101
|
Aflaki M, Qi XY, Xiao L, Ordog B, Tadevosyan A, Luo X, Maguy A, Shi Y, Tardif JC, Nattel S. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts. Circ Res 2014; 114:993-1003. [PMID: 24508724 DOI: 10.1161/circresaha.113.302982] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE β-Adrenoceptor activation contributes to sudden death risk in heart failure. Chronic β-adrenergic stimulation, as occurs in patients with heart failure, causes potentially arrhythmogenic reductions in slow delayed-rectifier K(+) current (IKs). OBJECTIVE To assess the molecular mechanisms of IKs downregulation caused by chronic β-adrenergic activation, particularly the role of exchange protein directly activated by cAMP (Epac). METHODS AND RESULTS Isolated guinea pig left ventricular cardiomyocytes were incubated in primary culture and exposed to isoproterenol (1 μmol/L) or vehicle for 30 hours. Sustained isoproterenol exposure decreased IKs density (whole cell patch clamp) by 58% (P<0.0001), with corresponding decreases in potassium voltage-gated channel subfamily E member 1 (KCNE1) mRNA and membrane protein expression (by 45% and 51%, respectively). Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) mRNA expression was unchanged. The β1-adrenoceptor antagonist 1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol dihydrochloride (CGP-20712A) prevented isoproterenol-induced IKs downregulation, whereas the β2-antagonist ICI-118551 had no effect. The selective Epac activator 8-pCPT-2'-O-Me-cAMP decreased IKs density to an extent similar to isoproterenol exposure, and adenoviral-mediated knockdown of Epac1 prevented isoproterenol-induced IKs/KCNE1 downregulation. In contrast, protein kinase A inhibition with a cell-permeable highly selective peptide blocker did not affect IKs downregulation. 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate-AM acetoxymethyl ester (BAPTA-AM), cyclosporine, and inhibitor of nuclear factor of activated T cell (NFAT)-calcineurin association-6 (INCA6) prevented IKs reduction by isoproterenol and INCA6 suppressed isoproterenol-induced KCNE1 downregulation, consistent with signal-transduction via the Ca(2+)/calcineurin/NFAT pathway. Isoproterenol induced nuclear NFATc3/c4 translocation (immunofluorescence), which was suppressed by Epac1 knockdown. Chronic in vivo administration of isoproterenol to guinea pigs reduced IKs density and KCNE1 mRNA and protein expression while inducing cardiac dysfunction and action potential prolongation. Selective in vivo activation of Epac via sp-8-pCPT-2'-O-Me-cAMP infusion decreased IKs density and KCNE1 mRNA/protein expression. CONCLUSIONS Prolonged β1-adrenoceptor stimulation suppresses IKs by downregulating KCNE1 mRNA and protein via Epac-mediated Ca(2+)/calcineurin/NFAT signaling. These results provide new insights into the molecular basis of K(+) channel remodeling under sustained adrenergic stimulation.
Collapse
Affiliation(s)
- Mona Aflaki
- From the Department of Medicine, Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (M.A., X.-Y.Q., L.X., B.O., A.T., X.L., A.M., Y.S., J.-C.T., S.N.); and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (M.A., S.N.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Janssen R, Zuidwijk MJ, Kuster DWD, Muller A, Simonides WS. Thyroid Hormone-Regulated Cardiac microRNAs are Predicted to Suppress Pathological Hypertrophic Signaling. Front Endocrinol (Lausanne) 2014; 5:171. [PMID: 25368602 PMCID: PMC4202793 DOI: 10.3389/fendo.2014.00171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022] Open
Abstract
Cardiomyocyte size in the healthy heart is in part determined by the level of circulating thyroid hormone (TH). Higher levels of TH induce ventricular hypertrophy, primarily in response to an increase in hemodynamic load. Normal cardiac function is maintained in this form of hypertrophy, whereas progressive contractile dysfunction is a hallmark of pathological hypertrophy. MicroRNAs (miRNAs) are important modulators of signal-transduction pathways driving adverse remodeling. Because little is known about the involvement of miRNAs in cardiac TH action and hypertrophy, we examined the miRNA expression profile of the hypertrophied left ventricle (LV) using a mouse model of TH-induced cardiac hypertrophy. C57Bl/6J mice were rendered hypothyroid by treatment with propylthiouracil and were subsequently treated for 3 days with TH (T3) or saline. T3 treatment increased LV weight by 38% (p < 0.05). RNA was isolated from the LV and expression of 641 mouse miRNAs was determined using Taqman Megaplex arrays. Data were analyzed using RQ-manager and DataAssist. A total of 52 T3-regulated miRNAs showing a >2-fold change (p < 0.05) were included in Ingenuity Pathway Analysis to predict target mRNAs involved in cardiac hypertrophy. The analysis was further restricted to proteins that have been validated as key factors in hypertrophic signal transduction in mouse models of ventricular remodeling. A total of 27 mRNAs were identified as bona fide targets. The predicted regulation of 19% of these targets indicates enhancement of physiological hypertrophy, while 56% indicates suppression of pathological remodeling. Our data suggest that cardiac TH action includes a novel level of regulation in which a unique set of TH-dependent miRNAs primarily suppresses pathological hypertrophic signaling. This may be relevant for our understanding of the progression of adverse remodeling, since cardiac TH levels are known to decrease substantially in various forms of pathological hypertrophy.
