101
|
Diehl JN, Hibshman PS, Ozkan-Dagliyan I, Goodwin CM, Howard SV, Cox AD, Der CJ. Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Adv Cancer Res 2022; 153:101-130. [PMID: 35101228 DOI: 10.1016/bs.acr.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRASG12C mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Priya S Hibshman
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adrienne D Cox
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Channing J Der
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
102
|
Synthesis, in-silico, and in-vitro study of novel chloro methylquinazolinones as PI3K-δ inhibitors, cytotoxic agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
103
|
Abstract
Macropinocytosis is a critical route of nutrient acquisition in pancreatic cancer cells. Constitutive macropinocytosis is promoted by mutant KRAS, which activates the PI3Kα lipid kinase and RAC1, to drive membrane ruffling, macropinosome uptake and processing. However, our recent study on the KRASG12R mutant indicated the presence of a KRAS-independent mode of macropinocytosis in pancreatic cancer cell lines, thereby increasing the complexity of this process. We found that KRASG12R-mutant cell lines promote macropinocytosis independent of KRAS activity using PI3Kγ and RAC1, highlighting the convergence of regulation on RAC signaling. While macropinocytosis has been proposed to be a therapeutic target for the treatment of pancreatic cancer, our studies have underscored how little we understand about the activation and regulation of this metabolic process. Therefore, this review seeks to highlight the differences in macropinocytosis regulation in the two cellular subtypes while also highlighting the features that make the KRASG12R mutant atypical.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
104
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 741] [Impact Index Per Article: 185.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
105
|
Erickson EC, Toker A. Can Improved Use of Biomarkers Alter the Fate of PI3K Pathway Inhibitors in the Clinic? Cancer Res 2021; 81:6083-6086. [PMID: 34911776 PMCID: PMC8738958 DOI: 10.1158/0008-5472.can-21-2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
The high frequency of PI3K pathway alterations in cancer has motivated numerous efforts to develop drugs targeting this network. Although many potent and selective inhibitors have been developed and evaluated in preclinical models, their progress to clinical approval has been limited. Here we discuss the pressing need to develop improved biomarker strategies to guide patient selection and improve assessment of patient responses to PI3K pathway inhibitors to address unresolved issues surrounding the efficacy and tolerability of these compounds in patients with cancer.
Collapse
Affiliation(s)
- Emily C Erickson
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Alex Toker
- Department of Pathology, Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
106
|
Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 2021; 6:400. [PMID: 34815385 PMCID: PMC8611092 DOI: 10.1038/s41392-021-00788-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
107
|
Chen D, Ping S, Xu Y, Wang M, Jiang X, Xiong L, Zhang L, Yu H, Xiong Z. Non-Coding RNAs in Gastric Cancer: From Malignant Hallmarks to Clinical Applications. Front Cell Dev Biol 2021; 9:732036. [PMID: 34805143 PMCID: PMC8595133 DOI: 10.3389/fcell.2021.732036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. However, the molecular mechanisms underlying gastric carcinogenesis remain largely unknown. Over the past decades, advances in RNA-sequencing techniques have greatly facilitated the identification of various non-coding RNAs (ncRNAs) in cancer cells, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Accumulating evidence has revealed that ncRNAs are essential regulators in GC occurrence and development. However, ncRNAs represent an emerging field of cancer research, and their complex functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets in GC, further studies should focus on elucidating the intricate relationships between ncRNAs and GC, which can be translated into clinical practice. In this review, we summarize recent research progress on how ncRNAs modulate the malignant hallmarks of GC, especially in tumor immune escape, drug resistance, and stemness. We also discuss the promising applications of ncRNAs as diagnostic biomarkers and therapeutic targets in GC, aiming to validate their practical value for clinical treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuang Xu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglu Yu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
108
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
109
|
Kumar M, Molkentine D, Molkentine J, Bridges K, Xie T, Yang L, Hefner A, Gao M, Bahri R, Dhawan A, Frederick MJ, Seth S, Abdelhakiem M, Beadle BM, Johnson F, Wang J, Shen L, Heffernan T, Sheth A, Ferris RL, Myers JN, Pickering CR, Skinner HD. Inhibition of histone acetyltransferase function radiosensitizes CREBBP/EP300 mutants via repression of homologous recombination, potentially targeting a gain of function. Nat Commun 2021; 12:6340. [PMID: 34732714 PMCID: PMC8566594 DOI: 10.1038/s41467-021-26570-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Despite radiation forming the curative backbone of over 50% of malignancies, there are no genomically-driven radiosensitizers for clinical use. Herein we perform in vivo shRNA screening to identify targets generally associated with radiation response as well as those exhibiting a genomic dependency. This identifies the histone acetyltransferases CREBBP/EP300 as a target for radiosensitization in combination with radiation in cognate mutant tumors. Further in vitro and in vivo studies confirm this phenomenon to be due to repression of homologous recombination following DNA damage and reproducible using chemical inhibition of histone acetyltransferase (HAT), but not bromodomain function. Selected mutations in CREBBP lead to a hyperacetylated state that increases CBP and BRCA1 acetylation, representing a gain of function targeted by HAT inhibition. Additionally, mutations in CREBBP/EP300 are associated with recurrence following radiation in squamous cell carcinoma cohorts. These findings provide both a mechanism of resistance and the potential for genomically-driven treatment.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bilaspur, Himachal Pradesh, India
| | - David Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jessica Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kathleen Bridges
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Meng Gao
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Reshub Bahri
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mitchell J Frederick
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sahil Seth
- TRACTION Platform, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Faye Johnson
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jing Wang
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy Heffernan
- TRACTION Platform, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Aakash Sheth
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
110
|
Actinomycin V Induces Apoptosis Associated with Mitochondrial and PI3K/AKT Pathways in Human CRC Cells. Mar Drugs 2021; 19:md19110599. [PMID: 34822470 PMCID: PMC8618951 DOI: 10.3390/md19110599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Actinomycin (Act) V, an analogue of Act D, presented stronger antitumor activity and less hepatorenal toxicity than Act D in our previous studies, which is worthy of further investigation. We hereby report that Act V induces apoptosis via mitochondrial and PI3K/AKT pathways in colorectal cancer (CRC) cells. Act V-induced apoptosis was characterized by mitochondrial dysfunction, with loss of mitochondria membrane potential (MMP) and cytochrome c release, which then activated cleaved caspase-9, cleaved caspase-3, and cleaved PARP, revealing that it was related to the mitochondrial pathway, and the apoptotic trendency can be reversed by caspase inhibitor Z-VAD-FMK. Furthermore, we proved that Act V significantly inhibited PI3K/AKT signalling in HCT-116 cells using cell experiments in vitro, and it also presented a potential targeted PI3Kα inhibition using computer docking models. Further elucidation revealed that it exhibited a 28-fold greater potency than the PI3K inhibitor LY294002 on PI3K inhibition efficacy. Taken together, Act V, as a superior potential replacement of Act D, is a potential candidate for inhibiting the PI3K/AKT pathway and is worthy of more pre-clinical studies in the therapy of CRC.
