101
|
Madaci L, Colle J, Venton G, Farnault L, Loriod B, Costello R. The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark Res 2021; 9:50. [PMID: 34176517 PMCID: PMC8237443 DOI: 10.1186/s40364-021-00300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
After decades during which the treatment of acute myeloblastic leukemia was limited to variations around a skeleton of cytarabine/anthracycline, targeted therapies appeared. These therapies, first based on monoclonal antibodies, also rely on specific inhibitors of various molecular abnormalities. A significant but modest prognosis improvement has been observed thanks to these new treatments that are limited by a high rate of relapse, due to the intrinsic chemo and immune-resistance of leukemia stem cell, together with the acquisition of these resistances by clonal evolution. Relapses are also influenced by the equilibrium between the pro or anti-tumor signals from the bone marrow stromal microenvironment and immune effectors. What should be the place of the targeted therapeutic options in light of the tumor heterogeneity inherent to leukemia and the clonal drift of which this type of tumor is capable? Novel approaches by single cell analysis and next generation sequencing precisely define clonal heterogeneity and evolution, leading to a personalized and time variable adapted treatment. Indeed, the evolution of leukemia, either spontaneous or under therapy selection pressure, is a very complex phenomenon. The model of linear evolution is to be forgotten because single cell analysis of samples at diagnosis and at relapse show that tumor escape to therapy occurs from ancestral as well as terminal clones. The determination by the single cell technique of the trajectories of the different tumor sub-populations allows the identification of clones that accumulate factors of resistance to chemo/immunotherapy ("pan-resistant clones"), making possible to choose the combinatorial agents most likely to eradicate these cells. In addition, the single cell technique identifies the nature of each cell and can analyze, on the same sample, both the tumor cells and their environment. It is thus possible to evaluate the populations of immune effectors (T-lymphocytes, natural killer cells) for the leukemia stress-induced alteration of their functions. Finally, the single cells techniques are an invaluable tool for evaluation of the measurable residual disease since not only able to quantify but also to determine the most appropriate treatment according to the sensitivity profile to immuno-chemotherapy of remaining leukemic cells.
Collapse
Affiliation(s)
- Lamia Madaci
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France
| | - Julien Colle
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Geoffroy Venton
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Laure Farnault
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France
| | - Béatrice Loriod
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France.,TGML-TAGC/INSERM UMR1090 Parc Scientifique de Luminy case 928, 163, avenue de Luminy, Cedex 09, 13288, Marseille, France
| | - Régis Costello
- Laboratoire TAGC/INSERM UMR 1090, Parc Scientifique de Luminy case 928, 163, Avenue de Luminy, Cedex 09, 13288, Marseille, France. .,Service d'Hématologie et Thérapie Cellulaire, Hôpital La Conception, Assistance Publique des Hôpitaux de Marseille, 147 boulevard Baille, 13005, Marseille, France.
| |
Collapse
|
102
|
Hsu CL, Lo YC, Kao CF. H3K4 Methylation in Aging and Metabolism. EPIGENOMES 2021; 5:14. [PMID: 34968301 PMCID: PMC8594702 DOI: 10.3390/epigenomes5020014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
During the process of aging, extensive epigenetic alterations are made in response to both exogenous and endogenous stimuli. Here, we summarize the current state of knowledge regarding one such alteration, H3K4 methylation (H3K4me), as it relates to aging in different species. We especially highlight emerging evidence that links this modification with metabolic pathways, which may provide a mechanistic link to explain its role in aging. H3K4me is a widely recognized marker of active transcription, and it appears to play an evolutionarily conserved role in determining organism longevity, though its influence is context specific and requires further clarification. Interestingly, the modulation of H3K4me dynamics may occur as a result of nutritional status, such as methionine restriction. Methionine status appears to influence H3K4me via changes in the level of S-adenosyl methionine (SAM, the universal methyl donor) or the regulation of H3K4-modifying enzyme activities. Since methionine restriction is widely known to extend lifespan, the mechanistic link between methionine metabolic flux, the sensing of methionine concentrations and H3K4me status may provide a cogent explanation for several seemingly disparate observations in aging organisms, including age-dependent H3K4me dynamics, gene expression changes, and physiological aberrations. These connections are not yet entirely understood, especially at a molecular level, and will require further elucidation. To conclude, we discuss some potential H3K4me-mediated molecular mechanisms that may link metabolic status to the aging process.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
103
|
Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med 2021; 218:212382. [PMID: 34129017 PMCID: PMC8210621 DOI: 10.1084/jem.20201544] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
With a growing aged population, there is an imminent need to develop new therapeutic strategies to ameliorate disorders of hematopoietic aging, including clonal hematopoiesis and myelodysplastic syndrome (MDS). Cell-intrinsic dysregulation of innate immune- and inflammatory-related pathways as well as systemic inflammation have been implicated in hematopoietic defects associated with aging, clonal hematopoiesis, and MDS. Here, we review and discuss the role of dysregulated innate immune and inflammatory signaling that contribute to the competitive advantage and clonal dominance of preleukemic and MDS-derived hematopoietic cells. We also propose how emerging concepts will further reveal critical biology and novel therapeutic opportunities.
