer cells involves upregulation of integrin-α5 (ITG-α5) and urokinase-type plasminogen activator (uPA), downregulation of E-cadherin and activation of uPA enzymatic activity at the plasma membrane, as well as phosphorylation of FAK, Src, Akt and ERK1/2 intracellularly. Upregulation of miR-205 hinders the protumorigenic effects elicited by TMPRSS4 through restoration of E-cadherin levels and direct targeting of ITG-α5. High levels of TMPRSS4 have been found in several types of solid tumours in patients, and association with poor prognosis has been consistently described. On the basis of this information and the structural characteristics of this druggable protease, we suggest that TMPRSS4 could be a novel potential therapeutic target in solid tumours.
Collapse
Affiliation(s)
- A L de Aberasturi
- Department of Histology and Pathology and Oncology Division, CIMA of the University of Navarra, Pio XII, 55, 31008 Pamplona, Spain
| | - A Calvo
- Department of Histology and Pathology and Oncology Division, CIMA of the University of Navarra, Pio XII, 55, 31008 Pamplona, Spain
| |
Collapse
|
103
|
Phan JH, Kothari S, Wang MD. omniClassifier: a Desktop Grid Computing System for Big Data Prediction Modeling. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2014; 2014:514-523. [PMID: 27532062 PMCID: PMC4983434 DOI: 10.1145/2649387.2649439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Robust prediction models are important for numerous science, engineering, and biomedical applications. However, best-practice procedures for optimizing prediction models can be computationally complex, especially when choosing models from among hundreds or thousands of parameter choices. Computational complexity has further increased with the growth of data in these fields, concurrent with the era of "Big Data". Grid computing is a potential solution to the computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of commodity desktop machines, coupled with commercial cloud computing resources can enable research labs to gain easier and more cost effective access to vast computing resources. We have developed omniClassifier, a multi-purpose prediction modeling application that provides researchers with a tool for conducting machine learning research within the guidelines of recommended best-practices. omniClassifier is implemented as a desktop grid computing system using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition to describing implementation details, we use various gene expression datasets to demonstrate the potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/.
Collapse
Affiliation(s)
- John H. Phan
- Department of Biomedical, Engineering, Georgia Institute of, Technology and Emory University, Atlanta, GA, USA, 30332
| | - Sonal Kothari
- Department of Biomedical, Engineering, Georgia Institute of, Technology and Emory University, Atlanta, GA, USA, 30332
| | - May D. Wang
- Department of Biomedical, Engineering, Georgia Institute of, Technology and Emory University, Atlanta, GA, USA, 30332
| |
Collapse
|
104
|
Cheishvili D, Chik F, Li CC, Bhattacharya B, Suderman M, Arakelian A, Hallett M, Rabbani SA, Szyf M. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2'-deoxycytidine-triggered invasiveness. Carcinogenesis 2014; 35:2436-46. [PMID: 25178277 DOI: 10.1093/carcin/bgu181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
5-Aza-2'-deoxycytidine (5-azaCdR) not only inhibits growth of non-invasive breast cancer cells but also increases their invasiveness through induction of pro-metastatic genes. Methylated DNA binding protein 2 (MBD2) is involved in silencing methylated tumor suppressor genes as well as activation of pro-metastatic genes. In this study, we show that a combination of MBD2 depletion and DNA methyltransferases (DNMT) inhibition in breast cancer cells results in a combined effect in vitro and in vivo, enhancing tumor growth arrest on one hand, while inhibiting invasiveness triggered by 5-azaCdR on the other hand. The combined treatment of MBD2 depletion and 5-azaCdR suppresses and augments distinct gene networks that are induced by DNMT inhibition alone. These data point to a potential new approach in targeting the DNA methylation machinery by combination of MBD2 and DNMT inhibitors.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University and
| | - Flora Chik
- Department of Pharmacology and Therapeutics, McGill University and
| | - Chen Chen Li
- Department of Pharmacology and Therapeutics, McGill University and
| | - Bishnu Bhattacharya
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada, McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Ani Arakelian
- Department of Medicine, McGill University Health Centre, 687 Pine Avenue West, Room H4.67, Montreal, Quebec H3A 1A1, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0B1, Canada and
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, 687 Pine Avenue West, Room H4.67, Montreal, Quebec H3A 1A1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University and Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada,
| |
Collapse
|
105
|
Li Y, Xu J, Ju H, Xiao Y, Chen H, Lv J, Shao T, Bai J, Zhang Y, Wang L, Wang X, Ren H, Li X. A network-based, integrative approach to identify genes with aberrant co-methylation in colorectal cancer. MOLECULAR BIOSYSTEMS 2014; 10:180-90. [PMID: 24317156 DOI: 10.1039/c3mb70270g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic changes, including aberrations in DNA methylation, are a common hallmark of many cancers. The identification and interpretation of epigenetic changes associated with cancers may benefit from integration with protein interactomes. Based on the assumption that genes implicated in a specific tumor phenotype will show high aberrant co-methylation patterns with their interacting partners, we propose an integrated approach to uncover cancer-associated genes by integrating a DNA methylome with an interactome. Aberrant co-methylated interactions were first identified in the specific cancer, and genes were then prioritized based on their enrichment in aberrant co-methylation. By applying this to a large-scale colorectal cancer (CRC) dataset, the proposed method increases the power to capture known genes. More importantly, genes possessing high aberrant co-methylation patterns, located at the topological center of the original protein-protein interaction network (PPIN), affect several cancer-associated pathways and form hotspots that are frequently hijacked in cancer. Additionally, the top-ranked candidate genes may also be useful as an indicator of CRC diagnosis and prognosis. Five fold cross-validation of the top-ranked genes in diagnosis reveals that it can achieve an area under the receiver operating characteristic (ROC) curve ranging from 82.2% to 98.4% in three independent datasets. Five of these genes form a core repressive module. CCNA1 and ESR1 in particular are evidently silenced by promoter hypermethylation in CRC cell lines and tissues, whose re-expression markedly suppresses tumor cell survival and clonogenicity. These results show that the network-centric method could identify novel disease biomarkers and model how oncogenic lesions mediate epigenetic changes, providing important insights into tumorigenesis.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Mah WC, Thurnherr T, Chow PKH, Chung AYF, Ooi LLPJ, Toh HC, Teh BT, Saunthararajah Y, Lee CGL. Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis. PLoS One 2014; 9:e104158. [PMID: 25093504 PMCID: PMC4122406 DOI: 10.1371/journal.pone.0104158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/05/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. However, the role of epigenetic changes such as aberrant DNA methylation in hepatocarcinogenesis remains largely unclear. In this study, we examined the methylation profiles of 59 HCC patients. Using consensus hierarchical clustering with feature selection, we identified three tumor subgroups based on their methylation profiles and correlated these subgroups with clinicopathological parameters. Interestingly, one tumor subgroup is different from the other 2 subgroups and the methylation profile of this subgroup is the most distinctly different from the non-tumorous liver tissues. Significantly, this subgroup of patients was found to be associated with poor overall as well as disease-free survival. To further understand the pathways modulated by the deregulation of methylation in HCC patients, we integrated data from both the methylation as well as the gene expression profiles of these 59 HCC patients. In these patients, while 4416 CpG sites were differentially methylated between the tumors compared to the adjacent non-tumorous tissues, only 536 of these CpG sites were associated with differences in the expression of their associated genes. Pathway analysis revealed that forty-four percent of the most significant upstream regulators of these 536 genes were involved in inflammation-related NFκB pathway. These data suggest that inflammation via the NFκB pathway play an important role in modulating gene expression of HCC patients through methylation. Overall, our analysis provides an understanding on aberrant methylation profile in HCC patients.
