101
|
Zhu L, Zhang YJ, Wang B, Yang L, Zheng YQ, Sun LD, Tian L, Chen T, Wang JD. PCDHB17P/miR-145-3p/MELK/NF-κB Feedback Loop Promotes Metastasis and Angiogenesis of Breast Cancer. Front Oncol 2021; 11:660307. [PMID: 34350110 PMCID: PMC8327775 DOI: 10.3389/fonc.2021.660307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common life-threatening cancers, mainly because of its aggressiveness and metastasis. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) participate in the development and progression of breast cancer. Nevertheless, the function and expression level of lncRNAs in breast cancer are still not fully understood. Here, we demonstrated that lncRNA PCDHB17P was up-expressed in human breast cancer tissues and cell lines. Knockdown of PCDHB17P remarkably suppressed migration and invasion, as well as tube formation ability of breast cancer cells. MiR-145-3p was significantly decreased in breast cancer samples, which was negatively correlated to the expression of PCDHB17P. In addition, we identified that MELK was a direct target gene of miR-145-3p, which was higher expressed in breast cancer tissues than that in adjacent normal tissues. Mechanistic investigation indicated that PCDHB17P acted as a cancer-promoting competing endogenous RNA (ceRNA) by binding miR-145-3p and upregulating MELK. Interestingly, MELK could in turn increase the promoter activity and expression of PCDHB17P via NF-κB, thus forming a positive feedback loop that drives the metastasis and angiogenesis of breast cancer. Overall, the results demonstrated that the constitutive activation of PCDHB17P/miR-145-3p/MELK/NF-κB feedback loop promotes the metastasis and angiogenesis of breast cancer, suggesting that this lncRNA might be a promising prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Li Zhu
- Department of General Surgery, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Yan-Jun Zhang
- Department of General Surgery, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Bin Wang
- Department of General Surgery, The Second Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Li Yang
- Department of General Surgery, Beijing Shunyi Hospital, Beijing, China
| | - Yi-Qiong Zheng
- Department of General Surgery, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Lin-De Sun
- Department of General Surgery, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Lin Tian
- Department of General Surgery, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Tao Chen
- Department of Cardiology, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| | - Jian-Dong Wang
- Department of General Surgery, The First Medical Center of Peoples Liberation Army General Hospital, Beijing, China
| |
Collapse
|
102
|
Son SW, Yun BD, Song MG, Lee JK, Choi SY, Kuh HJ, Park JK. The Hypoxia-Long Noncoding RNA Interaction in Solid Cancers. Int J Mol Sci 2021; 22:ijms22147261. [PMID: 34298879 PMCID: PMC8307739 DOI: 10.3390/ijms22147261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs. In this review, we focus attention on the relationship between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate molecules for controlling cancer.
Collapse
Affiliation(s)
- Seung Wan Son
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Ba Da Yun
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Mun Gyu Song
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Jin Kyeong Lee
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
103
|
Kong X, Li J, Li Y, Duan W, Qi Q, Wang T, Yang Q, Du L, Mao H, Wang C. A novel long non-coding RNA AC073352.1 promotes metastasis and angiogenesis via interacting with YBX1 in breast cancer. Cell Death Dis 2021; 12:670. [PMID: 34218256 PMCID: PMC8254808 DOI: 10.1038/s41419-021-03943-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Breast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Tiantian Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.,Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, Shandong, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China. .,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, Shandong, China. .,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, Shandong, China.
| |
Collapse
|
104
|
Wu D, Ding Y, Fan J. Bioinformatics Analysis of Autophagy-related lncRNAs in Esophageal Carcinoma. Comb Chem High Throughput Screen 2021; 25:1374-1384. [PMID: 34170806 DOI: 10.2174/1386207324666210624143452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Esophageal carcinoma (ESCA) is a malignant tumor with high invasiveness and mortality. Autophagy has multiple roles in the development of cancer; however, there are limited data on autophagy genes associated with long non-coding RNAs (lncRNAs) in ESCA. The purpose of this study was to screen potential diagnostic and prognostic molecules and to identify gene co-expression networks associated with autophagy in ESCA. METHODS We downloaded transcriptome expression profiles from The Cancer Genome Atlas and autophagy-related gene data from the Human Autophagy Database and analyzed the co-expression of mRNAs and lncRNAs. In addition, the diagnostic and prognostic value of autophagy-related lncRNAs was analyzed by multivariate Cox regression. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was carried out for high-risk patients, and enriched pathways were analyzed by gene set enrichment analysis. RESULTS The results showed that genes of high-risk patients were enriched in protein export and spliceosome. Based on Cox stepwise regression and survival analysis, we identified seven autophagy-related lncRNAs with prognostic and diagnostic value, with the potential to be used as a combination to predict the prognosis of patients with ESCA. Finally, a co-expression network related to autophagy was constructed. CONCLUSION These results suggest that autophagy-related lncRNAs and the spliceosome play important parts in the pathogenesis of ESCA. Our findings provide new insight into the molecular mechanism of ESCA and suggest a new method for improving its treatment.