Collapse
|
111
|
Qiao Q, Bai R, Song W, Gao H, Zhang M, Lu J, Hong M, Zhang X, Sun P, Zhang Q, Zhao P. Human α-defensin 5 suppressed colon cancer growth by targeting PI3K pathway. Exp Cell Res 2021; 407:112809. [PMID: 34487729 DOI: 10.1016/j.yexcr.2021.112809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/06/2023]
Abstract
Defensins are highly conserved antimicrobial peptides, which ubiquitously expressed in different species. In addition to the functions in host defense, their aberrant expression have also been documented in cancerous tissue including breast cancer, lung caner and renal carcinoma etc. Whereas, roles of Defensin Alpha 5 (DEFA5) in colon cancer has not been explored. Bioinformatic analysis was used to study the expression of DEFA5 and its correlation with clinical outcomes; Western blot, qPCR, Co-immunoprecipitation, xenograft models were used to the study the molecular mechanism. Decreased expression of DEFA5 at protein level was observed in colon tissues. Colon cancer cell lines proliferation and colony formation capacity were significantly suppressed by DEFA5 overexpression. Moreover, in vivo tumor growth in nude mice was also suppressed by DEFA5 overexpression, suggesting a tumor suppressor role of DEFA5 in colon cancer. Mechanistically, DEFA5 directly binds to the subunits of PI3K complex, thus attenuates the downstream signaling transduction, leads to delayed cell growth and metastasis. Collectively, we concluded that DEFA5 showed an inhibitory effect in colon cancer cell growth and may serve as a potential tumor suppressor in colon cancer.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, No.1, Tongdao North Street, Huimin District, Hohhot, 010050, PR China.
| | - Ruixia Bai
- Department of Clinical Laboratory, Inner Mongolia People's Hospital, Zhaowuda Road, Hohhot, 010018, PR China.
| | - Wanying Song
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Haining Gao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Minyu Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Jingkun Lu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Mei Hong
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Xuan Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Peng Sun
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| | - Qian Zhang
- Pediatric Intensive Care Unit, Affiliated Hospital of Inner Mongolia Medical University, 1#, Xinhua Street, Hohhot, 010050, PR China.
| | - Pengwei Zhao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Xinhua Street, Hohhot, 010059, PR China.
| |
Collapse
|
112
|
Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K. PI3K inhibitors are finally coming of age. Nat Rev Drug Discov 2021; 20:741-769. [PMID: 34127844 PMCID: PMC9297732 DOI: 10.1038/s41573-021-00209-1] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
Overactive phosphoinositide 3-kinase (PI3K) in cancer and immune dysregulation has spurred extensive efforts to develop therapeutic PI3K inhibitors. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval - the PI3Kα isoform-selective inhibitor alpelisib for the treatment of breast cancer and inhibitors mainly aimed at the leukocyte-enriched PI3Kδ in B cell malignancies. In addition to targeting cancer cell-intrinsic PI3K activity, emerging evidence highlights the potential of PI3K inhibitors in cancer immunotherapy. This Review summarizes key discoveries that aid the clinical translation of PI3Kα and PI3Kδ inhibitors, highlighting lessons learnt and future opportunities.
Collapse
Affiliation(s)
| | - Matthew W D Perry
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer R Brown
- CLL Center, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Paris, France
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
113
|
Bashir R, Ahmad Zargar O, Hamid Dar A, Yedukondalu N, Parvaiz Q, Hamid R. The modulation of PI3K/Akt pathway by 3β hydroxylup-12-en-28-oic acid isolated from Thymus linearis induces cell death in HCT-116 cells. Chem Biol Drug Des 2021; 99:162-178. [PMID: 34558199 DOI: 10.1111/cbdd.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
The presence of intricate carbon skeletons in natural compounds enhances their bioactivity spectrum with unique modes of action at several targets in various dreadful diseases like cancer. The present study was designed to purify the molecules from Thymus linearis and elucidate their antiproliferative activity. The compounds were isolated from the active methanolic extract of Thymus linearis through column chromatography and characterized by various spectroscopic techniques. Antiproliferative activity of isolated compounds was evaluated using MTT assay on cancer and normal cell lines. Mechanism of cell death was elucidated using flow cytometric, microscopic, and Western blot analysis. Four compounds, Sitosterol, Chrysin, 3β-hydroxylup-12-en-28-oic acid (3BH), and β-Sitosterol glycoside, were isolated. Among these, 3BH was most potent antiproliferative agent across all cell lines under study, HCT-116 being the most affected one. 3BH was demonstrated to downregulate PI3Ksubunits (p110α and p85α), downstream pAktSer473 and prompted G1 phase cell cycle arrest. The cell cycle CDK inhibitor p27 and p21 were upregulated with simultaneous downregulation of cyclin D1 and cyclin E in HCT-116 cells. This was accompanied by apoptosis, as depicted by decrease in Bcl-2/Bax ratio, with increase in active caspases-3 and caspase-9, cleavage of PARP-1, the generation of reactive oxygen species (ROS), and the loss of mitochondrial membrane potential. The findings established that 3BH induced cell death in HCT-116 cells by modulating PI3K/Akt signaling axis, impeding cell cycle, and instigating apoptosis.
Collapse
Affiliation(s)
- Rohina Bashir
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Ovais Ahmad Zargar
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Abid Hamid Dar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | | | - Qazi Parvaiz
- Microbial Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, India
| | - Rabia Hamid
- Department of Nanotechnology, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
114
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
115
|
Yang H, Li Q, Su M, Luo F, Liu Y, Wang D, Fan Y. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition. Bioorg Med Chem 2021; 46:116346. [PMID: 34403956 DOI: 10.1016/j.bmc.2021.116346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Abnormal activation of the PI3K/Akt pathway is demonstrated in most of human malignant tumors via regulation of proliferation, cell cycle, and apoptosis. Therefore, drug discovery and development of targeting the PI3K/Akt pathway has attracted great interest of researchers in the development of anticancer drugs. In this study, fifteen 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives were designed and synthesized. Anticancer activities of the synthetic compounds were evaluated and the potential mechanisms were explored. Several compounds showed certain proliferation inhibitory activity against the tested cancer cells including human non-small cell lung cancer (NSCLC) HCC827, human neuroblastoma SH-SY5Y and hepatocellular carcinoma LM3 cells. Among them, compound 7i and 7m showed the best inhibitory activity against all the cancer cell lines and more active against HCC827 cells with IC50 values of 1.12 μM and 1.20 μM, respectively. In addition, 7i and 7m showed lower inhibitory activity against H7702 cells (human normal liver cells) with IC50 values of 8.66 μM and 10.89 μM, respectively, nearly 8-fold lower than that in HCC827 cells. These results suggested that compounds 7i and 7m had certain selectivity to tumor cells, compared to human normal cells. Further biological studies indicated 7i induced G2/M phase arrests and cell apoptosis of HCC827 cells via PI3K/Akt and caspase dependent pathway. Together, these novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives such as compound 7i and 7m might be lead compounds for development of potential anti-cancer drugs.
Collapse
Affiliation(s)
- Huarong Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, PR China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China
| | - Mingzhi Su
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China
| | - Yahua Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, PR China.