Collapse
Affiliation(s)
- Way-Champ Mah
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Thomas Thurnherr
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Pierce K. H. Chow
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
| | | | - London L. P. J. Ooi
- Department of Surgery, Singapore General Hospital, Singapore, Singapore
- Department of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Bin Tean Teh
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yogen Saunthararajah
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Caroline G. L. Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
107
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|
108
|
Berger M, Santi L, Beys-da-Silva WO, Oliveira FMS, Caliari MV, Yates JR, Vieira MAR, Guimarães JA. Mechanisms of acute kidney injury induced by experimental Lonomia obliqua envenomation. Arch Toxicol 2014; 89:459-83. [PMID: 24798088 DOI: 10.1007/s00204-014-1264-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
Lonomia obliqua caterpillar envenomation causes acute kidney injury (AKI), which can be responsible for its deadly actions. This study evaluates the possible mechanisms involved in the pathogenesis of renal dysfunction. To characterize L. obliqua venom effects, we subcutaneously injected rats and examined renal functional, morphological and biochemical parameters at several time points. We also performed discovery-based proteomic analysis to measure protein expression to identify molecular pathways of renal disease. L. obliqua envenomation causes acute tubular necrosis, which is associated with renal inflammation; formation of hematic casts, resulting from intravascular hemolysis; increase in vascular permeability and fibrosis. The dilation of Bowman's space and glomerular tuft is related to fluid leakage and intra-glomerular fibrin deposition, respectively, since tissue factor procoagulant activity increases in the kidney. Systemic hypotension also contributes to these alterations and to the sudden loss of basic renal functions, including filtration and excretion capacities, urinary concentration and maintenance of fluid homeostasis. In addition, envenomed kidneys increase the expression of proteins involved in cell stress, inflammation, tissue injury, heme-induced oxidative stress, coagulation and complement system activation. Finally, the localization of the venom in renal tissue agrees with morphological and functional alterations, suggesting also a direct nephrotoxic activity. In conclusion, the mechanisms of L. obliqua-induced AKI are complex involving mainly glomerular and tubular functional impairment and vascular alterations. These results are important to understand the mechanisms of renal injury and may suggest more efficient ways to prevent or attenuate the pathology of Lonomia's envenomation.
Collapse
Affiliation(s)
- Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Stefanska B, Cheishvili D, Suderman M, Arakelian A, Huang J, Hallett M, Han ZG, Al-Mahtab M, Akbar SMF, Khan WA, Raqib R, Tanvir I, Khan HA, Rabbani SA, Szyf M. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res 2014; 20:3118-32. [PMID: 24763612 DOI: 10.1158/1078-0432.ccr-13-0283] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We utilized whole-genome mapping of promoters that are activated by DNA hypomethylation in hepatocellular carcinoma (HCC) clinical samples to shortlist novel targets for anticancer therapeutics. We provide a proof of principle of this approach by testing six genes short-listed in our screen for their essential role in cancer growth and invasiveness. EXPERIMENTAL DESIGN We used siRNA- or shRNA-mediated depletion to determine whether inhibition of these genes would reduce human tumor xenograft growth in mice as well as cell viability, anchorage-independent growth, invasive capacities, and state of activity of nodal signaling pathways in liver, breast, and bladder cancer cell lines. RESULTS Depletion of EXOSC4, RNMT, SENP6, WBSCR22, RASAL2, and NENF effectively and specifically inhibits cancer cell growth and cell invasive capacities in different types of cancer, but, remarkably, there is no effect on normal cell growth, suggesting a ubiquitous causal role for these genes in driving cancer growth and metastasis. Depletion of RASAL2 and NENF in vitro reduces their growth as explants in vivo in mice. RASAL2 and NENF depletion interferes with AKT, WNT, and MAPK signaling pathways as well as regulation of epigenetic proteins that were previously demonstrated to drive cancer growth and metastasis. CONCLUSION Our results prove that genes that are hypomethylated and induced in tumors are candidate targets for anticancer therapeutics in multiple cancer cell types. Because these genes are particularly activated in cancer, they constitute a group of targets for specific pharmacologic inhibitors of cancer and cancer metastasis. Clin Cancer Res; 20(12); 3118-32. ©2014 AACR.
Collapse
Affiliation(s)
- Barbara Stefanska
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, PakistanAuthors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - David Cheishvili
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Matthew Suderman
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Ani Arakelian
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Jian Huang
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Michael Hallett
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Ze-Guang Han
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Mamun Al-Mahtab
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Sheikh Mohammad Fazle Akbar
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Wasif Ali Khan
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Rubhana Raqib
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Imrana Tanvir
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Haseeb Ahmed Khan
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Shafaat A Rabbani
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Moshe Szyf
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, PakistanAuthors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| |
Collapse
|
110
|
Pilati C, Letouzé E, Nault JC, Imbeaud S, Boulai A, Calderaro J, Poussin K, Franconi A, Couchy G, Morcrette G, Mallet M, Taouji S, Balabaud C, Terris B, Canal F, Paradis V, Scoazec JY, de Muret A, Guettier C, Bioulac-Sage P, Chevet E, Calvo F, Zucman-Rossi J. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell 2014; 25:428-41. [PMID: 24735922 DOI: 10.1016/j.ccr.2014.03.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/14/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022]
Abstract
Hepatocellular adenomas (HCA) are benign liver tumors predominantly developed in women using oral contraceptives. Here, exome sequencing identified recurrent somatic FRK mutations that induce constitutive kinase activity, STAT3 activation, and cell proliferation sensitive to Src inhibitors. We also found uncommon recurrent mutations activating JAK1, gp130, or β-catenin. Chromosome copy number and methylation profiling revealed patterns that correlated with specific gene mutations and tumor phenotypes. Finally, integrative analysis of HCAs transformed to hepatocellular carcinoma revealed β-catenin mutation as an early alteration and TERT promoter mutations as associated with the last step of the adenoma-carcinoma transition. In conclusion, we identified the genomic diversity in benign hepatocyte proliferation, several therapeutic targets, and the key genomic determinants of the adenoma-carcinoma transformation sequence.