Collapse
Affiliation(s)
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
104
|
Anene CA, Khan F, Bewicke-Copley F, Maniati E, Wang J. ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles. PATTERNS (NEW YORK, N.Y.) 2021; 2:100270. [PMID: 34179848 PMCID: PMC8212143 DOI: 10.1016/j.patter.2021.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 11/01/2022]
Abstract
Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm that combines prior knowledge of biological processes with a deep neural network to effectively decompose gene expression profiles (GEPs) into multi-variable pathway activities and identify unknown pathway components. Experiments on public GEP data show that ACSNI predicts cogent components of mTOR, ATF2, and HOTAIRM1 signaling that recapitulate regulatory information from genetic perturbation and transcription factor binding datasets. Our framework provides a fast and easy-to-use method to identify components of signaling pathways as a tool for molecular mechanism discovery and to prioritize genes for designing future targeted experiments (https://github.com/caanene1/ACSNI).
Collapse
Affiliation(s)
- Chinedu Anthony Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Faraz Khan
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Eleni Maniati
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
105
|
RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 2021; 4:1131-1144. [PMID: 32208489 DOI: 10.1182/bloodadvances.2019000901] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.
Collapse
|
106
|
Di Giorgio E, Paluvai H, Dalla E, Ranzino L, Renzini A, Moresi V, Minisini M, Picco R, Brancolini C. HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers. Genome Biol 2021; 22:129. [PMID: 33966634 PMCID: PMC8108360 DOI: 10.1186/s13059-021-02340-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cellular senescence is a permanent state of replicative arrest defined by a specific pattern of gene expression. The epigenome in senescent cells is sculptured in order to sustain the new transcriptional requirements, particularly at enhancers and super-enhancers. How these distal regulatory elements are dynamically modulated is not completely defined. RESULTS Enhancer regions are defined by the presence of H3K27 acetylation marks, which can be modulated by class IIa HDACs, as part of multi-protein complexes. Here, we explore the regulation of class IIa HDACs in different models of senescence. We find that HDAC4 is polyubiquitylated and degraded during all types of senescence and it selectively binds and monitors H3K27ac levels at specific enhancers and super-enhancers that supervise the senescent transcriptome. Frequently, these HDAC4-modulated elements are also monitored by AP-1/p300. The deletion of HDAC4 in transformed cells which have bypassed oncogene-induced senescence is coupled to the re-appearance of senescence and the execution of the AP-1/p300 epigenetic program. CONCLUSIONS Overall, our manuscript highlights a role of HDAC4 as an epigenetic reader and controller of enhancers and super-enhancers that supervise the senescence program. More generally, we unveil an epigenetic checkpoint that has important consequences in aging and cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | | | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Liliana Ranzino
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, via Antonio Scarpa 16, 00161, Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, via Antonio Scarpa 16, 00161, Rome, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
107
|
Zhang B, Long Q, Wu S, Xu Q, Song S, Han L, Qian M, Ren X, Liu H, Jiang J, Guo J, Zhang X, Chang X, Fu Q, Lam EWF, Campisi J, Kirkland JL, Sun Y. KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype. NATURE AGING 2021; 1:454-472. [PMID: 34263179 PMCID: PMC8277122 DOI: 10.1038/s43587-021-00063-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/02/2021] [Indexed: 11/08/2022]
Abstract
Cellular senescence restrains the expansion of neoplastic cells through several layers of regulation. We report that the histone H3-specific demethylase KDM4 is expressed as human stromal cells undergo senescence. In clinical oncology, upregulated KDM4 and diminished H3K9/H3K36 methylation correlate with poorer survival of prostate cancer patients post-chemotherapy. Global chromatin accessibility mapping via ATAC-seq, and expression profiling through RNA-seq, reveal global changes of chromatin openness and spatiotemporal reprogramming of the transcriptomic landscape, which underlie the senescence-associated secretory phenotype (SASP). Selective targeting of KDM4 dampens the SASP of senescent stromal cells, promotes cancer cell apoptosis in the treatment-damaged tumor microenvironment (TME), and prolongs survival of experimental animals. Our study supports dynamic changes of H3K9/H3K36 methylation during senescence, identifies an unusually permissive chromatin state, and unmasks KDM4 as a key SASP modulator. KDM4 targeting presents a novel therapeutic avenue to manipulate cellular senescence and limit its contribution to age-related pathologies including cancer.
Collapse
Affiliation(s)
- Boyi Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanshan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuling Song
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liu Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanxin Liu
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Chang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qiang Fu
- Department of Pharmacology, Binzhou Medical University, Yantai, China.
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Pharmacology, Binzhou Medical University, Yantai, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| |
Collapse
|
108
|
Keenan CR. Heterochromatin and Polycomb as regulators of haematopoiesis. Biochem Soc Trans 2021; 49:805-814. [PMID: 33929498 PMCID: PMC8106494 DOI: 10.1042/bst20200737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
Haematopoiesis is the process by which multipotent haematopoietic stem cells are transformed into each and every type of terminally differentiated blood cell. Epigenetic silencing is critical for this process by regulating the transcription of cell-cycle genes critical for self-renewal and differentiation, as well as restricting alternative fate genes to allow lineage commitment and appropriate differentiation. There are two distinct forms of transcriptionally repressed chromatin: H3K9me3-marked heterochromatin and H3K27me3/H2AK119ub1-marked Polycomb (often referred to as facultative heterochromatin). This review will discuss the role of these distinct epigenetic silencing mechanisms in regulating normal haematopoiesis, how these contribute to age-related haematopoietic dysfunction, and the rationale for therapeutic targeting of these pathways in the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
109
|
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2021; 84:153-169. [PMID: 33895273 DOI: 10.1016/j.semcancer.2021.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Myeloid malignancies have always been at the forefront of an improved understanding of the molecular pathogenesis of cancer. In accordance, over the last years, basic research focusing on the aberrations underlying malignant transformation of myeloid cells has provided the basis for precision medicine approaches and subsequently has led to the development of powerful therapeutic strategies. In this review article, we will recapitulate what has happened since in the 1980s the use of all-trans retinoic acid (ATRA), as a first targeted cancer therapy, has changed one of the deadliest leukemia subtypes, acute promyelocytic leukemia (APL), into one that can be cured without classical chemotherapy today. Similarly, imatinib, the first molecularly designed cancer therapy, has revolutionized the management of chronic myeloid leukemia (CML). Thus, targeted treatment approaches have become the paradigm for myeloid malignancy, but many questions still remain unanswered, especially how identical mutations can be associated with different phenotypes. This might be linked to the impact of the cell of origin, gene-gene interactions, or the tumor microenvironment including the immune system. Continuous research in the field of myeloid neoplasia has started to unravel the molecular pathways that are not only crucial for initial treatment response, but also resistance of leukemia cells under therapy. Ongoing studies focusing on leukemia cell vulnerabilities do already point to novel (targetable) "Achilles heels" that can further improve myeloid cancer therapy.