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, PR China.
| |
Collapse
|
116
|
Crucitta S, Cucchiara F, Sciandra F, Cerbioni A, Diodati L, Rafaniello C, Capuano A, Fontana A, Fogli S, Danesi R, Re MD. Pharmacological Basis of Breast Cancer Resistance to Therapies - An Overview. Anticancer Agents Med Chem 2021; 22:760-774. [PMID: 34348634 DOI: 10.2174/1871520621666210804100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is a molecular heterogeneous disease and often patients with similar clinico-pathological characteristics may display different response to treatment. Cellular processes, including uncontrolled cell-cycle, constitutive activation of signalling pathways parallel to or downstream of HER2 and alterations in DNA-repair mechanisms are the main features altered in the tumor. These cellular processes play significant roles in the emergence of therapy resistance. The introduction of target therapies as well as immunotherapies has improved the management of breast cancer. Furthermore, several therapeutic options are available to overcome resistance and physicians could overcome the challenge of resistant BC using combinatorial drug strategies and incorporating novel biomarkers. Molecular profiling promises to help in refine personalized treatment decisions and catalyse the development of further strategies when resistances inevitably occur. The search for biological explanations for treatment failure helps to clarify the phenomenon and allows to incorporate new biomarkers into clinical practice that can lead to adequate solutions to overcome it. This review provides a summary of genetic and molecular aspects of resistance mechanisms to available treatments for BC patients, and its clinical implications.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Francesca Sciandra
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Annalisa Cerbioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Lucrezia Diodati
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples. Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa. Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa. Italy
| |
Collapse
|
117
|
Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y, Liao HP, Wang HL, Hu LD, Kong X, Ding J, Meng LH. PI3Kα inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8 +T cells and promoting fatty acid metabolism. J Immunother Cancer 2021; 9:e003093. [PMID: 34373258 PMCID: PMC8354295 DOI: 10.1136/jitc-2021-003093] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The phosphatidylinositol 3-kinase (PI3K) is frequently hyperactivated in cancer and plays important roles in both malignant and immune cells. The effect of PI3Kα inhibitors on the tumor microenvironment (TME) remains largely unknown. Here, we investigated the modulation of the TME by a clinical PI3Kα-specific inhibitor CYH33. METHODS The activity of CYH33 against a panel of murine tumors in the immune-competent context or athymic mice was detected. Single-cell RNA sequencing and multi-parameter flow cytometry were performed to determine the immune profiling of TME. The effect of CYH33 on immune cells was conducted with primary murine cells. RESULTS CYH33 exhibited more potent antitumor activity in immune-competent context. CYH33 enhanced the infiltration and activation of CD8+T and CD4+T cells, while attenuating M2-like macrophages and regulatory CD4+T cells. Increase in memory T cells was confirmed by the induction of long-term immune memory on CYH33 treatment. Mechanistically, CYH33 relieved the suppressed expansion of CD8+T cells via preferential polarization of the macrophages to the M1 phenotype. CYH33 promoted fatty acid (FA) metabolism in the TME, while FA enhanced the activity of CD8+T cells in vitro. The combination of CYH33 with the FA synthase (FASN) inhibitor C75 synergistically inhibited tumor growth with enhanced host immunity. CONCLUSIONS CYH33 induces immune activation and synergizes with FASN inhibitor to further promote the antitumor immunity, which gains novel insights into how PI3K inhibitors exert their activity by modulating TME and provides a rationale for the concurrent targeting of PI3K and FASN in breast cancer treatment.
Collapse
Affiliation(s)
- Pu Sun
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Zhang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong-Jing Wang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Yang Ma
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lan Xu
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui-Ping Liao
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hai-Long Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lan-Dian Hu
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiangyin Kong
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jian Ding
- University of Chinese Academy of Sciences, Beijing, China
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
118
|
Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. SCIENCE ADVANCES 2021; 7:7/35/eabj4282. [PMID: 34452907 PMCID: PMC8397274 DOI: 10.1126/sciadv.abj4282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/06/2021] [Indexed: 05/04/2023]
Abstract
The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gβγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gβγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gβγ activation. A nanobody that specifically binds to the p101-Gβγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Carson Adams
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
119
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
120
|
De Mattos-Arruda L. PIK3CA mutation inhibition in hormone receptor-positive breast cancer: time has come. ESMO Open 2021; 5:S2059-7029(20)32667-3. [PMID: 32817061 PMCID: PMC7437706 DOI: 10.1136/esmoopen-2020-000890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/04/2023] Open
Affiliation(s)
- Leticia De Mattos-Arruda
- IrsiCaixa, Germans Trias i Pujol University Hospital, Badalona, Spain .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
121
|
Colombo I, Genta S, Martorana F, Guidi M, Frattini M, Samartzis EP, Brandt S, Gaggetta S, Moser L, Pascale M, Terrot T, Sessa C, Stathis A. Phase I Dose-Escalation Study of the Dual PI3K-mTORC1/2 Inhibitor Gedatolisib in Combination with Paclitaxel and Carboplatin in Patients with Advanced Solid Tumors. Clin Cancer Res 2021; 27:5012-5019. [PMID: 34266890 DOI: 10.1158/1078-0432.ccr-21-1402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study evaluated safety, tolerability, pharmacokinetics, and preliminary activity of the PI3K/mTORC1/2 dual inhibitor gedatolisib combined with carboplatin and paclitaxel. PATIENTS AND METHODS Patients with advanced solid tumors treated with ≤ 2 prior chemotherapies received intravenous gedatolisib on days 1, 8, 15, and 22 (95, 110, or 130 mg according to dose level); carboplatin (AUC5) on day 8 (day 1 following protocol amendment); and paclitaxel at 80 mg/m2 on days 8, 15, and 22 (1, 8, and 15 after amendment), every 28 days. Patients without progressive disease after cycle 6 received maintenance gedatolisib until progression. RESULTS Seventeen patients were enrolled [11 ovarian (10 clear cell ovarian cancer, CCOC), 4 endometrial, 2 lung cancers]. Median number of prior chemotherapies was 1 (range, 0-2). Median number of administered cycles was 6 (range, 2-16). Dose-limiting toxicities occurred in 4 patients: 2 (cycle 2 delay due to G2-G3 neutropenia) at 110 mg leading to a change in the treatment schedule, 2 at 130 mg (G2 mucositis causing failure to deliver ≥ 75% of gedatolisib at cycle 1). The recommended phase II dose is gedatolisib 110 mg on days 1, 8, 15, and 22 with carboplatin AUC5 on day 1 and paclitaxel 80 mg/m2 on days 1, 8, and 15. The most frequent ≥G3 treatment-related adverse events were neutropenia (35%), anemia (18%), and mucositis (12%). The overall response rate was 65% (80% in CCOC). Pharmacokinetic parameters of gedatolisib were consistent with single-agent results. CONCLUSIONS Gedatolisib combined with carboplatin and paclitaxel is tolerable, and preliminary efficacy was observed especially in CCOC.
