101
|
Zhong Y, Sun R, Geng Y, Zhou Q, Piao Y, Xie T, Zhou R, Shen Y. N-Oxide polymer-cupric ion nanogels potentiate disulfiram for cancer therapy. Biomater Sci 2020; 8:1726-1733. [PMID: 31995039 DOI: 10.1039/c9bm01841g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfiram (DSF) exerts potent anticancer activity via the formation of chelates with copper or zinc ions in tumor tissues, but the low abundance of these ions in the tumor cannot sustain its antitumor activity. Herein, we show that a zwitterionic water-soluble N-oxide polymer, poly[2-(N-oxide-N,N-dimethylamino)ethyl methacrylate] (OPDMA), can complex cupric ions and form nanogels (OPDMA/Cu), which efficiently deliver copper ions to tumor tissue to potentiate DSF significantly for effective antitumor therapy.
Collapse
Affiliation(s)
- Yin Zhong
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Rui Sun
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Yu Geng
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Quan Zhou
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Ying Piao
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Tao Xie
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| | - Ruhong Zhou
- Institute of Quantitative Biology and Department of Physics, Zhejiang University, Hangzhou, 310027, China.
| | - Youqing Shen
- College of Chemical and Biological Engineering, Hangzhou, 310027, China.
| |
Collapse
|
102
|
Chang Y, Jiang J, Chen W, Yang W, Chen L, Chen P, Shen J, Qian S, Zhou T, Wu L, Hong L, Huang Y, Li F. Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer. APPLIED MATERIALS TODAY 2020; 18:100492. [PMID: 34746366 PMCID: PMC8570539 DOI: 10.1016/j.apmt.2019.100492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Disulfiram (DSF) is currently tested in several clinical trials for cancer treatment in combination with copper (Cu) ions. Usually, DSF and Cu are administered in two separate formulations. In the body, DSF and Cu ions form diethyldithiocarbamate copper complex [Cu(DDC)2] which has potent antitumor activities. However, the "two formulation" approach often achieved low Cu(DDC)2 concentration at tumor regions and resulted in compromised anticancer efficacy. Therefore, preformed Cu(DDC)2 complex administered in a single formulation will have better anticancer efficacy. However, the poor aqueous solubility of Cu(DDC)2 is a significant challenge for its clinical use. In this work, a biomimetic nanoparticle formulation of Cu(DDC)2 was produced with a novel SMILE ( Stabilized Metal Ion Ligand complex) method developed in our laboratory to address the drug delivery challenges. The Metal-organic Nanoparticle (MON) is composed of Cu(DDC)2 metal-organic complex core and surface decorated bovine serum albumin (BSA). Importantly, we designed a 3D-printed microfluidic device to further improve the fabrication of BSA/Cu(DDC)2 MONs. This method could precisely control the MON preparation process and also has great potential for large scale production of Cu(DDC)2 MON formulations. We also used a computational modeling approach to simulate the MON formation process in the microfluidic device. The optimized BSA/Cu(DDC)2 MONs demonstrated good physicochemical properties. The MONs also showed potent antitumor activities in the breast cancer cell monolayers as well as the 3D-cultured tumor spheroids. The BSA/Cu(DDC)2 MONs also effectively inhibited the growth of tumors in an orthotopic 4T1 breast tumor model. This current study provided a novel method to prepare a biomimetic MON formulation for DSF/Cu cancer therapy.
Collapse
Affiliation(s)
- Ya Chang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Jizong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wu Chen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Wen Yang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Lili Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Teng Zhou
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Linfeng Wu
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Hong
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Corresponding author at: 501 Haike Rd., Shanghai, 201203, China. (Y. Huang)
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- Corresponding author at: 720 S. Donahue Dr. Auburn, AL, 36849, USA, (F. Li)
| |
Collapse
|
103
|
Majera D, Skrott Z, Chroma K, Merchut-Maya JM, Mistrik M, Bartek J. Targeting the NPL4 Adaptor of p97/VCP Segregase by Disulfiram as an Emerging Cancer Vulnerability Evokes Replication Stress and DNA Damage while Silencing the ATR Pathway. Cells 2020; 9:cells9020469. [PMID: 32085572 PMCID: PMC7072750 DOI: 10.3390/cells9020469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Research on repurposing the old alcohol-aversion drug disulfiram (DSF) for cancer treatment has identified inhibition of NPL4, an adaptor of the p97/VCP segregase essential for turnover of proteins involved in multiple pathways, as an unsuspected cancer cell vulnerability. While we reported that NPL4 is targeted by the anticancer metabolite of DSF, the bis-diethyldithiocarbamate-copper complex (CuET), the exact, apparently multifaceted mechanism(s) through which the CuET-induced aggregation of NPL4 kills cancer cells remains to be fully elucidated. Given the pronounced sensitivity to CuET in tumor cell lines lacking the genome integrity caretaker proteins BRCA1 and BRCA2, here we investigated the impact of NPL4 targeting by CuET on DNA replication dynamics and DNA damage response pathways in human cancer cell models. Our results show that CuET treatment interferes with DNA replication, slows down replication fork progression and causes accumulation of single-stranded DNA (ssDNA). Such a replication stress (RS) scenario is associated with DNA damage, preferentially in the S phase, and activates the homologous recombination (HR) DNA repair pathway. At the same time, we find that cellular responses to the CuET-triggered RS are seriously impaired due to concomitant malfunction of the ATRIP-ATR-CHK1 signaling pathway that reflects an unorthodox checkpoint silencing mode through ATR (Ataxia telangiectasia and Rad3 related) kinase sequestration within the CuET-evoked NPL4 protein aggregates.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | | | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Correspondence: (M.M.); (J.B.)
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 77 Stockholm, Sweden
- Correspondence: (M.M.); (J.B.)
| |
Collapse
|
104
|
Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics 2020; 10:3223-3239. [PMID: 32194864 PMCID: PMC7053190 DOI: 10.7150/thno.40298] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and devastating brain tumor characterized by poor prognosis and high rates of recurrence. Numerous therapeutic strategies and delivery systems are developed to prolong the survival time. They exhibit enhanced therapeutic effects in animal models, whereas few of them is applied in clinical trials. Taking into account the drug-resistance and high recurrence of GBM, combined-therapeutic strategies are exploited to maximize therapeutic efficacy. The combined therapies demonstrate superior results than those of single therapies against GBM. The co-therapeutic agents, the timing of therapeutic strategies and the delivery systems greatly affect the overall outcomes. Herein, the current advances in combined therapies for glioblastoma via systemic administration are exhibited in this review. And we will discuss the pros and cons of these combined-therapeutic strategies via nanotechnology, and provide the guidance for developing rational delivery systems to optimize treatments against GBM and other malignancies in central nervous system.
Collapse
|
105
|
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. ADVANCED THERAPEUTICS 2020; 3:1900102. [PMID: 34291146 PMCID: PMC8291088 DOI: 10.1002/adtp.201900102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/24/2022]
Abstract
Drug repurpose or reposition is recently recognized as a high-performance strategy for developing therapeutic agents for cancer treatment. This approach can significantly reduce the risk of failure, shorten R&D time, and minimize cost and regulatory obstacles. On the other hand, nanotechnology-based delivery systems are extensively investigated in cancer therapy due to their remarkable ability to overcome drug delivery challenges, enhance tumor specific targeting, and reduce toxic side effects. With increasing knowledge accumulated over the past decades, nanoparticle formulation and delivery have opened up a new avenue for repurposing drugs and demonstrated promising results in advanced cancer therapy. In this review, recent developments in nano-delivery and formulation systems based on soft (i.e., DNA nanocages, nanogels, and dendrimers) and condensed (i.e., noble metal nanoparticles and metal-organic frameworks) nanomaterials, as well as their theranostic applications in drug repurpose against cancer are summarized.
Collapse
Affiliation(s)
- Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | | | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn AL 36849, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
106
|
Skaga E, Kulesskiy E, Brynjulvsen M, Sandberg CJ, Potdar S, Langmoen IA, Laakso A, Gaál-Paavola E, Perola M, Wennerberg K, Vik-Mo EO. Feasibility study of using high-throughput drug sensitivity testing to target recurrent glioblastoma stem cells for individualized treatment. Clin Transl Med 2019; 8:33. [PMID: 31889236 PMCID: PMC6937360 DOI: 10.1186/s40169-019-0253-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the well described heterogeneity in glioblastoma (GBM), treatment is standardized, and clinical trials investigate treatment effects at population level. Genomics-driven oncology for stratified treatments allow clinical decision making in only a small minority of screened patients. Addressing tumor heterogeneity, we aimed to establish a clinical translational protocol in recurrent GBM (recGBM) utilizing autologous glioblastoma stem cell (GSC) cultures and automated high-throughput drug sensitivity and resistance testing (DSRT) for individualized treatment within the time available for clinical application. RESULTS From ten patients undergoing surgery for recGBM, we established individual cell cultures and characterized the GSCs by functional assays. 7/10 GSC cultures could be serially expanded. The individual GSCs displayed intertumoral differences in their proliferative capacity, expression of stem cell markers and variation in their in vitro and in vivo morphology. We defined a time frame of 10 weeks from surgery to complete the entire pre-clinical work-up; establish individualized GSC cultures, evaluate drug sensitivity patterns of 525 anticancer drugs, and identify options for individualized treatment. Within the time frame for clinical translation 5/7 cultures reached sufficient cell yield for complete drug screening. The DSRT revealed significant intertumoral heterogeneity to anticancer drugs (p < 0.0001). Using curated reference databases of drug sensitivity in GBM and healthy bone marrow cells, we identified individualized treatment options in all patients. Individualized treatment options could be selected from FDA-approved drugs from a variety of different drug classes in all cases. CONCLUSIONS In recGBM, GSC cultures could successfully be established in the majority of patients. The individual cultures displayed intertumoral heterogeneity in their in vitro and in vivo behavior. Within a time frame for clinical application, we could perform DSRT in 50% of recGBM patients. The DSRT revealed a remarkable intertumoral heterogeneity in sensitivity to anticancer drugs in recGBM that could allow tailored therapeutic options for functional precision medicine.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway.