Collapse
Affiliation(s)
- Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
110
|
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 2021; 28:1473-1482.e7. [PMID: 33848471 DOI: 10.1016/j.stem.2021.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Decline in hematopoietic stem cell (HSC) function with age underlies limited health span of our blood and immune systems. In order to preserve health into older age, it is necessary to understand the nature and timing of initiating events that cause HSC aging. By performing a cross-sectional study in mice, we discover that hallmarks of aging in HSCs and hematopoiesis begin to accumulate by middle age and that the bone marrow (BM) microenvironment at middle age induces and is indispensable for hematopoietic aging. Using unbiased approaches, we find that decreased levels of the longevity-associated molecule IGF1 in the local middle-aged BM microenvironment are a factor causing HSC aging. Direct stimulation of middle-aged HSCs with IGF1 rescues molecular and functional hallmarks of aging, including restored mitochondrial activity. Thus, although decline in IGF1 supports longevity, our work indicates that this also compromises HSC function and limits hematopoietic health span.
Collapse
|
111
|
Abstract
Age is a common risk factor in many diseases, but the molecular basis for this relationship is elusive. In this study we identified 4 disease clusters from 116 diseases in the UK Biobank data, defined by their age-of-onset profiles, and found that diseases with the same onset profile are genetically more similar, suggesting a common etiology. This similarity was not explained by disease categories, co-occurrences or disease cause-effect relationships. Two of the four disease clusters had an increased risk of occurrence from age 20 and 40 years respectively. They both showed an association with known aging-related genes, yet differed in functional enrichment and evolutionary profiles. Moreover, they both had age-related expression and methylation changes. We also tested mutation accumulation and antagonistic pleiotropy theories of aging and found support for both.
Collapse
|
112
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
113
|
AML displays increased CTCF occupancy associated with aberrant gene expression and transcription factor binding. Blood 2021; 136:339-352. [PMID: 32232485 DOI: 10.1182/blood.2019002326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
CCTC-binding factor (CTCF) is a key regulator of gene expression through organization of the chromatin structure. Still, it is unclear how CTCF binding is perturbed in leukemia or in cancer in general. We studied CTCF binding by chromatin immunoprecipitation sequencing in cells from patients with acute myeloid leukemia (AML) and in normal bone marrow (NBM) in the context of gene expression, DNA methylation, and azacitidine exposure. CTCF binding was increased in AML compared with NBM. Aberrant CTCF binding was enriched for motifs for key myeloid transcription factors such as CEBPA, PU.1, and RUNX1. AML with TET2 mutations was characterized by a particularly strong gain of CTCF binding, highly enriched for gain in promoter regions, while AML in general was enriched for changes at enhancers. There was a strong anticorrelation between CTCF binding and DNA methylation. Gain of CTCF occupancy was associated with increased gene expression; however, the genomic location (promoter vs distal regions) and enrichment of motifs (for repressing vs activating cofactors) were decisive for the gene expression pattern. Knockdown of CTCF in K562 cells caused loss of CTCF binding and transcriptional repression of genes with changed CTCF binding in AML, as well as loss of RUNX1 binding at RUNX1/CTCF-binding sites. In addition, CTCF knockdown caused increased differentiation. Azacitidine exposure caused major changes in CTCF occupancy in AML patient cells, partly by restoring a CTCF-binding pattern similar to NBM. We conclude that AML displays an aberrant increase in CTCF occupancy that targets key genes for AML development and impacts gene expression.
Collapse
|
114
|
Hu D, Yuan S, Zhong J, Liu Z, Wang Y, Liu L, Li J, Wen F, Liu J, Zhang J. Cellular senescence and hematological malignancies: From pathogenesis to therapeutics. Pharmacol Ther 2021; 223:107817. [PMID: 33587950 DOI: 10.1016/j.pharmthera.2021.107817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Cellular senescence constitutes a permanent state of cell cycle arrest in proliferative cells induced by different stresses. The exploration of tumor pathogenesis and therapies has been a research hotspot in recent years. Cellular senescence is a significant mechanism to prevent the proliferation of potential tumor cells, but it can also promote tumor growth. Increasing evidence suggests that cellular senescence is involved in the pathogenesis and development of hematological malignancies, including leukemia, myelodysplastic syndrome (MDS) and multiple myeloma (MM). Cellular senescence is associated with functional decline of hematopoietic stem cells (HSCs) and increased risk of hematological malignancies. Moreover, the bone marrow (BM) microenvironment has a crucial regulatory effect in the process of these diseases. The senescence-associated secretory phenotype (SASP) in the BM microenvironment establishes a protumor environment that supports the proliferation and survival of tumor cells. Therefore, a series of therapeutic strategies targeting cellular senescence have been gradually developed, including the induction of cellular senescence and elimination of senescent cells. This review systematically summarizes the emerging information describing the roles of cellular senescence in tumorigenesis and potential clinical applications, which may be beneficial for designing rational therapeutic strategies for various hematopoietic malignancies.