Collapse
Affiliation(s)
- Camilla Pilati
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Jean-Charles Nault
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Sandrine Imbeaud
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Anaïs Boulai
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Julien Calderaro
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France; Department of Pathology, Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, 94000 Créteil, France
| | - Karine Poussin
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Andrea Franconi
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Gabrielle Couchy
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Guillaume Morcrette
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Maxime Mallet
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Saïd Taouji
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France
| | - Charles Balabaud
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France
| | - Benoit Terris
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, 75014 Paris, France
| | - Frédéric Canal
- Institut Cochin, INSERM U1016, Université Paris Descartes, CNRS UMR8104, 75014 Paris, France
| | - Valérie Paradis
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Beaujon Hospital, Université Paris Diderot, 92210 Clichy, France
| | - Jean-Yves Scoazec
- Department of Pathology, Edouard Herriot Hospital, 69437 Lyon, France
| | - Anne de Muret
- Department of Hepatogastroenterology, Centre Hospitalier de Tours, Trousseau Hospital, 37044 Tours, France
| | - Catherine Guettier
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94275 Le Kremlin-Bicêtre, France; Department of Pathology, Assistance Publique-Hôpitaux de Paris, CHU Paul Brousse, 94800 Villejuif, France
| | - Paulette Bioulac-Sage
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France; Department of Pathology, CHU de Bordeaux, Pellegrin Hospital, 33076, Bordeaux, France
| | - Eric Chevet
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France
| | - Fabien Calvo
- Institut National du Cancer, INCa, 92513 Boulogne, France
| | - Jessica Zucman-Rossi
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France.
| |
Collapse
|
111
|
DNA methylation: potential biomarker in Hepatocellular Carcinoma. Biomark Res 2014; 2:5. [PMID: 24635883 PMCID: PMC4022334 DOI: 10.1186/2050-7771-2-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/07/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common cancers in the world and it is often associated with poor prognosis. Liver transplantation and resection are two currently available curative therapies. However, most patients cannot be treated with such therapies due to late diagnosis. This underscores the urgent need to identify potential markers that ensure early diagnosis of HCC. As more evidences are suggesting that epigenetic changes contribute hepatocarcinogenesis, DNA methylation was poised as one promising biomarker. Indeed, genome wide profiling reveals that aberrant methylation is frequent event in HCC. Many studies showed that differentially methylated genes and CpG island methylator phenotype (CIMP) status in HCC were associated with clinicopathological data. Some commonly studied hypermethylated genes include p16, SOCS1, GSTP1 and CDH1. In addition, studies have also revealed that methylation markers could be detected in patient blood samples and associated with poor prognosis of the disease. Undeniably, increasing number of methylation markers are being discovered through high throughput genome wide data in recent years. Proper and systematic validation of these candidate markers in prospective cohort is required so that their actual prognostication and surveillance value could be accurately determined. It is hope that in near future, methylation marker could be translate into clinical use, where patients at risk could be diagnosed early and that the progression of disease could be more correctly assessed.
Collapse
|
112
|
DNA methylation of heparanase promoter influences its expression and associated with the progression of human breast cancer. PLoS One 2014; 9:e92190. [PMID: 24632672 PMCID: PMC3954879 DOI: 10.1371/journal.pone.0092190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/20/2014] [Indexed: 01/20/2023] Open
Abstract
Heparanase promotes tumor invasion and metastasis in several malignancies including breast cancer. However, the roles and regulation mechanisms of heparanase during breast cancer progression are still not fully understood. The aim of this study is to determine the differential regulation of heparanase gene expression in specific stages of breast cancer by DNA methylation. We detected levels of heparanase expression and DNA methylation patterns of its promoter in breast cancer cell lines (MCF-7 and MDA-MB-435) and clinical tissues, respectively. It has been observed that heparanase is highly expressed in the invasive MDA-MB-435 cells with low methylation modification in the heparanase promoter. In contrast, lower expression of heparanase in MCF-7 cells is accompanied by higher methylation in the promoter. Treatment of MCF-7 cells with 5-aza-2'-deoxycytidine (5-aza-dC), a potent demethylating agent, results in induction of heparanase expression and higher invasion potential in vitro and leads to an advantage of tumor formation in vivo. In 54 tissue samples, cancer samples at late stages (stage IV) showed the highest heparanase expression accomplished by little DNA methylation. On the contrary, methylation prevalence is highest in normal tissue and inversely correlated with heparanase expression. A significant correlation between DNA methylation and clinical stage was demonstrated (p = 0.012). Collectively, these results demonstrate that DNA methylation play the regulation role in heparanase gene in different stages of breast cancer and present a direct effect on tumor progression.
Collapse
|
113
|
Wojdacz TK, Windeløv JA, Thestrup BB, Damsgaard TE, Overgaard J, Hansen L. Identification and characterization of locus-specific methylation patterns within novel loci undergoing hypermethylation during breast cancer pathogenesis. Breast Cancer Res 2014; 16:R17. [PMID: 24490656 PMCID: PMC3978461 DOI: 10.1186/bcr3612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Despite similar clinical and pathological features, large numbers of breast cancer patients experience different outcomes of the disease. This, together with the fact that the incidence of breast cancer is growing worldwide, emphasizes an urgent need for identification of new biomarkers for early cancer detection and stratification of patients. Methods We used ultrahigh-resolution microarrays to compare genomewide methylation patterns of breast carcinomas (n = 20) and nonmalignant breast tissue (n = 5). Biomarker properties of a subset of discovered differentially methylated regions (DMRs) were validated using methylation-sensitive high-resolution melting (MS-HRM) in a case–control study on a panel of breast carcinomas (n = 275) and non-malignant controls (n = 74). Results On the basis of microarray results, we selected 19 DMRs for large-scale screening of cases and controls. Analysis of the screening results showed that all DMRs tested displayed significant gains of methylation in the cancer tissue compared to the levels in control tissue. Interestingly, we observed two types of locus-specific methylation, with loci undergoing either predominantly full or heterogeneous methylation during carcinogenesis. Almost all tested DMRs (17 of 19) displayed low-level methylation in nonmalignant breast tissue, independently of locus-specific methylation patterns in cases. Conclusions Specific loci can undergo either heterogeneous or full methylation during carcinogenesis, and loci hypermethylated in cancer frequently show low-level methylation in nonmalignant tissue.