Collapse
Affiliation(s)
- Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Sofia Genta
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Federica Martorana
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Milo Frattini
- Molecular Pathology Laboratory, Cantonal Institute of Pathology, Locarno, Switzerland
| | | | - Simone Brandt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sheila Gaggetta
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Laura Moser
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Mariarosa Pascale
- Clinical Trial Unit, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Service of Medical Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
122
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
123
|
Ghomlaghi M, Hart A, Hoang N, Shin S, Nguyen LK. Feedback, Crosstalk and Competition: Ingredients for Emergent Non-Linear Behaviour in the PI3K/mTOR Signalling Network. Int J Mol Sci 2021; 22:6944. [PMID: 34203293 PMCID: PMC8267830 DOI: 10.3390/ijms22136944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The PI3K/mTOR signalling pathway plays a central role in the governing of cell growth, survival and metabolism. As such, it must integrate and decode information from both external and internal sources to guide efficient decision-making by the cell. To facilitate this, the pathway has evolved an intricate web of complex regulatory mechanisms and elaborate crosstalk with neighbouring signalling pathways, making it a highly non-linear system. Here, we describe the mechanistic biological details that underpin these regulatory mechanisms, covering a multitude of negative and positive feedback loops, feed-forward loops, competing protein interactions, and crosstalk with major signalling pathways. Further, we highlight the non-linear and dynamic network behaviours that arise from these regulations, uncovered through computational and experimental studies. Given the pivotal role of the PI3K/mTOR network in cellular homeostasis and its frequent dysregulation in pathologies including cancer and diabetes, a coherent and systems-level understanding of the complex regulation and consequential dynamic signalling behaviours within this network is imperative for advancing biology and development of new therapeutic approaches.
Collapse
Affiliation(s)
- Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia; (M.G.); (A.H.); (N.H.); (S.S.)
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony Hart
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia; (M.G.); (A.H.); (N.H.); (S.S.)
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Nhan Hoang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia; (M.G.); (A.H.); (N.H.); (S.S.)
| | - Sungyoung Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia; (M.G.); (A.H.); (N.H.); (S.S.)
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lan K. Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia; (M.G.); (A.H.); (N.H.); (S.S.)
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
124
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
125
|
Castel P, Toska E, Engelman JA, Scaltriti M. The present and future of PI3K inhibitors for cancer therapy. NATURE CANCER 2021; 2:587-597. [PMID: 35118422 PMCID: PMC8809509 DOI: 10.1038/s43018-021-00218-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Phosphoinositide-3- kinase (PI3K) signaling regulates cellular proliferation, survival and metabolism, and its aberrant activation is one of the most frequent oncogenic events across human cancers. In the last few decades, research focused on the development of PI3K inhibitors, from preclinical tool compounds to the highly specific medicines approved to treat patients with cancer. Herein we discuss current paradigms for PI3K inhibitors in cancer therapy, focusing on clinical data and mechanisms of action. We also discuss current limitations in the use of PI3K inhibitors including toxicities and mechanisms of resistance, with specific emphasis on approaches aimed to improve their efficacy.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
126
|
Abstract
This Review focuses on the mechanistic evidence for a link between obesity, dysregulated cellular metabolism and breast cancer. Strong evidence now links obesity with the development of 13 different types of cancer, including oestrogen receptor-positive breast cancer in postmenopausal women. A number of local and systemic changes are hypothesized to support this relationship, including increased circulating levels of insulin and glucose as well as adipose tissue-derived oestrogens, adipokines and inflammatory mediators. Metabolic pathways of energy production and utilization are dysregulated in tumour cells and this dysregulation is a newly accepted hallmark of cancer. Dysregulated metabolism is also hypothesized to be a feature of non-neoplastic cells in the tumour microenvironment. Obesity-associated factors regulate metabolic pathways in both breast cancer cells and cells in the breast microenvironment, which provides a molecular link between obesity and breast cancer. Consequently, interventions that target these pathways might provide a benefit in postmenopausal women and individuals with obesity, a population at high risk of breast cancer.
Collapse
Affiliation(s)
- Kristy A Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
127
|
Badarni M, Prasad M, Golden A, Bhattacharya B, Levin L, Yegodayev KM, Dimitstein O, Joshua BZ, Cohen L, Khrameeva E, Kong D, Porgador A, Braiman A, Grandis JR, Rotblat B, Elkabets M. IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13092250. [PMID: 34067117 PMCID: PMC8125641 DOI: 10.3390/cancers13092250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In the current study, we delineate the molecular mechanisms of acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib and taselisib, in human papillomavirus positive head and neck cell lines. By comparing RNA sequencing of isiPI3K-sensitive tumor cells and their corresponding isiPI3K-acquired-resistant tumor cells, we found that overexpression of insulin growth factor 2 (IGF2) is associated with the resistance phenotype. We further demonstrated by gain and loss of function studies that IGF2 plays a causative role in limiting the sensitivity of human papillomavirus-positive head and neck cell lines. Moreover, we show that blocking IGF2 stimulation activity, using an inhibitor of the IGF1 receptor (IGF1R), enhances isiPI3K efficacy and displays a synergistic anti-tumor effect in vitro and superior anti-tumor activity ex vivo and in vivo. Abstract Over 50% of human papilloma positive head-and-neck cancer (HNCHPV+) patients harbor genomic-alterations in PIK3CA, leading to hyperactivation of the phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) pathway. Nevertheless, despite PI3K pathway activation in HNCHPV+ tumors, the anti-tumor activities of PI3K pathway inhibitors are moderate, mostly due to the emergence of resistance. Thus, for potent and long-term tumor management, drugs blocking resistance mechanisms should be combined with PI3K inhibitors. Here, we delineate the molecular mechanisms of the acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib (BYL719) and taselisib (GDC0032), in HNCHPV+ cell lines. By comparing the transcriptional landscape of isiPI3K-sensitive tumor cells with that of their corresponding isiPI3K-acquired-resistant tumor cells, we found upregulation of insulin growth factor 2 (IGF2) in the resistant cells. Mechanistically, we show that upon isiPI3K treatment, isiPI3K-sensitive tumor cells upregulate the expression of IGF2 to induce cell proliferation via the activation of the IGF1 receptor (IGF1R). Stimulating tumor cells with recombinant IGF2 limited isiPI3K efficacy and released treated cells from S phase arrest. Knocking-down IGF2 with siRNA, or blocking IGF1R with AEW541, resulted in superior anti-tumor activity of isiPI3K in vitro and ex vivo. In vivo, the combination of isiPI3K and IGF1R inhibitor induced stable disease in mice bearing either tumors generated by the HNCHPV+ UM-SCC47 cell line or HPV+ patient-derived xenografts. These findings indicate that IGF2 and the IGF2/IGF1R pathway may constitute new targets for combination therapies to enhance the efficacy of PI3K inhibitors for the treatment of HNCHPV+.
Collapse
Affiliation(s)
- Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Artemiy Golden
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.G.); (E.K.)
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Liron Levin
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Department of Otolaryngology—Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Department of Otorhinolaryngology and Head & Neck Surgery, Barzilay Medical Center, Ashkelon 7830604, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.G.); (E.K.)
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Jennifer R. Grandis
- Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Barak Rotblat
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (B.R.); (M.E.); Tel.: +972-(0)8-6428806 (B.R.); +972-86428846 (M.E.)
