101
|
Sudhakar M, Vignesh H, Natarajan KN. Crosstalk between tumor and microenvironment: Insights from spatial transcriptomics. Adv Cancer Res 2024; 163:187-222. [PMID: 39271263 DOI: 10.1016/bs.acr.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer is a dynamic disease, and clonal heterogeneity plays a fundamental role in tumor development, progression, and resistance to therapies. Single-cell and spatial multimodal technologies can provide a high-resolution molecular map of underlying genomic, epigenomic, and transcriptomic alterations involved in inter- and intra-tumor heterogeneity and interactions with the microenvironment. In this review, we provide a perspective on factors driving cancer heterogeneity, tumor evolution, and clonal states. We briefly describe spatial transcriptomic technologies and summarize recent literature that sheds light on the dynamical interactions between tumor states, cell-to-cell communication, and remodeling local microenvironment.
Collapse
Affiliation(s)
- Malvika Sudhakar
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harie Vignesh
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
102
|
Yasuda T, Wang YA. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Trends Cancer 2024; 10:627-642. [PMID: 38600020 PMCID: PMC11292672 DOI: 10.1016/j.trecan.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Although immunotherapy has revolutionized solid tumor treatment, durable responses in gastric cancer (GC) remain limited. The heterogeneous tumor microenvironment (TME) facilitates immune evasion, contributing to resistance to conventional and immune therapies. Recent studies have highlighted how specific TME components in GC acquire immune escape capabilities through cancer-specific factors. Understanding the underlying molecular mechanisms and targeting the immunosuppressive TME will enhance immunotherapy efficacy and patient outcomes. This review summarizes recent advances in GC TME research and explores the role of the immune-suppressive system as a context-specific determinant. We also provide insights into potential treatments beyond checkpoint inhibition.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
103
|
Sun J, Zhu W, Luan M, Xing Y, Feng Z, Zhu J, Ma X, Wang Y, Jia Y. Positive GLI1/INHBA feedback loop drives tumor progression in gastric cancer. Cancer Sci 2024; 115:2301-2317. [PMID: 38676428 PMCID: PMC11247559 DOI: 10.1111/cas.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Jingguo Sun
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
104
|
He Z, Yang H, Chen Q, Chen YPP, Qin H, He W, Chen Z. Role of TAP1 in the identification of immune-hot tumor microenvironment and its prognostic significance for immunotherapeutic efficacy in gastric carcinoma. J Gastrointest Oncol 2024; 15:890-907. [PMID: 38989426 PMCID: PMC11231864 DOI: 10.21037/jgo-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gastric cancer (GC), a multifaceted gastrointestinal malignancy, is the fourth most prevalent contributor to cancer-related fatalities globally. As a member of the ATP-binding cassette (ABC) family, transporter associated with antigen processing 1 (TAP1) is crucial for conveying antigen peptides from the cytoplasm to the lumen of the endoplasmic reticulum and subsequently loading them onto the major histocompatibility complex (MHC) class I molecules. Recent studies have established the biological significance of TAP1 in upholding tumor survival and facilitating immune evasion by remodeling the tumor microenvironment (TME) and orchestrating immune infiltration. The study was conducted to elucidate the association of TAP1 expression with immunological characteristics, and sought to exploit the value of TAP1 as a biomarker reflecting the inflamed TME and immunotherapeutic response. Methods RNA-sequencing profiles and clinical annotations were obtained from The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) cohort and Gene Expression Omnibus (GEO) portal. Preprocessing was conducting using the limma package. Weighted gene co-expression network analysis (WGCNA) was used to identify gene modules and TAP1 co-expressed genes (CEGs) based on correlation patterns. Consensus clustering and silhouette analysis determined the optimal number of TAP1-related groups. Gene expression profiles were integrated and classified using the pamr package. The Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate immunological characteristics. Differential expression analysis was conducted using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Single-cell RNA sequencing (scRNA-seq) datasets were analyzed using the Seurat toolkit to characterize cell types. Results Within this investigation, no significant differences in TAP1 expression were observed among patients exhibiting various clinicopathological features, indicating that TAP1 expression was not specific to molecular subtypes. Subsequent analysis revealed a positive correlation between TAP1 and diverse immunological traits, encompassing immunomodulators, tumor-infiltrating immune cells, as well as immune checkpoints across multiple datasets. Besides, within a GC immunotherapy cohort, individuals displaying high TAP1 expression demonstrated an increased likelihood of achieving complete remission (CR) post-treatment, suggesting heightened sensitivity to immunotherapy. In the clinical cohort, TAP1 overexpression in GC patients was positively correlated with CD8. Conclusions TAP1 appears linked to an inflamed TME and serves as a prospective biomarker for discerning immunological attributes and gauging immunotherapeutic responses in GC, particularly in identifying immune-reactive tumors.
Collapse
Affiliation(s)
- Zehua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Hong Yang
- Department of Anesthesia Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Huabo Qin
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Wanrong He
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Zhihui Chen
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
105
|
Xu Q, Xue S, Zhang Y, Li J, Qian P, Zhang Y, Feng L. Identification and validation of Cystatin A as a novel promising therapeutic target for gastric cancer. J Gastrointest Oncol 2024; 15:873-889. [PMID: 38989439 PMCID: PMC11231850 DOI: 10.21037/jgo-23-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Background The effect of pharmacological treatment of gastric cancer (GC) is limited, thus, it holds significant scientific importance to thoroughly investigate the molecular mechanisms underlying GC development and identify novel molecules capable of substantially extending patients' survival. This study utilized bioinformatics techniques to identify 11 genes associated with recurrence-free survival (RFS) in GC patients and investigated the potential biological functions of these genes through single-cell transcriptomic analysis. Subsequently, a single gene Cystatin A (CSTA) was selected for further analysis to explore its impact on signaling pathways and treatment. Methods Differentially expressed genes (DEGs) were identified and overlapped in the analysis of RFS to identify potential prognostic genes for GC patients, based on data from the Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) and GSE54129. Subsequently, a prognostic model based on RFS in GC patients was established. Single-cell sequencing data were employed to explore the potential functions of these model genes. CSTA, one of the RFS-related genes, was further investigated using immunohistochemistry (IHC), Cell Counting Kit 8 (CCK-8), transwell, scratch, colony formation assays, flow cytometry, and Western blotting methods. Results Through bioinformatics analysis, we identified 23 RFS-related genes in GC. Using the least absolute shrinkage and selection operator (LASSO)-Cox method, an RFS prognostic model was developed which pinpointed 11 GC prognosis-related (GPR) genes as significant factors influencing RFS in GC patients. The single-cell analysis revealed their potential role in affecting differentiation and maturation of pre-fibroblasts thereby impacting RFS in GC patients. CSTA exhibited low expression levels in GC tissues. Overexpression of CSTA promoted apoptosis in GC cells through the caspase-dependent apoptotic pathway and enhanced their response to cisplatin via this same pathway. Conclusions The 11 GPR genes are primarily enriched within a specific type of stromal cell exhibiting heightened communication, metabolism, and differentiation levels. The gene signature of these stromal cells has implications for patient prognosis. Additionally, CSTA, a gene related to prognosis, has been shown to influence apoptosis levels in GC cells.
Collapse
Affiliation(s)
- Qingyu Xu
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuai Xue
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaqiong Zhang
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Jian Li
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Peiyu Qian
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyan Zhang
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
106
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S, An L, Zhou Z. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0124. [PMID: 38940675 PMCID: PMC11271222 DOI: 10.20892/j.issn.2095-3941.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Meng
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
107
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2024:S2090-1232(24)00253-4. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
108
|
Lv CX, Zhou LP, Yang YB, Shi J, Dong FH, Wei HR, Shan YQ. The relationship between innate/adaptive immunity and gastrointestinal cancer : a multi-omics Mendelian randomization study. BMC Gastroenterol 2024; 24:197. [PMID: 38877387 PMCID: PMC11177483 DOI: 10.1186/s12876-024-03284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Innate/adaptive immunity is the key to anti-tumor therapy. However, its causal relationship to Gastrointestinal (GI) cancer remains unclear. METHODS Immunity genes were extracted from the MSigDB database. The Genome-wide association studies (GWAS) summary data of GI cancer were integrated with expression quantitative trait loci (eQTL) and DNA methylation quantitative trait loci (mQTL) associated with genes. Summary-data-based Mendelian randomization (SMR) and co-localization analysis were used to reveal causal relationships between genes and GI cancer. Two-sample MR analysis was used for sensitivity analysis. Single cell analysis clarified the enrichment of genes. RESULTS Three-step SMR analysis showed that a putative mechanism, cg17294865 CpG site regulating HLA-DRA expression was negatively associated with gastric cancer risk. HLA-DRA was significantly differentially expressed in monocyte/macrophage and myeloid cells in gastric cancer. CONCLUSION This study provides evidence that upregulating the expression level of HLA-DRA can reduce the risk of gastric cancer.