Collapse
|
114
|
Chuturgoon A, Phulukdaree A, Moodley D. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells - An alternative mechanism of action. Toxicology 2014; 315:65-9. [PMID: 24280379 DOI: 10.1016/j.tox.2013.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 01/07/2023]
Abstract
Fumonisin B1 (FB1), a common mycotoxin contaminant of maize, is known to inhibit sphingolipid biosynthesis and has been implicated in cancer promoting activity in animals and humans. FB1 disrupts DNA methylation and chromatin modifications in human hepatoma (HepG2) cells. We investigated the effect of FB1 on enzymes, DNA methyltransferases and demethylases, involved in chromatin maintenance and gross changes in structural integrity of DNA in HepG2 cells. We measured: (i) the expression of 84 key genes encoding enzymes known to modify genomic DNA and histones (superarray and qPCR); (ii) protein expression of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and the major demethylase (MBD2) (western blotting); (iii) degree of DNA methylation by FACS using anti-5-MeCyt and (iv) DNA migration (single cell gel electrophoresis). FB1 significantly decreased the methyltransferase activities of DNMT1, DNMT3A and DNMT3B, and significantly up regulated the demethylases (MBD2 expression and activity, and KDM5B and KDM5C expression). FACS data showed FB1 significantly increased DNA hypomethylation and resulted in gross changes in structural DNA as evidenced by the Comet assay. We conclude that FB1 induces global DNA hypomethylation and histone demethylation that causes chromatin instability and may lead to liver tumourigenesis.
Collapse
Affiliation(s)
- Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Devapregasan Moodley
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
115
|
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer death, and its development is influenced by the status of inflammation and oxidative stress in the liver. Although oxidative stress might induce genetic changes and play a role in HCC development, many epigenetic alterations have also been reported in this type of tumor, suggesting the importance of epigenetic instability in hepatocarcinogenesis. Epigenetic instability results in 2 types of DNA alterations: hypermethylation of the promoter of tumor suppressor genes (TSGs), and hypomethylation of nonpromoter CpG, such as repetitive elements and satellite DNA. The former causes transcriptional inactivation of TSGs, while the latter reportedly induces chromosomal instability and an abnormal activation of oncogenes as well as mobile genetic elements. Oxidative stress could induce epigenetic instability and inactivate TSGs through the recruitment of the polycomb repressive complex to the promoter sequence carrying DNA damage induced by oxidation. Inflammatory cytokines from immune cells also reportedly induce expression of several histone and DNA modulators. On the other hand, DNA oxidation could lead to activation of DNA repair pathways and affect the binding of methyl cytosine-binding protein to DNA, which could cause DNA hypomethylation. The decrease of the level of methyl group donors also contributes to the alteration in the methylation status. These mechanisms should act in concert and induce epigenetic instability, leading to HCC.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osakasayama, Japan
| | | |
Collapse
|
116
|
Alvarado S, Wyglinski J, Suderman M, Andrews SA, Szyf M. Methylated DNA binding domain protein 2 (MBD2) coordinately silences gene expression through activation of the microRNA hsa-mir-496 promoter in breast cancer cell line. PLoS One 2013; 8:e74009. [PMID: 24204564 PMCID: PMC3812180 DOI: 10.1371/journal.pone.0074009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/25/2013] [Indexed: 12/31/2022] Open
Abstract
Methylated DNA binding protein 2 (MBD2) binds methylated promoters and suppresses transcription in cis through recruitment of a chromatin modification repressor complex. We show here a new mechanism of action for MBD2: suppression of gene expression indirectly through activation of microRNA hsa-mir-496. Overexpression of MBD2 in breast epithelial cell line MCF-10A results in induced expression and demethylation of hsa-mir-496 while depletion of MBD2 in a human breast cancer cell lines MCF-7 and MDA-MB231 results in suppression of hsa-mir-496. Activation of hsa-mir-496 by MBD2 is associated with silencing of several of its target genes while depletion of MBD2 leads to induction of hsa-mir-496 target genes. Depletion of hsa-mir-496 by locked nucleic acid (LNA) antisense oligonucleotide leads to activation of these target genes in MBD2 overexpressing cells supporting that hsa-mir-496 is mediating in part the effects of MBD2 on gene expression. We demonstrate that MBD2 binds the promoter of hsa-mir-496 in MCF-10A, MCF-7 and MDA-MB-231 cells and that it activates an in vitro methylated hsa-mir-496 promoter driving a CG-less luciferase reporter in a transient transfection assay. The activation of hsa-mir-496 is associated with reduced methylation of the promoter. Taken together these results describe a novel cascade for gene regulation by DNA methylation whereby activation of a methylated microRNA by MBD2 that is associated with loss of methylation triggers repression of downstream targets.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Joanne Wyglinski
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Stephen A. Andrews
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
117
|
Nishida N, Kudo M, Nishimura T, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima K, Sakurai T, Yokomichi N, Nagasaka T, Goel A. Unique association between global DNA hypomethylation and chromosomal alterations in human hepatocellular carcinoma. PLoS One 2013; 8:e72312. [PMID: 24023736 PMCID: PMC3759381 DOI: 10.1371/journal.pone.0072312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Global DNA hypomethylation is a characteristic feature of cancer cells that closely associates with chromosomal instability (CIN). However, the association between these characteristics during hepatocarcinogenesis remains unclear. Herein, we determined the relationship between hypomethylation and CIN in human hepatocellular carcinoma (HCC) by analyzing 179 HCCs, 178 matched non-tumor livers and 23 normal liver tissues. Hypomethylation at three different repetitive DNA (rDNA) sequences and hypermethylation of 12 CpG loci, including 11 tumor suppressor gene (TSG) promoters, were quantified using MethyLight or combined bisulfite restriction analysis. Fractional allelic loss (FAL) was used as a marker for CIN, calculated by analyzing 400 microsatellite markers. Gains and losses at each chromosome were also determined using semi-quantitative microsatellite analysis. The associations between rDNA hypomethylation and FAL, as well as between TSG hypermethylation and FAL were investigated. Significantly more hypomethylation was observed in HCC tissues than in normal liver samples. Progression of hypomethylation during carcinogenesis was more prominent in hepatitis C virus (HCV)-negative cases, which was in contrast to our previous reports of significantly increased TSG methylation levels in HCV-positive tumors. Absence of liver cirrhosis and higher FAL scores were identified as independent contributors to significant hypomethylation of rDNA in HCC. Among the chromosomal alterations frequently observed in HCC, loss of 8p, which was unique in the earliest stages of hepatocarcinogenesis, was significantly associated with hypomethylation of rDNA by multivariable analysis (p=0.0153). rDNA hypomethylation was also associated with a high FAL score regardless of tumor differentiation (p=0.0011, well-differentiated; p=0.0089, moderately/poorly-differentiated HCCs). We conclude that DNA hypomethylation is an important cause of CIN in the earliest step of HCC, especially in a background of non-cirrhotic liver.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | | | - Tadaaki Arizumi
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Satoshi Kitai
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Norihisa Yada
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Tatsuo Inoue
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, Osaka-sayama, Japan
| | - Naosuke Yokomichi
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine and Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Centre, Dallas, Texas, United States of America
| |
Collapse
|
118
|
He M, Fan J, Jiang R, Tang WX, Wang ZW. Expression of DNMTs and genomic DNA methylation in gastric signet ring cell carcinoma. Mol Med Rep 2013; 8:942-8. [PMID: 23820855 DOI: 10.3892/mmr.2013.1566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the protein expression of DNA methyltransferases (DNMTs) and genomic DNA methylation status of genomes in gastric signet ring cell carcinoma (SRC). Immunohistochemistry was performed to analyze DNMT expression and methylated DNA immunoprecipitation microarray (MeDIP‑chip) and MeDIP quantitative real‑time PCR (MeDIP‑qPCR) were performed to analyze the genomic DNA methylation status in gastric SRC tissue. An increase in DNMT1 and decrease in DNMT3A expression in SRC tissue was observed compared with matched non‑cancerous tissue. However, expression of other DNMTs, DNMT2, DNMT3B and DNMT3L, was not found to differ significantly between carcinoma and control. The MeDIP‑chip assay revealed that methylation of gene promoters and CpG islands in SRC was higher than those in matched control tissue. However, MeDIP‑qPCR analysis demonstrated that specific tumor‑related genes, including ABL2, FGF18, TRAF2, EGFL7 and RAB33A were aberrantly hypomethylated in SRC tissue. Results of the current study indicate that gastric SRC may produce complex patterns of aberrant DNA methylation and DNMT expression.