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Correspondence: (B.R.); (M.E.); Tel.: +972-(0)8-6428806 (B.R.); +972-86428846 (M.E.)
| |
Collapse
|
128
|
Degan SE, Gelman IH. Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways. Mol Cancer Res 2021; 19:1251-1257. [PMID: 33931488 DOI: 10.1158/1541-7786.mcr-20-1066] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
Collapse
Affiliation(s)
- Seamus E Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
129
|
Guerra FS, Rodrigues DA, Fraga CAM, Fernandes PD. Novel Single Inhibitor of HDAC6/8 and Dual Inhibitor of PI3K/HDAC6 as Potential Alternative Treatments for Prostate Cancer. Pharmaceuticals (Basel) 2021; 14:ph14050387. [PMID: 33919077 PMCID: PMC8143108 DOI: 10.3390/ph14050387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Prostate cancer is the second most frequently diagnosed malignancy worldwide. Here, the cytotoxic and antimetastatic effects of a new HDAC6/8 inhibitor, LASSBio-1911, and a new dual-PI3K/HDAC6 inhibitor, LASSBio-2208, were evaluated against PC3 prostate cancer cell line. Methods: A MTT assay was used to assess the cell viability. Annexin V/propidium iodide (PI) was used to detect apoptotic cell death and to analyze the cell cycle distribution. Interleukin 6 (IL-6) levels were measured by ELISA. A cell scratch assay was performed to assess cell migration, and the expression of proteins was estimated by Western blotting. Results: LASSBio-1911 and LASSBio-2208 exert cytotoxic effects against PC3 cells. However, LASSBio-2208 was demonstrated to be more potent than LASSBio-1911. The apoptosis assays showed that both compounds trigger apoptotic processes and cause the arrest of cells in the G2/M phase of the cell cycle. The Western blot analysis revealed that LASSBio-2208 significantly decreased the expression of p-JNK and JAK2. However, both compounds reduced the expression of p-STAT3, IL-6 secretion, and cell migration. Conclusions: LASSBio-1911 and LASSBio-2208 demonstrated significant activity in reducing cell viability and migration. These compounds can be further used as prototypes for the development of new potential anticancer alternative treatments.
Collapse
Affiliation(s)
- Fabiana Sélos Guerra
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Daniel Alencar Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (D.A.R.); (C.A.M.F.)
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (D.A.R.); (C.A.M.F.)
| | - Patricia Dias Fernandes
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
- Correspondence:
| |
Collapse
|
130
|
Kwan EM, Dai C, Fettke H, Hauser C, Docanto MM, Bukczynska P, Ng N, Foroughi S, Graham LJK, Mahon K, Tan W, Wang X, Zhao Z, Zheng T, Zhou K, Yu J, Du P, Horvath LG, Jia S, Kohli M, Azad AA. Plasma Cell-Free DNA Profiling of PTEN-PI3K-AKT Pathway Aberrations in Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2021; 5:PO.20.00424. [PMID: 34250422 PMCID: PMC8232889 DOI: 10.1200/po.20.00424] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/10/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor tissue from metastatic castration-resistant prostate cancer (mCRPC) harbors frequent copy number variations (CNVs) in the PTEN-PI3K-AKT pathway. However, identifying CNVs in plasma cell-free DNA (cfDNA) has proven to be challenging. With emerging data supporting Akt inhibition in PTEN-deficient mCRPC, we profiled PTEN-PI3K-AKT pathway aberrations in patients with mCRPC using a novel cfDNA assay optimized for CNV detection. METHODS A next-generation sequencing-based cfDNA assay was used to profile 231 patients with mCRPC from two independent cohorts (Australian, n = 78; United States, n = 153). PTEN-PI3K-AKT pathway genomic aberrations were correlated with clinical outcomes, including progression-free survival and overall survival (OS). RESULTS PTEN loss and PIK3CA gain were detected in 37% (85 of 231) and 17% (39 of 231) of patients, respectively. Poorer outcomes were observed in patients with PTEN-PI3K-AKT pathway aberrations, including those with dual PTEN loss and PIK3CA gain (hazard ratio 2.3, 95% CI 1.2 to 4.4). Cumulative CNV burden in the PTEN-PI3K-AKT and androgen receptor (AR) pathways was associated with significantly worse clinical outcomes (0 v 1 v ≥ 2 CNVs in Australian cohort: median OS 33.5 v 17.2 v 9.7 months, P < .001; 0 v 1 v ≥ 2 CNVs in US cohort: median OS 35.5 v 14.3 v 9.2 months, P < .001). Notably, 21% (31 of 146) of PTEN-neutral patients harbored alternative PTEN-PI3K-AKT pathway aberrations. CONCLUSION PTEN-PI3K-AKT pathway CNVs were readily detected using our cfDNA assay, with the prevalence of PTEN loss comparable with tissue-based studies. Additional PTEN-PI3K-AKT pathway aberrations were found in one fifth of PTEN-neutral cases. Concurrent CNVs in the PTEN-PI3K-AKT and AR pathways portended poor survival, and identifying this high-risk patient subset for dual AR/Akt inhibition may optimize precision treatment with Akt inhibitors in mCRPC.
Collapse
Affiliation(s)
- Edmond M. Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | | | - Heidi Fettke
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | | | - Maria M. Docanto
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | | | - Nicole Ng
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Siavash Foroughi
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | | | - Kate Mahon
- Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
- University of Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Winston Tan
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | | | | | | | | | | | - Pan Du
- Predicine Inc, Hayward, CA
| | - Lisa G. Horvath
- Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
- University of Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Manish Kohli
- Division of Medical Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Arun A. Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
131
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
132
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
133
|
Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers (Basel) 2021; 13:cancers13071538. [PMID: 33810522 PMCID: PMC8037590 DOI: 10.3390/cancers13071538] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation of several signalling cascades which regulate biological processes such as cellular growth, survival, proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour progression and is one of the most common events in human cancers. Additionally, aberrant activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of anti-tumour agents paving the way for the development and implementation of PI3K inhibitors in the clinic. However, the overall effectiveness of these compounds has been greatly limited by inadequate target engagement due to reactivation of the pathway by compensatory mechanisms. Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway, therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore, we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.
Collapse
Affiliation(s)
- Sarah Christine Elisabeth Wright
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Natali Vasilevski
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Violeta Serra
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Jordi Rodon
- MD Anderson Cancer Center, Investigational Cancer Therapeutics Department, Houston, TX 77030, USA;
| | - Pieter Johan Adam Eichhorn
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
134
|
Li X, Shi L, Li Y, Li Q, Duan X, Wang Y, Li Q. The enhanced treatment efficacy of invasive brain glioma by dual-targeted artemether plus paclitaxel micelles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:983-996. [PMID: 32524852 DOI: 10.1080/21691401.2020.1773489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High grade-gliomas are highly invasive and prone to metastasis, leading to poor survival and prognosis. Currently, we urgently need a new treatment strategy to effectively inhibit glioma. In this study, artemether and paclitaxel were used as two agents for tumour suppression. Two functional materials were synthesised and modified on the surface of the micelle as targeting molecules. The addition of two functional materials confers the ability of the micelles to effectively cross the blood-brain barrier (BBB) and then target the glioma cells. Thus, this dual-targeted delivery system allows the drug to play a better role in inhibiting tumour invasion and vasculogenic mimicry (VM) channels. In this paper, the anticancer effects of dual-targeted artemether plus paclitaxel micelles on glioma U87 cells were studied in three aspects: (I) In vitro and in vivo targeting assessment, including the role of penetrating BBB and targeting glioma; (II) In vitro regulation of invasion-associated proteins; (III) Inhibition of VM channels formation and invasion in vitro; (IV) The study of pharmacodynamics in tumour-bearing mice. These results suggest that dual-targeted artemether plus paclitaxel micelle may provide a new strategy to treat glioma via inhibiting invasive and VM channels.