Collapse
Affiliation(s)
- Chen-Xi Lv
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, 310006, China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Lin-Po Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, 310006, China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Ye-Bing Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, 310006, China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Jing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, 310006, China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Fan-He Dong
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, 310006, China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Hao-Ran Wei
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, Zhejiang, 310006, China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Yu-Qiang Shan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
109
|
Peng Z, Fang C, Tong Z, Rao Q, Ren Z, Hu K. Crosstalk Between Cancer-associated Fibroblasts and Myeloid Cells Shapes the Heterogeneous Microenvironment of Gastric Cancer. Curr Genomics 2024; 25:390-411. [PMID: 39323622 PMCID: PMC11420565 DOI: 10.2174/0113892029300608240531111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 09/27/2024] Open
Abstract
Background Targeted therapies have improved the clinical outcomes of most patients with cancer. However, the heterogeneity of gastric cancer remains a major hurdle for precision treatment. Further investigations into tumor microenvironment heterogeneity are required to resolve these problems. Methods In this study, bioinformatic analyses, including metabolism analysis, pathway enrichment, differentiation trajectory inference, regulatory network construction, and survival analysis, were applied to gain a comprehensive understanding of tumor microenvironment biology within gastric cancer using single-cell RNA-seq and public datasets and experiments were carried out to confirm the conclusions of these analyses. Results We profiled heterogeneous single-cell atlases and identified eight cell populations with differential expression patterns. We identified two cancer-associated fibroblasts (CAFs) subtypes, with particular emphasis on the role of inflammatory cancer-associated fibroblasts (iCAFs) in EMT and lipid metabolic crosstalk within the tumor microenvironment. Notably, we detected two differentiation states of iCAFs that existed in different tissues with discrepant expression of genes involved in immuno-inflammation or ECM remodeling. Moreover, investigation of tumor-infiltrating myeloid cells has revealed the functional diversity of myeloid cell lineages in gastric cancer. Of which a proliferative cell lineage named C1QC+MKI67+TAMs was recognized with high immunosuppressive capacities, suggesting it has immune suppression and cell proliferation functions in the tumor niche. Finally, we explored regulatory networks based on ligand-receptor pairs and found crucial pro-tumor crosstalk between CAFs and myeloid cells in the tumor microenvironment (TME). Conclusion These findings provide insights for future cancer treatments and drug discovery.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Can Fang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhiwei Tong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qiufan Rao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| |
Collapse
|
110
|
Zhang X, Chen YC, Yao M, Xiong R, Liu B, Zhu X, Ao P. Potential therapeutic targets of gastric cancer explored under endogenous network modeling of clinical data. Sci Rep 2024; 14:13127. [PMID: 38849404 PMCID: PMC11161650 DOI: 10.1038/s41598-024-63812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Improvement in the survival rate of gastric cancer, a prevalent global malignancy and the leading cause of cancer-related mortality calls for more avenues in molecular therapy. This work aims to comprehend drug resistance and explore multiple-drug combinations for enhanced therapeutic treatment. An endogenous network modeling clinic data with core gastric cancer molecules, functional modules, and pathways is constructed, which is then transformed into dynamics equations for in-silicon studies. Principal component analysis, hierarchical clustering, and K-means clustering are utilized to map the attractor domains of the stochastic model to the normal and pathological phenotypes identified from the clinical data. The analyses demonstrate gastric cancer as a cluster of stable states emerging within the stochastic dynamics and elucidate the cause of resistance to anti-VEGF monotherapy in cancer treatment as the limitation of the single pathway in preventing cancer progression. The feasibility of multiple objectives of therapy targeting specified molecules and/or pathways is explored. This study verifies the rationality of the platform of endogenous network modeling, which contributes to the development of cross-functional multi-target combinations in clinical trials.
Collapse
Affiliation(s)
- Xile Zhang
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China.
| | - Mengchao Yao
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China
| | - Ruiqi Xiong
- Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, 200444, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Cancer, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical Systems, School of Optoelectronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
111
|
Huang J, Yin Q, Wang Y, Zhou X, Guo Y, Tang Y, Cheng R, Yu X, Zhang J, Huang C, Huang Z, Zhang J, Guo Z, Huo X, Sun Y, Li Y, Wang H, Yang J, Xue L. EZH2 Inhibition Enhances PD-L1 Protein Stability Through USP22-Mediated Deubiquitination in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308045. [PMID: 38520088 PMCID: PMC11187912 DOI: 10.1002/advs.202308045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Indexed: 03/25/2024]
Abstract
The regulation of PD-L1 is the key question, which largely determines the outcome of the immune checkpoint inhibitors (ICIs) based therapy. However, besides the transcription level, the protein stability of PD-L1 is closely correlated with its function and has drawn increasing attention. In this study, EZH2 inhibition enhances PD-L1 expression and protein stability, and the deubiquitinase ubiquitin-specific peptidase 22 (USP22) is identified as a key mediator in this process. EZH2 inhibition transcriptionally upregulates USP22 expression, and upregulated USP22 further stabilizes PD-L1. Importantly, a combination of EZH2 inhibitors with anti-PD-1 immune checkpoint blockade therapy improves the tumor microenvironment, enhances sensitivity to immunotherapy, and exerts synergistic anticancer effects. In addition, knocking down USP22 can potentially enhance the therapeutic efficacy of EZH2 inhibitors on colon cancer. These findings unveil the novel role of EZH2 inhibitors in tumor immune evasion by upregulating PD-L1, and this drawback can be compensated by combining ICI immunotherapy. Therefore, these findings provide valuable insights into the EZH2-USP22-PD-L1 regulatory axis, shedding light on the optimization of combining both immune checkpoint blockade and EZH2 inhibitor-based epigenetic therapies to achieve more efficacies and accuracy in cancer treatment.
Collapse
|
112
|
Rhodes JD, Goldenring JR, Lee SH. Regulation of metaplasia and dysplasia in the stomach by the stromal microenvironment. Exp Mol Med 2024; 56:1322-1330. [PMID: 38825636 PMCID: PMC11263556 DOI: 10.1038/s12276-024-01240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
Research on the microenvironment associated with gastric carcinogenesis has focused on cancers of the stomach and often underestimates premalignant stages such as metaplasia and dysplasia. Since epithelial interactions with T cells, macrophages, and type 2 innate lymphoid cells (ILC2s) are indispensable for the formation of precancerous lesions in the stomach, understanding the cellular interactions that promote gastric precancer warrants further investigation. Although various types of immune cells have been shown to play important roles in gastric carcinogenesis, it remains unclear how stromal cells such as fibroblasts influence epithelial transformation in the stomach, especially during precancerous stages. Fibroblasts exist as distinct populations across tissues and perform different functions depending on the expression patterns of cell surface markers and secreted factors. In this review, we provide an overview of known microenvironmental components in the stroma with an emphasis on fibroblast subpopulations and their roles during carcinogenesis in tissues including breast, pancreas, and stomach. Additionally, we offer insights into potential targets of tumor-promoting fibroblasts and identify open areas of research related to fibroblast plasticity and the modulation of gastric carcinogenesis.
Collapse
Affiliation(s)
- Jared D Rhodes
- Program in Cancer Biology, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R Goldenring
- Program in Cancer Biology, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Nashville, TN, USA.
- Nashville VA Medical Center, Nashville, TN, USA.
| | - Su-Hyung Lee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Section of Surgical Sciences, Nashville, TN, USA.
| |
Collapse
|
113
|
Zhang W, Wang X, Dong J, Wang K, Jiang W, Fan C, Liu H, Fan L, Zhao L, Li G. Single-cell analysis uncovers high-proliferative tumour cell subtypes and their interactions in the microenvironment of gastric cancer. J Cell Mol Med 2024; 28:e18373. [PMID: 38894657 PMCID: PMC11187953 DOI: 10.1111/jcmm.18373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 06/21/2024] Open
Abstract
Gastric cancer (GC) remains a prominent malignancy that poses a significant threat to human well-being worldwide. Despite advancements in chemotherapy and immunotherapy, which have effectively augmented patient survival rates, the mortality rate associated with GC remains distressingly high. This can be attributed to the elevated proliferation and invasive nature exhibited by GC. Our current understanding of the drivers behind GC cell proliferation remains limited. Hence, in order to reveal the molecular biological mechanism behind the swift advancement of GC, we employed single-cell RNA-sequencing (scRNA-seq) to characterize the tumour microenvironment in this study. The scRNA-seq data of 27 patients were acquired from the Gene Expression Omnibus database. Differential gene analysis, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were employed to investigate 38 samples. The copy number variation level exhibited by GC cells was determined using InferCNV. The CytoTRACE, Monocle and Slingshot analysis were used to discern the cellular stemness and developmental trajectory of GC cells. The CellChat package was utilized for the analysis of intercellular communication crosstalk. Moreover, the findings of the data analysis were validated through cellular functional tests conducted on the AGS cell line and SGC-7901 cell line. Finally, this study constructed a risk scoring model to evaluate the differences of different risk scores in clinical characteristics, immune infiltration, immune checkpoints, functional enrichment, tumour mutation burden and drug sensitivity. Within the microenvironment of GC, we identified the presence of 8 cell subsets, encompassing NK_T cells, B_Plasma cells, epithelial cells, myeloid cells, endothelial cells, mast cells, fibroblasts, pericytes. By delving deeper into the characterization of GC cells, we identified 6 specific tumour cell subtypes: C0 PSCA+ tumour cells, C1 CLDN7+ tumour cells, C2 UBE2C+ tumour cells, C3 MUC6+ tumour cells, C4 CHGA+ tumour cells and C5 MUC2+ tumour cells. Notably, the C2 UBE2C+ tumour cells demonstrated a close association with cell mitosis and the cell cycle, exhibiting robust proliferative capabilities. Our findings were fortified through enrichment analysis, pseudotime analysis and cell communication analysis. Meanwhile, knockdown of the transcription factor CREB3, which is highly active in UBE2C+ tumour cells, significantly impedes the proliferation, migration and invasion of GC cells. And the prognostic score model constructed with CREB3-related genes showcased commendable clinical predictive capacity, thus providing valuable guidance for patients' prognosis and clinical treatment decisions. We have identified a highly proliferative cellular subgroup C2 UBE2C+ tumour cells in GC for the first time. The employment of a risk score model, which is based on genes associated with UBE2C expression, exhibits remarkable proficiency in predicting the prognosis of GC patients. In our investigation, we observed that the knockdown of the transcription factor CREB3 led to a marked reduction in cellular proliferation, migration and invasion in GC cell line models. Implementing a stratified treatment approach guided by this model represents a judicious and promising methodology.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaojing Wang
- Department of Rheumatology and Immunology, Tongren Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kai Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Wanju Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chenchen Fan
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Haitao Liu
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lei Zhao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| | - Guoshu Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
114
|
Liu N, Liu S, Xu X, Nong X, Chen H. Organoids as an in vitro model to study human tumors and bacteria. J Surg Oncol 2024; 129:1390-1400. [PMID: 38534036 DOI: 10.1002/jso.27626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Organoids faithfully replicate the morphological structure, physiological functions, stable phenotype of the source tissue. Recent research indicates that bacteria can significantly influence the initiation, advancement, and treatment of tumors. This article provides a comprehensive review of the applications of organoid technology in tumor research, the relationship between bacteria and the genesis and development of tumors, and the exploration of the impact of bacteria on tumors and their applications in research.