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Marit Brynjulvsen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Emília Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| |
Collapse
|
107
|
Li X, Du K, Sun J, Feng F. Apoferritin as a Carrier of Cu(II) Diethyldithiocarbamate and Biomedical Application for Glutathione-Responsive Combination Chemotherapy. ACS APPLIED BIO MATERIALS 2019; 3:654-663. [DOI: 10.1021/acsabm.9b01014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Department of Polymer Materials, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P. R. China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
108
|
Wang B, Li K, Song QK, Wang XH, Yang L, Zhang HL, Zhong DR. Micronodular thymic tumor with lymphoid stroma: A case report and review of the literature. World J Clin Cases 2019; 7:4063-4074. [PMID: 31832410 PMCID: PMC6906565 DOI: 10.12998/wjcc.v7.i23.4063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Micronodular thymic tumors with lymphoid stroma include micronodular thymoma with lymphoid stroma (MNT) and micronodular thymic carcinoma with lymphoid hyperplasia (MNC), whose micromorphological features are lymphoid stromal hyperplasia and nodular arrangement of tumor epithelial cells. This type of tumor is rare; therefore, the corresponding clinical guidelines, histopathological diagnostic criteria, prognostic factors, and therapeutic regimens have not been established. CASE SUMMARY This study covers a novel presentation of MNC in a patient and summarizes the clinicopathological characteristics of this type of tumor by using pooled-analysis methods. Morphologically, this tumor type is a series of benign to malignant pedigrees. We establish the following criteria for the classification of micronodular thymic tumors with lymphoid stroma: (1) Tumor cells with moderate-to-severe dysplasia; (2) Tumor cell mitotic figures > 2/10 high-power fields; (3) Appearance of neoplastic necrosis; (4) No terminal deoxynucleotidyl transferase-positive immature T lymphocytes within the tumor; (5) Tumor cells with a Ki-67 index ≥ 10%; and (6) Tumor cells express CD5. Cases that fall into the borders of two categories in terms of morphology are attributed to atypical MNT. It is proposed that the diagnosis of MNT should be established on the diagnostic criteria mentioned above. CONCLUSION Our diagnostic algorithm can effectively distinguish malignant tumors from benign tumors and provides a potent basis for predicting a prognosis, which offers a practical reference for oncologists and pathologists.
Collapse
Affiliation(s)
- Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kai Li
- Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Qing-Kun Song
- Department of Science and Technology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiu-Hong Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lei Yang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hong-Lei Zhang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
109
|
Pyrazolopyrimide library screening in glioma cells discovers highly potent antiproliferative leads that target the PI3K/mTOR pathway. Bioorg Med Chem 2019; 28:115215. [PMID: 31787462 PMCID: PMC6961122 DOI: 10.1016/j.bmc.2019.115215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
Abstract
The search for novel targeted inhibitors active on glioblastoma multiforme is crucial to develop new treatments for this unmet clinical need. Herein, we report the results from a screening campaign against glioma cell lines using a proprietary library of 100 structurally-related pyrazolopyrimidines. Data analysis identified a family of compounds featuring a 2-amino-1,3-benzoxazole moiety (eCF309 to eCF334) for their antiproliferative properties in the nM range. These results were validated in patient-derived glioma cells. Available kinase inhibition profile pointed to blockade of the PI3K/mTOR pathway as being responsible for the potent activity of the hits. Combination studies demonstrated synergistic activity by inhibiting both PI3Ks and mTOR with selective inhibitors. Based on the structure activity relationships identified in this study, five new derivatives were synthesized and tested, which exhibited potent activity against glioma cells but not superior to the dual PI3K/mTOR inhibitor and lead compound of the screening eCF324.
Collapse
|
110
|
Current state and future perspective of drug repurposing in malignant glioma. Semin Cancer Biol 2019; 68:92-104. [PMID: 31734137 DOI: 10.1016/j.semcancer.2019.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Malignant gliomas are still extremely difficult to treat because complete surgical resection is biologically not feasible due to the invasive nature of these diseases and the proximity of tumors to functionally sensitive areas. Moreover, adjuvant therapies are facing a strong therapeutic resistance since the central nervous system is a highly protected environment and the tumor cells display a vast intra-tumoral genetic and epigenetic variation. As a consequence, new therapeutics are urgently needed but the process of developing novel compounds that finally reach clinical application is highly time-consuming and expensive. Drug repurposing is an approach to facilitate and accelerate the discovery of new cancer treatments. In malignant glioma, like in other cancers, pre-existing physiological pathways that regulate cell growth, cell death or cell migration are dysregulated causing malignant transformation. A wide variety of drugs are clinically used to treat non-cancerous diseases interfering with these malignancy-associated pathways. Repurposed drugs have key advantages: They already have approval for clinical use by national regulatory authorities. Moreover, they are for the most part inexpensive and their side effect and safety profiles are well characterized. In this work, we provide an overview on current repurposing strategies for the treatment of malignant glioma.
Collapse
|
111
|
Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of preclinical studies. Br J Cancer 2019; 121:1027-1038. [PMID: 31673101 PMCID: PMC6964684 DOI: 10.1038/s41416-019-0609-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Background Since the standard gemcitabine and cisplatin (GC) chemotherapy for advanced bladder cancer yields limited therapeutic effect due to chemoresistance, it is a clinical challenge to enhance sensitivity to GC. Methods We performed high-throughput screening by using a library of known chemicals and repositionable drugs. A total of 2098 compounds were administered alone or with GC to human bladder cancer cells, and chemicals that enhanced GC effects were screened. Results Disulfiram (DSF), an anti-alcoholism drug, was identified as a candidate showing synergistic effects with cisplatin but not with gemcitabine in multiple cell lines. Co-administration of DSF with GC affected cellular localisation of a cisplatin efflux transporter ATP7A, increased DNA–platinum adducts and promoted apoptosis. Micellar DSF nanoparticles (DSF-NP) that stabilised DSF in vivo, enhanced the inhibitory effect of cisplatin in patient-derived and cell-based xenograft models without severe adverse effects. A drug susceptibility evaluation system by using cancer tissue-originated spheroid culture showed promise in identifying cases who would benefit from DSF with cisplatin. Conclusions The present study highlighted the advantage of drug repurposing to enhance the efficacy of anticancer chemotherapy. Repurposing of DSF to a chemotherapy sensitiser may provide additional efficacy with less expense by using an available drug with a well-characterised safety profile.
Collapse
|
112
|
Cilliers K, Muller CJF, Page BJ. Trace Element Concentration Changes in Brain Tumors: A Review. Anat Rec (Hoboken) 2019; 303:1293-1299. [PMID: 31509337 DOI: 10.1002/ar.24254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022]
Abstract
Trace elements have been implicated in cancer, since the levels differ between cancerous and noncancerous tissue, different cancer types, and different malignancy grades. However, few studies have been conducted on trace element concentrations in brain tumors. Thus, this study aims to review the available literature on trace element changes related to brain tumors, and to identify gaps in the literature. A literature search was done on Google Scholar and PubMed from their start date to January 2018, using terms related to trace element concentration and brain tumors. All brain tumor types were included, and articles could be published in any year. From this search, only 11 articles on this topic could be found. Tumors had significantly higher concentrations of arsenic, thorium, lanthanum, lutetium, cerium, and gadolinium compared to control brain samples. Compared to adjacent tissue, tumor tissue indicated increased magnesium, decreased copper, and contradicting results for zinc. Furthermore, the higher the malignancy grade, the lower the calcium, cadmium, iron, phosphorus and sulfur concentration, and the higher the mercury, manganese, lead, and zinc concentrations. In conclusion, altered trace element levels differ amongst different tumor types, as well as malignancy grades. Consequently, it is impossible to compare data from these studies, and available data are still considerably inconclusive. Ideally, future studies should have a sufficient samples size, compare different tumor types, and compare tumors with adjacent healthy tissue as well as with samples from unaffected matched brains. Anat Rec, 303:1293-1299, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Karen Cilliers
- Division of Clinical Anatomy, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Western Cape, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa
| | - Benedict J Page
- Division of Clinical Anatomy, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape, South Africa
| |
Collapse
|
113
|
Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments. Proc Natl Acad Sci U S A 2019; 116:19098-19108. [PMID: 31471491 DOI: 10.1073/pnas.1813495116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.
Collapse
|
114
|
Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol Rev 2019; 13:417. [PMID: 31410248 PMCID: PMC6661528 DOI: 10.4081/oncol.2019.417] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is a heterogeneous group of primary neoplasm resistant to conventional therapies. Due to their infiltrative nature it not fully isolated by aggressive surgery, radiation and chemotherapy showing poor prognosis in glioma patients. Unfortunately, diagnosed patients die within 1.5-2 year treatment schedule. Currently temozolomide (TMZ) is the first choice for the prognosis of GBM patients. TMZ metabolites methyl triazen imidazol carboxamide form complex with alkyl guanine alkyl transferase (O6 MGMT- DNA repair protein) induced DNA damage following resistance properties of TMZ and inhibit the overall survival of the patients. Last few decades different TMZ conjugated strategy is developed to overcome the resistance and enhance the chemotherapy efficacy. The main aim of this review is to introduce the new promising pharmaceutical candidates that significantly influence the therapeutic response of the TMZ in context of targeted therapy of glioblastoma patients. It is hoped that this proposed strategy are highly effective to overcome the current resistance limitations of TMZ in GBM patients and enhance the survival rate of the patients.