Collapse
Affiliation(s)
- Rob Janssen
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Marian J. Zuidwijk
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Diederik W. D. Kuster
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Alice Muller
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
| | - Warner S. Simonides
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, Netherlands
- *Correspondence: Warner S. Simonides, Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, v.d. Boechorststraat 7, 1081 BT, Amsterdam, Netherlands e-mail:
| |
Collapse
|
103
|
Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J. Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem 2013; 57:3651-65. [PMID: 24256330 DOI: 10.1021/jm401425e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
3',5'-Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger that regulates numerous biological processes under physiological and pathological conditions, including cancer, diabetes, heart failure, inflammation, and neurological disorders. In the past, all effects of cAMP were initially believed to be mediated by protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Since the discovery of exchange proteins directly activated by cyclic adenosine 5'-monophosphate (EPACs) in 1998, accumulating evidence has demonstrated that the net cellular effects of cAMP are also regulated by EPAC. The pursuit of the biological functions of EPAC has benefited from the development and applications of a growing number of pharmacological probes targeting EPACs. In this review, we seek to provide a concise update on recent advances in the development of chemical entities including various membrane-permeable analogues of cAMP and newly discovered EPAC-specific ligands from high throughput assays and hit-to-lead optimizations.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
105
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
106
|
Targeting protein-protein interactions within the cyclic AMP signaling system as a therapeutic strategy for cardiovascular disease. Future Med Chem 2013; 5:451-64. [PMID: 23495691 DOI: 10.4155/fmc.12.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cAMP signaling system can trigger precise physiological cellular responses that depend on the fidelity of many protein-protein interactions, which act to bring together signaling intermediates at defined locations within cells. In the heart, cAMP participates in the fine control of excitation-contraction coupling, hence, any disregulation of this signaling cascade can lead to cardiac disease. Due to the ubiquitous nature of the cAMP pathway, general inhibitors of cAMP signaling proteins such as PKA, EPAC and PDEs would act non-specifically and universally, increasing the likelihood of serious 'off target' effects. Recent advances in the discovery of peptides and small molecules that disrupt the protein-protein interactions that underpin cellular targeting of cAMP signaling proteins are described and discussed.
Collapse
|
107
|
Chrzanowska-Wodnicka M. Distinct functions for Rap1 signaling in vascular morphogenesis and dysfunction. Exp Cell Res 2013; 319:2350-9. [PMID: 23911990 DOI: 10.1016/j.yexcr.2013.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 01/27/2023]
Abstract
Rap1 signaling is important for both major processes of vessel formation: vasculogenesis, or de novo vessel formation, and angiogenesis, sprouting of new vessels from pre-existing ones. We provide an overview of genetic studies in mice and zebrafish and discuss some of the proposed underlying mechanisms derived from cellular models, with particular emphasis on Rap1's role in angiogenesis, maintenance of endothelial barrier and connection with cerebral cavernous malformation (CCM), a neurological deficit that leads to seizures and lethal stroke. Lastly, we provide a brief summary of studies in cardiac and smooth muscle cells, where the Epac-Rap1 signaling axis is emerging as an important regulator of contractility.