Collapse
Affiliation(s)
- Dan Wu
- Department of Anesthesiology, Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - JunBai Fan
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| |
Collapse
|
105
|
3D Multicellular Stem-Like Human Breast Tumor Spheroids Enhance Tumorigenicity of Orthotopic Xenografts in Athymic Nude Rat Model. Cancers (Basel) 2021; 13:cancers13112784. [PMID: 34205080 PMCID: PMC8199968 DOI: 10.3390/cancers13112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). Breast CSCs can induce the formation of new blood vessels at the site of tumor growth and a develop metastatic phenotype by enhancing a stromal cell response, similar to that of the primary breast cancer. The aim of this study was to investigate breast cancer cells cultured in stromal stem cell factor-supplemented media to generate 3D spheroids that exhibit increased stem-like properties. These 3D stem-like spheroids reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat. This approach enables a means to develop orthotopic tumors with a stem-like phenotype in a larger athymic rat rodent model of human breast cancer. Abstract Therapeutic targeting of stem cells needs to be strategically developed to control tumor growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). The development of 3D stem-like properties of human breast tumor spheroids in stem cell factor conditioned media was investigated in orthotopic xenografts for enhanced tumorgenicity in the athymic nude rat model. MCF-7, ZR-75-1, and MDA-MB-231 breast cancer cell lines were cultured in serum-free, stem cell factor-supplemented medium under non-adherent conditions and passaged to generate 3rd generation spheroids. The spheroids were co-cultured with fetal lung fibroblast (FLF) cells before orthotopic heterotransplantation into the mammary fat pads of athymic nude rats. Excised xenografts were assessed histologically by H&E staining and immunohistochemistry for breast cancer marker (ERB1), proliferation marker (Ki67), mitotic marker (pHH3), hypoxia marker (HIF-2α), CSC markers (CD47, CD44, CD24, and CD133), and vascularization markers (CD31, CD34). Breast cancer cells cultured in stem cell factor supplemented medium generated 3D spheroids exhibited increased stem-like characteristics. The 3D stem-like spheroids co-cultured with FLF as supporting stroma reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat.
Collapse
|
106
|
Kim BC, Kim J, Kim K, Byun BH, Lim I, Kong CB, Song WS, Koh JS, Woo SK. Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDF PET/CT, EZRIN and KI67. Cancers (Basel) 2021; 13:cancers13112671. [PMID: 34071614 PMCID: PMC8198322 DOI: 10.3390/cancers13112671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Pediatric osteosarcoma is one of the most aggressive cancers, and predictions of metastasis and chemotherapy response have a significant impact on pediatric patient survival. Radiogenomics, as methods of analyzing gene expression or image texture features, have previously been used for the diagnosis of chemotherapy responses and metastasis and can reveal the current state of cancer. In this study, we aimed to generate a predictive model using gene expression and 18F-FDG PET/CT image texture features in pediatric osteosarcoma in relation to metastasis and chemotherapy response. A predictive model using radiogenomics technology that incorporates both imaging features and gene expression can accurately predict metastasis and chemotherapy responses to improve patient outcomes. Abstract Chemotherapy response and metastasis prediction play important roles in the treatment of pediatric osteosarcoma, which is prone to metastasis and has a high mortality rate. This study aimed to estimate the prediction model using gene expression and image texture features. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of 52 pediatric osteosarcoma patients were used to estimate the machine learning algorithm. An appropriate algorithm was selected by estimating the machine learning accuracy. 18F-FDG PET/CT images of 21 patients were selected for prediction model development based on simultaneous KI67 and EZRIN expression. The prediction model for chemotherapy response and metastasis was estimated using area under the curve (AUC) maximum image texture features (AUC_max) and gene expression. The machine learning algorithm with the highest test accuracy in chemotherapy response and metastasis was selected using the random forest algorithm. The chemotherapy response and metastasis test accuracy with image texture features was 0.83 and 0.76, respectively. The highest test accuracy and AUC of chemotherapy response with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.89, respectively. The highest test accuracy and AUC of metastasis with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.8, respectively. The metastasis prediction accuracy increased by 10% using radiogenomics data.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Jingyu Kim
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
| | - Kangsan Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Chang-Bae Kong
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea; (C.-B.K.); (W.S.S.)
| | - Won Seok Song
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea; (C.-B.K.); (W.S.S.)
| | - Jae-Soo Koh
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Sang-Keun Woo
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
- Correspondence: ; Tel.: +82-2-970-1659
| |
Collapse
|
107
|
Sun M, Zhang Y, Qin J, Ba M, Yao Y, Duan Y, Liu H, Yu D. Synthesis and biological evaluation of new 2-methoxyestradiol derivatives: Potent inhibitors of angiogenesis and tubulin polymerization. Bioorg Chem 2021; 113:104988. [PMID: 34034135 DOI: 10.1016/j.bioorg.2021.104988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Here, we report the structural optimization of a hit natural compound, 2-ME2 (2-methoxyestradiol), which exhibited inhibitory activity but low potency on tubulin polymerization, anti- angiogenesis, MCF-7 proliferation and metastasis in vitro and in vivo. A novel series of 3,17-modified and 17-modified analogs of 2-ME2 were synthesized and investigated for their antiproliferative activity against MCF-7 and another five different human cancer cell lines leading to the discovery of 9i. 9i bind to tubulin colchicine site tightly, inhibited tubulin polymerization and disrupted cellular microtubule networks. Cellular mechanism studies revealed that 9i could induce G2/M phase arrest by down-regulated expression of p-Cdc2, P21 and cell apoptosis by regulating apoptosis-related proteins (Parp, Caspase families) in a dose-dependent manner. Importantly, 9i significantly inhibited HUVEC tube formation, proliferation, migration and invasion. The inhibitory effect against angiogenesis in vivo was confirmed by zebrafish xenograft. Furthermore, 9i could effectively inhibit the proliferation and metastasis of MCF-7 cells in vitro and in zebrafish xenograft. The satisfactory physicochemical property and metabolic stability of 9i further indicated that it can act as a promising and potent anti-angiogenesis, inhibiting proliferation and metastasis of breast cancer agent via targeting tubulin colchicine binding site.
