101
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
102
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
103
|
Li B, Xiang W, Qin J, Xu Q, Feng S, Wang Y, Chen J, Jiang H. Co-expression network of long non-coding RNA and mRNA reveals molecular phenotype changes in kidney development of prenatal chlorpyrifos exposure in a mouse model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:653. [PMID: 33987351 PMCID: PMC8106112 DOI: 10.21037/atm-20-6632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides globally and can accumulate in the kidney. Researchers have confirmed the regulatory functions of long non-coding ribonucleic acid (lncRNA) in the kidney. However, very few studies have examined the effects of prenatal CPF exposure or lncRNA on kidney development. Methods High-throughput ribonucleic acid (RNA) sequencing was performed on embryonic kidneys obtained at E12.5, E14.5, E16.5, and E18.5 of prenatal CPF-exposed mice and the dimethyl sulfoxide (DMSO) control mice. A weighted gene co-expression network analysis (WGCNA) and a functional enrichment analysis were applied to construct a lncRNA-messenger ribonucleic acid (mRNA) network and screen targeted genes. These strategies were used to select the modules and genes correlated with prenatal CPF exposure in mouse kidney development. Results A gene ontology (GO) analysis revealed that the hub mRNAs linked to prenatal CPF exposure were mainly involved in the extracellular matrix and collagen degradation. Prss1, Prss2, and Prss3 were the most significantly upregulated mRNAs, and all had strong connections to lncRNAs Gm28760, Gm28139, and Gm26717. Additionally, we analyzed the lncRNA-mRNA network at different developmental kidney stages after prenatal CPF exposure. The results showed that kidney development was blocked at E12.5, which led to ectopic proximal tubule formation at E18.5. Conclusions In summary, the RNA-sequencing and weighted gene co-expression network analyses showed that molecular phenotype changes occur in kidney development in a prenatal CPF exposure mouse model.
Collapse
Affiliation(s)
- Bingjue Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Wenyu Xiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jing Qin
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiannan Xu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, the Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
104
|
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188502. [PMID: 33428963 DOI: 10.1016/j.bbcan.2021.188502] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a widely studied lncRNA in cancer. Although dispensable for normal physiology, MALAT1 is important for cancer-related pathways regulation. It is localized in the nuclear speckles periphery along with centrally located pre-RNA splicing factors. MALAT1 associated cancer signaling pathways include MAPK/ERK, PI3K/AKT, β-catenin/Wnt, Hippo, VEGF, YAP, etc. Molecular tools such as immunoprecipitation, RNA pull-down, reporter assay, Northern blotting, microarray, and q-RT-PCR has been used to elucidate MALAT1's function in cancer pathogenesis. MALAT1 can regulate multiple steps in the development of tumours. The diagnostic and prognostic significance of MALAT1 has been demonstrated in cancers of the breast, cervix, colorectum, gallbladder, lung, ovary, pancreas, prostate, glioma, hepatocellular carcinoma, and multiple myeloma. MALAT1 has also emerged as a novel therapeutic target for solid as well as hematological malignancies. In experimental models, siRNA and antisense oligonucleotide (ASO) based strategy has been used for targeting MALAT1. The lncRNA has also been targeted for the chemosensitization and radiosensitization of cancer cells. However, most studies have been performed in preclinical models. How the cross-talk of MALAT1 with other signaling pathways affect cancer pathogenesis is the focus of this article. The diagnostic, prognostic, and therapeutic significance of MALAT1 in multiple cancer types are discussed.
Collapse
Affiliation(s)
- Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shashi Ranjan Mani Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sweety Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
105
|
Hu C, Zhao Y, Wang X, Zhu T. Intratumoral Fibrosis in Facilitating Renal Cancer Aggressiveness: Underlying Mechanisms and Promising Targets. Front Cell Dev Biol 2021; 9:651620. [PMID: 33777960 PMCID: PMC7991742 DOI: 10.3389/fcell.2021.651620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 01/01/2023] Open
Abstract
Intratumoral fibrosis is a histologic manifestation of fibrotic tumor stroma. The interaction between cancer cells and fibrotic stroma is intricate and reciprocal, involving dysregulations from multiple biological processes. Different components of tumor stroma are implicated via distinct manners. In the kidney, intratumoral fibrosis is frequently observed in renal cell carcinoma (RCC). However, the underlying mechanisms remain largely unclear. In this review, we recapitulate evidence demonstrating how fibrotic stroma interacts with cancer cells and mechanisms shared between RCC tumorigenesis and renal fibrogenesis, providing promising targets for future studies.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yufeng Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
106
|
Cheng H, Zhao H, Xiao X, Huang Q, Zeng W, Tian B, Ma T, Lu D, Jin Y, Li Y. Long Non-coding RNA MALAT1 Upregulates ZEB2 Expression to Promote Malignant Progression of Glioma by Attenuating miR-124. Mol Neurobiol 2021; 58:1006-1016. [PMID: 33078370 DOI: 10.1007/s12035-020-02165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/09/2020] [Indexed: 02/02/2023]
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to play a critical role in the development of several malignancies. However, the potential molecular mechanism of MALAT1 in glioma remains unclear. In the present study, we found that the expression of MALAT1 was aberrantly increased in both human glioma tissues and cells and associated with poor prognosis in glioma patients. We further found that MALAT1 silencing significantly inhibited glioma cell proliferation while induced cell cycle arrest and apoptosis. In parallel, knockdown of MALAT1 decreased tumor volume in vivo. These results suggested that MALAT1 acts as a functional oncogene, resulting in the oncogenicity in glioma. Nevertheless, the tumor-suppressive effect of MALAT1 silencing was reversed by miR-124. Besides, the relevance of ZEB2 in tumor progression has been studied in several forms of human cancer, and ZEB2 was identified as a target of miR-124 and negatively regulated by miR-124. MALAT1 overexpression or miR-124 inhibitor led to increased expression of ZEB2. In summary, our study depicts a novel pathway of MALAT1/miR-124/ZEB2 that regulates the progression of glioma and might provide a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Hongyu Cheng
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, No.1, Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Hospital Affiliated of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qian Huang
- College of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wen Zeng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Bo Tian
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Tao Ma
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dan Lu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yulong Jin
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, 430030, Hubei, China.
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
107
|
Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 2021; 170:105520. [PMID: 33639232 DOI: 10.1016/j.phrs.2021.105520] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a metabolic disorder and its incidence is still increasing. Diabetic vascular complications cause major diabetic mobility and include accelerated atherosclerosis, nephropathy, retinopathy, and neuropathy. Hyperglycemia contributes to the pathogenesis of diabetic vascular complications via numerous mechanisms including the induction of oxidative stress, inflammation, metabolic alterations, and abnormal proliferation of EC and angiogenesis. In the past decade, epigenetic modifications have attracted more attention as they participate in the progression of diabetic vascular complications despite controlled glucose levels and regulate gene expression without altering the genomic sequence. DNA methylation and histone methylation, and acetylation are vital epigenetic modifications and their underlying mechanisms in diabetic vascular complication are still urgently needed to be investigated. Non-coding RNAs (nc RNAs) such as micro RNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circ RNAs) were found to exert transcriptional regulation in diabetic vascular complication. Although nc RNAs are not considered as epigenetic components, they are involved in epigenetic modifications. In this review, we summarized the investigations of non-coding RNAs involved in DNA methylation and histone methylation and acetylation. Their cross-talks might offer novel insights into the pathology of diabetic vascular complications.
Collapse
|
108
|
Wang S, Guo N, Li S, He Y, Zheng D, Li L, Wang Z. EZH2 Dynamically Associates With Non-coding RNAs in Mouse Hearts After Acute Angiotensin II Treatment. Front Cardiovasc Med 2021; 8:585691. [PMID: 33732733 PMCID: PMC7959742 DOI: 10.3389/fcvm.2021.585691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer of zeste 2 (EZH2) governs gene reprogramming during cardiac hypertrophy through epigenetic remodeling, a process regulated by numerous non-coding RNAs (ncRNAs). However, the dynamic interaction between EZH2 and ncRNAs upon hypertrophic stimulation remains elusive. Here we performed an unbiased profiling for EZH2-associated ncRNAs in mouse hearts treated with Angiotensin II (AngII) at different time points (0, 4, and 24 h). The interactions between EZH2 and long ncRNAs (lncRNAs), Chaer, Mirt1, Hotair, and H19, were validated by PCR. RIP-seq analysis identified a total of 126 ncRNAs to be significantly associated with EZH2. These ncRNAs covers all five categories including intergenic, antisense, intron-related, promoter-related and both antisense and promoter-related. According to their changing patterns after AngII treatment, these ncRNAs were clustered into four groups, constantly enhanced, transiently enhanced, constantly suppressed and transiently suppressed. Structural prediction showed that EZH2 bound to hairpin motifs in ncRNAs including snoRNAs. Interaction strength prediction and RNA pull-down assay confirmed the direct interaction between EZH2 and Snora33. Interestingly, two antisense lncRNAs of Malat1, Gm20417, and Gm37376, displayed different binding patterns from their host gene after AngII treatment, suggesting a crucial role of this genomic locus in modulating EZH2 behavior. Our findings reveal the profile of EZH2-associated ncRNAs upon hypertrophic stimulation, and imply a dynamic regulation of EZH2 function in cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuangling Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
109
|
N 6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev Cell 2021; 56:702-715.e8. [PMID: 33609462 DOI: 10.1016/j.devcel.2021.01.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 01/24/2021] [Indexed: 01/05/2023]
Abstract
N6-methyladenosine (m6A), one of the most prevalent RNA post-transcriptional modifications, is involved in numerous biological processes. In previous studies, the functions of m6A were typically identified by perturbing the activity of the methyltransferase complex. Here, we dissect the contribution of m6A to an individual-long noncoding RNA-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). The mutant MALAT1 lacking m6A-motifs significantly suppressed the metastatic potential of cancer cells both in vitro and in vivo in mouse. Super-resolution imaging showed that the concatenated m6A residues on MALAT1 acted as a scaffold for recruiting YTH-domain-containing protein 1 (YTHDC1) to nuclear speckles. We further reveal that the recognition of MALAT1-m6A by YTHDC1 played a critical role in maintaining the composition and genomic binding sites of nuclear speckles, which regulate the expression of several key oncogenes. Furthermore, artificially tethering YTHDC1 onto m6A-deficient MALAT1 largely rescues the metastatic potential of cancer cells.