Collapse
Affiliation(s)
- Miao He
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | | | | | | | | |
Collapse
|
119
|
Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donorS-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis 2013; 35:138-44. [DOI: 10.1093/carcin/bgt284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
120
|
Stefanska B, Suderman M, Machnes Z, Bhattacharyya B, Hallett M, Szyf M. Transcription onset of genes critical in liver carcinogenesis is epigenetically regulated by methylated DNA-binding protein MBD2. Carcinogenesis 2013; 34:2738-49. [PMID: 23955541 DOI: 10.1093/carcin/bgt273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously delineated genes whose promoters are hypomethylated and induced in hepatocellular carcinoma (HCC) patients. The purpose of this study was to establish the players that regulate these genes in liver cancer cells. We performed chromatin immunoprecipitation with methyl-CpG-binding domain protein 2 (MBD2), RNA polymerase II (RNA pol II), CCAAT/enhancer-binding protein alpha (CEBPA) antibodies and methylated DNA immunoprecipitation in HepG2 liver cancer cells treated with scrambled small interfering RNA (siRNA) and siRNA to MBD2 or CEBPA. We then hybridized DNA to microarrays spanning the entire coding sequences, introns and regulatory regions of several hundred HCC-hypomethylated genes. These analyses reveal that MBD2 binds a significant fraction of the hypomethylated genes, determines RNA pol II binding and DNA methylation state. MBD2 binding can result in promoter activation and hypomethylation or in repression. In activated target genes, MBD2 colocalizes with the transcription factor CEBPA, and MBD2 binding at these positions is reduced upon CEBPA depletion. Significant fraction of MBD2 effects on DNA methylation and transcription appears to be indirect since changes occur upon MBD2 depletion in genes where no MBD2 binding was detected. Our study delineates the rules governing the interaction of MBD2 with its targets and the consequences to RNA pol II binding and DNA methylation states. This has important implications for understanding the role of DNA methylation in cancer and targeting DNA methylation proteins in cancer therapy.
Collapse
Affiliation(s)
- Barbara Stefanska
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
121
|
Stefanska B, Bouzelmat A, Huang J, Suderman M, Hallett M, Han ZG, Al-Mahtab M, Akbar SMF, Khan WA, Raqib R, Szyf M. Discovery and validation of DNA hypomethylation biomarkers for liver cancer using HRM-specific probes. PLoS One 2013; 8:e68439. [PMID: 23950870 PMCID: PMC3737236 DOI: 10.1371/journal.pone.0068439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/29/2013] [Indexed: 12/13/2022] Open
Abstract
Poor prognosis of hepatocellular carcinoma (HCC) associated with late diagnosis necessitates the development of early diagnostic biomarkers. We have previously delineated the landscape of DNA methylation in HCC patients unraveling the importance of promoter hypomethylation in activation of cancer- and metastasis-driving genes. The purpose of the present study was to test the feasibility that genes that are hypomethylated in HCC could serve as candidate diagnostic markers. We use high resolution melting analysis (HRM) as a simple translatable PCR-based method to define methylation states in clinical samples. We tested seven regions selected from the shortlist of genes hypomethylated in HCC and showed that HRM analysis of several of them distinguishes methylation states in liver cancer specimens from normal adjacent liver and chronic hepatitis in the Shanghai area. Such regions were identified within promoters of neuronal membrane glycoprotein M6-B (GPM6B) and melanoma antigen family A12 (MAGEA12) genes. Differences in HRM in the immunoglobulin superfamily Fc receptor (FCRL1) separated invasive tumors from less invasive HCC. The identified biomarkers differentiated HCC from chronic hepatitis in another set of samples from Dhaka. Although the main thrust in DNA methylation diagnostics in cancer is on hypermethylated genes, our study for the first time illustrates the potential use of hypomethylated genes as markers for solid tumors. After further validation in a larger cohort, the identified DNA hypomethylated regions can become important candidate biomarkers for liver cancer diagnosis and prognosis, especially in populations with high risk for HCC development.
Collapse
Affiliation(s)
- Barbara Stefanska
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Aurelie Bouzelmat
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jian Huang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, Shanghai, China
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, Shanghai, China
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Dhaka District, Bangladesh
| | | | - Wasif Ali Khan
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh
| | - Rubhana Raqib
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Sackler Program for Psychobiology and Epigenetics at McGill University, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
122
|
Bai AH, Cheng AS. Alliance of epigenetic forces for the activation of oncogenic Wnt/β-catenin signaling. J Gastroenterol Hepatol 2013; 28:383-5. [PMID: 23441716 DOI: 10.1111/jgh.12090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 02/06/2023]
|
123
|
Ying J, Rahbar MH, Hallman DM, Hernandez LM, Spitz MR, Forman MR, Gorlova OY. Associations between dietary intake of choline and betaine and lung cancer risk. PLoS One 2013; 8:e54561. [PMID: 23383301 PMCID: PMC3562321 DOI: 10.1371/journal.pone.0054561] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/13/2012] [Indexed: 12/02/2022] Open
Abstract
Evidence from human and animal research indicates that choline metabolic pathways may be activated during a variety of diseases, including cancer. We report results of a case-control study of 2821 lung cancer cases and 2923 controls that assessed associations of choline and betaine dietary intakes with lung cancer. Using multivariable logistic regression analyses, we report a significant association between higher betaine intake and lower lung cancer risk that varied by smoking status. Specifically, no significant association was observed between betaine intake and lung cancer among never-smokers. However, higher betaine intake was significantly associated with reduced lung cancer risk among smokers, and the protective effect was more evident among current than former smokers: for former and current smokers, the ORs (95% CI) of lung cancer for individuals with highest as compared to lowest quartiles of intake were 0.70(0.55–0.88) and 0.51(0.39–0.66) respectively. Significant linear trend of higher betaine intake and lower lung cancer risk was observed among both former (ptrend = 0.002) and current (ptrend<0.0001) smokers. A similar protective effect was also observed with choline intake both in overall analysis as well as among current smokers, with p-values for chi-square tests being 0.001 and 0.004 respectively, but the effect was less evident, as no linear trend was observed. Our results suggest that choline and betaine intake, especially higher betaine intake, may be protective against lung cancer through mitigating the adverse effect of smoking.