Collapse
Affiliation(s)
- Xiuying Li
- Research Center for Engineering (Technology) of Traditional Chinese Medicine Microemulsions and New Biological Preparations, Shanxi University of Chinese Medicine, Jinzhong, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Luanxia Shi
- Research Center for Engineering (Technology) of Traditional Chinese Medicine Microemulsions and New Biological Preparations, Shanxi University of Chinese Medicine, Jinzhong, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yandong Li
- Department of Pathology, The First Affilated Hospital of Xi'an Medical University, Xi'an, China
| | - Qinqing Li
- Research Center for Engineering (Technology) of Traditional Chinese Medicine Microemulsions and New Biological Preparations, Shanxi University of Chinese Medicine, Jinzhong, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiujun Duan
- Research Center for Engineering (Technology) of Traditional Chinese Medicine Microemulsions and New Biological Preparations, Shanxi University of Chinese Medicine, Jinzhong, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yingli Wang
- Research Center for Engineering (Technology) of Traditional Chinese Medicine Microemulsions and New Biological Preparations, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qingshan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
135
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
136
|
Chauhan AF, Cheson BD. Copanlisib in the Treatment of Relapsed Follicular Lymphoma: Utility and Experience from the Clinic. Cancer Manag Res 2021; 13:677-692. [PMID: 33531838 PMCID: PMC7846853 DOI: 10.2147/cmar.s201024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway is ubiquitous to multiple cellular processes and is intricately implicated in lymphomagenesis. The development of PI3K inhibitors has broadened treatment options for relapsed and/or refractory follicular lymphoma (FL) and currently three PI3K inhibitors have been approved in the third-line setting for FL, including idelalisib (oral), duvelisib (oral), and copanlisib (intravenous), with other agents under investigation. In this review, we discuss the clinical advance of copanlisib through preclinical to Phase III trials, its unique cellular targets and side effect profile that have poised it as a safer and equally efficacious option when compared to the older-generation oral PI3Kis, and its utility to the clinician as part of the therapeutic armamentarium for relapsed and/or refractory FL.
Collapse
Affiliation(s)
- Ayushi F Chauhan
- Department of Hematology and Oncology, Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
| | - Bruce D Cheson
- Scientific Advisory Board, Lymphoma Research Foundation, Washington, DC, USA
| |
Collapse
|
137
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
138
|
Jhaveri K, Chang MT, Juric D, Saura C, Gambardella V, Melnyk A, Patel MR, Ribrag V, Ma CX, Aljumaily R, Bedard PL, Sachdev JC, Dunn L, Won H, Bond J, Jones S, Savage HM, Scaltriti M, Wilson TR, Wei MC, Hyman DM. Phase I Basket Study of Taselisib, an Isoform-Selective PI3K Inhibitor, in Patients with PIK3CA-Mutant Cancers. Clin Cancer Res 2021; 27:447-459. [PMID: 33148674 DOI: 10.1158/1078-0432.ccr-20-2657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), which encodes the p110α catalytic subunit of PI3K, are found in multiple human cancers. While recurrent mutations in PIK3CA helical, regulatory, and kinase domains lead to constitutive PI3K pathway activation, other mutations remain uncharacterized. To further evaluate their clinical actionability, we designed a basket study for patients with PIK3CA-mutant cancers with the isoform-specific PI3K inhibitor taselisib. PATIENTS AND METHODS Patients were enrolled on the basis of local PIK3CA mutation testing into one of 11 histology-specific cohorts and treated with taselisib at 6 or 4 mg daily until progression. Tumor DNA from baseline and progression (when available) was sequenced using a next-generation sequencing panel. Exploratory analyses correlating genomic alterations with treatment outcomes were performed. RESULTS A total of 166 patients with PIK3CA-mutant cancers were enrolled. The confirmed response rate was 9%. Activity varied by tumor type and mutant allele, with confirmed responses observed in head and neck squamous (15.4%), cervical (10%), and other cancers, plus in tumors containing helical domain mutations. Genomic analyses identified mutations potentially associated with resistance to PI3K inhibition upfront (TP53 and PTEN) and postprogression through reactivation of the PI3K pathway (PTEN, STK11, and PIK3R1). Higher rates of dose modification occurred at higher doses of taselisib, indicating a narrow therapeutic index. CONCLUSIONS Taselisib had limited activity in the tumor types tested and is no longer in development. This genome-driven study improves understanding of the activity, limitations, and resistance mechanisms of using PI3K inhibitors as monotherapy to target PIK3CA-mutant tumors.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, New York.
- Weill Cornell Medical College, New York, New York
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Cristina Saura
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Valentina Gambardella
- INCLIVA Biomedical Research Institute, Hospital Clinico Universitario of Valencia, and CIBERONC, Valencia/Madrid, Spain
| | | | - Manish R Patel
- Sarah Cannon Research Institute/Florida Cancer Specialists, Sarasota, Florida
| | | | - Cynthia X Ma
- Washington University School of Medicine, St. Louis, Missouri
| | - Raid Aljumaily
- University of Oklahoma - Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, Division of Medical Oncology & Hematology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Lara Dunn
- Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, New York
| | - Helen Won
- Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, New York
| | - John Bond
- Genentech, Inc., South San Francisco, California
| | | | | | - Maurizio Scaltriti
- Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, New York
| | | | | | - David M Hyman
- Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
139
|
Proteomic Resistance Biomarkers for PI3K Inhibitor in Triple Negative Breast Cancer Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12123857. [PMID: 33371187 PMCID: PMC7765949 DOI: 10.3390/cancers12123857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The objective of this study is to identify potential proteomic biomarkers in triple negative breast cancer (TNBC) that associate with response to PI3K inhibitors which are in clinical trials. We tested a panel of TNBC patient-derived xenograft (PDX) models for their tumor growth response to a pan-PI3K inhibitor, BKM120. Proteomic analyses by reverse phase protein array (RPPA) of 182 markers were performed on baseline and post short-term treatment PDX samples, to correlate with tumor growth response. We identified several baseline and treatment induced proteomic biomarkers in association with resistance. These results provide important insights for the development of PI3K inhibitors in TNBC. Abstract PI3K pathway activation is frequently observed in triple negative breast cancer (TNBC). However, single agent PI3K inhibitors have shown limited anti-tumor activity. To investigate biomarkers of response and resistance mechanisms, we tested 17 TNBC patient-derived xenograft (PDX) models representing diverse genomic backgrounds and varying degrees of PI3K pathway signaling activities for their tumor growth response to the pan-PI3K inhibitor, BKM120. Baseline and post-treatment PDX tumors were subjected to reverse phase protein array (RPPA) to identify protein markers associated with tumor growth response. While BKM120 consistently reduced PI3K pathway activity, as demonstrated by reduced levels of phosphorylated AKT, percentage tumor growth inhibition (%TGI) ranged from 35% in the least sensitive to 84% in the most sensitive model. Several biomarkers showed significant association with resistance, including elevated baseline levels of growth factor receptors (EGFR, pHER3 Y1197), PI3Kp85 regulatory subunit, anti-apoptotic protein BclXL, EMT (Vimentin, MMP9, IntegrinaV), NFKB pathway (IkappaB, RANKL), and intracellular signaling molecules including Caveolin, CBP, and KLF4, as well as treatment-induced increases in the levels of phosphorylated forms of Aurora kinases. Interestingly, increased AKT phosphorylation or PTEN loss at baseline were not significantly correlated to %TGI. These results provide important insights into biomarker development for PI3K inhibitors in TNBC.