Collapse
|
110
|
Shen H, Luo G, Chen Q. Long noncoding RNAs as tumorigenic factors and therapeutic targets for renal cell carcinoma. Cancer Cell Int 2021; 21:110. [PMID: 33593347 PMCID: PMC7885505 DOI: 10.1186/s12935-021-01805-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 338,000 patients are diagnosed with kidney cancer worldwide each year, and renal cell carcinoma (RCC), which is derived from renal epithelium, accounts for more than ninety percent of the malignancy. Next generation RNA sequencing has enabled the identification of novel long noncoding RNAs (lncRNAs) in the past 10 years. Recent studies have provided extensive evidence that lncRNAs bind to chromatin modification proteins, transcription factors, RNA-binding proteins and microRNAs, and thereby modulate gene expression through regulating chromatin status, gene transcription, pre-mRNA splicing, mRNA decay and stability, protein translation and stability. In vitro and in vivo studies have demonstrated that over-expression of oncogenic lncRNAs and silencing of tumor suppressive lncRNAs are a common feature of human RCC, and that aberrant lncRNA expression is a marker for poor patient prognosis, and is essential for the initiation and progression of RCC. Because lncRNAs, compared with mRNAs, are expressed in a tissue-specific manner, aberrantly expressed lncRNAs can be better targeted for the treatment of RCC through screening small molecule compounds which block the interaction between lncRNAs and their binding proteins or microRNAs.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Nephrology, 3201 Hospital, Hanzhong, Shaanxi Province, China
| | - Guomin Luo
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 40016, China
| | - Qingjuan Chen
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 40016, China.
| |
Collapse
|
111
|
Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, Pourghadamyari H, Rahimian N, Hamblin MR, Mirzaei H. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021; 161:314-327. [PMID: 33581845 DOI: 10.1016/j.ygyno.2021.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Gynecologic cancer is a group of any malignancies affecting reproductive tissues and organs of women, including ovaries, uterine, cervix, vagina, vulva, and endometrium. Several types of molecular mechanisms are associated with the progression of gynecologic cancers. Among it can be referred to the most widely studied non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long ncRNAs (lncRNAs). As yet, lncRNAs are known to serve key biological roles via various mechanisms, such as splicing regulation, chromatin rearrangement, translation regulation, cell-cycle control, genetic imprinting and mRNA decay. Besides, miRNAs govern gene expression by modulation of mRNAs and lncRNAs degradation, suggestive of needing more research in this field. Generally, driving gynecological cancers pathways by miRNAs and lncRNAs lead to the current improvement in cancer-related technologies. Exosomes are extracellular microvesicles which can carry cargo molecules among cells. In recent years, more studies have been focused on exosomal non-coding RNAs (exo-ncRNAs) and exosomal microRNAs (exo-miRs) because of being natural carriers of lnc RNAs and microRNAs via programmed process. In this review we summarized recent reports concerning the function of exosomal microRNAs and exosomal long non-coding RNAs in gynecological cancers.
Collapse
Affiliation(s)
| | - Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mina Rohani Borj
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
112
|
Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 2021; 20:24. [PMID: 33522932 PMCID: PMC7849140 DOI: 10.1186/s12943-021-01313-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNA (ncRNA) transcripts that did not code proteins but regulate their functions were extensively studied for the last two decades and the plethora of discoveries have instigated scientists to investigate their dynamic roles in several diseases especially in cancer. However, there is much more to learn about the role of ncRNAs as drivers of malignant cell evolution in relation to macrophage polarization in the tumor microenvironment. At the initial stage of tumor development, macrophages have an important role in directing Go/No-go decisions to the promotion of tumor growth, immunosuppression, and angiogenesis. Tumor-associated macrophages behave differently as they are predominantly induced to be polarized into M2, a pro-tumorigenic type when recruited with the tumor tissue and thereby favoring the tumorigenesis. Polarization of macrophages into M1 or M2 subtypes plays a vital role in regulating tumor progression, metastasis, and clinical outcome, highlighting the importance of studying the factors driving this process. A substantial number of studies have demonstrated that ncRNAs are involved in the macrophage polarization based on their ability to drive M1 or M2 polarization and in this review we have described their functions and categorized them into oncogenes, tumor suppressors, Juggling tumor suppressors, and Juggling oncogenes.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Life Science Plaza, Suite: LSP9.3012, 2130 W, Holcombe Blvd, Ste. 910, Houston, TX, 77030, USA.
| |
Collapse
|
113
|
Liu S, Xie S, Chen H, Li B, Chen Z, Tan Y, Yang J, Zheng L, Xiao Z, Zhang Q, Qu L. The functional analysis of transiently upregulated miR-101 suggests a "braking" regulatory mechanism during myogenesis. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1612-1623. [PMID: 33521860 DOI: 10.1007/s11427-020-1856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022]
Abstract
Skeletal muscle differentiation is a highly coordinated process that involves many cellular signaling pathways and microRNAs (miRNAs). A group of muscle-specific miRNAs has been reported to promote myogenesis by suppressing key signaling pathways for cell growth. However, the functional role and regulatory mechanism of most non-muscle-specific miRNAs with stage-specific changes during differentiation are largely unclear. Here, we describe the functional characterization of miR-101a/b, a pair of non-muscle-specific miRNAs that show the largest change among a group of transiently upregulated miRNAs during myogenesis in C2C12 cells. The overexpression of miR-101a/b inhibits myoblast differentiation by suppressing the p38/MAPK, Interferon Gamma, and Wnt pathways and enhancing the C/EBP pathway. Mef2a, a key protein in the p38/MAPK pathway, was identified as a direct target of miR-101a/b. Interestingly, we found that the long non-coding RNA (lncRNA) Malat1, which promotes muscle differentiation, interacts with miR-101a/b, and this interaction competes with Mef2a mRNA to relieve the inhibition of the p38/MAPK pathway during myogenesis. These results uncovered a "braking" role in differentiation of transiently upregulated miRNAs and provided new insights into the competing endogenous RNA (ceRNA) regulatory mechanism in myoblast differentiation and myogenesis.
Collapse
Affiliation(s)
- Shurong Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shujuan Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Vaccine Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huafeng Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhirong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yeya Tan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhendong Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
114
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
115
|
LncRNA DANCR represses Doxorubicin-induced apoptosis through stabilizing MALAT1 expression in colorectal cancer cells. Cell Death Dis 2021; 12:24. [PMID: 33414433 PMCID: PMC7791116 DOI: 10.1038/s41419-020-03318-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Long non-coding RNA (lncRNA) DANCR has been reported to participate in key processes such as stem cell differentiation and tumorigenesis. In a high throughput screening for lncRNAs involved in Doxorubicin-induced apoptosis, we found DANCR was suppressed by Doxorubicin and it acted as an important repressor of apoptosis in colorectal cancer. Further studies demonstrated that DANCR promoted the oncogenic lncRNA MALAT1 expression via enhancing the RNA stability of MALAT1 to suppress apoptosis. MALAT1 could efficiently mediate the suppressive function of DANCR on apoptosis. Mechanistic studies found the RNA-binding protein QK served as an interacting partner of both DANCR and MALAT1, and the protein level of QK was subjected to the regulation by DANCR. Furthermore, QK was able to modulate the RNA stability of MALAT1, and the interaction between QK and MALAT1 was controlled by DANCR. In addition, QK could mediate the function of DANCR in regulating the expression of MALAT1 and suppressing apoptosis. These results revealed DANCR played a critical role in Doxorubicin-induced apoptosis in colorectal cancer cells, which was achieved by the interaction between DANCR and QK to enhance the expression of MALAT1.
Collapse
|
116
|
Zhao X, Chen Q, Cai Y, Chen D, Bei M, Dong H, Xu J. TRA2A Binds With LncRNA MALAT1 To Promote Esophageal Cancer Progression By Regulating EZH2/β-catenin Pathway. J Cancer 2021; 12:4883-4890. [PMID: 34234858 PMCID: PMC8247389 DOI: 10.7150/jca.55661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023] Open
Abstract
The RNA binding protein TRA2A, a member of the transformer 2 homolog family, plays a crucial role in the alternative splicing of pre-mRNA. However, it remains unclear whether TRA2A is involved in non-coding RNA regulation and, if so, what are the functional consequences. By analyzing expression profiling data, we found that TRA2A is highly expressed in esophageal cancer and is associated with disease-free survival and overall survival time. Subsequent gain- and loss-of-function studies demonstrated that TRA2A promotes proliferation and migration of esophageal squamous cell carcinoma and adenocarcinoma cells. RNA immunoprecipitation and RNA pull-down assay indicated that TRA2A can directly bind specific sites on MALAT1 in cells. In addition, ectopic expression or depletion of TRA2A leads to MALAT expression changes accordingly, thus modulates EZH2/β-catenin pathway. Together, these findings elucidated that TRA2A triggers carcinogenesis via MALAT1 mediated EZH2/β-catenin axis in esophageal cancer cells.