Collapse
Affiliation(s)
- Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jinling Qin
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengyu Ba
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Dequan Yu
- Chinese Academy of Medical Sciences, Beijing 100021,China
| |
Collapse
|
108
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|
109
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|
110
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
111
|
The miR-1185-2-3p-GOLPH3L pathway promotes glucose metabolism in breast cancer by stabilizing p53-induced SERPINE1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:47. [PMID: 33509226 PMCID: PMC7842049 DOI: 10.1186/s13046-020-01767-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
Background Phosphatidylinositol-4-phosphate-binding protein GOLPH3L is overexpressed in human ductal carcinoma of the breast, and its expression levels correlate with the prognosis of breast cancer patients. However, the roles of GOLPH3L in breast tumorigenesis remain unclear. Methods We assessed the expression and biological function of GOLPH3L in breast cancer by combining bioinformatic prediction, metabolomics analysis and RNA-seq to determine the GOLPH3L-related pathways involved in tumorigenesis. Dual-luciferase reporter assay and coimmunoprecipitation (Co-IP) were used to explore the expression regulation mechanism of GOLPH3L. Results We demonstrated that knockdown of GOLPH3L in human breast cancer cells significantly suppressed their proliferation, survival, and migration and suppressed tumor growth in vivo, while overexpression of GOLPH3L promoted aggressive tumorigenic activities. We found that miRNA-1185-2-3p, the expression of which is decreased in human breast cancers and is inversely correlated with the prognosis of breast cancer patients, is directly involved in suppressing the expression of GOLPH3L. Metabolomics microarray analysis and transcriptome sequencing analysis revealed that GOLPH3L promotes central carbon metabolism in breast cancer by stabilizing the p53 suppressor SERPINE1. Conclusions In summary, we discovered a miRNA-GOLPH3L-SERPINE1 pathway that plays important roles in the metabolism of breast cancer and provides new therapeutic targets for human breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01767-9.
Collapse
|
112
|
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, Qiu Y, Teng Y, Liu M. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene 2021; 40:1609-1627. [PMID: 33469161 PMCID: PMC7932928 DOI: 10.1038/s41388-020-01638-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023]
Abstract
The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.
Collapse
Affiliation(s)
- Pengpeng Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Fang He
- Department of pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Li
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Teng
- Department of Oral Biology and Dx Sciences, Dental College of Georgia; Georgia Cancer Center, Augusta University, Augusta, GA, 30907, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
113
|
Ghaffari-Makhmalbaf P, Sayyad M, Pakravan K, Razmara E, Bitaraf A, Bakhshinejad B, Goudarzi P, Yousefi H, Pournaghshband M, Nemati F, Fahimi H, Rohollah F, Hasanzad M, Hashemi M, Mousavi SH, Babashah S. Docosahexaenoic acid reverses the promoting effects of breast tumor cell-derived exosomes on endothelial cell migration and angiogenesis. Life Sci 2021; 264:118719. [PMID: 33159957 DOI: 10.1016/j.lfs.2020.118719] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022]
Abstract
AIM As a natural compound, docosahexaenoic acid (DHA) exerts anti-cancer and anti-angiogenesis functions through exosomes; however, little is known about the molecular mechanisms. MAIN METHODS Breast cancer (BC) cells were treated with DHA (50 μM) and then tumor cell-derived exosomes (TDEs) were collected and characterized by electron microscopy, dynamic light scattering, and western blot analyses. By the time the cells were treated with DHA, RT-qPCR was used to investigate the expression of vascular endothelial growth factor (VEGF) and the selected pro- and anti-angiogenic microRNAs (miRNAs). The quantification of secreted VEGF protein was measured by enzyme-linked immunosorbent assay (ELISA). The effects of TDEs on endothelial cell angiogenesis were explored by transwell cell migration and in vitro vascular tube formation assays. KEY FINDINGS DHA treatment caused a significant and time-dependent decrease in the expression and secretion of VEGF in/from BC cells. This also increased expression of anti-angiogenic miRNAs (i.e. miR-34a, miR-125b, miR-221, and miR-222) while decreased levels of pro-angiogenic miRNAs (i.e. miR-9, miR-17-5p, miR-19a, miR-126, miR-130a, miR-132, miR-296, and miR-378) in exosomes derived from DHA-treated BC cells, TDE (DHA+). While treatment with exosomes (100 μg/ml) obtained from untreated BC cells, TDE (DHA-), enhanced the expression of VEGF-A in human umbilical vein endothelial cells (HUVECs), incubation with DHA or TDE (DHA+) led to the significant decrease of VEGF-A transcript level in these cells. We indicated that the incubation with TDE (DHA+) could significantly decrease endothelial cell proliferation and migration and also the length and number of tubes made by HUVECs in comparison with endothelial cells incubated with exosomes obtained from untreated BC cells. SIGNIFICANCE DHA alters angiogenesis by shifting the up-regulation of exosomal miRNA contents from pro-angiogenic to anti-angiogenic, resulting in the inhibition of endothelial cell angiogenesis. These data can help to figure out DHA's anti-cancer function, maybe its use in cancer therapy.