Collapse
Affiliation(s)
- Dingyu Hu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Yanyan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Li Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
115
|
Mancarella D, Plass C. Epigenetic signatures in cancer: proper controls, current challenges and the potential for clinical translation. Genome Med 2021; 13:23. [PMID: 33568205 PMCID: PMC7874645 DOI: 10.1186/s13073-021-00837-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations are associated with normal biological processes such as aging or differentiation. Changes in global epigenetic signatures, together with genetic alterations, are driving events in several diseases including cancer. Comparative studies of cancer and healthy tissues found alterations in patterns of DNA methylation, histone posttranslational modifications, and changes in chromatin accessibility. Driven by sophisticated, next-generation sequencing-based technologies, recent studies discovered cancer epigenomes to be dominated by epigenetic patterns already present in the cell-of-origin, which transformed into a neoplastic cell. Tumor-specific epigenetic changes therefore need to be redefined and factors influencing epigenetic patterns need to be studied to unmask truly disease-specific alterations. The underlying mechanisms inducing cancer-associated epigenetic alterations are poorly understood. Studies of mutated epigenetic modifiers, enzymes that write, read, or edit epigenetic patterns, or mutated chromatin components, for example oncohistones, help to provide functional insights on how cancer epigenomes arise. In this review, we highlight the importance and define challenges of proper control tissues and cell populations to exploit cancer epigenomes. We summarize recent advances describing mechanisms leading to epigenetic changes in tumorigenesis and briefly discuss advances in investigating their translational potential.
Collapse
Affiliation(s)
- Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, 69120, Heidelberg, Germany.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| |
Collapse
|
116
|
Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood 2021; 135:2049-2058. [PMID: 32305044 DOI: 10.1182/blood.2019002990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.
Collapse
|
117
|
Renders S, Svendsen AF, Panten J, Rama N, Maryanovich M, Sommerkamp P, Ladel L, Redavid AR, Gibert B, Lazare S, Ducarouge B, Schönberger K, Narr A, Tourbez M, Dethmers-Ausema B, Zwart E, Hotz-Wagenblatt A, Zhang D, Korn C, Zeisberger P, Przybylla A, Sohn M, Mendez-Ferrer S, Heikenwälder M, Brune M, Klimmeck D, Bystrykh L, Frenette PS, Mehlen P, de Haan G, Cabezas-Wallscheid N, Trumpp A. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun 2021; 12:608. [PMID: 33504783 PMCID: PMC7840807 DOI: 10.1038/s41467-020-20801-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.
Collapse
Affiliation(s)
- Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Arthur Flohr Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper Panten
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Anna Rita Redavid
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Seka Lazare
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | | | - Andreas Narr
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manon Tourbez
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bertien Dethmers-Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Korn
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Simon Mendez-Ferrer
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Leonid Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW Our understanding of the effects of aging on human hematopoiesis has advanced significantly in recent years, yet the full ramifications of these findings are not fully understood. This review summarizes these findings and discusses their implication as they relate to malignant hematopoiesis. RECENT FINDINGS With human aging there is an impaired immune response, loss of hematopoietic stem cell (HSC) function, increase in clonal hematopoiesis, and higher frequency of myeloid malignancies. Although murine models have implicated abnormalities in DNA damage repair, autophagy, metabolism, and epigenetics, studies in primary human specimens are more limited. The development of age-related clonal hematopoiesis and the risk associated with this is one of the major findings in the field of recent years. This is accompanied by changes in bone marrow stem and progenitor composition, changes in the epigenetic program of stem cells and an inflammatory milieu in the bone marrow. The precise consequences of these changes for the development of age-related malignancies are still unclear. SUMMARY Advances in the field have begun to reveal the mechanisms driving human HSC loss of function with age. It will be critical to delineate between normal and malignant aging in order to better prevent age-associated myeloid malignancies.
Collapse
Affiliation(s)
- Emmalee R. Adelman
- Dept of Human Genetics, Miller School of Medicine, University of Miami
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami
| | - Maria E. Figueroa
- Dept of Human Genetics, Miller School of Medicine, University of Miami
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami
| |
Collapse
|
119
|
Ferchen K, Song B, Grimes HL. A primer on single-cell genomics in myeloid biology. Curr Opin Hematol 2021; 28:11-17. [PMID: 33186153 PMCID: PMC9205579 DOI: 10.1097/moh.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Understanding the fast-moving field of single-cell technologies, as applied to myeloid biology, requires an appreciation of basic molecular, informatics, and biological concepts. Here, we highlight both key and recent articles to illustrate basic concepts for those new to molecular single-cell analyses in myeloid hematology. RECENT FINDINGS Recent studies apply single-cell omics to discover novel cell populations, construct relationships between cell populations, reconfigure the organization of hematopoiesis, and study hematopoietic lineage tree and fate choices. Accompanying development of technologies, new informatic tools have emerged, providing exciting new insights. SUMMARY Hematopoietic stem and progenitor cells are regulated by complex intrinsic and extrinsic factors to produce blood cell types. In this review, we discuss recent advances in single-cell omics to profile these cells, methods to infer cell type identify, and trajectories from molecular omics data to ultimately derive new insights into hematopoietic stem and progenitor cell biology. We further discuss future applications of these technologies to understand hematopoietic cell interactions, function, and development. The goal is to offer a comprehensive overview of current single-cell technologies and their impact on our understanding of myeloid cell development for those new to single-cell analyses.