Collapse
Affiliation(s)
- Xing Zhao
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No. 22, Xinling Road, Shantou, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Qiuyang Chen
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No. 22, Xinling Road, Shantou, China
| | - Yujie Cai
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No. 22, Xinling Road, Shantou, China
| | - Danze Chen
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No. 22, Xinling Road, Shantou, China
| | - Mingrong Bei
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No. 22, Xinling Road, Shantou, China
| | - Hongyan Dong
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Jianzhen Xu
- Computational Systems Biology Lab, Department of Bioinformatics, Shantou University Medical College (SUMC), No. 22, Xinling Road, Shantou, China
- ✉ Corresponding author: (J.X.); Tel: +86-754-8890-0491
| |
Collapse
|
117
|
Yuan C, Yuan H, Chen L, Sheng M, Tang W. A novel three-long noncoding RNA risk score system for the prognostic prediction of triple-negative breast cancer. Biomark Med 2021; 15:43-55. [PMID: 33427499 DOI: 10.2217/bmm-2020-0505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan-Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.
Collapse
Affiliation(s)
- Chao Yuan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Hongjun Yuan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Li Chen
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| |
Collapse
|
118
|
McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 2020; 75:38-48. [PMID: 33346133 DOI: 10.1016/j.semcancer.2020.12.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process in which cells composing epithelial tissue lose requirements for physical contact with neighboring cells and acquire mesenchymal characteristics consisting of increased migratory and invasive behaviors. EMT is a fundamental process that is required for initial and later events during embryogenesis. Cancer stem cells (CSCs) possess multipotency sufficient for their differentiation into bulk tumor cells and also have the capacity to undergo EMT. When CSCs initiate EMT programs the resulting cancerous mesenchymal cells become invasive and this migratory behavior also poises them for metastatic activity. Long noncoding RNAs (lncRNAs) are functional RNA molecules that do not encode proteins, yet regulate the expression of protein-coding genes through recruitment or sequestration of gene-regulatory proteins and microRNAs. lncRNA exhibit tissue-specific patterns of gene expression during development and specific sets of lncRNAs are also involved in various cancer types. This review considers the interplay between lncRNAs and the biogenesis of CSCs. We also review function of lncRNAs in EMT in CSCs. In addition, we discuss the utility of lncRNAs as biomarkers of cancer progression, and their potential use as therapeutic targets for treatment of cancer.
Collapse
Affiliation(s)
- Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, USA
| | - Theodore P Rasmussen
- Department of Molecular and Cell Biology, University of Connecticut, USA; Department of Pharmaceutical Sciences, University of Connecticut, USA; University of Connecticut Stem Cell Institute, University of Connecticut, USA.
| |
Collapse
|
119
|
Liu G, Yang H, Cao L, Han K, Li G. LncRNA TMPO-AS1 Promotes Proliferation and Invasion by Sponging miR-383-5p in Glioma Cells. Cancer Manag Res 2020; 12:12001-12009. [PMID: 33262650 PMCID: PMC7696628 DOI: 10.2147/cmar.s282539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose Glioma is one of the most common malignant tumors affecting human health. Long non-coding RNA (lncRNA) TMPO-AS1 participates in the pathogenesis of various cancers. However, the role of lncRNA TMPO-AS1 in glioma remains largely unknown. This study aims to uncover the role of TMPO-AS1 and explore its potential mechanism in glioma. Methods Expression levels of TMPO-AS1 and miR-383-5p in glioma cell lines were measured by real-time quantitative PCR (RT-qPCR). CCK-8, colony formation, wound-healing, and Transwell assays were conducted to determine cell proliferation, migration and invasion abilities, respectively. Western blotting was applied to detect the expression of corresponding proteins. Immunofluorescence assay was performed to measure the expression of Ki67. The binding condition between TMPO-AS1 and miR-383-5p was verified by dual-luciferase reporter assay. Results We found that TMPO-AS1 was up-regulated while miR-383-5p was down-regulated in glioma cell lines, and knockdown of TMPO-AS1 significantly suppressed glioma cell proliferation, migration and invasion abilities. miR-383-5p was demonstrated to be a direct target of TMPO-AS1. Besides, inhibition of miR-383-5p abolished the effects of TMPO-AS1 knockdown on glioma cells. Conclusion In summary, our study revealed that inhibition of lncRNA TMPO-AS1 could suppress glioma progression through targeting miR-383-5p. TMPO-AS1 might be used as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Guoyuan Liu
- Department of Neurosurgery, The People's Hospital of Jimo, Qingdao, Shandong 266000, People's Republic of China
| | - Haiying Yang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Lei Cao
- Department of Neurosurgery, The People's Hospital of Jimo, Qingdao, Shandong 266000, People's Republic of China
| | - Kun Han
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| | - Guobin Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, People's Republic of China
| |
Collapse
|
120
|
Feng J, Guo Y, Li Y, Zeng J, Wang Y, Yang Y, Xie G, Feng Q. Tumor promoting effects of circRNA_001287 on renal cell carcinoma through miR-144-targeted CEP55. J Exp Clin Cancer Res 2020; 39:269. [PMID: 33256799 PMCID: PMC7706056 DOI: 10.1186/s13046-020-01744-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a common urological cancer. circular RNAs (circRNAs) is involved in the development of various types of cancers. However, the roles and underlying mechanisms of circRNAs in RCC are not fully elucidated. Herein, we aimed to examine the potential effect of circ_001287 on RCC progression. MATERIALS AND METHODS Microarray-based gene expression profiling of RCC was initially employed in order to identify differentially expressed genes. Next, the expression of circ_001287 was examined, and the cell line with the highest circ_001287 expression was selected for subsequent investigation. The interaction among circ_001287, miR-144, and CEP55 was identified by conducting luciferase reporter assay, RNA-pull down, RIP, RT-qPCR and FISH. The effect of circ_001287 on proliferative, invasive and migratory capacities as well as tumorigenicity of transfected cells in mice was examined using gain- and loss-of-function experiments. RESULTS circ_001287 and CEP55 were highly expressed while miR-144 was decreased in RCC tissues and cell lines. circ_001287 can up-regulate CEP55 by binding to miR-144, which resulted in increased proliferative, invasive and migratory capacities and tumor growth in vivo. In addition, down-regulation of miR-144 was also observed to promote these biological activities. CONCLUSIONS Overall, these results elucidate a new mechanism for circ_001287 in RCC development and provide a potential therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, No. 12, Changjia Lane, Jingzhong Street, Fucheng District, Sichuan Province 621000 Mianyang, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional, Chinese Medicine Hospital Affiliated to Southwest Medical University, 646000 Luzhou, Province, PR China
| | - Yuanmeng Li
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Sichuan Province 646000 Luzhou, PR China
| | - Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, No. 12, Changjia Lane, Jingzhong Street, Fucheng District, Sichuan Province 621000 Mianyang, PR China
| | - Yaodong Wang
- Department of Urology Surgery, Mianyang Central Hospital, Sichuan Province 621000 Mianyang, PR China
| | - Yuwei Yang
- Department of Clinical Laboratory, Mianyang Central Hospital, No. 12, Changjia Lane, Jingzhong Street, Fucheng District, Sichuan Province 621000 Mianyang, PR China
| | - Gang Xie
- Department of Pathology, Mianyang Central Hospital, Sichuan Province 621000 Mianyang, PR China
| | - Qian Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Sichuan Province 610075 Chengdu, PR China
| |
Collapse
|
121
|
Shiyanbola O, Hardin H, Hu R, Eickhoff JC, Lloyd RV. Long Noncoding RNA Expression in Adrenal Cortical Neoplasms. Endocr Pathol 2020; 31:385-391. [PMID: 32725507 DOI: 10.1007/s12022-020-09642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) consist of nucleic acid molecules that are greater than 200 nucleotides in length and they do not code for specific proteins. A growing body of evidence indicates that these lncRNAs have important roles in tumorigenesis. Separating adrenal cortical adenomas from carcinomas is often a difficult problem for the surgical pathologist. This is especially true when only small needle biopsies are available for examination. We used in situ hybridization (ISH) analysis to study normal adrenal cortical tissues and adrenal cortical tumors to determine the role of specific lncRNAs in tumor development and classification. The lncRNAS studied included metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), psoriasis susceptibility-related RNA gene induced by stress (PRINS), and HOX antisense intergenic RNA myeloid 1 (HAM1). We constructed a tissue microarray (TMA) for the studies and also analyzed a subset of cases by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Two 1-mm duplicate cores of normal adrenal cortex (NAC) (n = 23), adrenal cortical adenomas (ACAs) (n = 95), and adrenal cortical carcinomas (ACCs), (n = 20) were used on the TMA. The results of ISH were analyzed by image analysis. ISH showed predominantly nuclear expression of lncRNAs in adrenal cortical tissues. MALAT1 showed more expression in ACCs than in NAC and ACA (p < 0.05). PRINS had higher expression in NACs and ACAs than in ACCs. The lncRNAs MALAT1, PRINS, and HAM1 are all expressed in normal and neoplastic adrenal cortical tissues. MALAT1 had the highest expression in ACC compared to ACAs and may have a role in ACC development.