Collapse
Affiliation(s)
- Naiyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuxi Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoyue Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - XianXian Nong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
115
|
Deng C, Li ZX, Xie CJ, Zhang QL, Hu BS, Wang MD, Mei J, Yang C, Zhong Z, Wang KW. Pan-cancer analysis of CDKN2A alterations identifies a subset of gastric cancer with a cold tumor immune microenvironment. Hum Genomics 2024; 18:55. [PMID: 38822443 PMCID: PMC11143690 DOI: 10.1186/s40246-024-00615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/03/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.
Collapse
Affiliation(s)
- Chao Deng
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zi-Xi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Chen-Jun Xie
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Qing-Lin Zhang
- Departments of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ben-Shun Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mei-Dan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macao SAR 999078, China.
| | - Ke-Wei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Rd, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
116
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
117
|
Wang W, Li C, Dai Y, Wu Q, Yu W. Unraveling metabolic characteristics and clinical implications in gastric cancer through single-cell resolution analysis. Front Mol Biosci 2024; 11:1399679. [PMID: 38831933 PMCID: PMC11145399 DOI: 10.3389/fmolb.2024.1399679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Background: Gastric cancer is a highly prevalent malignant neoplasm. Metabolic reprogramming is intricately linked to both tumorigenesis and cancer immune evasion. The advent of single-cell RNA sequencing technology provides a novel perspective for evaluating cellular metabolism. This study aims to comprehensively investigate the metabolic pathways of various cell types in tumor and normal samples at high resolution and delve into the intricate regulatory mechanisms governing the metabolic activity of malignant cells in gastric cancer. Methods: Utilizing single-cell RNA sequencing data from gastric cancer, we constructed metabolic landscape maps for different cell types in tumor and normal samples. Employing unsupervised clustering, we categorized malignant cells in tumor samples into high and low metabolic subclusters and further explored the characteristics of these subclusters. Results: Our research findings indicate that epithelial cells in tumor samples exhibit significantly higher activity in most KEGG metabolic pathways compared to other cell types. Unsupervised clustering, based on the scores of metabolic pathways, classified malignant cells into high and low metabolic subclusters. In the high metabolic subcluster, it demonstrated the potential to induce a stronger immune response, correlating with a relatively favorable prognosis. In the low metabolic subcluster, a subset of cells resembling cancer stem cells (CSCs) was identified, and its prognosis was less favorable. Furthermore, a set of risk genes associated with this subcluster was discovered. Conclusion: This study reveals the intricate regulatory mechanisms governing the metabolic activity of malignant cells in gastric cancer, offering new perspectives for improving prognosis and treatment strategies.
Collapse
Affiliation(s)
- Wenyue Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Conghui Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuting Dai
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingfa Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiqiang Yu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|
118
|
Cao J, Li C, Cui Z, Deng S, Lei T, Liu W, Yang H, Chen P. Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery. Theranostics 2024; 14:2946-2968. [PMID: 38773973 PMCID: PMC11103497 DOI: 10.7150/thno.95908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
Recent advancements in modern science have provided robust tools for drug discovery. The rapid development of transcriptome sequencing technologies has given rise to single-cell transcriptomics and single-nucleus transcriptomics, increasing the accuracy of sequencing and accelerating the drug discovery process. With the evolution of single-cell transcriptomics, spatial transcriptomics (ST) technology has emerged as a derivative approach. Spatial transcriptomics has emerged as a hot topic in the field of omics research in recent years; it not only provides information on gene expression levels but also offers spatial information on gene expression. This technology has shown tremendous potential in research on disease understanding and drug discovery. In this article, we introduce the analytical strategies of spatial transcriptomics and review its applications in novel target discovery and drug mechanism unravelling. Moreover, we discuss the current challenges and issues in this research field that need to be addressed. In conclusion, spatial transcriptomics offers a new perspective for drug discovery.
Collapse
Affiliation(s)
- Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Tong Lei
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| |
Collapse
|
119
|
Wei R, Song J, Pan H, Liu X, Gao J. CPT1C-positive cancer-associated fibroblast facilitates immunosuppression through promoting IL-6-induced M2-like phenotype of macrophage. Oncoimmunology 2024; 13:2352179. [PMID: 38746869 PMCID: PMC11093039 DOI: 10.1080/2162402x.2024.2352179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.
Collapse
Affiliation(s)
- Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junquan Song
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
120
|
Gu A, Li J, Qiu S, Hao S, Yue ZY, Zhai S, Li MY, Liu Y. Pancreatic cancer environment: from patient-derived models to single-cell omics. Mol Omics 2024; 20:220-233. [PMID: 38414408 DOI: 10.1039/d3mo00250k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant cancer characterized by poor prognosis, high heterogeneity, and intricate heterocellular systems. Selecting an appropriate experimental model for studying its progression and treatment is crucial. Patient-derived models provide a more accurate representation of tumor heterogeneity and complexity compared to cell line-derived models. This review initially presents relevant patient-derived models, including patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived explants (PDEs), which are essential for studying cell communication and pancreatic cancer progression. We have emphasized the utilization of these models in comprehending intricate intercellular communication, drug responsiveness, mechanisms underlying tumor growth, expediting drug discovery, and enabling personalized medical approaches. Additionally, we have comprehensively summarized single-cell analyses of these models to enhance comprehension of intercellular communication among tumor cells, drug response mechanisms, and individual patient sensitivities.