Collapse
Affiliation(s)
- Kyle Ferchen
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| |
Collapse
|
120
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
121
|
Smith MA, Culver-Cochran AE, Adelman ER, Rhyasen GW, Ma A, Figueroa ME, Starczynowski DT. TNFAIP3 Plays a Role in Aging of the Hematopoietic System. Front Immunol 2020; 11:536442. [PMID: 33224133 PMCID: PMC7670064 DOI: 10.3389/fimmu.2020.536442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) experience a functional decline in response to chronic inflammation or aging. Haploinsufficiency of A20, or TNFAIP3, an innate immune regulator, is associated with a variety of autoimmune, inflammatory, and hematologic malignancies. Based on a prior analysis of epigenomic and transcriptomic changes during normal human aging, we find that the expression of A20 is significantly reduced in aged HSPC as compared to young HSPC. Here, we show that the partial reduction of A20 expression in young HSPC results in characteristic features of aging. Specifically, heterozygous deletion of A20 in hematopoietic cells resulted in expansion of the HSPC pool, reduced HSPC fitness, and myeloid-biased hematopoiesis. These findings suggest that altered expression of A20 in HSPC contributes to an aging-like phenotype, and that there may be a common underlying mechanism for diminished HSPC function between inflammatory states and aging.
Collapse
Affiliation(s)
- Molly A Smith
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Ashley E Culver-Cochran
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Emmalee R Adelman
- Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Garrett W Rhyasen
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
122
|
Capp JP, Thomas F. Tissue-disruption-induced cellular stochasticity and epigenetic drift: Common origins of aging and cancer? Bioessays 2020; 43:e2000140. [PMID: 33118188 DOI: 10.1002/bies.202000140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Age-related and cancer-related epigenomic modifications have been associated with enhanced cell-to-cell gene expression variability that characterizes increased cellular stochasticity. Since gene expression variability appears to be highly reduced by-and epigenetic and phenotypic stability acquired through-direct or long-range cellular interactions during cell differentiation, we propose a common origin for aging and cancer in the failure to control cellular stochasticity by cell-cell interactions. Tissue-disruption-induced cellular stochasticity associated with epigenetic drift would be at the origin of organ dysfunction because of an increase in phenotypic variation among cells, ultimately leading to cell death and organ failure through a loss of coordination in cellular functions, and eventually to cancerization. We propose mechanistic research perspectives to corroborate this hypothesis and explore its evolutionary consequences, highlighting a positive correlation between the median age of mass loss onset (a proxy for the onset of organ aging) and the median age at cancer diagnosis.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC (CREES), UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
123
|
Wiesel-Motiuk N, Assaraf YG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat 2020; 53:100729. [PMID: 33130515 DOI: 10.1016/j.drup.2020.100729] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Histone modifications and more specifically ε-lysine acylations are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular processes and phenotypes. Furthermore, lysine acetylation of many non-histone proteins is involved in key cellular processes including transcription, DNA damage repair, metabolism, cellular proliferation, mitosis, signal transduction, protein folding, and autophagy. Acetylation affects protein functions through multiple mechanisms including regulation of protein stability, enzymatic activity, subcellular localization, crosstalk with other post-translational modifications as well as regulation of protein-protein and protein-DNA interactions. The paralogous lysine acetyltransferases KAT6A and KAT6B which belong to the MYST family of acetyltransferases, were first discovered approximately 25 years ago. KAT6 acetyltransferases acylate both histone H3 and non-histone proteins. In this respect, KAT6 acetyltransferases play key roles in regulation of transcription, various developmental processes, maintenance of hematopoietic and neural stem cells, regulation of hematopoietic cell differentiation, cell cycle progression as well as mitosis. In the current review, we discuss the physiological functions of the acetyltransferases KAT6A and KAT6B as well as their functions under pathological conditions of aberrant expression, leading to several developmental syndromes and cancer. Importantly, both upregulation and downregulation of KAT6 proteins was shown to play a role in cancer formation, progression, and therapy resistance, suggesting that they can act as oncogenes or tumor suppressors. We also describe reciprocal regulation of expression between KAT6 proteins and several microRNAs as well as their involvement in cancer formation, progression and resistance to therapy.
Collapse
Affiliation(s)
- Naama Wiesel-Motiuk
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
124
|
SanMiguel JM, Young K, Trowbridge JJ. Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis. Exp Hematol 2020; 91:1-9. [PMID: 32991978 DOI: 10.1016/j.exphem.2020.09.197] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Over the past 25 years, the importance of hematopoietic stem cell (HSC) aging in overall hematopoietic and immune system health span has been appreciated. Much work has been done in model organisms to understand the intrinsic dysregulation that occurs in HSCs during aging, with the goal of identifying modifiable mechanisms that represent the proverbial "fountain of youth." Much more recently, the discovery of somatic mutations that are found to provide a selective advantage to HSCs and accumulate in the hematopoietic system during aging, termed clonal hematopoiesis (CH), inspires revisiting many of these previously defined drivers of HSC aging in the context of these somatic mutations. To truly understand these processes and develop a holistic picture of HSC aging, ongoing and future studies must include investigation of the critical changes that occur in the HSC niche or bone marrow microenvironment with aging, as increasing evidence supports that these HSC-extrinsic alterations provide necessary inflammation, signaling pathway activation or repression, and other selective pressures to favor HSC aging-associated phenotypes and CH. Here, we provide our perspectives based on the past 8 years of our own laboratory's investigations into these mechanisms and chart a path for integrative studies that, in our opinion, will provide an ideal opportunity to discover HSC and hematopoietic health span-extending interventions. This path includes examining when and how aging-associated HSC-intrinsic and HSC-extrinsic changes accumulate over time in different individuals and developing new models to track and test relevant HSC-extrinsic changes, complementary to innovative HSC lineage tracing systems that have recently been developed.