Collapse
Affiliation(s)
- Oyewale Shiyanbola
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
122
|
Shermane Lim YW, Xiang X, Garg M, Le MT, Li-Ann Wong A, Wang L, Goh BC. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett 2020; 500:253-262. [PMID: 33221454 DOI: 10.1016/j.canlet.2020.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023]
Abstract
H19 long non-coding RNA (lncRNA) has many functions in cancer. Some studies have reported that H19 acts as an oncogene and is involved in cancer progression by activating epithelial-mesenchymal transition (EMT), the cell cycle and angiogenesis via mechanisms like microRNA (miRNA) sponging - the binding to and inhibition of miRNA activity. This makes H19 lncRNA a potential target for cancer therapeutics. However, several conflicting studies have also found that H19 suppresses tumour development. In this review, we shed light on the possible reasons for these conflicting findings. We also summarise the current literature on the applications of H19 lncRNA in cancer therapy in many cancers and explore new avenues for future research. This includes the use of H19 in recombinant vectors, chemoresistance, epigenetic regulation, tumour microenvironment alteration and cancer immunotherapy. The relationship between H19 and the master tumour suppressor gene p53 is also explored. In most studies, H19 knockdown via RNA interference (RNAi) or epigenetic silencing inhibits cancer development. Thus, H19 lncRNA could be a promising target for the development of cancer therapeutics. This warrants further investigations into its translational research to improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Yun Wei Shermane Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, 201313, India
| | - Minh Tn Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
123
|
Shao X, Zhao T, Xi L, Zhang Y, He J, Zeng J, Deng L. LINC00565 promotes the progression of colorectal cancer by upregulating EZH2. Oncol Lett 2020; 21:53. [PMID: 33281964 PMCID: PMC7709565 DOI: 10.3892/ol.2020.12314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to illustrate the role of LINC00565 in aggravating colorectal cancer (CRC) by targeting enhancer of zeste homolog 2 (EZH2). The relative levels of LINC00565 and EZH2 in CRC tissues, based on their Tumor-Node-Metastasis stage and tumor size, were detected by reverse transcription-quantitative polymerase chain reaction. The diagnostic value of LINC00565 in CRC was assessed by depicting receiver operating characteristic curves. Pearson's correlation test was applied to analyze the expression correlation between LINC00565 and EZH2 in CRC tissues. The transfection efficacy of three LINC00565 small interfering RNAs was examined in CRC HCT116 and SW480 cell lines. After knockdown of LINC00565, the proliferative and migratory abilities of CRC cells were detected by Cell Counting Kit-8 and Transwell assays, respectively. The subcellular distribution of LINC00565 was analyzed, and the interaction between LINC00565 and EZH2 was determined by RNA immunoprecipitation. Finally, co-regulation of LINC00565 and EZH2 on CRC cell functions was explored by performing rescue experiments. Results showed that LINC00565 was upregulated in CRC tissues, especially in patients with stage III+IV and in those with large tumor sizes, suggesting its diagnostic value in CRC. EZH2 was also upregulated in CRC tissues, showing a positive correlation with LINC00565. LINC00565 was mainly expressed in the cytoplasm and was found to bind with EZH2. Validation was performed by overexpressing EZH2, which abolished the role of silenced LINC00565 in regulating proliferative and migratory abilities in CRC. Therefore, the upregulation of LINC00565 in CRC tissues was found to stimulate the aggravation of CRC by upregulating EZH2.
Collapse
Affiliation(s)
- Xiaxia Shao
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Tao Zhao
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Lei Xi
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Yuhong Zhang
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Jia He
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Jie Zeng
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| | - Lichun Deng
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
124
|
Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, D'Elia D, Tullo A, Catalano D. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction. Front Genet 2020; 11:552490. [PMID: 33193626 PMCID: PMC7531330 DOI: 10.3389/fgene.2020.552490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5′ end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.
Collapse
Affiliation(s)
- Flaviana Marzano
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Mariano Francesco Caratozzolo
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Arianna Consiglio
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Flavio Licciulli
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Sabino Liuni
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Elisabetta Sbisà
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Domenica D'Elia
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| | - Apollonia Tullo
- Department of Biomedical Sciences, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Domenico Catalano
- Department of Biomedical Sciences, Institute for Biomedical Technologies, Bari, Italy
| |
Collapse
|
125
|
Al-Raawi D, Kanhere A. Autoregulation of JARID2 through PRC2 interaction with its antisense ncRNA. BMC Res Notes 2020; 13:501. [PMID: 33126912 PMCID: PMC7602346 DOI: 10.1186/s13104-020-05348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Objective JARID2 is a member of chromatin-modifying Polycomb Repressive Complex-2 or PRC2. It plays a role in recruiting PRC2 to developmental genes and regulating its activity. JARID2 along with PRC2 is indispensable for normal development. However, it remains unclear how JARID2 expression itself is regulated. Recently a number of non-protein-coding RNAs or ncRNAs are shown to regulate transcription. An antisense ncRNA, JARID2-AS1, is expressed from the first intron of JARID2 isoform-1 but its role in regulation of JARID2 expression has not been investigated. The objective of this study was to explore the role of JARID2-AS1 in regulating JARID2 and consequently PRC2. Results We found that JARID2-AS1 is localised in the nucleus and shows anti-correlated expression pattern to that of JARID2 isoform-1 mRNA. More interestingly, data mining approach strongly indicates that JARID2-AS1 binds to PRC2. These are important observations that provide insights into transcriptional regulation of JARID2, especially because they indicate that JARID2-AS1 by interacting and probably recruiting PRC2 participates in an auto-regulatory loop that controls levels of JARID2. This holds importance in regulation of developmental and differentiation processes. However, to support this hypothesis, further in-depth studies are needed which can verify JARID2-AS1-PRC2 interactions.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- Tumour Biology Research Program, 57357 Children's Cancer Hospital, Cairo, Egypt.,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom. .,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom.
| |
Collapse
|
126
|
Zhou L, Liu R, Liang X, Zhang S, Bi W, Yang M, He Y, Jin J, Li S, Yang X, Fu J, Zhang P. lncRNA RP11-624L4.1 Is Associated with Unfavorable Prognosis and Promotes Proliferation via the CDK4/6-Cyclin D1-Rb-E2F1 Pathway in NPC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1025-1039. [PMID: 33078086 PMCID: PMC7558227 DOI: 10.1016/j.omtn.2020.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southeast Asia. Emerging evidence revealed that long noncoding RNAs (lncRNAs) might play important roles in the development and progression of many cancers, including NPC. The functions and mechanisms of the vast majority of lncRNAs involved in NPC remain unknown. In this study, a novel lncRNA RP11-624L4.1 was identified in NPC tissues using next-generation sequencing. In situ hybridization (ISH) was used to analyze the correlation between RP11-624L4.1 expression and the clinicopathological features or prognosis in NPC patients. RNA-Protein Interaction Prediction (RPISeq) predictions and RNA-binding protein immunoprecipitation (RIP) assays were used to identify RP11-624L4.1's interactions with cyclin-dependent kinase 4 (CDK4). As a result, we found that RP11-624L4.1 is hyper-expressed in NPC tissues, which was associated with unfavorable prognosis and clinicopathological features in NPC. By knocking down and overexpressing RP11-624L4.1, we also found that it promotes the proliferation ability of NPC in vitro and in vivo through the CDK4/6-Cyclin D1-Rb-E2F1 pathway. Overexpression of CDK4 in knocking down RP11-624L4.1 cells can partially rescue NPC promotion, indicating its role in the RP11-624L4.1-CDK4/6-Cyclin D1-Rb-E2F1 pathway. Taken together, RP11-624L4.1 is required for NPC unfavorable prognosis and proliferation through the CDK4/6-Cyclin D1-Rb-E2F1 pathway, which may be a novel therapeutic target and prognostic in patients with NPC.
Collapse
Affiliation(s)
- Liuying Zhou
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shisheng Li
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Corresponding author: Junjiang Fu, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Corresponding author: Pengfei Zhang, NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| |
Collapse
|
127
|
Extracellular vesicle long non-coding RNAs and circular RNAs: Biology, functions and applications in cancer. Cancer Lett 2020; 489:111-120. [DOI: 10.1016/j.canlet.2020.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
128
|
Fan C, Yuan Q, Liu G, Zhang Y, Yan M, Sun Q, Zhu C. Long non-coding RNA MALAT1 regulates oxaliplatin-resistance via miR-324-3p/ADAM17 axis in colorectal cancer cells. Cancer Cell Int 2020; 20:473. [PMID: 33005106 PMCID: PMC7525982 DOI: 10.1186/s12935-020-01549-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most general malignant tumors. Accumulating evidence implied that long non-coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) participated in the tumorigenesis of CRC. However, the effect of MALAT1 in drug-resistance needed to be further illustrated. Methods Levels of MALAT1, microRNA (miR)-324-3p, and a disintegrin and metalloprotease metallopeptidase domain 17 (ADAM17) were detected using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit 8 (CCK-8) was used to assess the half maximal inhibitory concentration (IC50) of oxaliplatin (Ox). Meanwhile, cell proliferation, migration and apoptosis were detected by CCK-8, transwell assay, and flow cytometry, respectively. The interaction between miR-324-3p and MALAT1 or ADAM17 was clarified by dual-luciferase reporter assay. Also, the effect of MALAT1 on tumor growth was detected in xenograft tumor mice treated with Ox. Results Significant up regulation of MALAT1 and ADAM17, and decrease of miR-324-3p were observed in Ox-resistant CRC tissues and cells. MALAT1 deficiency enhanced the sensitivity of Ox-resistant CRC cells response to Ox, while miR-324-3p repression or ADAM17 acceleration could overturn this effect. Moreover, MALAT1 silencing repressed tumor growth in Ox-treated nude mice. Mechanically, MALAT1 exerted promotion effect on the resistance response to Ox via miR-324-3p/ADAM17 axis in Ox-resistant CRC cells. Conclusion MALAT1 modulated the sensitivity of Ox through ADAM17 in Ox-resistant CRC cells by sponging miR-324-3p, thus MALAT1 might serve as a novel insight for the therapy of CRC.