Collapse
Affiliation(s)
- Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shenglin Hao
- Department of Functional Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| |
Collapse
|
121
|
Zhou Y, Liu S, Zheng Y, Wang Y, Zhou Y. The role of THBS1 and PDGFD in the immune microenvironment of Helicobacter pylori-associated gastric cancer. Arab J Gastroenterol 2024; 25:194-204. [PMID: 38705811 DOI: 10.1016/j.ajg.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND STUDY AIMS Immunotherapy has emerged as a hot topic in cancer treatment in recent years and has also shown potential in the treatment of Helicobacter pylori-associated gastric cancer. However, there is still a need to identify potential immunotherapy targets. MATERIAL AND METHODS We used the GSE116312 dataset of Helicobacter pylori-associated gastric cancer to identify differentially expressed genes, which were then overlapped with immune genes from the ImmPort database. The identified immune genes were used to classify gastric cancer samples and evaluate the relationship between classification and tumor mutations, as well as immune infiltration. An immune gene-based prognostic model was constructed, and the expression levels of the genes involved in constructing the model were explored in the tumor immune microenvironment. RESULTS We successfully identified 60 immune genes and classified gastric cancer samples into two subtypes, which showed differences in prognosis, tumor mutations, immune checkpoint expression, and immune cell infiltration. Subsequently, we constructed an immune prognostic model consisting of THBS1 and PDGFD, which showed significant associations with macrophages and fibroblasts. CONCLUSION We identified abnormal expression of THBS1 and PDGFD in cancer-associated fibroblasts (CAFs) within the tumor immune microenvironment, suggesting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yun Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China; Department of Geriatrics Gerontology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Shixiong Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China; Department of Geriatrics Gerontology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China; Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China; Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yongning Zhou
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China; Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
122
|
An M, Mehta A, Min BH, Heo YJ, Wright SJ, Parikh M, Bi L, Lee H, Kim TJ, Lee SY, Moon J, Park RJ, Strickland MR, Park WY, Kang WK, Kim KM, Kim ST, Klempner SJ, Lee J. Early Immune Remodeling Steers Clinical Response to First-Line Chemoimmunotherapy in Advanced Gastric Cancer. Cancer Discov 2024; 14:766-785. [PMID: 38319303 PMCID: PMC11061611 DOI: 10.1158/2159-8290.cd-23-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Adding anti-programmed cell death protein 1 (anti-PD-1) to 5-fluorouracil (5-FU)/platinum improves survival in some advanced gastroesophageal adenocarcinomas (GEA). To understand the effects of chemotherapy and immunotherapy, we conducted a phase II first-line trial (n = 47) sequentially adding pembrolizumab to 5-FU/platinum in advanced GEA. Using serial biopsy of the primary tumor at baseline, after one cycle of 5-FU/platinum, and after the addition of pembrolizumab, we transcriptionally profiled 358,067 single cells to identify evolving multicellular tumor microenvironment (TME) networks. Chemotherapy induced early on-treatment multicellular hubs with tumor-reactive T-cell and M1-like macrophage interactions in slow progressors. Faster progression featured increased MUC5A and MSLN containing treatment resistance programs in tumor cells and M2-like macrophages with immunosuppressive stromal interactions. After pembrolizumab, we observed increased CD8 T-cell infiltration and development of an immunity hub involving tumor-reactive CXCL13 T-cell program and epithelial interferon-stimulated gene programs. Strategies to drive increases in antitumor immune hub formation could expand the portion of patients benefiting from anti-PD-1 approaches. SIGNIFICANCE The benefit of 5-FU/platinum with anti-PD-1 in first-line advanced gastric cancer is limited to patient subgroups. Using a trial with sequential anti-PD-1, we show coordinated induction of multicellular TME hubs informs the ability of anti-PD-1 to potentiate T cell-driven responses. Differential TME hub development highlights features that underlie clinical outcomes. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Minae An
- Experimental Therapeutics Development Center, Samsung Medical Center, Seoul, Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Arnav Mehta
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Byung Hoon Min
- Department of Medicine, Division of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Samuel J. Wright
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Milan Parikh
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lynn Bi
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hyuk Lee
- Department of Medicine, Division of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Department of Medicine, Division of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Song-Yi Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeonghyeon Moon
- Departments of Neurology and Immunology, Yale School of Medicine, New Haven, Connecticut
| | - Ryan J. Park
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew R. Strickland
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
123
|
Ma G, Liu S, Cai F, Liang H, Deng J, Zhang R, Cai M. Ketohexokinase-A deficiency attenuates the proliferation via reducing β-catenin in gastric cancer cells. Exp Cell Res 2024; 438:114038. [PMID: 38614422 DOI: 10.1016/j.yexcr.2024.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Overconsumption of fructose is closely related to cancer. Ketohexokinase (KHK) catalyzes the conversion from fructose to fructose-1-phosphate (F1P), which is the first and committed step of fructose metabolism. Recently, aberrant KHK activation has been identified in multiple malignancies. However, the roles of KHK in gastric cancer (GC) cells are largely unclear. Herein, we reveal that the expression of ketohexokinase-A (KHK-A), one alternatively spliced KHK isoform that possesses low affinity for fructose, was markedly increased in GC cells. Depletion of endogenous KHK-A expression using lentiviruses encoding short hairpin RNAs (shRNAs) or pharmaceutical disruption of KHK-A activity using KHK-IN-1 hydrochloride in GC NCI-N87 and HGC-27 cells inhibited the proliferation in vitro and in vivo. Additionally, the mitochondrial respiration in the GC cells with KHK-A deficiency compared with the control cells was significantly impaired. One commercially-available antibody array was used to explore the effects of KHK-A knockdown on signaling pathways, showing that β-catenin was remarkably reduced in the KHK-A deficient GC cells compared with the control ones. Pharmaceutical reduction in β-catenin levels slowed down the proliferation of GC cells. These data uncover that KHK-A promotes the proliferation in GC cells, indicating that this enzyme might be a promising therapeutical target for GC treatment.
Collapse
Affiliation(s)
- Gang Ma
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Siya Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingzhi Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China; Tianjin Key Laboratory of Digestive Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
124
|
Ma R, Zhou X, Zhai X, Wang C, Hu R, Chen Y, Shi L, Fang X, Liao Y, Ma L, Jiang M, Wu J, Wang R, Chen J, Cao T, Du G, Zhao Y, Wu W, Chen H, Li S, Lian Q, Guo G, Xiao J, Hutchins AP, Yuan P. Single-cell RNA sequencing reveals immune cell dysfunction in the peripheral blood of patients with highly aggressive gastric cancer. Cell Prolif 2024; 57:e13591. [PMID: 38319150 PMCID: PMC11056698 DOI: 10.1111/cpr.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Highly aggressive gastric cancer (HAGC) is a gastric cancer characterized by bone marrow metastasis and disseminated intravascular coagulation (DIC). Information about the disease is limited. Here we employed single-cell RNA sequencing to investigate peripheral blood mononuclear cells (PBMCs), aiming to unravel the immune response of patients toward HAGC. PBMCs from seven HAGC patients, six normal advanced gastric cancer (NAGC) patients, and five healthy individuals were analysed by single-cell RNA sequencing. The expression of genes of interest was validated by bulk RNA-sequencing and ELISA. We found a massive expansion of neutrophils in PBMCs of HAGC. These neutrophils are activated, but immature. Besides, mononuclear phagocytes exhibited an M2-like signature and T cells were suppressed and reduced in number. Analysis of cell-cell crosstalk revealed that several signalling pathways involved in neutrophil to T-cell suppression including APP-CD74, MIF-(CD74+CXCR2), and MIF-(CD74+CD44) pathways were increased in HAGC. NETosis-associated genes S100A8 and S100A9 as well as VEGF, PDGF, FGF, and NOTCH signalling that contribute to DIC development were upregulated in HAGC too. This study reveals significant changes in the distribution and interactions of the PBMC subsets and provides valuable insight into the immune response in patients with HAGC. S100A8 and S100A9 are highly expressed in HAGC neutrophils, suggesting their potential to be used as novel diagnostic and therapeutic targets for HAGC.
Collapse
Affiliation(s)
- Rui Ma
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Xuemeng Zhou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Xiaohui Zhai
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chuyue Wang
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Rong Hu
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - You Chen
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Liyang Shi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Xing Fang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouChina
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Mengmeng Jiang
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Junqing Wu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiao Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Taiyuan Cao
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ge Du
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yingying Zhao
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Weili Wu
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Haide Chen
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Shanshan Li
- Department of Medical OncologyThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Qizhou Lian
- Faculty of Synthetic BiologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Jian Xiao
- Department of Medical OncologyGuangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Andrew P. Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of BiologySchool of Life Sciences, Southern University of Science and TechnologyShenzhenChina
| | - Ping Yuan
- Guangdong Institute of GastroenterologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Department of General SurgeryThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
125
|
Zhao J, Li X, Li L, Chen B, Xu W, He Y, Chen X. Identification of neutrophil extracellular trap-driven gastric cancer heterogeneity and C5AR1 as a therapeutic target. Acta Biochim Biophys Sin (Shanghai) 2024; 56:538-550. [PMID: 38425243 DOI: 10.3724/abbs.2023290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in gastric cancer (GC) growth, metastatic dissemination, cancer-associated thrombosis, etc. This work is conducted to elucidate the heterogeneity of NETs in GC. The transcriptome heterogeneity of NETs is investigated in TCGA-STAD via a consensus clustering algorithm, with subsequent external verification in the GSE88433 and GSE88437 cohorts. Clinical and molecular traits, the immune microenvironment, and drug response are characterized in the identified NET-based clusters. Based upon the feature genes of NETs, a classifier is built for estimating NET-based clusters via machine learning. Multiple experiments are utilized to verify the expressions and implications of the feature genes in GC. A novel NET-based classification system is proposed for reflecting the heterogeneity of NETs in GC. Two NET-based clusters have unique and heterogeneous clinical and molecular features, immune microenvironments, and responses to targeted therapy and immunotherapy. A logistic regression model reliably differentiates the NET-based clusters. The feature genes C5AR1, CSF1R, CSF2RB, CYBB, HCK, ITGB2, LILRB2, MNDA, MPEG1, PLEK, SRGN, and STAB1 are proven to be aberrantly expressed in GC cells. Specific knockdown of C5AR1 effectively hinders GC cell growth and elicits intracellular ROS accumulation. In addition, its suppression suppresses the aggressiveness and EMT phenotype of GC cells. In all, NETs are the main contributors to intratumoral heterogeneity and differential drug sensitivity in GC, and C5AR1 has been shown to trigger GC growth and metastatic spread. These findings collectively provide a theoretical basis for the use of anti-NETs in GC treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xiangyu Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Liming Li
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
126
|
Yang Y, Xing S, Luo X, Guan L, Lu Y, Wang Y, Wang F. Unraveling the prognostic significance of RGS gene family in gastric cancer and the potential implication of RGS4 in regulating tumor-infiltrating fibroblast. Front Mol Biosci 2024; 11:1158852. [PMID: 38693916 PMCID: PMC11061405 DOI: 10.3389/fmolb.2024.1158852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/09/2024] [Indexed: 05/03/2024] Open
Abstract
Regulator of G-protein signaling (RGS) proteins are regulators of signal transduction mediated by G protein-coupled receptors (GPCRs). Current studies have shown that some molecules in the RGS gene family are related to the occurrence, development and poor prognosis of malignant tumors. However, the RGS gene family has been rarely studied in gastric cancer. In this study, we explored the mutation and expression profile of RGS gene family in gastric cancer, and evaluated the prognostic value of RGS expression. Then we established a prognostic model based on RGS gene family and performed functional analysis. Further studies showed that RGS4, as an independent prognostic predictor, may play an important role in regulating fibroblasts in the immune microenvironment. In conclusion, this study explores the value of RGS gene family in gastric cancer, which is of great significance for predicting the prognosis and guiding the treatment of gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
127
|
Jiang KL, Wang XX, Liu XJ, Guo LK, Chen YQ, Jia QL, Yang KM, Ling JH. Success rate of current human-derived gastric cancer organoids establishment and influencing factors: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:1626-1646. [PMID: 38660634 PMCID: PMC11037053 DOI: 10.4251/wjgo.v16.i4.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Human-derived gastric cancer organoids (GCOs) are widely used in gastric cancer research; however, the culture success rate is generally low. AIM To explore the potential influencing factors, and the literature on successful culture rates of GCOs was reviewed using meta-analysis. METHODS PubMed, Web of Science, and EMBASE were searched for studies. Two trained researchers selected the studies and extracted data. STATA 17.0 software was used for meta-analysis of the incidence of each outcome event. The adjusted Methodological Index for Non-Randomized Studies scale was used to assess the quality of the included studies. Funnel plots and Egger's test were used to detect publication bias. Subgroup analyses were conducted for sex, tissue source, histological classification, and the pathological tumor-node-metastasis (pTNM) cancer staging system. RESULTS Eight studies with a pooled success rate of 66.6% were included. GCOs derived from women and men had success rates of 67% and 46.7%, respectively. GCOs from surgery or biopsy/endoscopic submucosal dissection showed success rates of 70.9% and 53.7%, respectively. GCOs of poorly-differentiated, moderately-differentiated and signet-ring cell cancer showed success rates of 64.6%, 31%, and 32.7%, respectively. GCOs with pTNM stages I-II and III-IV showed success rates of 38.3% and 65.2%, respectively. Y-27632 and non-Y-27632 use showed success rates of 58.2% and 70%, respectively. GCOs generated with collagenase were more successful than those constructed with Liberase TH and TrypLE (72.1% vs 71%, respectively). EDTA digestion showed a 50% lower success rate than other methods (P = 0.04). CONCLUSION GCO establishment rate is low and varies by sex, tissue source, histological type, and pTNM stage. Omitting Y-27632, and using Liberase TH, TrypLE, or collagenase yields greater success than EDTA.