Collapse
|
140
|
Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020; 18:175. [PMID: 33148274 PMCID: PMC7640403 DOI: 10.1186/s12964-020-00607-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaojiao Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Yin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiao Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
141
|
Beer PA, Cooke SL, Chang DK, Biankin AV. Defining the clinical genomic landscape for real-world precision oncology. Genomics 2020; 112:5324-5330. [PMID: 33144218 PMCID: PMC7758710 DOI: 10.1016/j.ygeno.2020.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Through the delivery of large international projects including ICGC and TCGA, knowledge of cancer genomics is reaching saturation point. Enabling this to improve patient outcomes now requires embedding comprehensive genomic profiling into routine oncology practice. Towards this goal, this study defined the biologically and clinically relevant genomic features of adult cancer through detailed curation and analysis of large genomic datasets, accumulated literature and biomarker-driven therapeutics in clinic and development. The characteristics and prevalence of these features were then interrogated in 2348 whole genome sequences, covering 21 solid tumour types, generated by the PCAWG project. This analysis highlights the predominant contribution of copy number alterations and identifies a critical role for disruptive structural variants in the inactivation of clinically important tumour suppressor genes, including PTEN and RB1, which are not currently captured by diagnostic assays. This study defines a set of essential genomic features for the characterisation of common adult cancers.
Collapse
Affiliation(s)
- Philip A Beer
- Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1QH, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom; South Western Sydney Clinical School, Goulburn, St, Liverpool NSW, 2170, Australia.
| |
Collapse
|
142
|
Abstract
Predictive biomarkers can facilitate optimal patient selection for targeted cancer therapies. In this issue of Cancer Cell, Ros et al. show the utility of noninvasive metabolic imaging of labeled carbon transfer from pyruvate to lactate to detect early response and FOXM1-mediated resistance to PI3K inhibition in estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
- Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
143
|
Ros S, Wright AJ, D'Santos P, Hu DE, Hesketh RL, Lubling Y, Georgopoulou D, Lerda G, Couturier DL, Razavi P, Pelossof R, Batra AS, Mannion E, Lewis DY, Martin A, Baird RD, Oliveira M, de Boo LW, Linn SC, Scaltriti M, Rueda OM, Bruna A, Caldas C, Brindle KM. Metabolic Imaging Detects Resistance to PI3Kα Inhibition Mediated by Persistent FOXM1 Expression in ER + Breast Cancer. Cancer Cell 2020; 38:516-533.e9. [PMID: 32976773 PMCID: PMC7562820 DOI: 10.1016/j.ccell.2020.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.
Collapse
Affiliation(s)
- Susana Ros
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Paula D'Santos
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Richard L Hesketh
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Yaniv Lubling
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Dimitra Georgopoulou
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rapahel Pelossof
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankita S Batra
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Elizabeth Mannion
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - David Y Lewis
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alistair Martin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Richard D Baird
- Breast Cancer Research Programme, Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Mafalda Oliveira
- Medical Oncology, Vall d'Hebron Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Leonora W de Boo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, X and Department of Pathology, Y and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Cancer Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge UK.
| |
Collapse
|
144
|
Liang D, Wang HY, Fan S, Wang J, Shen Y, Gao CY, Wu ML, Lu SM, Zhang SQ, Han W. W941, a new PI3K inhibitor, exhibits preferable anti-proliferative activities against nonsmall cell lung cancer with autophagy inhibitors. Invest New Drugs 2020; 38:1218-1226. [PMID: 31823159 DOI: 10.1007/s10637-019-00886-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
The PI3K pathway is aberrantly activated in many cancers and plays a critical role in tumour cell proliferation and survival, making it a rational therapeutic target. In the present study, the effects and the underlying mechanism of a new PI3K inhibitor, W941, were investigated in non-small-cell lung cancer (NSCLC). The results of this study showed that W941 inhibited the growth of A549 and Hcc827 cells with IC50 values of 0.12 and 0.23 μM, respectively, and that W941 markedly inhibited the growth of A549 xenograft tumours in a nude mouse model without decreasing body weight. Western blotting assays showed that W941 inhibited the phosphorylation of downstream proteins in the PI3K pathway (AKT, mTOR, p70S6K and 4EBP1) in both A549 and Hcc827 cells. In addition, after W941 treatment, a dose-dependent increase in the ratio of the LC3-II/I ratio was observed. When cells were pre-treated with chloroquine or bafilomycin A1, W941 increased the LC3-II/I ratio, suggesting that W941 acted as an autophagy inducer. Moreover, autophagy blockers enhanced apoptosis after W941 treatment, indicating that W941-induced autophagy actually protected the cells against its cytotoxicity. Our findings suggest that the combination of a PI3K inhibitor with an autophagy inhibitor might be a novel option for NSCLC treatment.
Collapse
Affiliation(s)
- Dong Liang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
- Department of Women's and Children's Health, Solna, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Hong-Ying Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jin Wang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ying Shen
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chen-Ying Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Man-Li Wu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - She-Min Lu
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Wei Han
- Department of Women's and Children's Health, Solna, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
145
|
Wu S, Guo X, Zhou J, Zhu X, Chen H, Zhang K, Lu Y, Chen Y. High expression of UNC5B enhances tumor proliferation, increases metastasis, and worsens prognosis in breast cancer. Aging (Albany NY) 2020; 12:17079-17098. [PMID: 32902412 PMCID: PMC7521535 DOI: 10.18632/aging.103639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
UNC-5 Homolog B (UNC5B) is a member of the dependence receptor family that regulates cell survival and apoptosis in a ligand-dependent manner. UNC5B plays an important role in the development of multiple cancers, including colorectal, bladder, and thyroid cancer. However, the exact expression pattern and mechanism of UNC5B in breast cancer have not been well elucidated. Here, we showed that UNC5B expression was significantly upregulated in breast cancer using bioinformatics analysis and experimental validation. High UNC5B expression was correlated with poor overall survival in breast cancer patients. UNC5B knockdown inhibited breast cancer cell proliferation and metastasis and compromised PI3K/Akt signaling activation. In summary, UNC5B is a promising diagnostic and prognostic biomarker and targeting UNC5B is a potential strategy for individualized breast cancer treatment.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xinyue Guo
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xuan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
146
|
Marmorino F, Boccaccino A, Germani MM, Falcone A, Cremolini C. Immune Checkpoint Inhibitors in pMMR Metastatic Colorectal Cancer: A Tough Challenge. Cancers (Basel) 2020; 12:E2317. [PMID: 32824490 PMCID: PMC7465130 DOI: 10.3390/cancers12082317] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
The introduction of checkpoint inhibitors provided remarkable achievements in several solid tumors but only 5% of metastatic colorectal cancer (mCRC) patients, i.e., those with bearing microsatellite instable (MSI-high)/deficient DNA mismatch repair (dMMR) tumors, benefit from this approach. The favorable effect of immunotherapy in these patients has been postulated to be due to an increase in neoantigens due to their higher somatic mutational load, also associated with an abundant infiltration of immune cells in tumor microenvironment (TME). While in patients with dMMR tumors checkpoint inhibitors allow achieving durable response with dramatic survival improvement, current results in patients with microsatellite stable (MSS or MSI-low)/proficient DNA mismatch repair (pMMR) tumors are disappointing. These tumors show low mutational load and absence of "immune-competent" TME, and are intrinsically resistant to immune checkpoint inhibitors. Modifying the interplay among cancer cells, TME and host immune system is the aim of multiple lines of research in order to enhance the immunogenicity of pMMR mCRC, and exploit immunotherapy also in this field. Here, we focus on the rationale behind ongoing clinical trials aiming at extending the efficacy of immunotherapy beyond the MSI-high/dMMR subgroup with particular regard to academic no-profit studies.