Collapse
|
108
|
Mika D, Leroy J, Fischmeister R, Vandecasteele G. Rôle des phosphodiestérases des nucléotides cycliques de types 3 et 4 dans le couplage excitation-contraction et les arythmies cardiaques. Med Sci (Paris) 2013; 29:617-22. [DOI: 10.1051/medsci/2013296014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
109
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 2013; 65:1010-52. [PMID: 23776144 DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)α-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)α, phosphatidylinositol 3-kinase, β-arrestin, or β-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Collapse
Affiliation(s)
- Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
110
|
Yin X, Peng C, Ning W, Li C, Ren Z, Zhang J, Gao H, Zhao K. miR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol Cell Biochem 2013; 379:1-6. [PMID: 23660952 DOI: 10.1007/s11010-012-1552-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/17/2012] [Indexed: 10/26/2022]
Abstract
miRNAs play an important role in the pathogenesis of cardiac hypertrophy and dysfunction. However, little is known about how miR-30a regulates cardiomyocyte hypertrophy. In the study, Male C57BL/6 mice were subjected to thoracic aortic constriction, and hearts were harvested at 3 weeks. We assayed miR-30a expression level by real-time PCR and defined the molecular mechanisms of miR-30a-mediated cardiomyocyte hypertrophy. We found that myocardial expression of miR-30a was decreased in mouse models of hypertrophy and in H9c2 cells treated with phenylephrine. MiR-30a inhibition markedly increased mRNA expression of cardiac hypertrophy markers such as atrial natriuretic factor and brain natriuretic peptide in H9c2, and cell size was increased after miR-30a inhibitor treatment. Downregulated miR-30a activated autophagy by inhibiting beclin-1 expression in H9c2 cell. More important, autophagy inhibition suppressed miR-30a inhibitor-induced cardiomyocyte hypertrophy. Together, our data demonstrated that downregulated miR-30a aggravates pressure overload-induced cardiomyocyte hypertrophy by activating autophagy, thus offering a new target for the therapy of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Xuesong Yin
- Department of Emergency Medicine, The Forth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ozakca I, Arioglu-Inan E, Esfahani H, Altan VM, Balligand JL, Kayki-Mutlu G, Ozcelikay AT. Nebivolol prevents desensitization of β-adrenoceptor signaling and induction of cardiac hypertrophy in response to isoprenaline beyond β1-adrenoceptor blockage. Am J Physiol Heart Circ Physiol 2013; 304:H1267-76. [DOI: 10.1152/ajpheart.00352.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The importance of chronic stimulation of β-adrenoceptors in the development of cardiac dysfunction is the rationale for the use of β-blockers in the treatment of heart failure. Nebivolol is a third-generation β-blocker, which has further properties including stimulation of endothelial nitric oxide synthase and/or β3-adrenoceptors. The aim of this study was to investigate whether nebivolol has additional effects on β-adrenoceptor-mediated functional responses along with morphologic and molecular determinants of cardiac hypertrophy compared with those of metoprolol, a selective β1-adrenoceptor blocker. Rats infused by isoprenaline (100 μg·kg−1·day−1, 14 days) were randomized into three groups according to the treatment with metoprolol (30 mg·kg−1·day−1), nebivolol (10 mg·kg−1·day−1), or placebo for 13 days starting on day 1 after implantation of minipump. Both metoprolol and nebivolol caused a similar reduction on heart rate. Nebivolol mediated a significant improvement on cardiac mass, coronary flow, mRNA expression levels of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and atrial natriuretic peptide and phospholamban (PLN)/SERCA2a and phospho-PLN/PLN ratio compared with metoprolol and placebo. Nebivolol prevented the detrimental effects of isoprenaline infusion on isoprenaline (68% of control at 30 μM), BRL37344 (63% of control at 0.1 μM), and forskolin (64% of control at 1 μM) responses compared with metoprolol (isoprenaline, 34% of control; BRL37344, no response; forskolin, 26% of control) and placebo (isoprenaline, 33% of control; BRL37344, 28% of control; forskolin, 12% of control). Both β-blockers improved the changes in mRNA expressions of β1- and β3-adrenoceptors. Our results suggest that nebivolol partially protects the responsiveness of β-adrenoceptor signaling and the development of cardiac hypertrophy independent of its β1-adrenoceptor blocking effect.
Collapse
Affiliation(s)
- Isil Ozakca
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - Hrag Esfahani
- Pole of Pharmacology and Therapeutics, FATH/IREC, Universite Catholique de Louvain, Brussels, Belgium
| | - V. Melih Altan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, FATH/IREC, Universite Catholique de Louvain, Brussels, Belgium
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| | - A. Tanju Ozcelikay
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey; and
| |
Collapse
|
112
|
Yang SK, Xiao L, Li J, Liu F, Sun L, Kanwar YS. Role of guanine-nucleotide exchange factor Epac in renal physiology and pathophysiology. Am J Physiol Renal Physiol 2013; 304:F831-9. [PMID: 23364803 PMCID: PMC3625846 DOI: 10.1152/ajprenal.00711.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Exchange proteins directly activated by cAMP [Epac(s)] were discovered more than a decade ago as new sensors for the second messenger cAMP. The Epac family members, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2, and they function independently of protein kinase A. Given the importance of cAMP in kidney homeostasis, several molecular and cellular studies using specific Epac agonists have analyzed the role and regulation of Epac proteins in renal physiology and pathophysiology. The specificity of the functions of Epac proteins may depend upon their expression and localization in the kidney as well as their abundance in the microcellular environment. This review discusses recent literature data concerning the involvement of Epac in renal tubular transport physiology and renal glomerular cells where various signaling pathways are known to be operative. In addition, the potential role of Epac in kidney disorders, such as diabetic kidney disease and ischemic kidney injury, is discussed.