Collapse
Affiliation(s)
- Kai-Lin Jiang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Xiang-Xiang Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Xue-Jiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Li-Kun Guo
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Yong-Qi Chen
- Department of Pathology, Shuguang Hospital, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Ke-Ming Yang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| |
Collapse
|
128
|
Zhu X, Huang X, Hu M, Sun R, Li J, Wang H, Pan X, Ma Y, Ning L, Tong T, Zhou Y, Ding J, Zhao Y, Xuan B, Fang JY, Hong J, Hon Wong JW, Zhang Y, Chen H. A specific enterotype derived from gut microbiome of older individuals enables favorable responses to immune checkpoint blockade therapy. Cell Host Microbe 2024; 32:489-505.e5. [PMID: 38513657 DOI: 10.1016/j.chom.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, but inconsistent responses persist. Our study delves into the intriguing phenomenon of enhanced immunotherapy sensitivity in older individuals with cancers. Through a meta-analysis encompassing 25 small-to-mid-sized trials of immune checkpoint blockade (ICB), we demonstrate that older individuals exhibit heightened responsiveness to ICB therapy. To understand the underlying mechanism, we reanalyze single-cell RNA sequencing (scRNA-seq) data from multiple studies and unveil distinct upregulation of exhausted and cytotoxic T cell markers within the tumor microenvironment (TME) of older patients. Recognizing the potential role of gut microbiota in modulating the efficacy of immunotherapy, we identify an aging-enriched enterotype linked to improved immunotherapy outcomes in older patients. Fecal microbiota transplantation experiments in mice confirm the therapeutic potential of the aging-enriched enterotype, enhancing treatment sensitivity and reshaping the TME. Our discoveries confront the prevailing paradox and provide encouraging paths for tailoring cancer immunotherapy strategies according to an individual's gut microbiome profile.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Centre for Oncology and Immunology, Hong Kong Science Park. Hong Kong, Hong Kong SAR, China; Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Sun
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jiantao Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Hai Wang
- Department of Endoscopy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xuefeng Pan
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yilu Zhou
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinmei Ding
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhao
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Centre for Oncology and Immunology, Hong Kong Science Park. Hong Kong, Hong Kong SAR, China.
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China.
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
129
|
Xu J, Gong J, Li M, Kang Y, Ma J, Wang X, Liang X, Qi X, Yu B, Yang J. Gastric cancer patient-derived organoids model for the therapeutic drug screening. Biochim Biophys Acta Gen Subj 2024; 1868:130566. [PMID: 38244703 DOI: 10.1016/j.bbagen.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a highly heterogeneous disease featuring many various histological and molecular subtypes. Therefore, it is imperative to have well-characterized in vitro models for personalized treatment development. Gastric cancer patient-derived organoids (PDOs), re-capitulating in vivo conditions, exhibit high clinical efficacy in predicting drug sensitivity to facilitate the development of cancer precision medicine. METHODS PDOs were established from surgically resected GC tumor tissues. Histological and molecular characterization of PDOs and primary tissues were performed via IHC and sequencing analysis. We also conducted drug sensitivity tests using PDO cultures with five chemotherapeutic drugs and twenty-two targeted drugs. RESULTS We have successfully constructed a PDOs biobank that included EBV+, intestinal/CIN, diffuse/GS, mixed and Her2+ GC subtypes, and these PDOs captured the pathological and genetic characteristics of corresponding tumors and exhibited different sensitivities to the tested agents. In a clinical case study, we performed an additional drug sensitivity test for a patient who reached an advanced progressive stage after surgery. We discovered that the combination of napabucasin and COTI-2 exhibited a stronger synergistic effect than either drug alone. CONCLUSION PDOs maintained the histological and genetic characteristics of original cancer tissues. PDOs biobank opens up new perspectives for studying cancer cell biology and personalized medicine as a preclinical study platform.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Kang
- MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinrong Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
130
|
Ren L, Huang D, Liu H, Ning L, Cai P, Yu X, Zhang Y, Luo N, Lin H, Su J, Zhang Y. Applications of single‑cell omics and spatial transcriptomics technologies in gastric cancer (Review). Oncol Lett 2024; 27:152. [PMID: 38406595 PMCID: PMC10885005 DOI: 10.3892/ol.2024.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Danni Huang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hongjiang Liu
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaolong Yu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Material Science and Engineering Institute of Hainan University, Sanya, Hainan 572025, P.R. China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinsong Su
- Research Institute of Integrated Traditional Chinese Medicine and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yinghui Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| |
Collapse
|
131
|
Wang J, Xi M, Lu Q, Xia B, Liu Y, Yang J. Single-cell and bulk transcriptomics identifies a tumor-specific CD36 + cancer-associated fibroblast subpopulation in colorectal cancer. Cancer Commun (Lond) 2024; 44:495-498. [PMID: 37990474 PMCID: PMC11024678 DOI: 10.1002/cac2.12506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Jin Wang
- Department of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
- Sichuan University‐University of Oxford Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
| | - Ming‐Jia Xi
- Department of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
- Sichuan University‐University of Oxford Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
| | - Qing Lu
- Department of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
- Sichuan University‐University of Oxford Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
| | - Bi‐Han Xia
- Department of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
- Sichuan University‐University of Oxford Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
| | - Yu‐Zhi Liu
- Department of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
- Sichuan University‐University of Oxford Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
| | - Jin‐Lin Yang
- Department of Gastroenterology and HepatologyWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
- Sichuan University‐University of Oxford Huaxi Joint Center for Gastrointestinal Cancer, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
132
|
Xu J, Yu B, Wang F, Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int J Oncol 2024; 64:41. [PMID: 38390969 PMCID: PMC10919760 DOI: 10.3892/ijo.2024.5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
133
|
Li J, Yu T, Sun J, Ma M, Zheng Z, He Y, Kang W, Ye X. Integrated analysis of disulfidptosis-related immune genes signature to boost the efficacy of prognostic prediction in gastric cancer. Cancer Cell Int 2024; 24:112. [PMID: 38528532 PMCID: PMC10962090 DOI: 10.1186/s12935-024-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) remains a malignant tumor with high morbidity and mortality, accounting for approximately 1,080,000 diagnosed cases and 770,000 deaths worldwide annually. Disulfidptosis, characterized by the stress-induced abnormal accumulation of disulfide, is a recently identified form of programmed cell death. Substantial studies have demonstrated the significant influence of immune clearance on tumor progression. Therefore, we aimed to explore the intrinsic correlations between disulfidptosis and immune-related genes (IRGs) in GC, as well as the potential value of disulfidptosis-related immune genes (DRIGs) as biomarkers. METHODS This study incorporated the single-cell RNA sequencing (scRNA-seq) dataset GSE183904 and transcriptome RNA sequencing of GC from the TCGA database. Disulfidptosis-related genes (DRGs) and IRGs were derived from the representative literature on both cell disulfidptosis and immunity. The expression and distribution of DRGs were investigated at the single-cell level in different GC cell types. Pearson correlation analysis was used to identify the IRGs closely related to disulfidptosis. The prognostic signature of DRIGs was established using Cox and LASSO analyses. We then analyzed and evaluated the differences in long-term prognosis, Gene Set Enrichment Analysis (GSEA), immune infiltration, mutation profile, CD274 expression, and response to chemotherapeutic drugs between the two groups. A tissue array containing 63 paired GC specimens was used to verify the expression of 4 DRIGs and disulfidptosis regulator SLC7A11 through immunohistochemistry staining. RESULTS The scRNA-seq analysis found that SLC7A11, SLC3A2, RPN1 and NCKAP1 were enriched in specific cell types and closely related to immune infiltration. Four DIRGs (GLA, HIF-1α, VPS35 and CDC37) were successfully identified to establish a signature to potently predict the survival time of GC patients. Patients with high risk scores generally experienced worse prognoses and exhibited greater resistant to classical chemotherapy drugs. Furthermore, the expression of GLA, HIF-1α, VPS35, CDC37 and SLC7A11 were elevated in GC tissues. A high expression of GLA, HIF-1α, VPS35 or CDC37 was associated with more advanced clinical stage of GC and increased SLC7A11 expression. CONCLUSION Current study first highlights the potential value of DRIGs as biomarkers in GC. We successfully constructed a robust model incorporating four DRIGs to accurately predict the survival time and clinicopathological characteristics of GC patients.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China
| | - Tian Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China
| | - Juan Sun
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China
| | - Mingwei Ma
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China
| | - Zicheng Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China
| | - Yixuan He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China.