Collapse
Affiliation(s)
| | - Arvind Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Near Vidhan Sabha, Raipur, Chhattisgarh, India
| | | | | |
Collapse
|
115
|
Combination Therapy with Disulfiram, Copper, and Doxorubicin for Osteosarcoma: In Vitro Support for a Novel Drug Repurposing Strategy. Sarcoma 2019; 2019:1320201. [PMID: 31379466 PMCID: PMC6657614 DOI: 10.1155/2019/1320201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Although many cancer cells have significantly higher copper concentrations compared with normal cells and tissues, the role of copper in cancer biology and metastatic disease remains poorly understood. Here, we study the importance of copper in osteosarcoma, which frequently metastasizes to the lungs and is often chemoresistant. K12 and K7M2 are murine OS cells with differing metastatic phenotypes: K7M2 is highly metastatic, whereas K12 is much less so. Intracellular copper levels were determined using atomic absorption. Copper transporters were quantified by qPCR. Cytotoxicity of doxorubicin, disulfiram, and copper(II) chloride was assessed with a cell viability fluorescence stain. Additionally, K7M2 viable cell counts were determined by trypan blue exclusion staining after 72 hours of treatment. Copper levels were found to be significantly higher in K12 OS cells than in K7M2 cells. qPCR showed that K12 cells upregulate the copper influx pump CTR1 and downregulate the copper efflux pump ATP7A compared to K7M2 OS cells. Combination treatment of copper chloride (50 nM) with disulfiram (80 nM) was only cytotoxic to K12 cells. Triple treatment with doxorubicin, disulfiram, and copper displayed potent and durable cytotoxicity of highly metastatic K7M2 cells. We demonstrate here that murine OS cell lines differing in metastatic potential also vary in endogenous copper levels and regulation. Additionally, these differences in copper regulation may contribute to selective cytotoxicity of K12 cells by extremely low doses of copper-potentiated disulfiram. The combination of doxorubicin, disulfiram, and copper should be explored as a therapeutic strategy against OS metastases.
Collapse
|
116
|
Skaga E, Kulesskiy E, Fayzullin A, Sandberg CJ, Potdar S, Kyttälä A, Langmoen IA, Laakso A, Gaál-Paavola E, Perola M, Wennerberg K, Vik-Mo EO. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer 2019; 19:628. [PMID: 31238897 PMCID: PMC6593575 DOI: 10.1186/s12885-019-5861-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/20/2019] [Indexed: 02/15/2023] Open
Abstract
Background A major barrier to effective treatment of glioblastoma (GBM) is the large intertumoral heterogeneity at the genetic and cellular level. In early phase clinical trials, patient heterogeneity in response to therapy is commonly observed; however, how tumor heterogeneity is reflected in individual drug sensitivities in the treatment-naïve glioblastoma stem cells (GSC) is unclear. Methods We cultured 12 patient-derived primary GBMs as tumorspheres and validated tumor stem cell properties by functional assays. Using automated high-throughput screening (HTS), we evaluated sensitivity to 461 anticancer drugs in a collection covering most FDA-approved anticancer drugs and investigational compounds with a broad range of molecular targets. Statistical analyses were performed using one-way ANOVA and Spearman correlation. Results Although tumor stem cell properties were confirmed in GSC cultures, their in vitro and in vivo morphology and behavior displayed considerable tumor-to-tumor variability. Drug screening revealed significant differences in the sensitivity to anticancer drugs (p < 0.0001). The patient-specific vulnerabilities to anticancer drugs displayed a heterogeneous pattern. They represented a variety of mechanistic drug classes, including apoptotic modulators, conventional chemotherapies, and inhibitors of histone deacetylases, heat shock proteins, proteasomes and different kinases. However, the individual GSC cultures displayed high biological consistency in drug sensitivity patterns within a class of drugs. An independent laboratory confirmed individual drug responses. Conclusions This study demonstrates that patient-derived and treatment-naïve GSC cultures maintain patient-specific traits and display intertumoral heterogeneity in drug sensitivity to anticancer drugs. The heterogeneity in patient-specific drug responses highlights the difficulty in applying targeted treatment strategies at the population level to GBM patients. However, HTS can be applied to uncover patient-specific drug sensitivities for functional precision medicine. Electronic supplementary material The online version of this article (10.1186/s12885-019-5861-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway.
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Artem Fayzullin
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Aija Kyttälä
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| | - Aki Laakso
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Emília Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Markus Perola
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.,National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317, Oslo, Norway
| |
Collapse
|
117
|
Ballesteros-Garrido R, Montagud-Martínez R, Rodrigo G. Bacterial Population Control with Macroscopic HKUST Crystals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19878-19883. [PMID: 31090390 DOI: 10.1021/acsami.9b05285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Macroscopic HKUST crystals were shown to release significant amounts of copper in saline medium at a slow rate, which was exploited to control the growth of a bacterial population. This was achieved in both liquid and solid media, the latter illustrating the local effect of the crystals. In addition, these nanostructured crystals of observable size were loaded with chloramphenicol to exert a joint metal-antibiotic action, going beyond the traditional oligodynamic effect.
Collapse
Affiliation(s)
- Rafael Ballesteros-Garrido
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-U. Valencia , 9 Cat. Agustin Escardino , 46980 Paterna , Spain
| | - Roser Montagud-Martínez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-U. Valencia , 9 Cat. Agustin Escardino , 46980 Paterna , Spain
| | - Guillermo Rodrigo
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-U. Valencia , 9 Cat. Agustin Escardino , 46980 Paterna , Spain
| |
Collapse
|
118
|
Skaga E, Skaga IØ, Grieg Z, Sandberg CJ, Langmoen IA, Vik-Mo EO. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J Cancer Res Clin Oncol 2019; 145:1495-1507. [PMID: 31028540 PMCID: PMC6527541 DOI: 10.1007/s00432-019-02920-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Constructed from a theoretical framework, the coordinated undermining of survival paths in glioblastoma (GBM) is a combination of nine drugs approved for non-oncological indications (CUSP9; aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, quetiapine, and sertraline) combined with temozolomide (TMZ). The availability of these drugs outside of specialized treatment centers has led patients to embark on combination treatments without systematic follow-up. However, no experimental data on efficacy using the CUSP9 strategy in GBM have been reported. METHODS Using patient-derived glioblastoma stem cell (GSC) cultures from 15 GBM patients, we described stem cell properties of individual cultures, determined the dose-response relationships of the drugs in the CUSP9, and assessed the efficacy the CUSP9 combination with TMZ in concentrations clinically achievable. The efficacy was evaluated by cell viability, cytotoxicity, and sphere-forming assays in both primary and recurrent GSC cultures. RESULTS We found that CUSP9 with TMZ induced a combination effect compared to the drugs individually (p < 0.0001). Evaluated by cell viability and cytotoxicity, 50% of the GSC cultures displayed a high sensitivity to the drug combination. In clinical plasma concentrations, the effect of the CUSP9 with TMZ was superior to TMZ monotherapy (p < 0.001). The Wnt-signaling pathway has been shown important in GSC, and CUSP9 significantly reduces Wnt-activity. CONCLUSIONS Adding experimental data to the theoretical rationale of CUSP9, our results demonstrate that the CUSP9 treatment strategy can induce a combination effect in both treatment-naïve and pretreated GSC cultures; however, predicting response in individual cultures will require further profiling of GSCs.
Collapse
Affiliation(s)
- Erlend Skaga
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway.