Collapse
Affiliation(s)
- Jun Ying
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
124
|
Tajerian M, Alvarado S, Millecamps M, Vachon P, Crosby C, Bushnell MC, Szyf M, Stone LS. Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PLoS One 2013; 8:e55259. [PMID: 23383129 PMCID: PMC3557255 DOI: 10.1371/journal.pone.0055259] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC), and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a) whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b) whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivity in neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and cortical function that are associated with chronic pain conditions may therefore be mediated by epigenetic mechanisms.
Collapse
Affiliation(s)
- Maral Tajerian
- Alan Edwards Centre for Research on Pain, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Sebastian Alvarado
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Canada
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, Faculty of Medicine, McGill University, Montreal, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Pascal Vachon
- University of Montreal, Department of Veterinary Biomedicine, St-Hyacinthe, Quebec, Canada
| | - Cecilia Crosby
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Canada
| | - M. Catherine Bushnell
- Alan Edwards Centre for Research on Pain, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Anesthesiology, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Canada
| | - Laura S. Stone
- Alan Edwards Centre for Research on Pain, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Anesthesiology, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
125
|
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A. Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br J Pharmacol 2013; 167:279-97. [PMID: 22536923 DOI: 10.1111/j.1476-5381.2012.02002.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hallmarks of carcinogenesis are aberrations in gene expression and protein function caused by both genetic and epigenetic modifications. Epigenetics refers to the changes in gene expression programming that alter the phenotype in the absence of a change in DNA sequence. Epigenetic modifications, which include amongst others DNA methylation, covalent modifications of histone tails and regulation by non-coding RNAs, play a significant role in normal development and genome stability. The changes are dynamic and serve as an adaptation mechanism to a wide variety of environmental and social factors including diet. A number of studies have provided evidence that some natural bioactive compounds found in food and herbs can modulate gene expression by targeting different elements of the epigenetic machinery. Nutrients that are components of one-carbon metabolism, such as folate, riboflavin, pyridoxine, cobalamin, choline, betaine and methionine, affect DNA methylation by regulating the levels of S-adenosyl-L-methionine, a methyl group donor, and S-adenosyl-L-homocysteine, which is an inhibitor of enzymes catalyzing the DNA methylation reaction. Other natural compounds target histone modifications and levels of non-coding RNAs such as vitamin D, which recruits histone acetylases, or resveratrol, which activates the deacetylase sirtuin and regulates oncogenic and tumour suppressor micro-RNAs. As epigenetic abnormalities have been shown to be both causative and contributing factors in different health conditions including cancer, natural compounds that are direct or indirect regulators of the epigenome constitute an excellent approach in cancer prevention and potentially in anti-cancer therapy.
Collapse
Affiliation(s)
- B Stefanska
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
126
|
Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Fabianowska-Majewska K. Folic acid enforces DNA methylation-mediated transcriptional silencing of PTEN, APC and RARbeta2 tumour suppressor genes in breast cancer. Biochem Biophys Res Commun 2013; 430:623-8. [DOI: 10.1016/j.bbrc.2012.11.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/25/2012] [Indexed: 01/28/2023]
|
127
|
Baral A, Kumar P, Pathak R, Chowdhury S. Emerging trends in G-quadruplex biology – role in epigenetic and evolutionary events. MOLECULAR BIOSYSTEMS 2013; 9:1568-75. [DOI: 10.1039/c3mb25492e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
128
|
Kabro A, Lachance H, Marcoux-Archambault I, Perrier V, Doré V, Gros C, Masson V, Gregoire JM, Ausseil F, Cheishvili D, Laulan NB, St-Pierre Y, Szyf M, Arimondo PB, Gagnon A. Preparation of phenylethylbenzamide derivatives as modulators of DNMT3 activity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00214d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
129
|
Keita M, Wang ZQ, Pelletier JF, Bachvarova M, Plante M, Gregoire J, Renaud MC, Mes-Masson AM, Paquet ÉR, Bachvarov D. Global methylation profiling in serous ovarian cancer is indicative for distinct aberrant DNA methylation signatures associated with tumor aggressiveness and disease progression. Gynecol Oncol 2012; 128:356-63. [PMID: 23219462 DOI: 10.1016/j.ygyno.2012.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To characterize at high resolution the DNA methylation changes which occur in the genome of serous epithelial ovarian cancer (EOC) in association with tumor aggressiveness. METHODS Methylated DNA immunoprecipitation in combination with CpG island-tiling arrays was used to compare the methylation profiles of five borderline, five grade 1/stage III/IV, five grade 3/stage I and five grade 3/stage III/IV serous EOC tumors, to those of five normal human ovarian tissue samples. RESULTS We found widespread DNA hypermethylation that occurs even in low-malignant potential (borderline) tumors and which predominantly includes key developmental/homeobox genes. Contrary to DNA hypermethylation, significant DNA hypomethylation was observed only in grade 3 serous EOC tumors. The latter observation was further confirmed when comparing the DNA methylation profiles of primary cell cultures derived from matched tumor samples obtained prior to, and following chemotherapy treatment from two serous EOC patients with advanced disease. To our knowledge this is the first report that has shown the presence of massive DNA hypomethylation in advanced serous EOC, associated with tumor malignancy and disease progression. CONCLUSIONS Our data raise the concern that demethylating drugs that are currently being used in advanced EOC disease (representing the majority of serous EOC cases) might have adverse effects due to activation of oncogenes and prometastatic genes. Understanding the relative roles of hypomethylation and hypermethylation in cancer could have clear implications on the therapeutic use of agents targeting the DNA methylation machinery.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Mayol G, Martín-Subero JI, Ríos J, Queiros A, Kulis M, Suñol M, Esteller M, Gómez S, Garcia I, de Torres C, Rodríguez E, Galván P, Mora J, Lavarino C. DNA hypomethylation affects cancer-related biological functions and genes relevant in neuroblastoma pathogenesis. PLoS One 2012; 7:e48401. [PMID: 23144874 PMCID: PMC3492354 DOI: 10.1371/journal.pone.0048401] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation.