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, Republic of China.
| |
Collapse
|
134
|
Peng H, Wu X, Zhang C, Liang Y, Cheng S, Zhang H, Shen L, Chen Y. Analyzing the associations between tertiary lymphoid structures and postoperative prognosis, along with immunotherapy response in gastric cancer: findings from pooled cohort studies. J Cancer Res Clin Oncol 2024; 150:153. [PMID: 38519621 PMCID: PMC10959798 DOI: 10.1007/s00432-024-05672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The clinical significance of tertiary lymphoid structure (TLS) in gastric cancer (GC) was uncertain. METHODS A systematic search was performed in public databases for eligible studies as of April 2, 2023. Meta-analyses were performed to interrogate the associations between TLS levels and prognosis and immunotherapy response of GC. Bioinformatic analyses based on the nine-gene signature of TLS were further conducted to capture the biological underpinnings. RESULTS Eleven studies containing 4224 GC cases were enrolled in the meta-analysis. TLS levels positively correlated with smaller tumor size, earlier T stage and N stage. Moreover, higher TLS levels were detected in diffuse and mix subtypes of GC (P < 0.001). Higher TLS levels strongly predicted favorable postoperative overall survival of GC, with HR of 0.36 (95%CI 0.26-0.50, P < 0.001) and 0.55 (95%CI 0.45-0.68, P < 0.001) of univariate and multivariate Cox analysis, respectively. Higher TLS levels were also in favor of the treatment response of anti-PD-1 inhibitors as later-line therapy of GC. TLS levels positively correlated with immune effector cells infiltration, diversity and richness of T cell receptor and B cell receptor repertoire, immune checkpoint genes expression, and immune-related genes mutation of GC in the TCGA-STAD cohort, representing higher immunogenicity and immunoactivity. Moreover, moderate accuracy of TLS levels in predicting benefit from anti-PD-1 inhibitors in the PRJEB25780 cohort was also validated (AUC 0.758, 95%CI 0.583-0.933), higher than the microsatellite instability-score and Epstein-Barr virus status. CONCLUSIONS TLS levels demonstrated potential in predicting the postoperative prognosis and immunotherapy response of GC.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangrong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Honglang Zhang
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
135
|
Duan Z, Li Y, Qiu Y, Shen Y, Wang Y, Zhang Y, Zhu B, Yu X, Tan X, Chen W, Zhuang Y, Cheng P, Zhang W, Zou Q, Ma D, Peng L. CD39 expression defines exhausted CD4 + T cells associated with poor survival and immune evasion in human gastric cancer. Clin Transl Immunology 2024; 13:e1499. [PMID: 38501063 PMCID: PMC10945883 DOI: 10.1002/cti2.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/01/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVES CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. METHODS A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. RESULTS In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. CONCLUSION Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.
Collapse
Affiliation(s)
- Zhen‐quan Duan
- Department of OncologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuan ProvinceChina
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Yu‐xian Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Yuan Qiu
- Department of General Surgery of Xinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Yang Shen
- Department of OncologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuan ProvinceChina
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Ying Wang
- Department of General Surgery of Xinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Yuan‐yuan Zhang
- Department of OncologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuan ProvinceChina
| | - Bao‐hang Zhu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Xiao‐hong Yu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
- College of PharmacyChongqing University of TechnologyChongqingChina
| | - Xue‐ling Tan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
- College of PharmacyChongqing University of TechnologyChongqingChina
| | - Weisan Chen
- Department of Biochemistry and GeneticsLa Trobe UniversityMelbourneVICAustralia
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Wei‐jun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Quan‐ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Dai‐yuan Ma
- Department of OncologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuan ProvinceChina
| | - Liu‐sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqingChina
| |
Collapse
|
136
|
Bai Z, Wang L, Yu B, Xing D, Su J, Qin H. Efficacy and safety of tranexamic acid in the treatment of gastric cancer complicated with upper gastrointestinal bleeding. Am J Transl Res 2024; 16:925-932. [PMID: 38586096 PMCID: PMC10994787 DOI: 10.62347/koli5819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2024]
Abstract
OBJECTIVE To investigate the efficacy and safety of tranexamic acid (TXA) in preventing upper gastrointestinal (GI) bleeding in patients with gastric cancer. METHODS The clinical data of patients with gastric cancer complicated with acute non-operative GI bleeding treated in the Fourth Hospital of Hebei Medical University from 2020 to 2022 were collected and retrospectively analyzed. The survival status of the patients was followed up by telephone. The dataset of 168 patients was divided into a control group (n=85) and a TXA group (n=83), at a 1:1 ratio. The patients in the control group were treated with esomeprazole, and the patients in the TXA group received additional TXA. The hemostatic effect, rebleeding rate, and mortality of patients were compared between the two groups. The Cox proportional hazard model was used to evaluate the overall survival of patients as well as the related risk factors. RESULTS The success rate of hemostasis and the normal blood coagulation rate in the TXA group were significantly higher than those in the control group (P=0.003 and P=0.016). The secondary bleeding rate, thrombus formation rate and digestive tract perforation rate in the TXA group were significantly lower than those in the control group (P=0.002, P=0.003 and P=0.035). The improvement of all indicators in the TXA group was better than that in the control group (all P<0.05). For patients with gastric cancer complicated with acute GI bleeding treated with TXA, the Cox proportional hazard model identified III~IV stage, time of TXA treatment, surgical treatment after hemorrhage, and an increase of D-dimer as independent risk factors for upper GI bleeding (all P<0.05). CONCLUSION TXA can be an effective treatment for patients with gastric cancer complicated by GI bleeding.
Collapse
Affiliation(s)
- Zongjiang Bai
- Emergency Department, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Lantao Wang
- Emergency Department, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Bin Yu
- Emergency Department, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Dong Xing
- Emergency Department, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Jie Su
- Emergency Department, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Hao Qin
- Emergency Department, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| |
Collapse
|
137
|
Liu K, Wang Y, Shao W, Tang C, Zhao S, Xu J, Xu P, Cheng Q, Huang S, Ji P, Qiu S. Unveiling the oncogenic role of CLDN11-secreting fibroblasts in gastric cancer peritoneal metastasis through single-cell sequencing and experimental approaches. Int Immunopharmacol 2024; 129:111647. [PMID: 38335659 DOI: 10.1016/j.intimp.2024.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Fibroblasts are necessary to the progression of cancer. However, the role of fibroblasts in peritoneal metastasis (PM) of gastric cancer (GC) remains elusive. In this study, we would explore the role of fibroblasts mediated cell interaction in PM of GC. METHODS Single-cell sequencing data from public database GSE183904 was used to explore the specific fibroblast cluster. Fibroblasts were extracted from PM and GC tissues. The expression level of CXCR7 was verified by western blot, immunohistochemistry. The role of CLDN11 was investigate through in vitro and in vivo study. Multiple immunohistochemistry was used to characterize the tumor microenvironment. RESULTS CXCR7-positive fibroblasts were significantly enriched in PM of GC. CXCR7 could promote the expression of CLDN11 through activation of the AKT pathway in fibroblasts. Fibroblasts promote the GC proliferation and peritoneal metastasis by secreting CLDN11 in vitro and in vivo. Furthermore, it was revealed that CXCR7-positive fibroblasts were significantly associated with M2-type macrophages infiltration in tissues. CONCLUSION CXCR7-positive fibroblasts play an essential role in PM of GC via CLDN11. Therapy targeting CXCR7-positive fibroblasts or CLDN11 may be helpful in the treatment of GC with PM.