Collapse
Affiliation(s)
- Changru Fan
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| | - Qiulan Yuan
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| | - Guifeng Liu
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| | - Yuliang Zhang
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| | - Maojun Yan
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| | - Qingxu Sun
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| | - Chaoyu Zhu
- Department of Abdominal Surgery, Linyi Cancer Hospital, No. 6 Lingyuan East Road, Linyi, 276001 Shandong China
| |
Collapse
|
129
|
Zhu J, Deng J, Zhang L, Zhao J, Zhou F, Liu N, Cai R, Wu J, Shu B, Qi S. Reconstruction of lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional lncRNAs in skin cutaneous melanoma. BMC Cancer 2020; 20:927. [PMID: 32993558 PMCID: PMC7523354 DOI: 10.1186/s12885-020-07302-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human skin cutaneous melanoma is the most common and dangerous skin tumour, but its pathogenesis is still unclear. Although some progress has been made in genetic research, no molecular indicators related to the treatment and prognosis of melanoma have been found. In various diseases, dysregulation of lncRNA is common, but its role has not been fully elucidated. In recent years, the birth of the "competitive endogenous RNA" theory has promoted our understanding of lncRNAs. METHODS To identify the key lncRNAs in melanoma, we reconstructed a global triple network based on the "competitive endogenous RNA" theory. Gene Ontology and KEGG pathway analysis were performed using DAVID (Database for Annotation, Visualization, and Integration Discovery). Our findings were validated through qRT-PCR assays. Moreover, to determine whether the identified hub gene signature is capable of predicting the survival of cutaneous melanoma patients, a multivariate Cox regression model was performed. RESULTS According to the "competitive endogenous RNA" theory, 898 differentially expressed mRNAs, 53 differentially expressed lncRNAs and 16 differentially expressed miRNAs were selected to reconstruct the competitive endogenous RNA network. MALAT1, LINC00943, and LINC00261 were selected as hub genes and are responsible for the tumorigenesis and prognosis of cutaneous melanoma. CONCLUSIONS MALAT1, LINC00943, and LINC00261 may be closely related to tumorigenesis in cutaneous melanoma. In addition, MALAT1 and LINC00943 may be independent risk factors for the prognosis of patients with this condition and might become predictive molecules for the long-term treatment of melanoma and potential therapeutic targets.
Collapse
Affiliation(s)
- Junyou Zhu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jin Deng
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095 People’s Republic of China
| | - Lijun Zhang
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jingling Zhao
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Fei Zhou
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Ning Liu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Ruizhao Cai
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jun Wu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Bin Shu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Shaohai Qi
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| |
Collapse
|
130
|
Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: Potential Novel Prognostic and Diagnostic Biomarkers in Colorectal Cancer. Curr Med Chem 2020; 27:5067-5077. [PMID: 30827228 DOI: 10.2174/0929867326666190227230024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of regulatory RNAs, play a key role in numerous cellular pathways. Ectopic expression of this group of non-coding RNAs has been specified to be involved in numerous diseases. Moreover, the role of lncRNAs in the initiation and development of cancers including colorectal cancer (CRC) has been acknowledged. OBJECTIVE In the present review, the role of lncRNAs as prognostic and diagnostic biomarkers in CRC as well as the molecular mechanisms of their contribution to development of CRC has been addressed. RESULTS The presented studies have indicated the ectopic expression of various lncRNAs in CRC. Some lncRNAs which were considered as tumor suppressors were downregulated in the colorectal cancerous tissues compared with healthy controls; however, some with oncogenic effects were upregulated. LncRNAs contribute to tumor development via various molecular mechanisms such as epigenetically controlling the expression of target genes, interacting with miRNAs as their sponge, etc. Conclusion: LncRNAs that have been recognized as prognostic biomarkers may pave the way for clinical management to offer adjuvant treatments for patients with CRC.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology Section, Department of Virology and Immunology, LabPLUS, Auckland District Health Board (ADHB), Auckland, New Zealand
| |
Collapse
|
131
|
Cai LJ, Tu L, Huang XM, Huang J, Qiu N, Xie GH, Liao JX, Du W, Zhang YY, Tian JY. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson's disease. Mol Brain 2020; 13:130. [PMID: 32972446 PMCID: PMC7513532 DOI: 10.1186/s13041-020-00656-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023] Open
Abstract
The goal of the present study was to elucidate the mechanism by which long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1) promotes inflammation in Parkinson’s disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to induce PD development in C57BL/6 mice, and tyrosine hydroxylase (TH) expression was analysed by immunohistochemical analysis. Western blot and qPCR analyses were conducted to assess the expression of protein and mRNA levels, respectively. Lipopolysaccharide/adenosine triphosphate (LPS/ATP) was used to activate microglia in vitro. Chromatin immunoprecipitation (ChIP), RNA pull-down and RNA immunoprecipitation chip (RIP) assays were performed to investigate the interaction among specific molecules. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate cell viability and proliferation. Flow cytometry was performed to analyse cell apoptosis after staining. The dichlorofluorescein diacetate (DCFH-DA) assay was used to measure the generation of reactive oxygen species (ROS) in cells. The results showed that MALAT1 was highly expressed in the brains of MPTP-induced PD model mice and in LPS/ATP-induced microglia cells. Knockdown of MALAT1 inhibited elevated nuclear factor (erythroid-derived 2)-like-2 factor (NRF2) expression, thereby inhibiting inflammasome activation and ROS production. MALAT1 was shown to promote neuroinflammation by recruiting enhancer of zeste homologue 2 (EZH2) to the promoter of NRF2, suppressing Nrf2 expression. In summary, MALAT1 epigenetically inhibits NRF2, thereby inducing inflammasome activation and reactive oxygen species (ROS) production in PD mouse and microglial cell models.
Collapse
Affiliation(s)
- Li-Jun Cai
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P.R. China
| | - Li Tu
- Department of General Medical, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P.R. China
| | - Xiao-Mo Huang
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Jia Huang
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Nan Qiu
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Guang-Hong Xie
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Jian-Xiong Liao
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Wei Du
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Ying-Yue Zhang
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China
| | - Jin-Yong Tian
- Department of Emergency, Guizhou Provincial People's Hospital, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, P.R. China.
| |
Collapse
|
132
|
Jiang G, Su Z, Liang X, Huang Y, Lan Z, Jiang X. Long non-coding RNAs in prostate tumorigenesis and therapy (Review). Mol Clin Oncol 2020; 13:76. [PMID: 33005410 DOI: 10.3892/mco.2020.2146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancy. Although there have been many advances in PCa diagnosis and therapy, the concrete mechanism remains unknown. Long non-coding RNAs (lncRNAs) are novel biomarkers associated with PCa, and their dysregulated expression is closely associated with risk stratification, diagnosis and carcinogenesis. Accumulating evidence has suggested that lncRNAs play important roles in prostate tumorigenesis through relevant pathways, such as androgen receptor interaction and PI3K/Akt. The present review systematically summarized the potential clinical utility of lncRNAs and provided a novel guide for their function in PCa.