Collapse
Affiliation(s)
- Gemma Mayol
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - José I. Martín-Subero
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - José Ríos
- Laboratory of Biostatistics and Epidemiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Pharmacology Service, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Ana Queiros
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - Marta Kulis
- Hematopathology Unit, Hospital Clinic, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL),L'Hospitalet, Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Soledad Gómez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Idoia Garcia
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Patricia Galván
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Fundación Sant Joan de Déu, Barcelona, Spain
- * E-mail:
| |
Collapse
|
131
|
Zolk O, Schnepf R, Muschler M, Fromm MF, Wendler O, Traxdorf M, Iro H, Zenk J. Transporter gene expression in human head and neck squamous cell carcinoma and associated epigenetic regulatory mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:234-43. [PMID: 23137910 DOI: 10.1016/j.ajpath.2012.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/16/2012] [Accepted: 09/13/2012] [Indexed: 11/16/2022]
Abstract
Expression levels of membrane transporters may affect the disposition, and thereby treatment efficacy, of anticancer drugs in human head and neck squamous cell carcinoma (HNSCC). Herein, we analyzed the gene expression profile of membrane transporters in HNSCC. In addition, we evaluated the mechanisms of transporter regulation in HNSCC and focused on the role of the nuclear pregnane X receptor (or NR1I2) and epigenetic mechanisms. Real-time RT-PCR revealed a significantly increased mRNA expression of membrane transporters SLCO1A2 and SLCO1B3 and a significantly decreased expression of transporters SLCO2B1, SLCO2A1, and ABCC3 in human HNSCC tumors compared with adjacent normal mucosa. An association between SLCO2B1 mRNA levels in tumors and 5-year survival of patients with HNSCC was observed (χ2 = 6.59, P = 0.010). Bisulfite sequencing revealed that promoter CpG islands of ABCC3 and SLCO2A1 were not hypermethylated, indicating that these genes were not epigenetically silenced in HNSCC tumors. In HNSCC-derived cell lines, transcript expression of transporters (e.g., ABCC3 or SLCO2A1; P < 0.001 for both) and NR1I2 (P < 0.001) was markedly induced by the DNA methyltransferase inhibitor, decitabine. Cotreatment with the prototypical pregnane X receptor activator, rifampicin, significantly reversed decitabine-induced ABCC3 and SLCO2A1 expression. In summary, the expression of drug transporters (i) is markedly changed in HNSCC tumor tissues compared with normal mucosa, (ii) might be predictive of the outcome of patients with HNSCC, and (iii) is affected by novel epigenetic therapies and is further modulated by nuclear receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Oliver Zolk
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Neumann O, Kesselmeier M, Geffers R, Pellegrino R, Radlwimmer B, Hoffmann K, Ehemann V, Schemmer P, Schirmacher P, Lorenzo Bermejo J, Longerich T. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 2012; 56:1817-1827. [PMID: 22689435 DOI: 10.1002/hep.25870] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED To identify new tumor-suppressor gene candidates relevant for human hepatocarcinogenesis, we performed genome-wide methylation profiling and vertical integration with array-based comparative genomic hybridization (aCGH), as well as expression data from a cohort of well-characterized human hepatocellular carcinomas (HCCs). Bisulfite-converted DNAs from 63 HCCs and 10 healthy control livers were analyzed for the methylation status of more than 14,000 genes. After defining the differentially methylated genes in HCCs, we integrated their DNA copy-number alterations as determined by aCGH data and correlated them with gene expression to identify genes potentially silenced by promoter hypermethylation. Aberrant methylation of candidates was further confirmed by pyrosequencing, and methylation dependency of silencing was determined by 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Methylation profiling revealed 2,226 CpG sites that showed methylation differences between healthy control livers and HCCs. Of these, 537 CpG sites were hypermethylated in the tumor DNA, whereas 1,689 sites showed promoter hypomethylation. The hypermethylated set was enriched for genes known to be inactivated by the polycomb repressive complex 2, whereas the group of hypomethylated genes was enriched for imprinted genes. We identified three genes matching all of our selection criteria for a tumor-suppressor gene (period homolog 3 [PER3], insulin-like growth-factor-binding protein, acid labile subunit [IGFALS], and protein Z). PER3 was down-regulated in human HCCs, compared to peritumorous and healthy liver tissues. 5-aza-dC treatment restored PER3 expression in HCC cell lines, indicating that promoter hypermethylation was indeed responsible for gene silencing. Additionally, functional analysis supported a tumor-suppressive function for PER3 and IGFALS in vitro. CONCLUSION The present study illustrates that vertical integration of methylation data with high-resolution genomic and transcriptomic data facilitates the identification of new tumor-suppressor gene candidates in human HCC.
Collapse
Affiliation(s)
- Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu Rev Genomics Hum Genet 2012; 13:171-205. [PMID: 22703171 DOI: 10.1146/annurev-genom-090711-163752] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver cancer is the sixth-most-common cancer overall but the third-most-frequent cause of cancer death. Among primary liver cancers, hepatocellular carcinoma (HCC), the major histological subtype, is associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Although previous studies have revealed that certain genetic and epigenetic changes, such as TP53 and β-catenin mutations, occur in HCC cells, the pathogenesis of this cancer remains obscure. Functional genomic approaches-including genome-wide association studies, whole-genome and whole-exome sequencing, array-based comparative genomic hybridization, global DNA methylome mapping, and gene or noncoding RNA expression profiling-have recently been applied to HCC patients with different clinical features to uncover the genetic risk factors and underlying molecular mechanisms involved in this cancer's initiation and progression. The genome-wide analysis of germline and somatic genetic and epigenetic events facilitates understanding of the pathogenesis and molecular classification of liver cancer as well as the identification of novel diagnostic biomarkers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ze-Guang Han
- National Human Genome Center of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
134
|
Huang J, Ye X, Guan J, Chen B, Li Q, Zheng X, Liu L, Wang S, Ding Y, Ding Y, Chen L. Tiam1 is associated with hepatocellular carcinoma metastasis. Int J Cancer 2012; 132:90-100. [DOI: 10.1002/ijc.27627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/26/2012] [Indexed: 01/06/2023]
|
135
|
Bennani-Baiti IM. Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics 2012; 3:715-32. [PMID: 22126291 DOI: 10.2217/epi.11.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas comprise a large number of rare, histogenetically heterogeneous, mesenchymal tumors. Cancers such as Ewing's sarcoma, liposarcoma, rhabdomyosarcoma and synovial sarcoma can be generated by the transduction of mesenchymal stem cell progenitors with sarcoma-pathognomonic oncogenic fusions, a neoplastic transformation process accompanied by profound locus-specific and pangenomic epigenetic alterations. The epigenetic activities of histone-modifying and chromatin-remodeling enzymes such as SUV39H1/KMT1A, EZH2/KMT6A and BMI1 are central to epigenetic-regulated transformation, a property we coin oncoepigenic. Sarcoma-specific oncoepigenic aberrations modulate critical signaling pathways that control cell growth and differentiation including several miRNAs, Wnt, PI3K/AKT, Sav-RASSF1-Hpo and regulators of the G1 and G2/M checkpoints of the cell cycle. Herein an overview of the current knowledge of this rapidly evolving field that will undoubtedly uncover additional oncoepigenic mechanisms and yield druggable targets in the near future is discussed.