Collapse
Affiliation(s)
- Parisa Ghaffari-Makhmalbaf
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Sayyad
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parmida Goudarzi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Mahmoud Pournaghshband
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rohollah
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
114
|
Jiang Y, Chen J, Ling J, Zhu X, Jiang P, Tang X, Zhou H, Li R. Construction of a Glycolysis-related long noncoding RNA signature for predicting survival in endometrial cancer. J Cancer 2021; 12:1431-1444. [PMID: 33531988 PMCID: PMC7847640 DOI: 10.7150/jca.50413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: long noncoding RNA (lncRNA) has been widely studied and understood in various cancer types. However, the expression profiles of glycolysis-related lncRNA in endometrial cancer (EC) have poorly been reported. Methods: In this study, we retrieved the "Glycolysis" gene list from Molecular Signatures Database (MSigDB) and screened prognostic glycolysis-related lncRNA using The Cancer Genome Atlas (TCGA) Uterine Corpus Endometrial Carcinoma (UCEC) RNA-seq dataset. Then, TCGA UCEC patients were randomly divided. Lasso algorithm and multivariate cox regression analyses were then performed to further select hub prognostic lncRNA and to develop a prognostic signature. The efficacy of the signature was also evaluated in the TCGA EC cohort. Moreover, we constructed a nomogram to predict EC patient outcomes. Results: Univariate cox analysis identified thirty-six glycolysis-related lncRNA correlated with EC patient prognosis. Among them, five lncRNA were further selected as hub lncRNA that mostly relate to EC patient outcomes, which are AL121906.2, BOLA3-AS1, LINC01833, AC016405.3, and RAB11B-AS1. A prognostic signature was then built based on the expression and coefficiency of five lncRNA. The efficacy of the signature was validated in part of and the entire TCGA EC cohort. In addition, the risk signature could precisely distinguish high- and low-risk EC patients and predict patient outcomes. The nomogram exhibited absolute concordance between the predictions and actual survival observations. Conclusions: The glycolysis-related lncRNA signature model and the nomogram may provide a new perspective for EC patients outcome prediction in clinical use.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210008, China.,Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jingxian Ling
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xianghong Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pinping Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoqiu Tang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huaijun Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210008, China.,Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
115
|
Jin X, Qiao L, Fan H, Liao C, Zheng J, Wang W, Ma X, Yang M, Sun X, Zhao W. Long non-coding RNA MSC-AS1 facilitates the proliferation and glycolysis of gastric cancer cells by regulating PFKFB3 expression. Int J Med Sci 2021; 18:546-554. [PMID: 33390824 PMCID: PMC7757144 DOI: 10.7150/ijms.51947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA musculin antisense RNA 1 (lncRNA MSC-AS1) has been recognized as an oncogene in pancreatic cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, and renal cell carcinoma. However, the functional significance of MSC-AS1 and its underlying mechanism in gastric cancer (GC) progression remain unclear. In this study, we demonstrated that the expression of MSC-AS1 in GC tissues was significantly higher than that in non-tumor tissues. Moreover, the elevated level of MSC-AS1 was detected in GC cells (MKN-45, AGS, SGC-7901, and MGC-803) compared to normal GES-1 gastric mucosal cells. The cancer genome atlas (TCGA) data further indicated that the high level of MSC-AS1 was closely correlated with advanced tumor stage and poor prognosis of GC. Next, we revealed that MSC-AS1 knockdown inhibited the proliferation, glucose consumption, lactate production, and pyruvate production of MGC-803 cells. Conversely, MSC-AS1 overexpression enhanced the proliferation and glycolysis of AGC cells. Mechanistically, modulating MSC-AS1 level affected the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), but did not impact the levels of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2) in GC cells. Based on this, we reversed the MSC-AS1 knockdown-induced the inhibition of cell proliferation and glycolysis by restoring PFKFB3 expression in MGC-803 cells. In conclusion, MSC-AS1 facilitated the proliferation and glycolysis of GC cells by maintaining PFKFB3 expression.
Collapse
Affiliation(s)
- Xianzhen Jin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Lina Qiao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Hui Fan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chunyan Liao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiuqin Ma
- Department of Nursing, Hanzhong Central Hospital, Hanzhong 723000, P.R. China
| | - Min Yang
- Department of Nursing, Xianyang Hospital, Yan'an University, Xianyang 712000, P.R. China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
116
|
Chen L, Bao L, Niu Y, Wang JE, Kumar A, Xing C, Wang Y, Luo W. LncIHAT Is Induced by Hypoxia-Inducible Factor 1 and Promotes Breast Cancer Progression. Mol Cancer Res 2020; 19:678-687. [PMID: 33380467 DOI: 10.1158/1541-7786.mcr-20-0383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Hypoxia induces thousands of mRNAs and miRNAs to mediate tumor malignancy. However, hypoxia-induced long noncoding RNA (lncRNA) transcriptome and their role in triple-negative breast cancer (TNBC) have not been defined. Here we identified hypoxia-induced lncRNA transcriptome in two human TNBC cell lines by whole transcriptome sequencing. AC093818.1 was one of 26 validated lncRNAs and abundantly expressed in TNBC in vitro and in vivo. 5'- and 3'-rapid amplification of cDNA ends assays revealed that the isoform 2 was a dominant AC093818.1 transcript in TNBC cells and thus referred to as lncIHAT (lncRNA induced by hypoxia and abundant in TNBC). Hypoxia-inducible factor 1 (HIF1) but not HIF2 bound to the hypoxia response element at the promoter of lncIHAT to activate its transcription in hypoxic TNBC cells. LncIHAT promoted TNBC cell survival in vitro and tumor growth and lung metastasis in mice. Mechanistically, lncIHAT was required for the expression of its proximal neighboring oncogenic genes PDK1 and ITGA6 in TNBC cells and tumors. Reexpression of PDK1 and ITGA6 rescued survival and growth of lncIHAT knockdown TNBC cells in vitro. Collectively, these findings uncovered lncIHAT as a new hypoxia-induced oncogenic cis-acting lncRNA in TNBC. IMPLICATIONS: This study systematically identified hypoxia-induced lncRNA transcriptome in TNBC and sheds light on multiple layers of regulatory mechanisms of gene expression under hypoxia.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Yanling Niu