Collapse
Affiliation(s)
- Kanghui Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China
| | - Siguo Zhao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jiafeng Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Peng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shengkui Qiu
- Department of General Surgery, Nantong First People's Hospital, Nantong, Jiangsu Province, China.
| |
Collapse
|
138
|
Tsutsumi C, Ohuchida K, Katayama N, Yamada Y, Nakamura S, Okuda S, Otsubo Y, Iwamoto C, Torata N, Horioka K, Shindo K, Mizuuchi Y, Ikenaga N, Nakata K, Nagai E, Morisaki T, Oda Y, Nakamura M. Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer 2024; 27:248-262. [PMID: 38217732 DOI: 10.1007/s10120-023-01456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Gastric cancer (GC) is characterized by an immunosuppressive and treatment-resistant tumor immune microenvironment (TIME). Here, we investigated the roles of different immunosuppressive cell types in the development of the GC TIME. METHODS Single-cell RNA sequencing (scRNA-seq) and multiplex immunostaining of samples from untreated or immune checkpoint inhibitor (ICI)-resistant GC patients were used to examine the correlation between certain immunosuppressive cells and the prognosis of GC patients. RESULTS The results of the scRNA-seq analysis revealed that tumor-infiltrating monocytic myeloid-derived suppressor cells (TI-M-MDSCs) expressed higher levels of genes with immunosuppressive functions than other immunosuppressive cell types. Additionally, M-MDSCs in GC tissues expressed significantly higher levels of these markers than adjacent normal tissues. The M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues. Among the immunosuppressive cell types assessed, the M-MDSCs were most enriched in GC tissues relative to adjacent normal tissues; moreover, their presence was most strongly associated with a poor prognosis. Immediate early response 3 (IER3), which we identified as a differentially expressed gene between M-MDSCs of GC and adjacent normal tissues, was an independent poor prognostic factor in GC patients (P = 0.0003). IER3+ M-MDSCs expressed higher levels of genes with immunosuppressive functions than IER3- M-MDSCs and were abundant in treatment-resistant GC patients. CONCLUSIONS The present study suggests that TI-M-MDSCs, especially IER3+ ones, may play a predominant role in the development of the immunosuppressive and ICI-resistant GC TIME.
Collapse
Affiliation(s)
- Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiki Otsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Horioka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eishi Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
139
|
de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer 2024; 24:171-191. [PMID: 38316945 DOI: 10.1038/s41568-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.
Collapse
Affiliation(s)
- Natalie de Souza
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Shan Zhao
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland.
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland.
| |
Collapse
|
140
|
Adkins-Threats M, Huang YZ, Mills JC. Highlights of how single-cell analyses are illuminating differentiation and disease in the gastric corpus. Am J Physiol Gastrointest Liver Physiol 2024; 326:G205-G215. [PMID: 38193187 PMCID: PMC11211037 DOI: 10.1152/ajpgi.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful technique to identify novel cell markers, developmental trajectories, and transcriptional changes during cell differentiation and disease onset and progression. In this review, we highlight recent scRNA-seq studies of the gastric corpus in both human and murine systems that have provided insight into gastric organogenesis, identified novel markers for the various gastric lineages during development and in adults, and revealed transcriptional changes during regeneration and tumorigenesis. Overall, by elucidating transcriptional states and fluctuations at the cellular level in healthy and disease contexts, scRNA-seq may lead to better, more personalized clinical treatments for disease progression.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Yang-Zhe Huang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Graduate School of Biomedical Sciences, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, Texas, United States
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
141
|
Du Y, Lin Y, Gan L, Wang S, Chen S, Li C, Hou S, Hu B, Wang B, Ye Y, Shen Z. Potential crosstalk between SPP1 + TAMs and CD8 + exhausted T cells promotes an immunosuppressive environment in gastric metastatic cancer. J Transl Med 2024; 22:158. [PMID: 38365757 PMCID: PMC10870525 DOI: 10.1186/s12967-023-04688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Immunotherapy brings new hope to patients with advanced gastric cancer. However, liver metastases can reduce the efficacy of immunotherapy in patients. Tumor-associated macrophages (TAMs) may be the cause of this reduction in efficacy. SPP1 + TAMs are considered to have immunosuppressive properties. We aimed to investigate the involvement of SPP1 + TAMs in the metastasis of gastric cancer. METHODS The single-cell transcriptome was combined with batched BULK datasets for analysis. Animal models were used to verify the analysis results. RESULTS We reveal the interaction of SPP1 + TAMs with CD8 + exhausted T cells in metastatic cancer. Among these interactions, GDF15-TGFBR2 may play a key immunosuppressive role. We constructed an LR score to quantify interactions based on ligands and receptors. The LR score is highly correlated with various immune features and clinical molecular subtypes. The LR score may also guide the prediction of the efficacy of immunotherapy and prognosis. CONCLUSIONS The crosstalk between SPP1 + TAMs and CD8 + exhausted T cells plays a key immunosuppressive role in the gastric metastatic cancer microenvironment.
Collapse
Affiliation(s)
- Yan Du
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Lin Gan
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Shuo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Shuang Chen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Chen Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Sen Hou
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Bozhi Hu
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China.
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Beijing, China.
| |
Collapse
|
142
|
Contreras-Panta EW, Choi E, Goldenring JR. The Fibroblast Landscape in Stomach Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 17:671-678. [PMID: 38342299 PMCID: PMC10957461 DOI: 10.1016/j.jcmgh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Numerous recent studies using single cell RNA sequencing and spatial transcriptomics have shown the vast cell heterogeneity, including epithelial, immune, and stromal cells, present in the normal human stomach and at different stages of gastric carcinogenesis. Fibroblasts within the metaplastic and dysplastic mucosal stroma represent key contributors to the carcinogenic microenvironment in the stomach. The heterogeneity of fibroblast populations is present in the normal stomach, but plasticity within these populations underlies their alterations in association with both metaplasia and dysplasia. In this review, we summarize and discuss efforts over the past several years to study the fibroblast components in human stomach from normal to metaplasia, dysplasia, and cancer. In the stomach, myofibroblast populations increase during late phase carcinogenesis and are a source of matrix proteins. PDGFRA-expressing telocyte-like cells are present in normal stomach and expand during metaplasia and dysplasia in close proximity with epithelial lineages, likely providing support for both normal and metaplastic progenitor niches. The alterations in fibroblast transcriptional signatures across the stomach carcinogenesis process indicate that fibroblast populations are likely as plastic as epithelial populations during the evolution of carcinogenesis.
Collapse
Affiliation(s)
- Ela W Contreras-Panta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
143
|
Jie L, Hengyue W, Ting H. Calcitriol suppresses gastric cancer progression and cisplatin resistance by inhibiting glycolysis and M2 macrophage polarization through inhibition of mTOR activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:830-839. [PMID: 37792677 DOI: 10.1002/tox.23975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
The tumor microenvironment (TME) plays a critical role in tumor progression, with macrophages and tumor cells interacting within the TME, influencing cancer development. Despite the known anticancer properties of calcitriol, its role in the TME remains uncertain. This study aimed to explore the effects of calcitriol on macrophages and cancer cells in the TME and its impact on gastric cancer cell proliferation and cisplatin resistance. In vitro TME models were established using conditioned medium from gastric cancer cells (CCM) and macrophages (MCM) treated with or without calcitriol. The results revealed that calcitriol treatment suppressed the expression of glycolysis-related genes and proteins (GLUT1, HKII, LDHA) in MCM-induced gastric cancer cells, leading to increased cancer cell apoptosis and reduced viability, along with decreased Cyclin D1 gene expression. Moreover, calcitriol treatment inhibited mTOR activation in MCM-induced gastric cancer cells. Additionally, calcitriol hindered CCM-induced M2 macrophage polarization by reducing CD206 expression and increasing TNFα gene expression in THP1-derived macrophages, attenuating cisplatin resistance. These findings suggest that calcitriol may impede gastric cancer progression by targeting glycolysis and M2 macrophage polarization through the regulation of mTOR activation in the TME.
Collapse
Affiliation(s)
- Li Jie
- Department of Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Hengyue
- Department of Anesthesiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Han Ting
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
144
|
Xue Y, Su Z, Lin X, Ho MK, Yu KHO. Single-cell lineage tracing with endogenous markers. Biophys Rev 2024; 16:125-139. [PMID: 38495438 PMCID: PMC10937880 DOI: 10.1007/s12551-024-01179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Resolving lineage relationships between cells in an organism provides key insights into the fate of individual cells and drives a fundamental understanding of the process of development and disease. A recent rapid increase in experimental and computational advances for detecting naturally occurring somatic nuclear and mitochondrial mutation at single-cell resolution has expanded lineage tracing from model organisms to humans. This review discusses the advantages and challenges of experimental and computational techniques for cell lineage tracing using somatic mutation as endogenous DNA barcodes to decipher the relationships between cells during development and tumour evolution. We outlook the advantages of spatial clonal evolution analysis and single-cell lineage tracing using endogenous genetic markers.