Collapse
|
136
|
Abstract
Changes in gene expression that reset a cell program from a normal to a diseased state involve multiple genetic circuitries, creating a characteristic signature of gene expression that defines the cell's unique identity. Such signatures have been demonstrated to classify subtypes of breast cancers. Because DNA methylation is critical in programming gene expression, a change in methylation from a normal to diseased state should be similarly reflected in a signature of DNA methylation that involves multiple gene pathways. Whole-genome approaches have recently been used with different levels of success to delineate breast-cancer-specific DNA methylation signatures, and to test whether they can classify breast cancer and whether they could be associated with specific clinical outcomes. Recent work suggests that DNA methylation signatures will extend our ability to classify breast cancer and predict outcome beyond what is currently possible. DNA methylation is a robust biomarker, vastly more stable than RNA or proteins, and is therefore a promising target for the development of new approaches for diagnosis and prognosis of breast cancer and other diseases. Here, I review the scientific basis for using DNA methylation signatures in breast cancer classification and prognosis. I discuss the role of DNA methylation in normal gene regulation, the aberrations in DNA methylation in cancer, and candidate-gene and whole-genome approaches to classify breast cancer subtypes using DNA methylation markers.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, Sackler Program in Epigenetics and Psychobiology, McGill University, 3,655 Sir William Osler Promenade, Montreal H3G1Y6, Canada
| |
Collapse
|
137
|
Guerrero K, Wang Z, Bachvarova M, Gregoire J, Renaud MC, Plante M, Bachvarov D. A novel genome-based approach correlates TMPRSS3 overexpression in ovarian cancer with DNA hypomethylation. Gynecol Oncol 2012; 125:720-6. [PMID: 22446619 DOI: 10.1016/j.ygyno.2012.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In an attempt to analyze more profoundly aberrant DNA hypomethylation in epithelial ovarian cancer (EOC), we applied a novel genome-based approach which includes expression profiling following pharmacologic stimulation of DNA methylation with the methyl donor S-adenosyl-l-methionine (SAM). METHODS Four different EOC cell lines (OVCAR3, SKOV3, TOV21 and TOV112) were treated with SAM, and gene expression profiling was performed in SAM-treated and control EOC cells. Genes, downregulated upon SAM treatment were considered as potentially hypomethylated in EOC. DNA hypomethylation was independently validated in ovarian tumor and control tissues by bisulfite sequencing PCR (BSP). RESULTS Among the genes identified, one of particular interest was the type II serine protease TMPRSS3 gene variants A and D (TMPRSS3-A/D), previously recognized as overexpressed in EOC and representing potential EOC therapeutic targets. Consecutive BSP analysis demonstrated that the common putative promoter region of the TMPRSS3-A/D gene variants was significantly hypomethylated in high-grade serous EOC tumors, compared to low-malignant potential ovarian tumors and normal ovarian tissue. CONCLUSIONS Our data imply that TMPRSS3-A/D overexpression in EOC is probably due to hypomethylation of their control region thus indicating that TMPRSS3-A/D variants could also represent novel molecular targets for epigenetic therapy of late stages of the disease. Our results also suggest that the frequently observed upregulation of different members of the type II serine proteases gene family in advanced cancer could be due to aberrant DNA hypomethylation. Furthermore, our study introduces a promising discovery approach that could be used for the identification of hypomethylated genes in different experimental cell models.
Collapse
Affiliation(s)
- Kether Guerrero
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
| | | | | | | | | | | | | |
Collapse
|
138
|
Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2012; 342:223-30. [PMID: 22306342 DOI: 10.1016/j.canlet.2012.01.038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in humans. The molecular mechanisms leading to the development of HCC are extremely complicated and consist of prominent genetic, genomic, and epigenetic alterations. This review summarizes the current knowledge of the role of epigenetic aberrations, including changes in DNA methylation, histone modifications, and expression of microRNAs in the pathogenesis of HCC. It also emphasizes that identification of the underlying epigenetic alterations that drive cell transformation and promote development and progression of HCC is crucially important for understanding mechanisms of hepatocarcinogenesis, its detection, therapeutic intervention, and prevention.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| | | |
Collapse
|
139
|
Abstract
Epigenetic alterations, such as aberrant DNA methylation, are a hallmark of cancer. DNA hypermethylation of the promoter region affects, for example, the expression of tumor suppressor genes and is associated with their transcriptional silencing in tumors. A recent report has provided evidence for epigenetic silencing of the multispecific organic cation transporter SLC22A1 in hepatocellular carcinoma. Given the role of this transporter in the cellular uptake of several anticancer drugs, the study provided a novel mechanism to explain the substantial variability in treatment response, and it might provide a new strategy for optimization of pharmacotherapy of hepatocellular carcinoma. See research article http://www.genomemedicine.com/content/3/12/82
Collapse
Affiliation(s)
- Oliver Zolk
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | |
Collapse
|
140
|
Pogribny IP, James SJ, Beland FA. Molecular alterations in hepatocarcinogenesis induced by dietary methyl deficiency. Mol Nutr Food Res 2011; 56:116-25. [DOI: 10.1002/mnfr.201100524] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 01/12/2023]
|
141
|
Yildirimman R, Brolén G, Vilardell M, Eriksson G, Synnergren J, Gmuender H, Kamburov A, Ingelman-Sundberg M, Castell J, Lahoz A, Kleinjans J, van Delft J, Björquist P, Herwig R. Human embryonic stem cell derived hepatocyte-like cells as a tool for in vitro hazard assessment of chemical carcinogenicity. Toxicol Sci 2011; 124:278-90. [PMID: 21873647 PMCID: PMC3216410 DOI: 10.1093/toxsci/kfr225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hepatocyte-like cells derived from the differentiation of human embryonic stem cells (hES-Hep) have potential to provide a human relevant in vitro test system in which to evaluate the carcinogenic hazard of chemicals. In this study, we have investigated this potential using a panel of 15 chemicals classified as noncarcinogens, genotoxic carcinogens, and nongenotoxic carcinogens and measured whole-genome transcriptome responses with gene expression microarrays. We applied an ANOVA model that identified 592 genes highly discriminative for the panel of chemicals. Supervised classification with these genes achieved a cross-validation accuracy of > 95%. Moreover, the expression of the response genes in hES-Hep was strongly correlated with that in human primary hepatocytes cultured in vitro. In order to infer mechanistic information on the consequences of chemical exposure in hES-Hep, we developed a computational method that measures the responses of biochemical pathways to the panel of treatments and showed that these responses were discriminative for the three toxicity classes and linked to carcinogenesis through p53, mitogen-activated protein kinases, and apoptosis pathway modules. It could further be shown that the discrimination of toxicity classes was improved when analyzing the microarray data at the pathway level. In summary, our results demonstrate, for the first time, the potential of human embryonic stem cell--derived hepatic cells as an in vitro model for hazard assessment of chemical carcinogenesis, although it should be noted that more compounds are needed to test the robustness of the assay.
Collapse
Affiliation(s)
- Reha Yildirimman
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|