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Jennifer E Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas.,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas. .,Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
117
|
Ebahimzadeh K, Shoorei H, Mousavinejad SA, Anamag FT, Dinger ME, Taheri M, Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract 2020; 218:153327. [PMID: 33422780 DOI: 10.1016/j.prp.2020.153327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
Radiotherapy is an effective method for treatment of a large proportion of human cancers. Yet, the efficacy of this method is precluded by the induction of radioresistance in tumor cells and the radiation-associated injury of normal cells surrounding the field of radiation. These restrictions necessitate the introduction of modalities for either radiosensitization of cancer cells or protection of normal cells against adverse effects of radiation. Non-coding RNAs (ncRNAs) have essential roles in the determination of radiosensitivity. Moreover, ncRNAs can modulate radiation-induced side effects in normal cells. Several microRNAs (miRNAs) such as miR-620, miR-21 and miR-96-5p confer radioresistance, while other miRNAs including miR-340/ 429 confer radiosensitivity. The expression levels of a number of miRNAs are associated with radiation-induced complications such as lung fibrosis or oral mucositis. The expression patterns of several long non-coding RNAs (lncRNAs) such as MALAT1, LINC00630, HOTAIR, UCA1 and TINCR are associated with response to radiotherapy. Taken together, lncRNAs and miRNAs contribute both in modulation of response of cancer cells to radiotherapy and in protection of normal cells from the associated side effects. The current review provides an overview of the roles of these transcripts in these aspects.
Collapse
Affiliation(s)
- Kaveh Ebahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
118
|
Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, Liu M, Chen Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol Ther 2020; 221:107783. [PMID: 33307143 DOI: 10.1016/j.pharmthera.2020.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia is a hallmark of cancer. Hypoxia-inducible factor (HIF), a master player for sensing and adapting to hypoxia, profoundly influences genome instability, tumor progression and metastasis, metabolic reprogramming, and resistance to chemotherapies and radiotherapies. High levels and activity of HIF result in poor clinical outcomes in cancer patients. Thus, HIFs provide ideal therapeutic targets for cancers. However, HIF biology is sophisticated, and currently available HIF inhibitors have limited clinical utility owing to their low efficacy or side effects. RNA helicases, which are master players in cellular RNA metabolism, are usually highly expressed in tumors to meet the increased oncoprotein biosynthesis demand. Intriguingly, recent findings provide convincing evidence that RNA helicases are crucial for the adaptive cellular response to hypoxia via a mutual regulation with HIFs. More importantly, some RNA helicase inhibitors may suppress HIF signaling by blocking the translation of HIF-responsive genes. Therefore, RNA helicase inhibitors may work synergistically with HIF inhibitors in cancer to improve treatment efficacy. In this review, we discuss current knowledge of how cells sense and adapt to hypoxia through HIFs. However, our primary focus is on the multiple functions of RNA helicases in the adaptive response to hypoxia. We also highlight how these hypoxia-related RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guangqiang Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingxia Deng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yan Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
119
|
Wang X, Zhao D, Xie H, Hu Y. Interplay of long non-coding RNAs and HIF-1α: A new dimension to understanding hypoxia-regulated tumor growth and metastasis. Cancer Lett 2020; 499:49-59. [PMID: 33217445 DOI: 10.1016/j.canlet.2020.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Hypoxia is a feature of the solid tumor microenvironment that is associated with poor clinical outcomes in multiple tumor types. Hypoxia-induced factor-1 alpha (HIF-1α) is a master regulator of hypoxic adaption, has been demonstrated to modulate hypoxic gene expression profiling and signaling transduction networks, and is thus a potential therapeutic target. Despite hypoxic response signaling having being extensively studied, the involvement of long non-coding RNAs (lncRNAs) in the hypoxic response has become a new focus of attention. Emerging evidence has documented complex interactions between HIF-1α and lncRNAs, which contribute to the acquisition of multiple hallmarks of cancer. In this review, we focus on recent advances in the study of hypoxia and HIF-1α-regulated lncRNAs, and summarize the molecular mechanisms and functional outcomes of the interplay between lncRNAs and HIF-1α, which may provide important insights into cancer diagnosis and prognosis, enabling better control of cancer.
Collapse
Affiliation(s)
- Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, 150001, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, 150001, China; Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
120
|
Abstract
Long noncoding RNAs (lncRNAs) have been found to associate with all major types of malignancies and play important roles in regulating several hallmarks of cancer by interacting with proteins, DNA, and RNA. The possible functions of lncRNAs and their roles in the regulation of tumour growth will be reported and discussed in the present review. In our recent report, based on genetic mice models and a series of systematic analyses, we suggested that lncRNAs also play critical roles in the regulation of antigen presentation in tumour cells and allow tumour cells to escape immune surveillance, which further broadens the scope of understanding lncRNA functions and how they relate to cancer immunotherapy resistance.