Collapse
|
125
|
Abstract
PURPOSE OF REVIEW In this review, we highlight key recent insights into hematopoiesis and hematological malignancies through the application of novel single-cell approaches. We particularly focus on biological insights made through the study of stem/progenitors cells in myeloid malignancy at single-cell resolution. RECENT FINDINGS Bulk molecular profiling of hematological malignancies by next generation sequencing techniques has provided major insights into the molecular pathogenesis of blood cancers. This technology is now routinely implemented in advanced clinical diagnostics, leading to the development of novel targeted therapies. However, bulk genetic analysis can obscure key aspects of intratumoral heterogeneity which underlies critical disease events, such as treatment resistance and clonal evolution. The past few years have seen an explosion of novel techniques to analyze RNA, DNA, and protein expression at the single-cell level, providing unprecedented insight into cellular heterogeneity. SUMMARY Given the ease of accessibility of liquid tumor biopsies, hematology is well positioned to move novel single-cell techniques towards routine application in the clinic. The present review sets out to discuss current and potential future applications for this technology in the management of patients with hematological cancers.
Collapse
|
126
|
Abstract
Adult stem cells undergo both replicative and chronological aging in their niches, with catastrophic declines in regenerative potential with age. Due to repeated environmental insults during aging, the chromatin landscape of stem cells erodes, with changes in both DNA and histone modifications, accumulation of damage, and altered transcriptional response. A body of work has shown that altered chromatin is a driver of cell fate changes and a regulator of self-renewal in stem cells and therefore a prime target for juvenescence therapeutics. This review focuses on chromatin changes in stem cell aging and provides a composite view of both common and unique epigenetic themes apparent from the studies of multiple stem cell types.
Collapse
Affiliation(s)
- Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
127
|
Wiseman DH, Baker SM, Dongre AV, Gurashi K, Storer JA, Somervaille TC, Batta K. Chronic myelomonocytic leukaemia stem cell transcriptomes anticipate disease morphology and outcome. EBioMedicine 2020; 58:102904. [PMID: 32763828 PMCID: PMC7403890 DOI: 10.1016/j.ebiom.2020.102904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic myelomonocytic leukaemia (CMML) is a clinically heterogeneous stem cell malignancy with overlapping features of myelodysplasia and myeloproliferation. Over 90% of patients carry mutations in epigenetic and/or splicing genes, typically detectable in the Lin-CD34+CD38- immunophenotypic stem cell compartment in which the leukaemia-initiating cells reside. Transcriptional dysregulation at the stem cell level is likely fundamental to disease onset and progression. METHODS We performed single-cell RNA sequencing on 6826 Lin-CD34+CD38-stem cells from CMML patients and healthy controls using the droplet-based, ultra-high-throughput 10x platform. FINDINGS We found substantial inter- and intra-patient heterogeneity, with CMML stem cells displaying distinctive transcriptional programs. Compared with normal controls, CMML stem cells exhibited transcriptomes characterized by increased expression of myeloid-lineage and cell cycle genes, and lower expression of genes selectively expressed by normal haematopoietic stem cells. Neutrophil-primed progenitor genes and a MYC transcription factor regulome were prominent in stem cells from CMML-1 patients, whereas CMML-2 stem cells exhibited strong expression of interferon-regulatory factor regulomes, including those associated with IRF1, IRF7 and IRF8. CMML-1 and CMML-2 stem cells (stages distinguished by proportion of downstream blasts and promonocytes) differed substantially in both transcriptome and pseudotime, indicating fundamentally different biology underpinning these disease states. Gene expression and pathway analyses highlighted potentially tractable therapeutic vulnerabilities for downstream investigation. Importantly, CMML patients harboured variably-sized subpopulations of transcriptionally normal stem cells, indicating a potential reservoir to restore functional haematopoiesis. INTERPRETATION Our findings provide novel insights into the CMML stem cell compartment, revealing an unexpected degree of heterogeneity and demonstrating that CMML stem cell transcriptomes anticipate disease morphology, and therefore outcome. FUNDING Project funding was supported by Oglesby Charitable Trust, Cancer Research UK, Blood Cancer UK, and UK Medical Research Council.
Collapse
Affiliation(s)
- Daniel H Wiseman
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK.
| | - Syed M Baker
- Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Arundhati V Dongre
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | - Kristian Gurashi
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | - Joanna A Storer
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | - Tim Cp Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Kiran Batta
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
128
|
Epigenetic Clock: DNA Methylation in Aging. Stem Cells Int 2020; 2020:1047896. [PMID: 32724310 PMCID: PMC7366189 DOI: 10.1155/2020/1047896] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aging, which is accompanied by decreased organ function and increased disease incidence, limits human lifespan and has attracted investigators for thousands of years. In recent decades, with the rapid development of biology, scientists have shown that epigenetic modifications, especially DNA methylation, are key regulators involved in this process. Regular fluctuations in global DNA methylation levels have been shown to accurately estimate biological age and disease prognosis. In this review, we discuss recent findings regarding the relationship between variations in DNA methylation level patterns and aging. In addition, we introduce the known mechanisms by which DNA methylation regulators affect aging and related diseases. As more studies uncover the mechanisms by which DNA methylation regulates aging, antiaging interventions and treatments for related diseases may be developed that enable human life extension.