Collapse
Affiliation(s)
- Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhengming Su
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ziquan Lan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
133
|
Zhao H, Xu Q. Long non-coding RNA DLX6-AS1 mediates proliferation, invasion and apoptosis of endometrial cancer cells by recruiting p300/E2F1 in DLX6 promoter region. J Cell Mol Med 2020; 24:12572-12584. [PMID: 32951317 PMCID: PMC7686961 DOI: 10.1111/jcmm.15810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer features abnormal growth of cells of the inner lining of the uterus with the potential to invade to other organs. Accumulating evidence suggests that aberrant expression of long non‐coding RNA (lncRNA) may facilitate cancer progression. The aim of the present study was to identify the molecular mechanisms of the lncRNA known as DLX6 antisense RNA 1 (DLX6‐AS1) in endometrial cancer. Microarray‐based analysis was utilized to predict expression profile and possible function pattern of DLX6‐AS1 and DLX6 in endometrial cancer, and their expression was quantified in 78 clinically obtained endometrial cancer tissues and also in cell lines. We next assessed the effects of DLX6‐AS1 and DLX6 on proliferation, invasion and apoptosis of endometrial cancer cells. A mouse xenograft model was established to confirm DLX6‐AS1 functions and explore its underlying regulatory mechanisms in vivo. DLX6‐AS1 and DLX6 were highly expressed in endometrial cancer tissues and cells, and their silencing weakened the proliferative and invasive abilities of endometrial cancer cells and tumours, while promoting apoptosis. Mechanistic investigations indicated that DLX6‐AS1 formed a triplex structure with DLX6 via interaction with p300/E2F1 acetyltransferase. Thus, we find that functional up‐regulation of DLX6‐AS1 can promote endometrial cancer progression via a novel triplex mechanism that may prove to be great clinical significance for future treatments of endometrial cancer.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Gynaecology and Obstetrics, Linyi People's Hospital, Linyi, China
| | - Qian Xu
- Department of Gynaecology and Obstetrics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
134
|
Yang J, Lin X, Wang L, Sun T, Zhao Q, Ma Q, Zhou Y. LncRNA MALAT1 Enhances ox-LDL-Induced Autophagy through the SIRT1/MAPK/NF-κB Pathway in Macrophages. Curr Vasc Pharmacol 2020; 18:652-662. [PMID: 32183682 DOI: 10.2174/1570161118666200317153124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases. In
advanced atherosclerotic plaque, macrophage apoptosis coupled with inflammatory cytokine secretion
promotes the formation of necrotic cores. It has also been demonstrated that the long-noncoding Ribonucleic
Acid (lnc RNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), with its
potent function on gene transcription modulation, maintains oxidized low-density lipoprotein (ox-LDL)-
induced macrophage autophagy (i.e., helps with cholesterol efflux). It also showed that MALAT1 activated
Sirtuin 1 (SIRT1), which subsequently inhibited the mitogen-activated protein kinase (MAPK)
and nuclear factor kappa-B (NF-κB) signaling pathways. ox-LDL has been used to incubate human
myeloid leukemia mononuclear cells (THP-1)-derived macrophages to establish an in vitro foam cell
model. Quantitative reverse-transcription polymerase chain reaction and Western blot analyses confirmed
the increased expression level of MALAT1 and the autophagy-related protein Microtubuleassociated
protein light chain 3 (LC-3), beclin-1. The small interfering RNA study showed a significant
decrease in autophagy activity and an increase in apoptotic rate when knocking down MALAT1. Further
study demonstrated that MALAT1 inhibited the expression of MAPK and NF-κB (p65) by upregulating
SIRT1.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xuze Lin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qi Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
135
|
Xu C, Liang H, Zhou J, Wang Y, Liu S, Wang X, Su L, Kang X. lncRNA small nucleolar RNA host gene 12 promotes renal cell carcinoma progression by modulating the miR‑200c‑5p/collagen type XI α1 chain pathway. Mol Med Rep 2020; 22:3677-3686. [PMID: 32901847 PMCID: PMC7533520 DOI: 10.3892/mmr.2020.11490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) is a primary malignant kidney cancer subtype. It has been suggested that long non-coding RNAs (lncRNAs) serve important roles in the progression of kidney cancer. In fact, the lncRNA small nucleolar RNA host gene 12 (SNHG12) was discovered to be overexpressed in various types of cancer. However, to the best of our knowledge, the role of SNHG12 in RCC remains unclear. The present study aimed to investigate the function of SNHG12 and its underlying molecular mechanism of action in RCC. In patient samples and datasets from The Cancer Genome Atlas. Reverse transcription-quantitative PCR, demonstrated that SNHG12 expression levels were upregulated in RCC tumor tissues, but not in normal kidney tissues. SNHG12 upregulation was also observed in RCC cell lines. Kaplan-Meier survival analysis indicated a poor prognosis for those patients with RCC who had upregulated SNHG12 expression levels. Following lentivirus transduction, SNHG12 was successfully knocked down (validated by western blot analysis) and cell migration and invasion assays were performed. SNHG12 knockdown markedly inhibited cell viability and invasion, while increasing apoptosis in both A498 and 786O cell lines. The results of the luciferase reporter assay suggested that SNHG12 exerted its role by sponging microRNA (miR)-200c-5p, which led to the upregulation of its target gene, collagen type XI α1 chain (COL11A1). This was further validated, as miR-200c-5p inhibition reduced the effects of SNHG12 downregulation on cell viability and apoptosis, without affecting SNHG12 expression levels. Furthermore, the findings indicated that SNHG12 may partially exert its role through COL11A1, which was also upregulated in RCC. In conclusion, the results of the present study suggested that the SNHG12/miR-200c-5p/COL11A1 axis may be crucial for RCC progression, which provided an insight into potential therapeutic strategies for RCC treatment.
Collapse
Affiliation(s)
- Congjie Xu
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Hui Liang
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Jiaquan Zhou
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Yang Wang
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Shuan Liu
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Xiaolin Wang
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Liangju Su
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| | - Xinli Kang
- Department of Urology, Hainan General Hospital, Haikou, Hainan 570105, P.R. China
| |
Collapse
|
136
|
Lee JE, Cho SG, Ko SG, Ahrmad SA, Puga A, Kim K. Regulation of a long noncoding RNA MALAT1 by aryl hydrocarbon receptor in pancreatic cancer cells and tissues. Biochem Biophys Res Commun 2020; 532:563-569. [PMID: 32900487 DOI: 10.1016/j.bbrc.2020.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Environmental toxicants such as dioxins and polycyclic aromatic carbons are risk factors for pancreatitis and pancreatic cancer. These toxicants activate aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, of which activation regulates many downstream biological events, including xenobiotic metabolism, inflammation, and cancer cell growth and transformation. Here, we identified that environmental toxicant-activated AHR increased expression of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in pancreatic cancer cells and pancreatic tissues. The MALAT1 is a long noncoding (lnc) RNA which interacts with Enhancer of Zeste 2 (EZH2), a histone methyltransferase with epigenetic silencer activity, and the MALAT1-EZH2 interaction increased its epigenetic silencing activity. In contrast, AHR antagonist, CH223191 or resveratrol, counteracted the AHR-mediated MALAT1 induction and MALAT1-enahnced EZH2 activity. Collectively, these results revealed a novel pathway of how environmental exposure leads to epigenetic alteration via activation of AHR-MALAT1-EZH2 signaling axis under pancreatic tissue- and cancer cell-context.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Environmental and Public Health Sciences, College of Medicine University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, United States
| | - Sung-Gook Cho
- Division of Food and Biotechnology, College of Health and Life Sciences, Korea National University of Transportation, Jeungpyeong, Chungbuk, 27909, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130701, South Korea
| | - Syed A Ahrmad
- Department of Surgery, College of Medicine University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, United States
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, College of Medicine University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, United States
| | - Kyounghyun Kim
- Department of Environmental and Public Health Sciences, College of Medicine University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, United States.
| |
Collapse
|
137
|
Gong A, Zhao X, Pan Y, Qi Y, Li S, Huang Y, Guo Y, Qi X, Zheng W, Jia L. The lncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation. J Cell Sci 2020; 133:jcs244020. [PMID: 32737220 DOI: 10.1242/jcs.244020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of cancer progression. Abnormal sialylation leads to renal cell carcinoma (RCC) malignancy. However, the mechanism by which the lncRNA maternally expressed gene 3 (MEG3) mediates RCC progression by regulating ST3Gal1 transcription and EGFR sialylation is still unrevealed. Here, we found that the expression of MEG3 was higher in adjacent tissues than in RCC tissues, as well as downregulated in RCC cell lines compared to expression in normal renal cells. The proliferation, migration and invasion of RCC cells transfected with MEG3 was decreased, whereas knockdown of MEG3 had the opposite effect. The proliferative and metastatic abilities of RCC cells in vivo were concordant with their behavior in vitroST3Gal1 expression was dysregulated in RCC and was positively correlated with MEG3 By applying bioinformatics, c-Jun (also known as JUN) was identified as a transcription factor predicted to bind the promoter of ST3Gal1, and altered MEG3 levels resulted in changes to c-Jun expression. Furthermore, ST3Gal1 modulated EGFR sialylation to inhibit EGFR phosphorylation, which affected activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway. Taken together, our findings provide a novel mechanism to elucidate the role of the MEG3-ST3Gal1-EGFR axis in RCC progression.
Collapse
Affiliation(s)
- Aihong Gong
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Clinical Laboratory, Dermatology Hospital of Dalian, Dalian 116000, Liaoning Province, China
| | - Xinyu Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yu Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Shuangda Li
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yiran Huang
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yanru Guo
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xia Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Wei Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
138
|
Song Y, Guo NH, Zheng JF. LncRNA-MALAT1 regulates proliferation and apoptosis of acute lymphoblastic leukemia cells via miR-205-PTK7 pathway. Pathol Int 2020; 70:724-732. [PMID: 32754978 DOI: 10.1111/pin.12993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022]
Abstract
Long non-coding RNA (lncRNA) MALAT1 has been confirmed to function as an oncogene in various solid tumors. MALAT1 level has been shown to be upregulated in relapsed acute lymphoblastic leukemia (ALL) patients, but the mechanism is unclear. This study aims to investigate the functional roles and underlying mechanisms of MALAT1 in ALL. MALAT1 and miR-205 expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). MTT assay and flow cytometry were performed to evaluate cell proliferation and apoptosis, respectively. Protein level of protein tyrosine kinase-7 (PTK7) was detected by Western blot assay. Dual luciferase reporter assay was conducted to confirm the binding of MALAT1 and miR-205, as well as miR-205 and PTK7. The levels of MALAT1 and PTK7 were upregulated in ALL samples. In contrast, miR-205 level was downregulated in ALL in ALL samples. Moreover, MALAT1 silencing or miR-205 overexpression restrained proliferation and promoted apoptosis of ALL cells. Mechanistically, MALAT1 sponged miR-205 to regulate PTK7 expression. In summary, MALAT1 affected ALL cell proliferation and apoptosis via regulating miR-205-PTK7 axis. Our results suggest that MALAT1-miR-205-PTK7 axis participates in the proliferation and apoptosis of ALL, which may provide a potential treatment target for ALL.