Collapse
Affiliation(s)
- Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
121
|
Stackhouse CT, Gillespie GY, Willey CD. Exploring the Roles of lncRNAs in GBM Pathophysiology and Their Therapeutic Potential. Cells 2020; 9:cells9112369. [PMID: 33126510 PMCID: PMC7692132 DOI: 10.3390/cells9112369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) remains the most devastating primary central nervous system malignancy with a median survival of around 15 months. The past decades of research have not yielded significant advancements in the treatment of GBM. In that same time, a novel class of molecules, long non-coding RNAs (lncRNAs), has been found to play a multitude of roles in cancer and normal biology. The increased accessibility of next generation sequencing technologies and the advent of lncRNA-specific microarrays have facilitated the study of lncRNA etiology. Molecular and computational methods can be applied to predict lncRNA function. LncRNAs can serve as molecular decoys, scaffolds, super-enhancers, or repressors. These molecules can serve as phenotypic switches for GBM cells at the expression and/or epigenetic levels. LncRNAs can affect stemness/differentiation, proliferation, invasion, survival, DNA damage response, and chromatin dynamics. Aberrant expression of these transcripts may facilitate therapy resistance, leading to tumor recurrence. LncRNAs could serve as novel theragnostic or prognostic biomarkers in GBM and other cancers. RNA-based therapeutics may also be employed to target lncRNAs as a novel route of treatment for primary or recurrent GBM. In this review, we explore the roles of lncRNAs in GBM pathophysiology and posit their novel therapeutic potential for GBM.
Collapse
Affiliation(s)
- Christian T. Stackhouse
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.T.S.); (G.Y.G.)
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.T.S.); (G.Y.G.)
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Correspondence:
| |
Collapse
|
122
|
Todd VM, Johnson RW. Hypoxia in bone metastasis and osteolysis. Cancer Lett 2020; 489:144-154. [PMID: 32561416 PMCID: PMC7429356 DOI: 10.1016/j.canlet.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a common feature in tumors, driving pathways that promote epithelial-to-mesenchymal transition, invasion, and metastasis. Clinically, high levels of hypoxia-inducible factor (HIF) expression and stabilization at the primary site in many cancer types is associated with poor patient outcomes. Experimental evidence suggests that HIF signaling in the primary tumor promotes their dissemination to the bone, as well as the release of factors such as LOX that act distantly on the bone to stimulate osteolysis and form a pre-metastatic niche. Additionally, the bone itself is a generally hypoxic organ, fueling the activation of HIF signaling in bone resident cells, promoting tumor cell homing to the bone as well as osteoclastogenesis. The hypoxic microenvironment of the bone also stimulates the vicious cycle of tumor-induced bone destruction, further fueling tumor cell growth and osteolysis. Furthermore, hypoxia appears to regulate key tumor dormancy factors. Thus, hypoxia acts both on the tumor cells as well as the metastatic site to promote tumor cell metastasis.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
123
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
124
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
125
|
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Li X, Xiong W. The role of microenvironment in tumor angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:204. [PMID: 32993787 PMCID: PMC7526376 DOI: 10.1186/s13046-020-01709-5] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment—composed of tumor cells, surrounding cells, and secreted cytokines—provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Jie Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Xiangying Deng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China.
| |
Collapse
|
126
|
Teppan J, Barth DA, Prinz F, Jonas K, Pichler M, Klec C. Involvement of Long Non-Coding RNAs (lncRNAs) in Tumor Angiogenesis. Noncoding RNA 2020; 6:E42. [PMID: 32992718 PMCID: PMC7711482 DOI: 10.3390/ncrna6040042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts with a minimal length of 200 nucleotides. They are involved in various biological processes such as cell differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered that frequently deregulated lncRNAs contribute to all hallmarks of cancer including metastasis, drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of lncRNAs are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor microenvironment. Further, angiogenic lncRNAs occurring in several cancer types such as liver, gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of lncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved questions left which are pointed out in this review, hence driving comprehensive research in this area is necessary to enable an effective use of lncRNAs as either therapeutic molecules or diagnostic targets in cancer.
Collapse
Affiliation(s)
- Julia Teppan
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Katharina Jonas
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| |
Collapse
|
127
|