Collapse
|
129
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
130
|
Zhu Y, Huang Y, Tan Y, Zhao W, Tian Q. Single-Cell RNA Sequencing in Hematological Diseases. Proteomics 2020; 20:e1900228. [PMID: 32181578 DOI: 10.1002/pmic.201900228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/13/2020] [Indexed: 01/13/2023]
Abstract
Hematological diseases, including leukemia, lymphoma, and multiple myeloma, are characterized by high heterogeneity with diverse cellular subpopulations. Single-cell RNA sequencing (scRNA-seq), a transformational technology, provides deep insights into cell-to-cell variation in tumor and microenvironment, allows high-resolution dissection of the pathogenic mechanisms of diseases, and affords potential clinical utilities. Recent developments in single-cell transcriptomics and associated technologies and their applications in hematological disorders for unraveling cellular subpopulations, disease pathogenesis, patient stratification, and therapeutic responses are summarized.
Collapse
Affiliation(s)
- Yue Zhu
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,Shanghai Institute of Hematology, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yaohui Huang
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,Shanghai Institute of Hematology, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yun Tan
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,National Research Center for Translational, Medicine (Shanghai), 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Weili Zhao
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,Shanghai Institute of Hematology, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Qiang Tian
- Shanghai Jiao Tong University School of Medicine, Affiliated Ruijin Hospital, 197 Rui Jin Er Road, Shanghai, 200025, China.,National Research Center for Translational, Medicine (Shanghai), 197 Rui Jin Er Road, Shanghai, 200025, China
| |
Collapse
|
131
|
Hematopoietic regeneration under the spell of epigenetic-epitranscriptomic factors and transposable elements. Curr Opin Hematol 2020; 27:264-272. [DOI: 10.1097/moh.0000000000000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
132
|
DT-13 induced apoptosis and promoted differentiation of acute myeloid leukemia cells by activating AMPK-KLF2 pathway. Pharmacol Res 2020; 158:104864. [PMID: 32416217 DOI: 10.1016/j.phrs.2020.104864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from hematopoietic stem cells (HSC). Chemotherapy and/or HSC transplantation is unsatisfactory due to serious side effects, multidrug resistance, and high relapse rate. Thus, alternative strategies are urgently needed to develop more effective therapies. Liriope muscari baily saponins C (DT-13) is a novel compound isolated from Liriope muscari (Decne.) Baily, and exhibited a potent cytotoxicity against several solid tumors. However, the anti-AML activity of DT-13 and the potential mechanisms are still unknown. This study is the first to demonstrate that DT-13 had preferential cytotoxicity against AML cells, and remarkably inhibited proliferation and colony forming ability. Moreover, DT-13 induced the death receptor pathway-dependent apoptosis of HL-60 and Kasumi-1 cells by up-regulating Fas, FasL, DR5 and TRAIL as well as promoted the cleavage of caspase 8, caspase 3 and PARP. Meanwhile, DT-13 induced the differentiation with morphological change related to myeloid differentiation, elevated NBT and α-NAE positive cell rates, differentiation markers CD11b and CD14 as well as level of transcription factors C/EBPα and C/EBPβ. RNA-sequencing analysis revealed that KLF2 may be one of the potential targets regulated by DT-13. Further studies indicated that KLF2 played a critical role in DT-13-induced apoptosis and differentiation. Moreover, activation of AMPK-FOXO was proved to be the upstream of KLF2 pathway that contributed to the induction of apoptosis and differentiation by DT-13. Additionally, restoration of KLF2 by DT-13 was highly correlated with the AMPK-related histone acetylation mechanisms. Finally, DT-13 exhibited an obvious anti-AML effect in NOD/SCID mice with the engraftment of HL-60 cells. Our study suggests that DT-13 may serve as a novel agent for AML by AMPL-KLF2-mediated apoptosis and differentiation.
Collapse
|
133
|
Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, Qian P, Huang H. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol 2020; 13:31. [PMID: 32252797 PMCID: PMC7137344 DOI: 10.1186/s13045-020-00864-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing, myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear, blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions. Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging review delineates the association between functional changes and molecular mechanisms and may have significant clinical relevance.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
134
|
Jiang N, Niu G, Pan YH, Pan W, Zhang MF, Zhang CZ, Shen H. CBX4 transcriptionally suppresses KLF6 via interaction with HDAC1 to exert oncogenic activities in clear cell renal cell carcinoma. EBioMedicine 2020; 53:102692. [PMID: 32113161 PMCID: PMC7044754 DOI: 10.1016/j.ebiom.2020.102692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Dysregulation of polycomb chromobox (CBX) proteins that mediate epigenetic gene silencing contributes to the progression of human cancers. Yet their roles in clear cell renal cell carcinoma (ccRCC) remain to be explored. Methods The expression of CBX4 and its clinical significance were determined by qRT-PCR, western blot, immunohistochemistry and statistical analyses. The biological function of CBX4 in ccRCC tumor growth and metastasis and the underlying mechanism were investigated using in vitro and in vivo models. Findings CBX4 exerts oncogenic activities in ccRCC via interaction with HDAC1 to transcriptionally suppress tumor suppressor KLF6. CBX4 expression is increased in ccRCC and correlated with poor prognosis in two independent cohorts containing 840 patients. High CBX4 expression is significantly associated with Fuhrman grade and tumor lymph node invasion. CBX4 overexpression promotes tumor growth and metastasis, whereas CBX4 knockdown results in the opposite phenotypes. Mechanistically, CBX4 downregulates KLF6 via repressing the transcriptional activity of its promoter. Further studies show that CBX4 physically binds to HDAC1 to maintain its localization on the KLF6 promoter. Ectopic expression of KLF6 or disruption of CBX4-HDAC1 interaction attenuates CBX4-mediated cell growth and migration. Furthermore, CBX4 depletion markedly enhances the histone deacetylase inhibitor (HDACi)-induced cell apoptosis and suppression of tumor growth. Interpretation Our data suggest CBX4 as an oncogene with prognostic potential in ccRCC. The newly identified CBX4/HDAC1/KLF6 axis may represent a potential therapeutic target for the clinical intervention of ccRCC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Niu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510600, China
| | - Wenwei Pan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
135
|
Khokhar ES, Borikar S, Eudy E, Stearns T, Young K, Trowbridge JJ. Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. Exp Hematol 2020; 82:43-52.e4. [PMID: 32014431 PMCID: PMC7179256 DOI: 10.1016/j.exphem.2020.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
Aged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms causing HSC aging is needed to devise new strategies to sustainably improve immune function in aged individuals. Here, a focused short hairpin RNA screen of epigenetic factors reveals that the histone acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. Within the stem and progenitor cell compartment, Kat6b is highly expressed in long-term (LT)-HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of Kat6b in young LT-HSCs causes skewed production of myeloid cells at the expense of erythroid cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and macrophage-associated gene signatures alongside reduced expression of self-renewal and multilineage priming signatures. Together, our work identifies KAT6B as a novel epigenetic regulator of hematopoietic differentiation and a target to improve aged immune function.