| | - Ida Ø Skaga
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Zanina Grieg
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Cecilie J Sandberg
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Iver A Langmoen
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317, Oslo, Norway
| |
Collapse
|
119
|
Majera D, Skrott Z, Bouchal J, Bartkova J, Simkova D, Gachechiladze M, Steigerova J, Kurfurstova D, Gursky J, Korinkova G, Cwiertka K, Hodny Z, Mistrik M, Bartek J. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate 2019; 79:352-362. [PMID: 30499118 DOI: 10.1002/pros.23741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (PCa) represents a serious health challenge. Based on mechanistically-supported rationale we explored new therapeutic options based on clinically available drugs with anticancer effects, including inhibitors of PARP1 enzyme (PARPi), and histone deacetylases (vorinostat), respectively, and disulfiram (DSF, known as alcohol-abuse drug Antabuse) and its copper-chelating metabolite CuET that inhibit protein turnover. METHODS Drugs and their combination with ionizing radiation (IR) were tested in various cytotoxicity assays in three human PCa cell lines including radio-resistant stem-cell like derived cells. Mechanistically, DNA damage repair, heat shock and unfolded protein response (UPR) pathways were assessed by immunofluorescence and immunoblotting. RESULTS We observed enhanced sensitivity to PARPi/IR in PC3 cells consistent with lower homologous recombination (HR) repair. Vorinostat sensitized DU145 cells to PARPi/IR and decreased mutant p53. Vorinostat also impaired HR-mediated DNA repair, as determined by Rad51 foci formation and downregulation of TOPBP1 protein, and overcame radio-resistance of stem-cell like DU145-derived cells. All PCa models responded well to CuET or DSF combined with copper. We demonstrated that DSF interacts with copper in the culture media and forms adequate levels of CuET indicating that DSF/copper and CuET may be considered as comparable treatments. Both DSF/copper and CuET evoked hallmarks of UPR in PCa cells, documented by upregulation of ATF4, CHOP and phospho-eIF2α, with ensuing heat shock response encompassing activation of HSF1 and HSP70. Further enhancing the cytotoxicity of CuET, combination with an inhibitor of the anti-apoptotic protein survivin (YM155, currently undergoing clinical trials) promoted the UPR-induced toxicity, yielding synergistic effects of CuET and YM155. CONCLUSIONS We propose that targeting genotoxic and proteotoxic stress responses by combinations of available drugs could inspire innovative strategies to treat castration-resistant PCa.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Dana Simkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Daniela Kurfurstova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Gursky
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Korinkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Karel Cwiertka
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, University Hospital, Olomouc, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
120
|
Affiliation(s)
- Shiqun Shao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| | - Jingxing Si
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceClinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou 310014 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
121
|
Huang J, Chaudhary R, Cohen AL, Fink K, Goldlust S, Boockvar J, Chinnaiyan P, Wan L, Marcus S, Campian JL. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol 2019; 142:537-544. [PMID: 30771200 DOI: 10.1007/s11060-019-03125-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE Preclinical studies have suggested promising activity for the combination of disulfiram and copper (DSF/Cu) against glioblastoma (GBM) including re-sensitization to temozolomide (TMZ). A previous phase I study demonstrated the safety of combining DSF/Cu with adjuvant TMZ for newly diagnosed GBM. This phase II study aimed to estimate the potential effectiveness of DSF/Cu to re-sensitize recurrent GBM to TMZ. METHODS This open-label, single-arm phase II study treated recurrent TMZ-resistant GBM patients with standard monthly TMZ plus concurrent daily DSF 80 mg PO TID and Cu 1.5 mg PO TID. Eligible patients must have progressed after standard chemoradiotherapy and within 3 months of the last dose of TMZ. Known isocitrate dehydrogenase (IDH) mutant or secondary GBMs were excluded. The primary endpoint was objective response rate (ORR), and the secondary endpoints included progression-free survival (PFS), overall survival (OS), clinical benefit (response or stable disease for at least 6 months), and safety. RESULTS From March 2017 to January 2018, 23 recurrent TMZ-resistant GBM patients were enrolled across seven centers, and 21 patients were evaluable for response. The median duration of DSF/Cu was 1.6 cycles (range: 0.1-12.0). The ORR was 0%, but 14% had clinical benefit. Median PFS was 1.7 months, and median OS was 7.1 months. Only one patient (4%) had dose-limiting toxicity (grade three elevated alanine transaminase). CONCLUSIONS Addition of DSF/Cu to TMZ for TMZ-resistant IDH-wild type GBM appears well tolerated but has limited activity for unselected population.
Collapse
Affiliation(s)
- Jiayi Huang
- Washington University School of Medicine, St. Louis, MO, USA.
- Department of Radiation Oncology, Center for Advanced Medicine, Washington University School of Medicine, 4921 Parkview Place, Campus Box #8224, St. Louis, MO, 63110, USA.
| | - Rekha Chaudhary
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Adam L Cohen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Karen Fink
- Baylor University Medical Center, Dallas, TX, USA
| | | | | | | | - Leping Wan
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jian L Campian
- Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
122
|
|
123
|
Wang S, Liu C, Wang C, Ma J, Xu H, Guo J, Deng Y. Arsenic trioxide encapsulated liposomes prepared via copper acetate gradient loading method and its antitumor efficiency. Asian J Pharm Sci 2018; 15:365-373. [PMID: 32636954 PMCID: PMC7327756 DOI: 10.1016/j.ajps.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/04/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023] Open
Abstract
In this study, arsenic trioxide (ATO) was encapsulated in liposomes via copper acetate (Cu(OAc)2) gradients and high entrapment efficiency of over 80% was obtained. The average particle size and the zeta-potential of the liposomes were detected to be 115.1 ± 29.1 nm and −21.97 ± 0.6 mV, respectively. The TEM images showed rod-like precipitates in the inner aqueous phase, which was supposed be due to the formation of insoluble ATO—Cu complex. The in vitro drug release of ATO—Cu liposomes exhibited a sustained release over 72 h, and the release rates decreased with the increase of the pH of release media. Pharmacokinetic and tissue distribution studies of ATO liposomes showed significantly reduced plasma clearance rate, increased AUC0–12h and T1/2, and improved tumor distribution of As compared to iv administration of ATO solution. The anti-tumor effect of ATO loaded liposomes to S180 tumor-bearing mice was significantly improved with a tumor inhibition rate of 61.2%, meanwhile the toxicity of encapsulated ATO was greatly decreased. In conclusion, ATO can be effectively encapsulated into liposomes by remote loading method via Cu(OAc)2 gradients; the co-administration of ATO and Cu(II) via liposomal formulation may find wide applications in the treatment of various tumors.
Collapse
Affiliation(s)
- Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Chunxiu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, China
| | - Cunyang Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Jia Ma
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, China
| | - Jianbo Guo
- Shanxi Institute for Food and Drug Control, Xi'an 710065, China
| | - Yihui Deng
- School of Pharmacy, Shenyang Pharmaceutical University, China
| |
Collapse
|
124
|
Chen W, Yang W, Chen P, Huang Y, Li F. Disulfiram Copper Nanoparticles Prepared with a Stabilized Metal Ion Ligand Complex Method for Treating Drug-Resistant Prostate Cancers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41118-41128. [PMID: 30444340 DOI: 10.1021/acsami.8b14940] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Disulfiram (DSF), an alcohol-aversion drug, has been explored for cancer treatment. Copper diethyldithiocarbamate (Cu(DDC)2) complex formed by DSF and copper ions is a major active ingredient for its anticancer activity. Direct administration of Cu(DDC)2 is a promising strategy to enhance the anticancer efficacy of DSF. However, efficient drug delivery remains a significant challenge for Cu(DDC)2 and hinders its clinical use. In this study, we developed a facile stabilized metal ion ligand complex (SMILE) method to prepare Cu(DDC)2 nanoparticles (NPs). The SMILE method could prepare Cu(DDC)2 NPs with different types of stabilizers including 1,2-distearoyl- sn-glycerol-3-phosphoethanolamine-poly(ethylene glycol) (PEG) 2000, d-α-tocopherol PEG 1000 succinate, methoxy PEG 5000- b-poly(l-lactide) 5000, and other generally recognized as safe excipients approved by the US Food and Drug Administration. The optimized formulations demonstrated excellent drug-loading efficiency (close to 100%), high drug concentrations (increased drug concentration by over 200-fold compared to the traditional micelle formulation), and an optimal particle size in the sub-100 nm range. Cu(DDC)2 NPs exhibited outstanding stability in serum for 72 h and can also be stored at room temperature for at least 1 month. The anticancer effects of Cu(DDC)2 NP formulations were determined by multiple assays including 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, colony-forming assay, calcein-AM/propidium iodide staining, and others. Cu(DDC)2 NPs showed excellent activity against drug-resistant prostate cancer cells and other cancer cells with a half-maximal inhibitory concentration (IC50) of around 100 nM. Our study also demonstrated that Cu(DDC)2 NPs induced cell death in drug-resistant prostate cancer cells (DU145-TXR) through paraptosis, which is a nonapoptotic cell death. To our best knowledge, the SMILE method provides, for the first time, a simple yet efficient process for generating Cu(DDC)2 NPs with high drug concentration, excellent loading efficiency, and desirable physicochemical properties. This method could potentially address drug delivery challenges of DSF/copper-based chemotherapy and facilitate its clinical translation.
Collapse
Affiliation(s)
| | | | | | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | | |
Collapse
|
125
|
Jakola AS, Werlenius K, Mudaisi M, Hylin S, Kinhult S, Bartek J, Salvesen Ø, Carlsen SM, Strandéus M, Lindskog M, Löfgren D, Rydenhag B, Carstam L, Gulati S, Solheim O, Bartek J, Solheim T. Disulfiram repurposing combined with nutritional copper supplement as add-on to chemotherapy in recurrent glioblastoma (DIRECT): Study protocol for a randomized controlled trial. F1000Res 2018; 7:1797. [PMID: 30647912 PMCID: PMC6325620 DOI: 10.12688/f1000research.16786.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Disulfiram (DSF) is a well-tolerated, inexpensive, generic drug that has been in use to treat alcoholism since the 1950s. There is now independent preclinical data that supports DSF as an anticancer agent, and experimental data suggest that copper may increase its anti-neoplastic properties. There is also some clinical evidence that DSF is a promising anticancer agent in extracranial cancers. In glioblastoma, DSF induced O 6-methylguanine methyltransferase (MGMT) inhibition may increase response to alkylating chemotherapy. A recent phase I study demonstrated the safety of DSF in glioblastoma patients when DSF was administered at doses below 500 mg/day together with chemotherapy. We plan to assess the effects of DSF combined with nutritional copper supplement (DSF-Cu) as an adjuvant to alkylating chemotherapy in glioblastoma treatment. Methods: In an academic, industry independent, multicenter, open label randomized controlled phase II/III trial with parallel group design (1:1) we will assess the efficacy and safety of DSF-Cu in glioblastoma treatment. The study will include 142 patients at the time of first recurrence of glioblastoma where salvage therapy with alkylating chemotherapy is planned. Patients will be randomized to treatment with or without DSF-Cu. Primary end-point is survival at 6 months. Secondary end-points are overall survival, progression free survival, quality of life, contrast enhancing tumor volume and safety. Discussion: There is a need to improve the treatment of recurrent glioblastoma. Results from this randomized controlled trial with DSF-Cu in glioblastoma will serve as preliminary evidence of the future role of DSF-Cu in glioblastoma treatment and a basis for design and power estimations of future studies. In this publication we provide rationale for our choices and discuss methodological issues. Trial registration: The study underwent registration in EudraCT 2016-000167-16 (Date: 30.03.2016,) and Clinicaltrials.gov NCT02678975 (Date: 31.01.2016) before initiating the study.