Li S, Hao J, Hong Y, Mai J, Huang W. Long Non-Coding RNA NEAT1 Promotes the Proliferation, Migration, and Metastasis of Human Breast-Cancer Cells by Inhibiting miR-146b-5p Expression. Cancer Manag Res 2020; 12:6091-6101. [PMID: 32801860 PMCID: PMC7382757 DOI: 10.2147/cmar.s252295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer (BC) is the most commonly diagnosed cancer in women. Tumor recurrence and metastasis are the key causes of death in BC patients. Long non-coding RNA (lncRNA) is closely associated with BC progression. lncRNA nuclear-enriched abundant transcript (NEAT)1 has been reported to regulate the proliferation and mobility of several types of cancer cells. However, how lncRNA NEAT1 affects the proliferation and invasion of BC cells is not known. Methods Quantitative real time-polymerase chain reaction (qRT-PCR) was used to measure expression of lncRNA NEAT1 and microRNA (miR)-146b-5p in BC tissues and cell lines. Cell Counting Kit (CCK)-8, cell colony-formation, wound-healing, and Transwell™ assays were undertaken to determine the effects of lncRNA NEAT1 and miR-146b-5p on progression of BC cells. The interaction between lncRNA NEAT1 and miR-146b-5p was examined by luciferase reporter, RNA-binding protein immunoprecipitation (RIP), and RNA-pulldown assays. Results Expression of lncRNA NEAT1 was upregulated in BC tissues and cell lines. High expression of lncRNA NEAT1 predicted poor overall survival in BC patients. Silencing of expression of lncRNA NEAT1 inhibited epithelial–mesenchymal transition (EMT) and suppressed the proliferation, migration and invasion of BC cells. Ectopic expression of lncRNA NEAT1 induced EMT and promoted BC progression. Mechanistic investigations revealed that miR-146b-5p was a direct target of lncRNA NEAT1, and its expression was correlated negatively with expression of lncRNA NEAT1 in BC tissues. Conclusion lncRNA NEAT1 could (i) serve as a novel prognostic marker for BC and (ii) be a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Songming Li
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, People's Republic of China
| | - Junwen Hao
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, People's Republic of China
| | - Yun Hong
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, People's Republic of China
| | - Junhao Mai
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, People's Republic of China
| | - Weijun Huang
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
128
|
Tsai YM, Wu KL, Chang YY, Chang WA, Huang YC, Jian SF, Tsai PH, Lin YS, Chong IW, Hung JY, Hsu YL. Loss of miR-145-5p Causes Ceruloplasmin Interference with PHD-Iron Axis and HIF-2α Stabilization in Lung Adenocarcinoma-Mediated Angiogenesis. Int J Mol Sci 2020; 21:ijms21145081. [PMID: 32708433 PMCID: PMC7404111 DOI: 10.3390/ijms21145081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
For decades, lung cancer has been the leading cause of cancer-related death worldwide. Hypoxia-inducible factors (HIFs) play critical roles in mediating lung cancer development and metastasis. The present study aims to clarify how HIF’s over-activation affects lung cancer angiogenesis not only in a normoxic condition, but also a hypoxic niche. Our study shows that human lung cancer exhibits elevated levels of ceruloplasmin (CP), which has a negative impact on the prognosis of patients. CP affects the cellular Fe2+ level, which inactivates prolyl hydroxylase (PHD) 1 and 2, resulting in HIF-2α enhancement. Increased HIF-2α leads to vascular endothelial growth factor-A (VEGF-A) secretion and angiogenesis. The expression of CP is under the epigenetic control of miR-145-5p. Restoration of miR-145-5p by miRNA mimics transfection decreases CP expression, increases Fe2+ and PHD1/2 levels and HIF hydroxylation while reduced HIF-2α levels resulting in the inhibition of tumor angiogenesis. In contrast, inhibition of miR-145-5p by miRNA inhibitors increases the expression of CP and VEGF-A in lung cancer cells. Significantly, miR-145-5p expression is lost in the tumor samples of lung cancer patients, and low miR-145-5p expression is strongly correlated with a shorter overall survival time. In conclusion, the current study reveals the clinical importance and prognostic value of miR-145-5p and CP. It identifies a unique mechanism of HIF-2α over-activation, which is mediated by iron imbalance of the iron-PHD coupling that modulates tumor angiogenesis.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Yi-Shiuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
| | - Inn-Wen Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Yu Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-Y.C.); (W.-A.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2136); Fax: +886-7-3161210
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-M.T.); (K.-L.W.); (Y.-C.H.); (S.-F.J.); (P.-H.T.); (Y.-S.L.); (I.-W.C.); (Y.-L.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
129
|
Cao J, Yang Z, An R, Zhang J, Zhao R, Li W, Xu L, Sun Y, Liu M, Tian L. lncRNA IGKJ2-MALLP2 suppresses LSCC proliferation, migration, invasion, and angiogenesis by sponging miR-1911-3p/p21. Cancer Sci 2020; 111:3245-3257. [PMID: 32639636 PMCID: PMC7469773 DOI: 10.1111/cas.14559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Because advanced laryngeal squamous cell carcinoma (LSCC) is diagnosed as a malignant tumor with a poor prognosis, the associated mechanisms still need to be further investigated. As key players in the development and progression of LSCC, lncRNAs have attracted increasing attention from many researchers. In this study, a novel lncRNA termed IGKJ2‐MALLP2 was identified and investigated for its effects on the development of LSCC. IGKJ2‐MALLP2 expression was confirmed by RT‐qPCR in 78 pairs of tissues and human laryngeal carcinoma cell lines. The results of this study showed that the expression of IGKJ2‐MALLP2 was reduced in LSCC tissues and displayed close relationships with tumor stage, lymph node metastasis, and clinical stage. Using a dual‐luciferase reporter assay, the ability of miR‐1911‐3p to bind both IGKJ2‐MALLP2 and p21 mRNA was demonstrated. IGKJ2‐MALLP2 could upregulate p21 expression by competitively binding miR‐1911‐3p. Moreover, IGKJ2‐MALLP2 effectively hindered the invasion, migration, and proliferation of AMC‐HN‐8 and TU212 tumor cells. Furthermore, its high expression could hinder the secretion of VEGF‐A and suppress angiogenesis. As revealed by the results of in vitro experiments, IGKJ2‐MALLP2 overexpression could restrict tumor growth and blood vessel formation in a xenograft model of LSCC. As indicated from the mentioned findings, IGKJ2‐MALLP2, which mediates p21 expression by targeting miR‐1911‐3p, was capable of regulating LSCC progression and could act as an underlying therapeutic candidate to treat LSCC.