Collapse
Affiliation(s)
- Federica Marmorino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Marco Maria Germani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alfredo Falcone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Risorgimento 36, 56126 Pisa, Italy; (F.M.); (A.B.); (M.M.G.); (A.F.)
- Unit of Medical Oncology, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
147
|
Hassan G, Du J, Afify SM, Seno A, Seno M. Cancer stem cell generation by silenced MAPK enhancing PI3K/AKT signaling. Med Hypotheses 2020; 141:109742. [DOI: 10.1016/j.mehy.2020.109742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
|
148
|
Kim KJ, Kim JW, Sung JH, Suh KJ, Lee JY, Kim SH, Lee JO, Kim JW, Kim YJ, Kim JH, Bang SM, Lee JS, Kim HK, Lee KW. PI3K-targeting strategy using alpelisib to enhance the antitumor effect of paclitaxel in human gastric cancer. Sci Rep 2020; 10:12308. [PMID: 32704014 PMCID: PMC7378194 DOI: 10.1038/s41598-020-68998-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
PIK3CA mutations are frequently observed in various human cancers including gastric cancer (GC). This study was conducted to investigate the anti-tumor effects of alpelisib, a PI3K p110α-specific inhibitor, using preclinical models of GC. In addition, the combined effects of alpelisib and paclitaxel on GC were evaluated. Among the SNU1, SNU16, SNU484, SNU601, SNU638, SNU668, AGS, and MKN1 GC cells, three PIK3CA-mutant cells were predominantly sensitive to alpelisib. Alpelisib monotherapy decreased AKT and S6K1 phosphorylation and induced G0/G1 phase arrest regardless of PIK3CA mutational status. The alpelisib and paclitaxel combination demonstrated synergistic anti-proliferative effects, preferentially on PIK3CA-mutant cells, resulting in increased DNA damage response and apoptosis. In addition, alpelisib and paclitaxel combination potentiated anti-migratory activity in PIK3CA-mutant cells. Alpelisib partially reversed epithelial–mesenchymal transition markers in PIK3CA-mutant cells. In a xenograft model of MKN1 cells, the alpelisib and paclitaxel combination significantly enhanced anti-tumor activity by decreasing Ki-67 expression and increasing apoptosis. Moreover, this combination tended to prolong the survival of tumor-bearing mice. Our data suggest promising anti-tumor efficacy of alpelisib alone or in combination with paclitaxel in PIK3CA-mutant GC cells.
Collapse
Affiliation(s)
- Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Ji Hea Sung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Hark Kyun Kim
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
149
|
Damodaran S, Sember QC, Arun BK. Clinical implications of breast cancer tumor genomic testing. Breast J 2020; 26:1565-1571. [PMID: 32696498 DOI: 10.1111/tbj.13966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/30/2022]
Abstract
One of the important applications of genetic testing is genetic testing of the tumor to identify non-inherited somatic mutations. The advent of high-throughput genomic and proteomic techniques has enabled characterization of genomic alterations and accelerated development of novel matching therapies for cancer. Consequently, mutational status has increasingly defined treatment selection for patients with solid tumors. The effectiveness of targeted therapy depends on matching with the right target; targets that are differentially expressed in tumor cells and provide growth and survival advantage. Currently, multiple targeted therapies have been approved by the Food and Drug Administration (FDA) for treatment of solid tumors including breast, lung, and melanoma, while many others are being evaluated in clinical trials. In addition to identifying actionable genomic alterations of interest, tumor genome sequencing also has the potential to detect germline mutations that has clinical implications for both the patient and their family. While targeted therapies have transformed our approach to cancer care in solid tumor patients within the past decade, lack of sustained responses and emergence of acquired resistance limit their clinical activity. In this article, we discuss tumor genome sequencing in breast cancers and their clinical implication.
Collapse
Affiliation(s)
- Senthil Damodaran
- Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Quinne C Sember
- University of Texas Health Internal Medicine, Houston, Texas
| | - Banu K Arun
- Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
150
|
Dong J, Huang J, Zhou J, Tan Y, Jin J, Tan X, Wang B, Yu T, Wu C, Chen S, Wang TL. Discovery of 3-Quinazolin-4(3 H)-on-3-yl-2, N-dimethylpropanamides as Orally Active and Selective PI3Kα Inhibitors. ACS Med Chem Lett 2020; 11:1463-1469. [PMID: 32676155 DOI: 10.1021/acsmedchemlett.0c00239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) mediate a series of events related to cell growth, proliferation, survival, and differentiation. Overexpression of PI3Ks can lead to the dysregulation of cell homeostasis and cause tumorigenesis. In this study, rationally designed compounds were investigated as PI3Kα-selective inhibitors. Our efforts culminated in the discovery of a series of quinazolin-4(3H)-one derivatives with 2-substituted-N-methylpropanamide substitutions as PI3Kα-selective inhibitors. The best compound, 10, has PI3Kα enzymatic and cellular IC50 values of 1.8 and 12.1 nM, respectively. It exhibits biochemical selectivities for PI3Kα over PI3Kβ/δ/γ of 150/7.72/7.67-fold and cellular selectivities of 115/15.1/>826-fold, respectively. Compound 10 is 59% orally bioavailable with a dose-normalized AUC of 3090 nM. These effects translated into in vivo conditions, as 10 significantly time- and dose-dependently inhibited phosphorylation of Akt in BT-474 subcutaneous xenograft mice and inhibited tumor growth.
Collapse
Affiliation(s)
- Jiaqiang Dong
- Luoxin Pharmaceutical (Shanghai) Co., Ltd., Building 1 and First−Third Floors, Building 2, No. 85 Faladi Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201203, China
| | - Jingjie Huang
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ji Zhou
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ye Tan
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jing Jin
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xi Tan
- LTD, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - Bei Wang
- OIU, WuXi AppTec Co., Ltd., 1336 Wuzhong Avenue, Suzhou 215104, China
| | - Tao Yu
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chengde Wu
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Tie-Lin Wang
- Luoxin Pharmaceutical (Shanghai) Co., Ltd., Building 1 and First−Third Floors, Building 2, No. 85 Faladi Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201203, China
| |
Collapse
|