Collapse
Affiliation(s)
- Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Munila Mudaisi
- Department of Oncology, Linköping University Hospital, Linköping, Sweden
| | - Sofia Hylin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Kinhult
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Øyvind Salvesen
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven Magnus Carlsen
- Department of Cancer Research and Molecular medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim, Norway
| | | | - Magnus Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Section of Oncology, Akademiska University Hospital, Uppsala, Sweden
| | - David Löfgren
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - Bertil Rydenhag
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Louise Carstam
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Sasha Gulati
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory,, Karolinska Institute, Stockholm, Sweden
- Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Tora Solheim
- European Palliative Care Research Centre (PRC), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
126
|
Sarkar S, Poon CC, Mirzaei R, Rawji KS, Hader W, Bose P, Kelly J, Dunn JF, Yong VW. Microglia induces Gas1 expression in human brain tumor-initiating cells to reduce tumorigenecity. Sci Rep 2018; 8:15286. [PMID: 30327548 PMCID: PMC6191418 DOI: 10.1038/s41598-018-33306-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/20/2018] [Indexed: 12/26/2022] Open
Abstract
We reported previously that microglia decreased the growth of human brain tumor-initiating cells (BTICs). Through microarray analyses of BTICs exposed in vitro to microglia, we found the induction of several genes ascribed to have roles in cell cycle arrest, reduced cell proliferation and differentiation. Herein, we tested the hypothesis that one of these genes, growth arrest specific 1 (Gas1), is a novel growth reduction factor that is induced in BTICs by microglia. We found that microglia increased the expression of Gas1 transcript and protein in glioblastoma patient-derived BTIC lines. Using neurosphere assay we show that RNAi-induced reduction of Gas1 expression in BTICs blunted the microglia-mediated BTIC growth reduction. The role of Gas1 in mediating BTIC growth arrest was further validated using orthotopic brain xenografts in mice. When microglia-induced Gas1-expressing BTIC cells (mGas1-BTICs) were implanted intra-cranially in mice, tumor growth was markedly decreased; this was mirrored in the remarkable increase in survival of mGas1-BT025 and mGas1-BT048 implanted mice, compared to mice implanted with non-microglia-exposed BTIC cells. In conclusion, this study has identified Gas1 as a novel factor and mechanism through which microglia arrest the growth of BTICs for anti-tumor property.
Collapse
Affiliation(s)
- Susobhan Sarkar
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Candice C Poon
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Walter Hader
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Surgery, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - John Kelly
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Jeffrey F Dunn
- Department of Radiology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada. .,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.
| |
Collapse
|
127
|
Schneider JR, Kulason KO, Khan MB, White TG, Kwan K, Faltings L, Kobets AJ, Chakraborty S, Ellis JA, Ortiz RA, Filippi CG, Langer DJ, Boockvar JA. Commentary: Advances in Glioblastoma Therapies: A Collaborative Effort Between Physicians and the Biotechnology Industry. Neurosurgery 2018; 83:E162-E168. [PMID: 29889276 DOI: 10.1093/neuros/nyy253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julia R Schneider
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Kay O Kulason
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Muhammad Babar Khan
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Timothy G White
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Kevin Kwan
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Lukas Faltings
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Andrew J Kobets
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Shamik Chakraborty
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Jason A Ellis
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Rafael A Ortiz
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Christopher G Filippi
- Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York.,Department of Neuroradiology, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - David J Langer
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - John A Boockvar
- Brain Tumor Biotech Center, Department of Neurosurgery, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Feinstein Institute for Medical Research, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
128
|
Li Y, Shen J, Fang M, Huang X, Yan H, Jin Y, Li J, Li X. The promising antitumour drug disulfiram inhibits viability and induces apoptosis in cardiomyocytes. Biomed Pharmacother 2018; 108:1062-1069. [PMID: 30372806 DOI: 10.1016/j.biopha.2018.09.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/16/2023] Open
Abstract
Disulfiram (DSF), widely used for treating alcohol abuse, is a promising antitumour drug that inhibits tumour cell viability, reverses cancer drug resistance and induces apoptosis. However, its potential side effects on cardiomyocytes remain unknown. This study demonstrated that DSF can not only inhibit cardiomyocyte viability and activity but also promote cell apoptosis. Furthermore, we revealed that cardiomyocytes were more sensitive to DSF than cancer cells. Moreover, the expression of STAT3, a key regulator of cardiomyocyte viability, was significantly down-regulated in cardiomyocytes treated with DSF. Finally, we also used experimental comparisons to indicate that PEG is a promising solvent for decreasing the adverse side effects of DSF, thereby expanding its potential range of clinical applications.
Collapse
Affiliation(s)
- Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Junwei Shen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Tongji University Affiliated Eastern Hospital, Shanghai, 200092, China
| | - Ming Fang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xiaoliu Huang
- Tongji University Affiliated Eastern Hospital, Shanghai, 200092, China
| | - Hongwei Yan
- Tongji University Affiliated Eastern Hospital, Shanghai, 200092, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Jue Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Tongji University Affiliated Eastern Hospital, Shanghai, 200092, China.
| | - Xinming Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
129
|
Marengo A, Forciniti S, Dando I, Dalla Pozza E, Stella B, Tsapis N, Yagoubi N, Fanelli G, Fattal E, Heeschen C, Palmieri M, Arpicco S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim Biophys Acta Gen Subj 2018; 1863:61-72. [PMID: 30267751 DOI: 10.1016/j.bbagen.2018.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pancreatic cancer stem cells (CSCs) are responsible for resistance to standard therapy, metastatic potential, and disease relapse following treatments. The current therapy for pancreatic ductal adenocarcinoma (PDAC) preferentially targets the more differentiated cancer cell population, leaving CSCs as a cell source for tumor mass formation and recurrence. For this reason, there is an urgent need to improve current therapies and develop novel CSC-targeted therapeutic approaches. METHODS Hyaluronic acid (HA) decorated liposomes, containing diethyldithiocarbamate‑copper (Cu(DDC)2), able to target the specific CSC marker CD44 receptor were prepared by ion gradient technique and fully characterized. Their antiproliferative effect was evaluated on pancreatic CSCs derived from PDAC cell lines or patients. To clarify the mechanism of action of Cu(DDC)2 liposomes, ROS level neutralization assay in the presence of N-acetyl-L-cysteine was performed. RESULTS Liposomes showed high encapsulation efficiency and Cryo-TEM analysis revealed the presence of Cu(DDC)2 crystals in the aqueous core of liposomes. In vitro test on pancreatic CSCs derived from PDAC cell lines or patients showed high ROS mediated anticancer activity of HA decorated liposomes. The sphere formation capability of CSCs obtained from patients was drastically reduced by liposomal formulations containing Cu(DDC)2. CONCLUSIONS The obtained results show that the encapsulation of Cu(DDC)2 complex in HA decorated liposomes strongly increases its anti-proliferative activity on pancreatic CSCs. GENERAL SIGNIFICANCE This paper describes for the first time the use of HA decorated liposomes containing Cu(DDC)2 against pancreatic CSCs and opens the way to the development of nanomedicine based CSC-targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Torino, Italy
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Najet Yagoubi
- EA 401, Matériaux et Santé, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Christopher Heeschen
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Italy.
| |
Collapse
|
130
|
Drug Repurposing of Metabolic Agents in Malignant Glioma. Int J Mol Sci 2018; 19:ijms19092768. [PMID: 30223473 PMCID: PMC6164672 DOI: 10.3390/ijms19092768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Gliomas are highly invasive brain tumors with short patient survival. One major pathogenic factor is aberrant tumor metabolism, which may be targeted with different specific and unspecific agents. Drug repurposing is of increasing interest in glioma research. Drugs interfering with the patient’s metabolism may also influence glioma metabolism. In this review, we outline definitions and methods for drug repurposing. Furthermore, we give insights into important candidates for a metabolic drug repurposing, namely metformin, statins, non-steroidal anti-inflammatory drugs, disulfiram and lonidamine. Advantages and pitfalls of drug repurposing will finally be discussed.
Collapse
|
131
|
Wehbe M, Leung AWY, Abrams MJ, Orvig C, Bally MB. A Perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans 2018; 46:10758-10773. [PMID: 28702645 DOI: 10.1039/c7dt01955f] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although copper-ligand complexes appear to be promising as a new class of therapeutics, other than the family of copper(ii) coordination compounds referred to as casiopeínas these compounds have yet to reach the clinic for human use. The pharmaceutical challenges associated with developing copper-based therapeutics will be presented in this article along with a discussion of the potential for high-throughput chemistry, computer-aided drug design, and nanotechnology to address the development of this important class of drug candidates.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
132
|
Mirzaei R, Sarkar S, Dzikowski L, Rawji KS, Khan L, Faissner A, Bose P, Yong VW. Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Oncoimmunology 2018; 7:e1478647. [PMID: 30288344 DOI: 10.1080/2162402x.2018.1478647] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
The dismal prognosis of glioblastoma is attributed in part to the existence of stem-like brain tumor-initiating cells (BTICs) that are highly radio- and chemo-resistant. New approaches such as therapies that reprogram compromised immune cells against BTICs are needed. Effective immunotherapies in glioblastoma, however, remain elusive unless the mechanisms of immunosuppression by the tumor are better understood. Here, we describe that while the conditioned media of activated T lymphocytes reduce the growth capacity of BTICs, this growth suppression was abrogated in live co-culture of BTICs with T cells. We present evidence that BTICs produce the extracellular matrix protein tenascin-C (TNC) to inhibit T cell activity in live co-culture. In human glioblastoma brain specimens, TNC was widely deposited in the vicinity of T cells. Mechanistically, TNC inhibited T cell proliferation through interaction with α5β1 and αvβ6 integrins on T lymphocytes associated with reduced mTOR signaling. Strikingly, TNC was exported out of BTICs associated with exosomes, and TNC-depleted exosomes suppressed T cell responses to a significantly lesser extent than control. Finally, we found that circulating exosomes from glioblastoma patients contained more TNC and T cell-suppressive activity than those from control individuals. Taken together, our study establishes a novel immunosuppressive role for TNC associated with BTIC-secreted exosomes to affect local and distal T lymphocyte immunity.