Collapse
Affiliation(s)
- Eraj Shafiq Khokhar
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | - Kira Young
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jennifer J Trowbridge
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
136
|
|
137
|
Acute Myeloid Leukemia: Aging and Epigenetics. Cancers (Basel) 2019; 12:cancers12010103. [PMID: 31906064 PMCID: PMC7017261 DOI: 10.3390/cancers12010103] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological disorder mainly affecting people of older age. AML initiation is primarily attributed to mutations in crucial cellular regulators such as epigenetic factors, transcription factors, and signaling genes. AML’s aggressiveness and responsiveness to treatment depends on the specific cell type where leukemia first arose. Aged hematopoietic cells are often genetically and/or epigenetically altered and, therefore, present with a completely different cellular context for AML development compared to young cells. In this review, we summarize key aspects of AML development, and we focus, in particular, on the contribution of cellular aging to leukemogenesis and on current treatment options for elderly AML patients. Hematological disorders and leukemia grow exponentially with age. So far, with conventional induction therapy, many elderly patients experience a very poor overall survival rate requiring substantial social and medical costs during the relatively few remaining months of life. The global population’s age is increasing rapidly without an acceptable equal growth in therapeutic management of AML in the elderly; this is in sharp contrast to the increase in successful therapies for leukemia in younger patients. Therefore, a focus on the understanding of the biology of aging in the hematopoietic system, the development of appropriate research models, and new therapeutic approaches are urged.
Collapse
|
138
|
Abstract
Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.
Collapse
Affiliation(s)
- Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Peter McCarthy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
139
|
Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol 2019; 7:207. [PMID: 31681756 PMCID: PMC6797914 DOI: 10.3389/fcell.2019.00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, our molecular understanding of acute myeloid leukemia (AML) pathogenesis dramatically increased, thanks also to the advent of next-generation sequencing (NGS) technologies. Many of these findings, however, have not yet translated into new prognostic markers or rationales for treatments. We now know that AML is a highly heterogeneous disease characterized by a very low mutational burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators, which shape and define leukemic cell identity. In the light of these discoveries and given the increasing number of drugs targeting epigenetic regulators in clinical development and testing, great interest is emerging for the use of small molecules targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic properties, such as proliferation and survival, epigenetic drugs may affect the way leukemic cells communicate with the surrounding components of the tumor and immune microenvironment. Here, we review current knowledge on alterations in the AML epigenetic landscape and discuss the promises of epigenetic therapies for AML treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic rewiring in cancer cells may as well exert immune-modulatory functions, boost the immune system, and potentially contribute to better patient outcomes.
Collapse
Affiliation(s)
- Valentina Gambacorta
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Milan, Italy
| | - Daniela Gnani
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
140
|
Next-Generation Sequencing Improves Diagnosis, Prognosis and Clinical Management of Myeloid Neoplasms. Cancers (Basel) 2019; 11:cancers11091364. [PMID: 31540291 PMCID: PMC6770229 DOI: 10.3390/cancers11091364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Molecular diagnosis of myeloid neoplasms (MN) is based on the detection of multiple genetic alterations using various techniques. Next-generation sequencing (NGS) has been proved as a useful method for analyzing many genes simultaneously. In this context, we analyzed diagnostic samples from 121 patients affected by MN and ten relapse samples from a subset of acute myeloid leukemia patients using two enrichment-capture NGS gene panels. Pathogenicity classification of variants was enhanced by the development and application of a custom onco-hematology score. A total of 278 pathogenic variants were detected in 84% of patients. For structural alterations, 82% of those identified by cytogenetics were detected by NGS, 25 of 31 copy number variants and three out of three translocations. The detection of variants using NGS changed the diagnosis of seven patients and the prognosis of 15 patients and enabled us to identify 44 suitable candidates for clinical trials. Regarding AML, six of the ten relapsed patients lost or gained variants, comparing with diagnostic samples. In conclusion, the use of NGS panels in MN improves genetic characterization of the disease compared with conventional methods, thus demonstrating its potential clinical utility in routine clinical testing. This approach leads to better-adjusted treatments for each patient.
Collapse
|