Collapse
Affiliation(s)
- Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhenming Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ran An
- Department of Otorhinolaryngology, Head and Neck Surgery, Heilongjiang Provincial Hospital Affiliated to Harbin Institute of Technology, Harbin, China
| | - Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
130
|
Zhai Q, Qin J, Jin X, Sun X, Wang L, Du W, Li T, Xiang X. PADI4 modulates the invasion and migration of osteosarcoma cells by down-regulation of epithelial-mesenchymal transition. Life Sci 2020; 256:117968. [PMID: 32544462 DOI: 10.1016/j.lfs.2020.117968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common type of primary bone malignancy with high recurrence and metastasis. Peptidylarginine deiminase 4 (PADI4), as an important protein post-translational modification enzyme, has been identified as a potential regulator in the invasion and migration in several types of tumors. The role of PADI4 in osteosarcoma metastasis remains unknown. In this study, we revealed significant positive correlation between PADI4 and pulmonary metastasis of osteosarcoma. Wound-healing and transwell assay indicated that PADI4 induced invasion and migration of osteosarcoma cell in vitro while PADI4 inhibitor has repressive effect. PADI4 mutation with no deimination activity exhibited no significant effect on invasion and migration of osteosarcoma cells. Moreover, we evaluated the effect of PADI4 on expression of the markers of epithelial-mesenchymal transition and results showed that PADI4 promoted EMT while PADI4 inhibitor suppressed EMT in osteosarcoma cells. We also detected the expression of PADI4 and E-Cadherin in the tissues of osteosarcoma patients with or without pulmonary metastasis. Results showed positive relationship between the expression of PADI4 and osteosarcoma metastasis. In contrast, the expression of E-Cadherin exhibited negative correlation with PADI4 and osteosarcoma metastasis. Our research offered a novel link between PADI4 and osteosarcoma metastasis and demonstrated PADI4 as a promising target for treatment of osteosarcoma metastasis.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Jie Qin
- Department of Oncology, Gaoqing People's Hospital, Zibo 256300, China
| | - Xiaodong Jin
- Department of Geriatrics, Zibo Central Hospital, Zibo 255036, China
| | - Xiaoyu Sun
- Department of Pathology, Zibo Central Hospital, Zibo 255036, China
| | - Linping Wang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Wenyan Du
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China.
| |
Collapse
|
131
|
Li T, Wu D, Liu Q, Wang D, Chen J, Zhao H, Zhang L, Xie C, Zhu W, Chen Z, Zhou Y, Datta S, Qiu F, Yang L, Lu J. Upregulation of long noncoding RNA RAB11B-AS1 promotes tumor metastasis and predicts poor prognosis in lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:582. [PMID: 32566609 PMCID: PMC7290536 DOI: 10.21037/atm.2020.04.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Lung cancer (LC) is one of the leading causes of cancer-related mortality in China and worldwide. Despite the progress in diagnosis and treatment of LC, the prognosis of LC remains poor. Studies have demonstrated that long non-coding RNAs (lncRNAs) play a critical role in carcinogenesis and cancer development. Methods Here we examined the expression and potential function of lnc-RAB11B-AS1 in LC both in vitro and in vivo. All experiments in this study were conducted using A549 and PC-9 cell lines according to protocols described in this paper. The clinic characteristics were analyzed using logistic regression, cox model, log rank test, biochemical analysis using qRT-PCR, transfections, nude mice model, and cell biological analysis using Transwell assay, CCK-8 assay, flow cytometry, and rescue experiments, and immunohistochemistry. Results The results showed that lnc-RAB11B-AS1 was significantly overexpressed in LC tissues compared to the corresponding non-tumor tissues. Patients with a higher level of lnc-RAB11B-AS1 expression showed a poorer overall survival rate. Functionally, overexpression of lnc-RAB11B-AS1 promotes cell proliferation, migration and invasion abilities of LC cell lines, which suggests lnc-RAB11B-AS1 may play an oncogenic role in LC. lnc-RAB11B-AS1 was located in physical contiguity with RAB11B gene and found positively regulates the RAB11B expression, and the protein levels of RAB11B in LC tissues also found to positively correlated with the level of lnc-RAB11B-AS1 expression. RAB11B silencing partially abrogated lnc-RAB11B-AS1-induced proliferation of the LC cell lines used in this study. Conclusions This study provided a novel evidence into the function of lncRNA-driven carcinogenesis. Our findings highlighted the importance of lnc-RAB11B-AS1 and RAB11B in LC progression and indicated that lnc-RAB11B-AS1 may serve as a novel and valuable prognostic biomarker for LC.
Collapse
Affiliation(s)
- Tiegang Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.,Institute of Lung Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Qun Liu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Dedong Wang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongjun Zhao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lan Zhang
- Department of Medical Genetics and Cell Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510440, China
| | - Chenli Xie
- Fifth People's Hospital of Dongguan, Dongguan 523900, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zhixu Chen
- Puning People's Hospital, Puning 515300, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou 215006, China
| | - Soham Datta
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
132
|
RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer. Int J Mol Sci 2020; 21:ijms21082969. [PMID: 32340118 PMCID: PMC7215867 DOI: 10.3390/ijms21082969] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of the genome is transcribed into pieces of non-(protein) coding RNA, among which long non-coding RNAs (lncRNAs) constitute a large group of particularly versatile molecules that govern basic cellular processes including transcription, splicing, RNA stability, and translation. The frequent deregulation of numerous lncRNAs in cancer is known to contribute to virtually all hallmarks of cancer. An important regulatory mechanism of lncRNAs is the post-transcriptional regulation mediated by RNA-binding proteins (RBPs). So far, however, only a small number of known cancer-associated lncRNAs have been found to be regulated by the interaction with RBPs like human antigen R (HuR), ARE/poly(U)-binding/degradation factor 1 (AUF1), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and tristetraprolin (TTP). These RBPs regulate, by various means, two aspects in particular, namely the stability and the localization of lncRNAs. Importantly, these RBPs themselves are commonly deregulated in cancer and might thus play a major role in the deregulation of cancer-related lncRNAs. There are, however, still many open questions, for example regarding the context specificity of these regulatory mechanisms that, in part, is based on the synergistic or competitive interaction between different RBPs. There is also a lack of knowledge on how RBPs facilitate the transport of lncRNAs between different cellular compartments.
Collapse
|