Collapse
Affiliation(s)
- Reza Mirzaei
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Lauren Dzikowski
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Lubaba Khan
- Departments of Biochemistry and Molecular Biology, Oncology and Surgery, Ohlson Research Initiative and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Pinaki Bose
- Departments of Biochemistry and Molecular Biology, Oncology and Surgery, Ohlson Research Initiative and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
133
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
134
|
Bobustuc GC, Kassam AB, Rovin RA, Jeudy S, Smith JS, Isley B, Singh M, Paranjpe A, Srivenugopal KS, Konduri SD. MGMT inhibition in ER positive breast cancer leads to CDC2, TOP2A, AURKB, CDC20, KIF20A, Cyclin A2, Cyclin B2, Cyclin D1, ERα and Survivin inhibition and enhances response to temozolomide. Oncotarget 2018; 9:29727-29742. [PMID: 30038716 PMCID: PMC6049872 DOI: 10.18632/oncotarget.25696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The DNA damage repair enzyme, O6-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is frequently methylated. In ER positive breast cancer MGMT is upregulated and modulates ER function. Here, we evaluate MGMT's role in control of other clinically relevant targets involved in cell cycle regulation during breast cancer oncogenesis. We show that O6-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes ER positive breast cancer to temozolomide (TMZ). Further, siRNA inhibition of MGMT inhibits CDC2, TOP2A, AURKB, KIF20A, Cyclin B2, A2 and survivin and induces p21. Combination of BG+TMZ decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, Cyclin A2, B2, D1, ERα and survivin. Temozolomide alone inhibits MGMT expression in a dose and time dependent manner and increases p21 and cytochrome c. Temozolomide inhibits transcription of TOP2A, AURKB, KIF20A and does not have any effect on CDC2 and CDC20 and induces p21. BG+/-TMZ inhibits breast cancer growth. In our orthotopic ER positive breast cancer xenografts, BG+/-TMZ decreases ki-67, CDC2, CDC20, TOP2A, AURKB and induces p21 expression. In the same model, BG+TMZ combination inhibits breast tumor growth in vivo compared to single agent (TMZ or BG) or control. Our results show that MGMT inhibition is relevant for inhibition of multiple downstream targets involved in tumorigenesis. We also show that MGMT inhibition increases ER positive breast cancer sensitivity to alkylator based chemotherapy.
Collapse
Affiliation(s)
- George C. Bobustuc
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | - Amin B. Kassam
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | - Richard A. Rovin
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | | | | | | | - Maharaj Singh
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | - Ameya Paranjpe
- Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Santhi D. Konduri
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| |
Collapse
|
135
|
Lee YE, Choi SA, Kwack PA, Kim HJ, Kim IH, Wang KC, Phi JH, Lee JY, Chong S, Park SH, Park KD, Hwang DW, Joo KM, Kim SK. Repositioning disulfiram as a radiosensitizer against atypical teratoid/rhabdoid tumor. Neuro Oncol 2018; 19:1079-1087. [PMID: 28340172 DOI: 10.1093/neuonc/now300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Atypical teratoid/rhabdoid tumor (AT/RT) is one of the most common malignant brain tumors in infants. Although cancer stem cells of AT/RT express aldehyde dehydrogenase (ALDH), effective chemotherapies against AT/RT have not been established. Here, we examined radiosensitizing effects of disulfiram (DSF), an irreversible inhibitor of ALDH against AT/RT for a novel therapeutic method. Methods Patient-derived primary cultured AT/RT cells (SNU.AT/RT-5 and SNU.AT/RT-6) and established AT/RT cell lines (BT-12 and BT-16) were used to assess therapeutic effects of combining DSF with radiation treatment (RT). Survival fraction by clonogenic assay, protein expression, immunofluorescence, and autophagy analysis were evaluated in vitro. Antitumor effects of combining DSF with RT were verified by bioluminescence imaging, tumor volume, and survival analysis in vivo. Results The results demonstrated that DSF at low concentration enhanced the radiosensitivity of AT/RT cells with reduction of survival fraction to 1.21‒1.58. DSF increased DNA double-strand break (γ-H2AX, p-DNA-PKcs, and p-ATM), apoptosis (cleaved caspase-3), autophagy (LC3B), and cell cycle arrest (p21) in irradiated AT/RT cells, while it decreased anti-apoptosis (nuclear factor-kappaB, Survivin, and B-cell lymphoma 2 [Bcl2]). In vivo, DSF and RT combined treatment significantly reduced tumor volumes and prolonged the survival of AT/RT mouse models compared with single treatments. The combined treatment also increased γ-H2AX, cleaved caspase-3, and LC3B expression and decreased ALDH1, Survivin, and Bcl2 expression in vivo. Conclusions DSF and RT combination therapy has additive therapeutic effects on AT/RT by potentiating programmed cell death, including apoptosis and autophagy of AT/RT cells. We suggest that DSF can be applied as a radiosensitizer in AT/RT treatment.
Collapse
Affiliation(s)
- Young Eun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Pil Ae Kwack
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hak Jae Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Il Han Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Sangjoon Chong
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Sung-Hye Park
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyung Duk Park
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Do Won Hwang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyeung Min Joo
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea; Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, South Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, South Korea; Department of Anatomy and Cell Biology, SungKyunKwan University School of Medicine, Suwon, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
136
|
Mettang M, Meyer-Pannwitt V, Karpel-Massler G, Zhou S, Carragher NO, Föhr KJ, Baumann B, Nonnenmacher L, Enzenmüller S, Dahlhaus M, Siegelin MD, Stroh S, Mertens D, Fischer-Posovszky P, Schneider EM, Halatsch ME, Debatin KM, Westhoff MA. Blocking distinct interactions between Glioblastoma cells and their tissue microenvironment: A novel multi-targeted therapeutic approach. Sci Rep 2018; 8:5527. [PMID: 29615749 PMCID: PMC5882900 DOI: 10.1038/s41598-018-23592-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Due to the highly invasive nature of Glioblastoma (GB), complete surgical resection is not feasible, while motile tumour cells are often associated with several specific brain structures that enhance treatment-resistance. Here, we investigate the therapeutic potential of Disulfiram and Carbenoxolone, that inhibit two distinct interactions between GB and the brain tissue microenvironment: stress-induced cell-matrix adhesion and gap junction mediated cell-cell communication, respectively. Increase in cell numbers of tumour-initiating cells, which are cultured in suspension as cell clusters, and adherent differentiated cells can be blocked to a similar extent by Carbenoxolone, as both cell populations form gap junctions, but the adherent differentiated cells are much more sensitive to Disulfiram treatment, which - via modulation of NF-κB signalling - interferes with cell-substrate adhesion. Interestingly, inducing adhesion in tumour-initiating cells without differentiating them does not sensitize for Disulfiram. Importantly, combining Disulfiram, Carbenoxolone and the standard chemotherapeutic drug Temozolomide reduces tumour size in an orthotopic mouse model. Isolating GB cells from their direct environment within the brain represents an important addition to current therapeutic approaches. The blockage of cellular interactions via the clinically relevant substances Disulfiram and Carbenoxolone, has distinct effects on different cell populations within a tumour, potentially reducing motility and/or resistance to apoptosis.