Collapse
Affiliation(s)
- Yan Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mun Kay Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ken H. O. Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| |
Collapse
|
145
|
Yan S, Guo Y, Lin L, Zhang W. Breaks for Precision Medicine in Cancer: Development and Prospects of Spatiotemporal Transcriptomics. Cancer Biother Radiopharm 2024; 39:35-45. [PMID: 38181185 DOI: 10.1089/cbr.2023.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
With the development of the social economy and the deepening understanding of cancer, cancer has become a significant cause of death, threatening human health. Although researchers have made rapid progress in cancer treatment strategies in recent years, the overall survival of cancer patients is still not optimistic. Therefore, it is essential to reveal the spatial pattern of gene expression, spatial heterogeneity of cell populations, microenvironment interactions, and other aspects of cancer. Spatiotemporal transcriptomics can help analyze the mechanism of cancer occurrence and development, greatly help precise cancer treatment, and improve clinical prognosis. Here, we review the integration strategies of single-cell RNA sequencing and spatial transcriptomics data, summarize the recent advances in spatiotemporal transcriptomics in cancer studies, and discuss the combined application of spatial multiomics, which provides new directions and strategies for the precise treatment and clinical prognosis of cancer.
Collapse
Affiliation(s)
- Shiqi Yan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yilin Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhong Lin
- Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
146
|
Bannier-Hélaouët M, Korving J, Ma Z, Begthel H, Giladi A, Lamers MM, van de Wetering WJ, Yawata N, Yawata M, LaPointe VLS, Dickman MM, Kalmann R, Imhoff SM, van Es JH, López-Iglesias C, Peters PJ, Haagmans BL, Wu W, Clevers H. Human conjunctiva organoids to study ocular surface homeostasis and disease. Cell Stem Cell 2024; 31:227-243.e12. [PMID: 38215738 DOI: 10.1016/j.stem.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.
Collapse
Affiliation(s)
- Marie Bannier-Hélaouët
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands
| | - Ziliang Ma
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), and Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Mart M Lamers
- Viroscience Department, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willine J van de Wetering
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan; Singapore Eye Research Institute, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Makoto Yawata
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National University Health System, Singapore, Singapore; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore; NUSMED Immunology Translational Research Program, National University of Singapore, Singapore, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Mor M Dickman
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rachel Kalmann
- Department of Ophthalmology, University Medical Center, Utrecht, the Netherlands
| | - Saskia M Imhoff
- Department of Ophthalmology, University Medical Center, Utrecht, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Carmen López-Iglesias
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), and Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center, Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
147
|
Huang Y, Xu X, Lu Y, Sun Q, Zhang L, Shao J, Chen D, Chang Y, Sun X, Zhuo W, Zhou T. The phase separation of extracellular matrix protein matrilin-3 from cancer-associated fibroblasts contributes to gastric cancer invasion. FASEB J 2024; 38:e23406. [PMID: 38193601 DOI: 10.1096/fj.202301524r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues. Ectopic expression of MATN3 in CAFs significantly promotes the invasion of gastric cancer cells, which can be attenuated by neutralizing MATN3 with its antibody. Notably, a portion of MATN3 protein is found to form puncta in gastric cancer tissues ECM. MATN3 undergoes phase separation, which is mediated by its low complexity (LC) and coiled-coil (CC) domains. Moreover, overexpression of MATN3 deleted with either LC or CC in CAFs is unable to promote the invasion of gastric cancer cells, suggesting that LC or CC domain is required for the effect of CAF-secreted MATN3 in gastric cancer cell invasion. Additionally, orthotopic co-injection of gastric cancer cells and CAFs expressing MATN3, but not its ΔLC and ΔCC mutants, leads to enhanced gastric cancer cell invasion in mouse models. Collectively, our works suggest that MATN3 is secreted by CAFs and undergoes phase separation, which promotes gastric cancer invasion.
Collapse
Affiliation(s)
- Yuliang Huang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunkun Lu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Sun
- Center for RNA Medicine, International Institutes of Medicine and the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lu Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Shao
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongxia Chang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
148
|
Sun Z, Zhang T, Ahmad MU, Zhou Z, Qiu L, Zhou K, Xiong W, Xie J, Zhang Z, Chen C, Yuan Q, Chen Y, Feng W, Xu Y, Yu L, Wang W, Yu J, Li G, Jiang Y. Comprehensive assessment of immune context and immunotherapy response via noninvasive imaging in gastric cancer. J Clin Invest 2024; 134:e175834. [PMID: 38271117 PMCID: PMC10940098 DOI: 10.1172/jci175834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUNDThe tumor immune microenvironment can provide prognostic and therapeutic information. We aimed to develop noninvasive imaging biomarkers from computed tomography (CT) for comprehensive evaluation of immune context and investigate their associations with prognosis and immunotherapy response in gastric cancer (GC).METHODSThis study involved 2,600 patients with GC from 9 independent cohorts. We developed and validated 2 CT imaging biomarkers (lymphoid radiomics score [LRS] and myeloid radiomics score [MRS]) for evaluating the IHC-derived lymphoid and myeloid immune context respectively, and integrated them into a combined imaging biomarker [LRS/MRS: low(-) or high(+)] with 4 radiomics immune subtypes: 1 (-/-), 2 (+/-), 3 (-/+), and 4 (+/+). We further evaluated the imaging biomarkers' predictive values on prognosis and immunotherapy response.RESULTSThe developed imaging biomarkers (LRS and MRS) had a high accuracy in predicting lymphoid (AUC range: 0.765-0.773) and myeloid (AUC range: 0.736-0.750) immune context. Further, similar to the IHC-derived immune context, 2 imaging biomarkers (HR range: 0.240-0.761 for LRS; 1.301-4.012 for MRS) and the combined biomarker were independent predictors for disease-free and overall survival in the training and all validation cohorts (all P < 0.05). Additionally, patients with high LRS or low MRS may benefit more from immunotherapy (P < 0.001). Further, a highly heterogeneous outcome on objective response rate was observed in 4 imaging subtypes: 1 (-/-) with 27.3%, 2 (+/-) with 53.3%, 3 (-/+) with 10.2%, and 4 (+/+) with 30.0% (P < 0.0001).CONCLUSIONThe noninvasive imaging biomarkers could accurately evaluate the immune context and provide information regarding prognosis and immunotherapy for GC.
Collapse
Affiliation(s)
- Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Zixia Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Liang Qiu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Kangneng Zhou
- College of Computer Science, Nankai University, Tianjin, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Xie
- Graduate Group of Epidemiology, UCD, Davis, California, USA
| | - Zhicheng Zhang
- JancsiTech and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Wanying Feng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lequan Yu
- The Department of Statistics and Actuarial Science, The University of Hong Kong, HKSAR, Hong Kong, China
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
149
|
Ciriello G, Magnani L, Aitken SJ, Akkari L, Behjati S, Hanahan D, Landau DA, Lopez-Bigas N, Lupiáñez DG, Marine JC, Martin-Villalba A, Natoli G, Obenauf AC, Oricchio E, Scaffidi P, Sottoriva A, Swarbrick A, Tonon G, Vanharanta S, Zuber J. Cancer Evolution: A Multifaceted Affair. Cancer Discov 2024; 14:36-48. [PMID: 38047596 PMCID: PMC10784746 DOI: 10.1158/2159-8290.cd-23-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chromatin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces interact and influence each other while shaping tumor progression. A comprehensive characterization of the cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery. SIGNIFICANCE Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, experimental and theoretical approaches must account for multiple evolutionary mechanisms and their interactions to ultimately understand, predict, and steer tumor evolution.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Luca Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Epigenetic Plasticity and Evolution Laboratory, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sarah J. Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Douglas Hanahan
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Dan A. Landau
- New York Genome Center, New York, New York
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Darío G. Lupiáñez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Anna C. Obenauf
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Elisa Oricchio
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Paola Scaffidi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Cancer Epigenetic Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Sottoriva
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Giovanni Tonon
- Vita-Salute San Raffaele University, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sakari Vanharanta
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
150
|
Chen J, Huang Q, Li YQ, Li Z, Zheng J, Hu W, Yang Y, Wu D, Bei JX, Gu B, Wang J, Li Y. Comparative single-cell analysis reveals heterogeneous immune landscapes in adenocarcinoma of the esophagogastric junction and gastric adenocarcinoma. Cell Death Dis 2024; 15:15. [PMID: 38182569 PMCID: PMC10770337 DOI: 10.1038/s41419-023-06388-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) is a type of tumor that arises at the anatomical junction of the esophagus and stomach. Although AEG is commonly classified as a subtype of gastric adenocarcinoma (GAC), the tumor microenvironment (TME) of AEG remains poorly understood. To address this issue, we conducted single-cell RNA sequencing (scRNA-seq) on tumor and adjacent normal tissues from four AEG patients and performed integrated analysis with publicly available GAC single-cell datasets. Our study for the first time comprehensively deciphered the TME landscape of AEG, where heterogeneous AEG malignant cells were identified with diverse biological functions and intrinsic malignant nature. We also depicted transcriptional signatures and T cell receptor (TCR) repertoires for T cell subclusters, revealing enhanced exhaustion and reduced clone expansion along the developmental trajectory of tumor-infiltrating T cells within AEG. Notably, we observed prominent enrichment of tumorigenic cancer-associated fibroblasts (CAFs) in the AEG TME compared to GAC. These CAFs played a critical regulatory role in the intercellular communication network with other cell types in the AEG TME. Furthermore, we identified that the accumulation of CAFs in AEG might be induced by malignant cells through FGF-FGFR axes. Our findings provide a comprehensive depiction of the AEG TME, which underlies potential therapeutic targets for AEG patient treatment.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qunsheng Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yi-Qi Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Weixian Hu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuesheng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Deqing Wu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bing Gu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|