Collapse
Affiliation(s)
- Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ning-Hong Guo
- Institutional Office, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Fu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
139
|
Wang H, Niu X, Jiang H, Mao F, Zhong B, Jiang X, Fu G. Long non-coding RNA DLX6-AS1 facilitates bladder cancer progression through modulating miR-195-5p/VEGFA signaling pathway. Aging (Albany NY) 2020; 12:16021-16034. [PMID: 32756011 PMCID: PMC7485696 DOI: 10.18632/aging.103374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we aim at investigating the expression and regulation role of long non-coding RNA (lncRNA) DLX6-AS1 in bladder cancer (BC). DLX6-AS1 was highly expressed in BC tissues and significant negative correlation with the 5-year survival in the BC patients. The results showed that the proliferation, migration and invasion activities of BC cells were promoted by DLX6-AS1 overexpression, while cell apoptosis was repressed. However, knockdown DLX6-AS1 presented an pposite regulatory effect, and DLX6-AS1 knockdown delayed tumor in vivo. The potential target of DLX6-AS1 in BC was predicted and verified by RIP, RNA pull-down, and dual-luciferase reporter assays as miR-195-5p. The results showed that miR-195-5p was down-regulated in BC tissues, the expression of which was significantly negative correlated with DLX6-AS1 expression. In addition, the results also showed that miR-195-5p targeted and down-regulated the VEGFA. Knockdown of DLX6-AS1 up-regulated miR-195-5p expression and down-regulated VEGFA expression. Moreover, down-regulation of VEGFA expression caused by DLX6-AS1 inhibited phosphorylation of Raf-1, MEK1/2, and ERK1/2, while miR-195-5p inhibitors abolished the effect of silencing DLX6-AS1 expression. Our study demonstrated that DLX6-AS1 played an oncogenic role in BC through miR-195-5p-mediated VEGFA/Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Hengbing Wang
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Xiaobing Niu
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Hesong Jiang
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Xi Jiang
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| |
Collapse
|
140
|
Leite ML, Oliveira KBS, Cunha VA, Dias SC, da Cunha NB, Costa FF. Epigenetic Therapies in the Precision Medicine Era. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michel Lopes Leite
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | | | - Victor Albuquerque Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
- Animal Biology DepartmentUniversidade de Brasília UnB, Campus Darcy Ribeiro. Brasilia DF 70910‐900 Brazil
| | - Nicolau Brito da Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Fabricio F. Costa
- Cancer Biology and Epigenomics ProgramAnn & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- MATTER Chicago 222 W. Merchandise Mart Plaza, Suite 12th Floor Chicago IL 60654 USA
- Genomic Enterprise (www.genomicenterprise.com) San Diego, CA 92008 and New York NY 11581 USA
| |
Collapse
|
141
|
Lu C, Yang M, Li M, Li Y, Wu FX, Wang J. Predicting Human lncRNA-Disease Associations Based on Geometric Matrix Completion. IEEE J Biomed Health Inform 2020; 24:2420-2429. [DOI: 10.1109/jbhi.2019.2958389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
142
|
Zhang Y, Guan X, Wang H, Wang Y, Yue D, Chen R. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 regulates renal cancer cell migration via cofilin-1. Oncol Lett 2020; 20:53. [PMID: 32788940 PMCID: PMC7416383 DOI: 10.3892/ol.2020.11914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is upregulated in numerous types of cancer, and is implicated in various cellular processes associated with cancer progression. However, the underlying molecular mechanisms by which MALAT1 regulates metastasis remain unclear. The present study investigated the expression of MALAT1 across a range of different cancer types by analyzing RNA sequencing data from The Cancer Genome Atlas database. The results indicate that the expression of MALAT1 is highly tissue-dependent and that MALAT1 is significantly overexpressed in renal clear cell carcinoma (KIRC). The biological role of MALAT1 in regulating KIRC cell migration was further investigated using molecular and cellular assays. The results demonstrate that MALAT1 regulates the expression of cofilin-1 (CFL1), potentially by regulating RNA splicing. MALAT1 knockdown decreased the expression of CFL1 at both the mRNA and protein levels, and affected cytoskeletal rearrangement by regulating the levels of F-actin via CFL1, leading to significantly decreased cellular migration. Clinical analysis confirmed a significant correlation between MALAT1 and CFL1 expression, implicating both genes as biomarkers for poor prognosis in KIRC. The present study demonstrates a novel mechanism by which MALAT1 regulates cell migration, which may be exploited to develop novel therapeutic strategies for managing renal cancer metastasis.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China.,School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, P.R. China
| | - Xinyu Guan
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China.,School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, P.R. China
| | - Hao Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China.,School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, P.R. China
| | - Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300070, P.R. China
| | - Dan Yue
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
143
|
Li D, Li C, Chen Y, Teng L, Cao Y, Wang W, Pan H, Xu Y, Yang D. LncRNA HOTAIR induces sunitinib resistance in renal cancer by acting as a competing endogenous RNA to regulate autophagy of renal cells. Cancer Cell Int 2020; 20:338. [PMID: 32760216 PMCID: PMC7379791 DOI: 10.1186/s12935-020-01419-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023] Open
Abstract
Background Cell autophagy has been proposed to be involved in drug resistance therapy. However, how the long non-coding RNA (lncRNA) reduces risks of drug resistance in renal cancer (RC) cells needs a thorough inquiry. This study was assigned to probe the effect and mechanism of HOTAIR on sunitinib resistance of RC. Methods Clinical RC tissues and para-carcinoma tissues were obtained to detect the expressions of miR-17-5p, HOTAIR and Beclin1. Sunitinib-resistant cells (786-O-R and ACHN-R) were constructed using parental RC cells (786-O and ACHN). The resistance of 786-O-R and ACHN-R cells to sunitinib was examined. Western blot and qRT-PCR were assayed to obtain the expressions of miR-17-5p, HOTAIR and Beclin1. The effects of HOTAIR knockdown or miR-17-5p overexpression/knockdown on cell autophagy and sunitinib resistance were measured by MDC staining, immunofluorescence and Western blot. The sensitivity of RC cells to sunitinib and change in cell clone formation after sunitinib treatment were assessed by CCK-8 assay and colony formation assay, respectively. The relationships among HOTAIR, miR-17-5p and Beclin1 were verified by dual-luciferase reporter gene and RIP assay. The role of HOTAIR knockdown in sunitinib resistance was verified in nude mice. Results HOTAIR expression in sunitinib-resistant cells is higher than that in parental cells. Knockdown of HOTAIR in sunitinib-resistant cells lead to refrained sunitinib resistance and cell autophagy both in vivo and in vitro. Activation of autophagy could raise resistance to sunitinib in RC cells, while inhibition of autophagy could improve the sensitivity of sunitinib-resistant cells to sunitinib. HOTAIR could compete with miR-17-5p to regulate Beclin1 expression. Knockdown of miR-17-5p in parental cells increases cell resistant to sunitinib, and overexpression of miR-17-5p in sunitinib-resistant cells increases cell sensitive to sunitinib. Conclusion HOTAIR negatively targets miR-17-5p to activate Beclin1-mediated cell autophagy, thereby enhancing sunitinib resistance in RC cells.
Collapse
Affiliation(s)
- Dechao Li
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Changfu Li
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Yongsheng Chen
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Lichen Teng
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Yan Cao
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Wentao Wang
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Hongxin Pan
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Yongpeng Xu
- Department of Urological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086 Heilongjiang People's Republic of China
| | - Dan Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| |
Collapse
|
144
|
Wang Z, Chang X, Zhu G, Gao X, Chang L. Depletion of lncRNA MALAT1 inhibited sunitinib resistance through regulating miR-362-3p-mediated G3BP1 in renal cell carcinoma. Cell Cycle 2020; 19:2054-2062. [PMID: 32663095 DOI: 10.1080/15384101.2020.1792667] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) contributes to chemotherapy resistance in some cancers, but the role of MALAT1 in sunitinib (SU) chemoresistance of carcinoma (RCC) is still unknown. In this study, MALAT1 expression in SU-resistance tumor tissues and cells was tested by qRT-PCR. Then, CCK-8, Annexin V-FITC/PI, transwell, and Western blotting assays were used to evaluate cell viability and IC50, apoptosis, cell invasion, and resistance of SU-resistance RCC cells after transfected with small interfering RNA against MALAT1. Further, RNA pull-down and luciferase reporter assay were applied to investigate the underlying mechanism of MALAT1 in SU resistance. The results showed that MALAT1 expression was dramatically upregulated in SU-resistance RCC tissues and cell lines. Knockdown of MALAT1 inhibited proliferation, invasion, and SU chemoresistance, but induced apoptosis in RCC cells. The results of RNA pull-down and luciferase reporter assay indicated that MALAT1 could interact with miR-362-3p and miR-362-3p interact with RasGAP SH3-domain-Binding Protein 1 (G3BP1). Moreover, G3BP1 also played a role in SU chemoresistance of RCC cells, and MALAT1 could perform as a miR-362-3p sponge to modulate G3BP1 expression. Rescue experiments suggested that downregulation of miR-362-3p and overexpression of G3BP1 can reverse the SU chemosensitivity of MALAT1 knockdown in RCC cells. In conclusion, depletion of LncRNA MALAT1 inhibited SU chemoresistance through modulating G3BP1 via sponging miR-362-3p in RCC cells, suggesting that targeting MALAT1 may be a potential therapeutic strategy for SU-resistance RCC.