Collapse
Affiliation(s)
- Melanie Mettang
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.,Institute of Physiological Chemistry, University Medical Center Ulm, Ulm, Germany
| | - Viola Meyer-Pannwitt
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.,Department of Internal Medicine III, University Medical Center Ulm, Ulm, Germany.,Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Shaoxia Zhou
- Department of Clinical Chemistry, University Medical Center Ulm, Ulm, Germany
| | - Neil O Carragher
- Edinburgh Cancer Research Center UK, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Karl Josef Föhr
- Department of Anesthesiology, University Medical Center Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, University Medical Center Ulm, Ulm, Germany
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Meike Dahlhaus
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sebastien Stroh
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.,Department of Neurology, University Medical Center Ulm, Ulm, Germany
| | - Daniel Mertens
- Department of Internal Medicine III, University Medical Center Ulm, Ulm, Germany.,Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - E Marion Schneider
- Department of Clinical Chemistry, University Medical Center Ulm, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
137
|
Ding N, Zhu Q. Disulfiram combats cancer via crippling valosin-containing protein/p97 segregase adaptor NPL4. Transl Cancer Res 2018; 7:S495-S499. [PMID: 30112292 DOI: 10.21037/tcr.2018.03.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nan Ding
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
138
|
Tan SK, Jermakowicz A, Mookhtiar AK, Nemeroff CB, Schürer SC, Ayad NG. Drug Repositioning in Glioblastoma: A Pathway Perspective. Front Pharmacol 2018; 9:218. [PMID: 29615902 PMCID: PMC5864870 DOI: 10.3389/fphar.2018.00218] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary adult brain tumor. The current standard of care is surgical resection, radiation, and chemotherapy treatment, which extends life in most cases. Unfortunately, tumor recurrence is nearly universal and patients with recurrent glioblastoma typically survive <1 year. Therefore, new therapies and therapeutic combinations need to be developed that can be quickly approved for use in patients. However, in order to gain approval, therapies need to be safe as well as effective. One possible means of attaining rapid approval is repurposing FDA approved compounds for GBM therapy. However, candidate compounds must be able to penetrate the blood-brain barrier (BBB) and therefore a selection process has to be implemented to identify such compounds that can eliminate GBM tumor expansion. We review here psychiatric and non-psychiatric compounds that may be effective in GBM, as well as potential drugs targeting cell death pathways. We also discuss the potential of data-driven computational approaches to identify compounds that induce cell death in GBM cells, enabled by large reference databases such as the Library of Integrated Network Cell Signatures (LINCS). Finally, we argue that identifying pathways dysregulated in GBM in a patient specific manner is essential for effective repurposing in GBM and other gliomas.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna Jermakowicz
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adnan K Mookhtiar
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences and Center on Aging, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan C Schürer
- Department of Molecular Pharmacology, Center for Computational Sciences, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nagi G Ayad
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami Brain Tumor Initiative, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
139
|
Hassani S, Ghaffari P, Chahardouli B, Alimoghaddam K, Ghavamzadeh A, Alizadeh S, Ghaffari SH. Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed Pharmacother 2018; 99:561-569. [PMID: 29902866 DOI: 10.1016/j.biopha.2018.01.109] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 01/13/2023] Open
Abstract
The majority of acute myeloid leukaemia (AML) patients will die from their disease or therapy-related complications. There is an inevitable need to improve the survival of AML patients. Previous studies show that disulfiram (DSF), an anti-alcoholism drug with a low toxicity profile, demonstrates anticancer behaviors. Here, we evaluated the cytotoxicity and mechanistic action of DSF on the AML cell lines KG-1, NB4, and U937. The microculture tetrazolium test revealed that DSF alone or in combination with copper (Cu) is highly toxic to the AML cells at concentrations lower than those achievable in the clinical setting, with Cu increasing the DSF-induced inhibition of metabolic activity. Flow cytometric analysis and QRT-PCR indicated that in the two cell lines, NB4 and U-937, DSF/Cu increased reactive oxygen species (ROS) levels in association with the induction of superoxide dismutase 2 (SOD2) expression and suppression of catalase (CAT). In the KG-1 cell line, DSF/Cu reduced the ROS levels in agreement with the induction of CAT expression. The cell cycle and apoptosis assessment by flow cytometry demonstrated that DSF/Cu induced G0/G1 cell cycle arrest and apoptosis. These were associated with the increased expression of FOXO tumor suppressors, decreased expression of the MYC oncogene and the modulation of their known target genes related to the cell cycle and apoptosis. Therefore, DSF/Cu caused the disturbance of the ROS balance, cell cycle arrest and apoptosis in AML cells in coordination with the modulation in expression of their related genes. These results propose the possible use of DSF in AML therapies.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Copper/pharmacology
- Disulfiram/pharmacology
- G1 Phase/drug effects
- G1 Phase/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Inhibitory Concentration 50
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Reactive Oxygen Species/metabolism
- Resting Phase, Cell Cycle/drug effects
- Resting Phase, Cell Cycle/genetics
Collapse
Affiliation(s)
- Saeed Hassani
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran; Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ghaffari
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Hematology Department, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed H Ghaffari
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
140
|
Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Recent Advances in Antabuse (Disulfiram): The Importance of its Metal-binding Ability to its Anticancer Activity. Curr Med Chem 2018; 25:506-524. [PMID: 29065820 PMCID: PMC6873226 DOI: 10.2174/0929867324666171023161121] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Considerable evidence demonstrates the importance of dithiocarbamates especially disulfiram as anticancer drugs. However there are no systematic reviews outlining how their metal-binding ability is related to their anticancer activity. This review aims to summarize chemical features and metal-binding activity of disulfiram and its metabolite DEDTC, and discuss different mechanisms of action of disulfiram and their contributions to the drug's anticancer activity. METHODS We undertook a disulfiram-related search on bibliographic databases of peerreviewed research literature, including many historic papers and in vitro, in vivo, preclinical and clinical studies. The selected papers were carefully reviewed and summarized. RESULTS More than five hundreds of papers were obtained in the initial search and one hundred eighteen (118) papers were included in the review, most of which deal with chemical and biological aspects of Disulfiram and the relationship of its chemical and biological properties. Eighty one (81) papers outline biological aspects of dithiocarbamates, and fifty seven (57) papers report biological activity of Disulfiram as an inhibitor of proteasomes or inhibitor of aldehyde dehydrogenase enzymes, interaction with other anticancer drugs, or mechanism of action related to reactive oxygen species. Other papers reviewed focus on chemical aspects of dithiocarbamates. CONCLUSION This review confirms the importance of chemical features of compounds such as Disulfiram to their biological activities, and supports repurposing DSF as a potential anticancer agent.
Collapse
Affiliation(s)
- Maricela Viola-Rhenals
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Kush R. Patel
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Laura Jaimes-Santamaria
- Biochemistry and Cell Biology of Cancer Group, Exacts and Natural Science Faculty, University of Cartagena, Cartagena, Colombia
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
| | - Jinbao Liu
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, United States
- Guangzhou Medical University, Protein Modification and Degradation Lab, Dongfeng Xi road 195#, Guangzhou, Guangdong 510182, China
| |
Collapse
|
141
|
Wehbe M, Malhotra AK, Anantha M, Lo C, Dragowska WH, Dos Santos N, Bally MB. Development of a copper-clioquinol formulation suitable for intravenous use. Drug Deliv Transl Res 2018; 8:239-251. [PMID: 29247315 PMCID: PMC5756275 DOI: 10.1007/s13346-017-0455-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Clioquinol (CQ) is an FDA-approved topical antifungal agent known to kill cancer cells. This facilitated the initiation of clinical trials in patients with refractory hematologic malignancies. These repurposing efforts were not successful; this was likely due to low intracellular levels of the drug owing to poor absorption and rapid metabolism upon oral administration. CQ forms a sparingly soluble copper complex (Cu(CQ)2) that exhibits enhanced anticancer activity in some cell lines. We have utilized a novel method to synthesize Cu(CQ)2 inside liposomes, an approach that maintains the complex suspended in solution and in a format suitable for intravenous administration. The complex was prepared inside 100-nm liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/cholesterol (55:45). The therapeutic activity of the resultant formulation was evaluated in two subcutaneous tumor models (glioblastoma and ovarian cancers) but was not active. We also assessed the ability of the Cu(CQ)2 formulation to increase copper delivery to cancer cells in vitro and its potential to be used in combination with disulfiram (DSF). The results suggested that addition of Cu(CQ)2 enhanced cellular copper levels and the activity of DSF in vitro; however, this combination did not result in a statistically significant reduction in tumor growth in vivo. These studies demonstrate that a Cu(CQ)2 formulation suitable for intravenous use can be prepared, but this formulation used alone or in combination with DSF was not efficacious. The methods described are suitable for development formulations of other analogues of 8-hydroxyquinoline which could prove to be more potent.
Collapse
Affiliation(s)
- Moe Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Armaan K Malhotra
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Malathi Anantha
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Cody Lo
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Wieslawa H Dragowska
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Nancy Dos Santos
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Marcel B Bally
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Center for Drug Research and Development, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
142
|
Kengen J, Deglasse JP, Neveu MA, Mignion L, Desmet C, Gourgue F, Jonas JC, Gallez B, Jordan BF. Biomarkers of tumour redox status in response to modulations of glutathione and thioredoxin antioxidant pathways. Free Radic Res 2018; 52:256-266. [DOI: 10.1080/10715762.2018.1427236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Julie Kengen
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Jean-Philippe Deglasse
- Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Aline Neveu
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Lionel Mignion
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Céline Desmet
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Florian Gourgue
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Jean-Christophe Jonas
- Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Bénédicte F. Jordan
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
143
|
Grinshtein N, Rioseco CC, Marcellus R, Uehling D, Aman A, Lun X, Muto O, Podmore L, Lever J, Shen Y, Blough MD, Cairncross GJ, Robbins SM, Jones SJ, Marra MA, Al-Awar R, Senger DL, Kaplan DR. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget 2018; 7:59360-59376. [PMID: 27449082 PMCID: PMC5312317 DOI: 10.18632/oncotarget.10661] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM. We found that the novel SAM-competitive EZH2 inhibitor UNC1999 exhibited low micromolar cytotoxicity in vitro on a diverse collection of BTIC lines, synergized with dexamethasone (DEX) and suppressed tumor growth in vivo in combination with DEX. In addition, a unique brain-penetrant class I HDAC inhibitor exhibited cytotoxicity in vitro on a panel of BTIC lines and extended survival in combination with TMZ in an orthotopic BTIC model in vivo. Finally, a combination of EZH2 and HDAC inhibitors demonstrated synergy in vitro by augmenting apoptosis and increasing DNA damage. Our findings identify key epigenetic modulators in GBM that regulate BTIC growth and survival and highlight promising combination therapies.
Collapse
Affiliation(s)
- Natalie Grinshtein
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Richard Marcellus
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - David Uehling
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ahmed Aman
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - Xueqing Lun
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Osamu Muto
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Lauren Podmore
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Jake Lever
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Michael D Blough
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Greg J Cairncross
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen M Robbins
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rima Al-Awar
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
144
|
Huang J, Campian JL, Gujar AD, Tsien C, Ansstas G, Tran DD, DeWees TA, Lockhart AC, Kim AH. Final results of a phase I dose-escalation, dose-expansion study of adding disulfiram with or without copper to adjuvant temozolomide for newly diagnosed glioblastoma. J Neurooncol 2018; 138:105-111. [PMID: 29374809 DOI: 10.1007/s11060-018-2775-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Disulfiram has shown promising activity including proteasome inhibitory properties and synergy with temozolomide in preclinical glioblastoma (GBM) models. In a phase I study for newly diagnosed GBM after chemoradiotherapy, we have previously reported our initial dose-escalation results combining disulfiram with adjuvant temozolomide and established the maximum tolerated dose (MTD) as 500 mg per day. Here we report the final results of the phase I study including an additional dose-expansion cohort of disulfiram with concurrent copper. The phase I study consisted of an initial dose-escalation phase of disulfiram 500-1000 mg daily during adjuvant temozolomide, followed by a dose-expansion phase of disulfiram 500 mg daily with copper 2 mg three times daily. Proteasome inhibition was assessed using fluorometric 20S proteasome assay on peripheral blood cell. A total of 18 patients were enrolled: 7 patients received 500 mg disulfiram, 5 patients received 1000 mg disulfiram, and 6 patients received 500 mg disulfiram with copper. Two dose-limiting toxicities occurred with 1000 mg disulfiram. At disulfiram 500 mg with or without copper, only 1 patient (7%) required dose-reduction during the first month of therapy. Addition of copper to disulfiram did not increase toxicity nor proteasome inhibition. The median progression-free survival was 4.5 months (95% CI 0.8-8.2). The median overall survival (OS) was 14.0 months (95% CI 8.3-19.6), and the 2-year OS was 24%. The MTD of disulfiram at 500 mg daily in combination with adjuvant temozolomide was well tolerated by GBM patients, but 1000 mg daily was not. Toxicity and pharmacodynamic effect of disulfiram were similar with or without concurrent copper. The clinical efficacy appeared to be comparable to historical data. Additional clinical trials to combine disulfiram and copper with chemoradiotherapy or to resensitize recurrent GBM to temozolomide are ongoing.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Radiation Oncology, Center for Advanced Medicine, Washington University School of Medicine, 4921 Parkview Place, Campus Box #8224, St. Louis, MO, 63110, USA.
| | - Jian L Campian
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Amit D Gujar
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Christina Tsien
- Department of Radiation Oncology, Center for Advanced Medicine, Washington University School of Medicine, 4921 Parkview Place, Campus Box #8224, St. Louis, MO, 63110, USA
| | - George Ansstas
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - David D Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Todd A DeWees
- Department of Radiation Oncology, Center for Advanced Medicine, Washington University School of Medicine, 4921 Parkview Place, Campus Box #8224, St. Louis, MO, 63110, USA
| | - A Craig Lockhart
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
145
|
Wang NN, Wang LH, Li Y, Fu SY, Xue X, Jia LN, Yuan XZ, Wang YT, Tang X, Yang JY, Wu CF. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors. Exp Cell Res 2018; 362:72-82. [DOI: 10.1016/j.yexcr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
|
146
|
Jivan R, Peres J, Damelin LH, Wadee R, Veale RB, Prince S, Mavri-Damelin D. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo. Cancer Lett 2017; 417:1-10. [PMID: 29274360 DOI: 10.1016/j.canlet.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Abstract
Oesophageal squamous cell carcinoma (OSCC) is highly prevalent in developing countries but there has been little recent progress into efficacious yet affordable treatment strategies. Drug repurposing is one attractive approach for cancer therapy. Disulfiram (DSF), used to treat alcoholism, inhibits cancer growth and we previously found that DSF perturbs protein degradation/turnover pathways in vitro. This was enhanced by combining DSF with the anti-diabetic drug metformin (Met). Here, we investigated DSF with/without Met, against OSCC in vivo. Nude mice injected subcutaneously with the human OSCC cell line WHCO1, were treated with 30 mg/kg or 50 mg/kg DSF three times per week and with/without Met, for 21 days. DSF and DSF/Met-treated animals had significantly smaller tumours compared to untreated, vehicle and positive control cisplatin-treated groups. This effect for DSF was independent of copper, with no significant accumulation of copper in tumours, together with maintained proteasome activity. However, increases in total ubiquitinated proteins, LC3B-II, LAMP1 and p62 in DSF and DSF/Met groups, indicate that autophagy is inhibited. These findings show that DSF and DSF/Met significantly impede OSCC tumour growth in vivo and offer prospective alternative chemotherapy approaches for OSCC.
Collapse
Affiliation(s)
- Rupal Jivan
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Leonard Howard Damelin
- The School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; Cell Biology Group, Centre for HIV and STI's, National Institute for Communicable Diseases (NHLS), Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Reubina Wadee
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Robin Bruce Veale
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Demetra Mavri-Damelin
- The School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS 2050, South Africa.
| |
Collapse
|
147
|
Zhang K, Dong R, Sun K, Wang X, Wang J, Yang CS, Zhang J. Synergistic toxicity of epigallocatechin-3-gallate and diethyldithiocarbamate, a lethal encounter involving redox-active copper. Free Radic Biol Med 2017; 113:143-156. [PMID: 28974447 DOI: 10.1016/j.freeradbiomed.2017.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/09/2017] [Accepted: 09/27/2017] [Indexed: 01/20/2023]
Abstract
Dithiocarbamates (DTC) are widely used in agricultural, industrial and therapeutic domains. There are ample opportunities for human exposure to DTC. Green tea extracts, with epigallocatechin-3-gallate (EGCG) being the most abundant constituent, have been used as dietary supplements for body weight reduction. Our hypothesis is that DTC can act as a copper ionophore to increase hepatic levels of redox-active copper which promotes EGCG auto-oxidation to produce oxidative stress and toxicity. The results of the present study in a mouse model is consistent with this hypothesis, showing that co-administration of EGCG and diethyldithiocarbamate - a metabolite of disulfiram (a drug for alcohol aversion therapy), both at tolerable levels, caused lethality. The liver was the major organ site of toxicity. The co-administration drastically increased lipid peroxidation, DNA damage and cell apoptosis as well as caused deleterious transcriptional responses including basal and Nrf2 antioxidant systems in the liver. The results suggest that exposure to DTC reduces toxic threshold of dietary polyphenols from green tea and possibly other plants, and vice versa. This novel hypothesis is important to human health, and the dose-response relationship of this synergistic toxicity needs to be further characterized.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ruixia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Kang Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoxiao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiajia Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
148
|
Abbruzzese C, Matteoni S, Signore M, Cardone L, Nath K, Glickson JD, Paggi MG. Drug repurposing for the treatment of glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:169. [PMID: 29179732 PMCID: PMC5704391 DOI: 10.1186/s13046-017-0642-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Background Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide. Main body Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches. Given the development of new drugs is a process presently characterized by an immense increase in costs and development time, drug repositioning, finding new uses for existing approved drugs or drug repurposing, re-use of old drugs when novel molecular findings make them attractive again, are gaining significance in clinical pharmacology, since it allows faster and less expensive delivery of potentially useful drugs from the bench to the bedside. This is quite evident in glioblastoma, where a number of old drugs is now considered for clinical use, often in association with the first-line therapeutic intervention. Interestingly, most of these medications are, or have been, widely employed for decades in non-neoplastic pathologies without relevant side effects. Now, the refinement of their molecular mechanism(s) of action through up-to-date technologies is paving the way for their use in the therapeutic approach of glioblastoma as well as other cancer types. Short conclusion The spiraling costs of new antineoplastic drugs and the long time required for them to reach the market demands a profoundly different approach to keep lifesaving therapies affordable for cancer patients. In this context, repurposing can represent a relatively inexpensive, safe and fast approach to glioblastoma treatment. To this end, pros and cons must be accurately considered.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Rome, Italy
| | - Silvia Matteoni
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Cardone
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Kavindra Nath
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jerry D Glickson
- Laboratory of Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marco G Paggi
- Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Rome, Italy.
| |
Collapse
|
149
|
Zinc Finger-Containing Cellular Transcription Corepressor ZBTB25 Promotes Influenza Virus RNA Transcription and Is a Target for Zinc Ejector Drugs. J Virol 2017; 91:JVI.00842-17. [PMID: 28768860 DOI: 10.1128/jvi.00842-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 02/03/2023] Open
Abstract
Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5' untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target.IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment.
Collapse
|
150
|
Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model. Exp Neurol 2017; 299:281-288. [PMID: 28923369 DOI: 10.1016/j.expneurol.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/25/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
Abstract
Tumor heterogeneity is a major factor in glioblastoma's poor response to therapy and seemingly inevitable recurrence. Only two glioblastoma drugs have received Food and Drug Administration approval since 1998, highlighting the urgent need for new therapies. Profiling "omics" analyses have helped characterize glioblastoma molecularly and have thus identified multiple molecular targets for precision medicine. These molecular targets have influenced clinical trial design; many "actionable" mutation-focused trials are underway, but because they have not yet led to therapeutic breakthroughs, new strategies for treating glioblastoma, especially those with a pharmacological functional component, remain in high demand. In that regard, high-throughput screening that allows for expedited preclinical drug testing and the use of GBM models that represent tumor heterogeneity more accurately than traditional cancer cell lines is necessary to maximize the successful translation of agents into the clinic. High-throughput screening has been successfully used in the testing, discovery, and validation of potential therapeutics in various cancer models, but it has not been extensively utilized in glioblastoma models. In this report, we describe the basic aspects of high-throughput screening and propose a modified high-throughput screening model in which ex vivo and in vivo drug testing is complemented by post-screening pharmacological, pan-omic analysis to expedite anti-glioma drugs' preclinical testing and develop predictive biomarker datasets that can aid in personalizing glioblastoma therapy and inform clinical trial design.
Collapse
|