Collapse
Affiliation(s)
- Zhujuan Wang
- Department of Nephrology , Yulin No. 2 Hospital, Yulin City, Shaanxi Province, China
| | - Xiong Chang
- Department of Nephrology , Yulin No. 2 Hospital, Yulin City, Shaanxi Province, China
| | - Guannan Zhu
- Department of Nephrology , Yulin No. 2 Hospital, Yulin City, Shaanxi Province, China
| | - Xiaoting Gao
- Department of Nephrology , Yulin No. 2 Hospital, Yulin City, Shaanxi Province, China
| | - Luyuan Chang
- Department of Nephrology , Yulin No. 2 Hospital, Yulin City, Shaanxi Province, China
| |
Collapse
|
145
|
The long noncoding RNA EMBP1 inhibits the tumor suppressor miR-9-5p and promotes renal cell carcinoma tumorigenesis. Nefrologia 2020; 40:429-439. [DOI: 10.1016/j.nefro.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022] Open
|
146
|
Lv D, Xiang Y, Yang Q, Yao J, Dong Q. Long Non-Coding RNA TUG1 Promotes Cell Proliferation and Inhibits Cell Apoptosis, Autophagy in Clear Cell Renal Cell Carcinoma via MiR-31-5p/FLOT1 Axis. Onco Targets Ther 2020; 13:5857-5868. [PMID: 32606796 PMCID: PMC7311099 DOI: 10.2147/ott.s254634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose Clear cell renal cell carcinoma (ccRCC) is a common urological carcinoma in adults. Long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) has been reported to be involved in the progression of diverse human cancers, including renal cell carcinoma (RCC). However, the biological mechanism of TUG1 was rarely reported in ccRCC. Methods The levels of TUG1, microRNA miR-31-5p and flotillin 1 (FLOT1) in ccRCC tissues and cells were detected by qRT-PCR. The interactions between miR-31-5p and TUG1 or FLOT1 were predicted by starBase v2.0 and TargetScan, respectively, which were further validated by RIP assay and RNA pull-down assay. Cell counting kit-8 (CCK-8), flow cytometry and Western blot were used to assess the effects of TUG1 on cell viability, apoptosis rate and the relative protein expression levels in ccRCC cells. In addition, the xenograft tumor assay was conducted to further verify the functions of TUG1 in ccRCC in vivo. Results TUG1 was dramatically up-regulated in ccRCC tissues and cells. TUG1 silencing inhibited cell proliferation and promoted cell apoptosis, autophagy in 786-0 and A498 cells. In addition, TUG1 depletion repressed tumor growth in vivo. Moreover, miR-31-5p was validated as a direct target of TUG1, and microRNA miR-31-5p inhibitor mitigated the effects of TUG1 knockdown on ccRCC progression. Furthermore, FLOT1 was verified to be negatively interacted with miR-31-5p. FLOT1 overexpression attenuated miR-31-5p-mediated inhibitory effect on cell proliferation and promotion effects on cell apoptosis, autophagy. The restoration experiment implicated that TUG1 positively modulated FLOT1 expression by sponging miR-31-5p. Conclusion All data demonstrated that TUG1 promotes cell proliferation and inhibits cell apoptosis and autophagy in ccRCC by miR-31-5p/FLOT1 axis, which may provide a therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Dong Lv
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Ying Xiang
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qi Yang
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Juncheng Yao
- Department of Urology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
147
|
Down-regulation of lncRNA MALAT1 alleviates vascular lesion and vascular remodeling of rats with hypertension. Aging (Albany NY) 2020; 11:5192-5205. [PMID: 31343412 PMCID: PMC6682528 DOI: 10.18632/aging.102113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Objective: Recently, the effect of long non-coding RNAs (lncRNAs) in hypertension (HTN) has been identified. This study aims to explore the expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HTN and its role in vascular lesion and remodeling of HTN rats. Results: LncRNA MALAT1 expression was up-regulated in HTN patients, and lncRNA MALAT1 could be an effective index of HTN diagnosis. Down-regulated MALAT1 and inhibited Notch-1 could reduce relative factor expression, including inflammation-related factors, endothelial function-related factors and oxidative stress-related factors, and inhibit apoptosis of aortic endothelial cells of HTN rats. Methods: LncRNA MALAT1 expression in HTN patients and healthy controls was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Angiotensin II (Ang II)-induced HTN rat models were injected with MALAT1-siRNA, empty lentivirus vector, Notch pathway inhibitor (DAPT) and dimethyl sulphoxide (DMSO) via caudal vein. After three-week treatment, changes of blood pressure, inflammatory factor levels, endothelial function-related factors, oxidative stress indices and apoptosis of vascular endothelial cells were determined by a series of assays. Conclusion: This study revealed that down-regulated lncRNA MALAT1 could alleviate the vascular lesion and remodeling of HTN rats, the mechanism may be related to the inhibited activation of Notch signaling pathway.
Collapse
|
148
|
Ergun S, Gunes S, Buyukalpelli R, Aydin O. Association of Abl interactor 2, ABI2, with platelet/lymphocyte ratio in patients with renal cell carcinoma: A pilot study. Int J Exp Pathol 2020; 101:87-95. [PMID: 32496656 DOI: 10.1111/iep.12349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
There are many unknown aspects of the pathogenesis of renal cell carcinoma (RCC). The aim of the current study was to define new RCC-related genes and measure their associations with RCC and clinical parameters, especially platelet/lymphocyte ratio which may be an independent predictor of prognosis in patients with RCC and other forms of cancer. Via in silico analysis upon RCC-specific deleted genes in chromosome 3, four possible ceRNAs (ATXN3, ABI2, GOLGB1 and SMAD2) were identified. Then, the expression levels of these genes in tumour and adjacent healthy kidney tissues of 19 RCC patients were determined by real-time PCR. ATXN3 and GOLGB1 gene expression levels increased but ABI2 gene expression level decreased in tumour kidney tissues when compared to normal ones. ATXN3, ABI2 and GOLGB1 gene expression levels were significantly higher in Fuhrman grade 4 than other grades (P < .001). ABI2 gene expression levels were significantly associated with higher platelet/lymphocyte ratio of the patients with RCC (P < .05). ATXN3, ABI2 and GOLGB1 may predict higher RCC grades. Also, ABI2 may regulate platelet/lymphocyte ratio which may be an independent predictor of RCC and other forms of cancer.
Collapse
Affiliation(s)
- Sercan Ergun
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Recep Buyukalpelli
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Oguz Aydin
- Department of Pathology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
149
|
Lei L, Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther 2020; 21:717-725. [PMID: 32432954 DOI: 10.1080/15384047.2020.1764318] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Emerging evidence had highlighted that exosomes could mediate cell-cell communication in human cancerous development via transferring the various molecular cargos, including long non-coding RNA (lncRNA). Taurine up-regulated 1 (TUG1) was previously reported as an oncogenic lncRNA in cervical cancer (CC) via facilitating cell proliferation and other vital biological behaviors. Nevertheless, the presence of TUG1 in exosomes and the functional regulation of exosomal TUG1 in CC are still elusive. The current study aimed at the communication between CC cell lines and endothelial cell-mediated by exosomes, as well as the roles of exosomes derived from CC cells and exosomal TUG1 in affecting angiogenesis. Initially, it was found that TUG1 expression was upregulated in both CC cells and their secreted exosomes. TUG1 was transferred from CC cells to recipient human umbilical vein endothelial cells (HUVECs) in the exosomes way. Interestingly, TUG1 depletion impaired the exosomes-mediated proangiogenic potential of HUVECs by modulating certain key angiogenesis-related genes. In addition, exosomal TUG1 contributed to HUVECs proliferation through suppressing caspase-3 activity and impacting apoptosis-related proteins. Collectively, we identified a new exosomes-mediated molecular mechanism by which CC cells transferred TUG1 via exosomes to recipient HUVECs, thus promoting angiogenesis, providing a promising target for early diagnosis of CC.
Collapse
Affiliation(s)
- Lei Lei
- Department of Three Wards of Department of Gynecology Oncology, Shaanxi Provincial Cancer Hospital , Xi'an, Shaanxi, China
| | - Qinwei Mou
- Department of Gynecology, Baoji Maternal and Children Health Care Hospital , Baoji, Shaanxi, China
| |
Collapse
|
150
|
Cao Q, Li P, Cao P, Qian J, Du M, Li L, Wang M, Qin C, Shao P, Zhang Z, Lu Q, Wang Z. Genetic Variant in Long Non-Coding RNA H19 Modulates Its Expression and Predicts Renal Cell Carcinoma Susceptibility and Mortality. Front Oncol 2020; 10:785. [PMID: 32509581 PMCID: PMC7251175 DOI: 10.3389/fonc.2020.00785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
The long non-coding RNA (lncRNA) H19 has been demonstrated to play a crucial role in carcinogenesis, including renal cell carcinoma (RCC). However, the impact of genetic variations in H19 gene on RCC has not been investigated before. In the present study, we sought to evaluate whether genetic polymorphisms in H19 are related to the susceptibility and mortality of RCC. We genotyped four widely studied polymorphisms in H19 and assessed their relationship with susceptibility and prognosis of RCC in a case-control study compromising 1,027 cases and 1,094 controls. The functionality of the important polymorphism was further investigated by real-time polymerase chain reaction and luciferase reporter assay. We found that H19 rs2839698 was significantly associated with risk and prognosis of RCC. Compared with the H19 rs2839698 CC genotype, the variant genotypes (CT/TT) were significantly associated with increased risk of RCC (P = 0.023, OR = 1.21; 95% CI = 1.03–1.45). Besides, patients with variant genotypes (CT/TT) were more likely to develop large tumor (P = 0.003, OR = 1.47; 95% CI = 1.16–1.85) and advanced disease (P = 0.010, OR = 1.59; 95% CI = 1.12–2.26); and had a significantly unfavorable overall survival than those with the rs2839698 CC genotype (CT/TT vs. CC: Log-rank P = 0.026, HR = 2.25, 95%CI = 1.07–4.75). Furthermore, the CT/TT genotypes were associated with significantly increased expression of H19 in renal tissue. The luciferase reporter assays revealed the potential effect of rs2839698 variant on the binding of microRNAs to H19. Our results suggest that the H19 rs2839698 variant may be a genetic predictor of susceptibility and mortality of RCC. The risk effects and the functional impact of the variant on H19 still need further validation.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Cao
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Qian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Molecular & Genetic Toxicology, Nanjing Medical University, Nanjing, China
| | - Li Li
- Department of Ultrasound, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meilin Wang
- Department of Molecular & Genetic Toxicology, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Molecular & Genetic Toxicology, Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|