Collapse
Affiliation(s)
- Shi-kun Yang
- Department of Nephrology, The Second Xiangya Hospital, Kidney Institute of Nephrology, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
113
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
114
|
Perera RK, Nikolaev VO. Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 2013; 207:650-62. [PMID: 23383621 DOI: 10.1111/apha.12077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/27/2012] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger critically involved in the regulation of heart function. It has been shown to act in discrete subcellular signalling compartments formed by differentially localized receptors, phosphodiesterases and protein kinases. Cardiac diseases such as hypertrophy or heart failure are associated with structural and functional remodelling of these microdomains which leads to changes in cAMP compartmentation. In this review, we will discuss recent key findings which provided new insights into cAMP compartmentation in cardiomyocytes with a particular focus on its alterations in heart disease.
Collapse
Affiliation(s)
- R. K. Perera
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| | - V. O. Nikolaev
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| |
Collapse
|
115
|
Pereira L, Cheng H, Lao DH, Na L, van Oort RJ, Brown JH, Wehrens XHT, Chen J, Bers DM. Epac2 mediates cardiac β1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia. Circulation 2013; 127:913-22. [PMID: 23363625 DOI: 10.1161/circulationaha.12.148619] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND β-Adrenergic receptor (β-AR) activation can provoke cardiac arrhythmias mediated by cAMP-dependent alterations of Ca(2+) signaling. However, cAMP can activate both protein kinase A and an exchange protein directly activated by cAMP (Epac), but their functional interaction is unclear. In heart, selective Epac activation can induce potentially arrhythmogenic sarcoplasmic reticulum (SR) Ca(2+) release that involves Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) effects on the ryanodine receptor (RyR). METHODS AND RESULTS We tested whether physiological β-AR activation causes Epac-mediated SR Ca(2+) leak and arrhythmias and whether it requires Epac1 versus Epac2, β(1)-AR versus β(2)-AR, and CaMKIIδ-dependent phosphorylation of RyR2-S2814. We used knockout (KO) mice for Epac1, Epac2, or both. All KOs exhibited unaltered basal cardiac function, Ca(2+) handling, and hypertrophy in response to pressure overload. However, SR Ca(2+) leak induced by the specific Epac activator 8-CPT in wild-type mice was abolished in Epac2-KO and double-KO mice but was unaltered in Epac1-KO mice. β-AR-induced arrhythmias were also less inducible in Epac2-KO versus wild-type mice. β-AR activation with protein kinase A inhibition mimicked 8-CPT effects on SR Ca(2+) leak and was prevented by blockade of β(1)-AR but not β(2)-AR. CaMKII inhibition (KN93) and genetic ablation of either CaMKIIδ or CaMKII phosphorylation on RyR2-S2814 prevented 8-CPT-induced SR Ca(2+) leak. CONCLUSIONS β(1)-AR activates Epac2 to induce SR Ca(2+) leak via CaMKIIδ-dependent phosphorylation of RyR2-S2814. This pathway contributes to β-AR-induced arrhythmias and reduced cardiac function.
Collapse
Affiliation(s)
- Laëtitia Pereira
- Department of Pharmacology, University of California Davis, Davis, CA 95616-8636, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle. J Mol Cell Cardiol 2013; 57:96-105. [PMID: 23376036 DOI: 10.1016/j.yjmcc.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 01/17/2013] [Indexed: 02/08/2023]
Abstract
Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.
Collapse
|
117
|
Chen H, Tsalkova T, Chepurny OG, Mei FC, Holz GG, Cheng X, Zhou J. Identification and characterization of small molecules as potent and specific EPAC2 antagonists. J Med Chem 2013; 56:952-62. [PMID: 23286832 DOI: 10.1021/jm3014162] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
EPAC1 and EPAC2, two isoforms of exchange proteins directly activated by cAMP (EPAC), respond to the second messenger cAMP and regulate a wide variety of intracellular processes under physiological and pathophysiological circumstances. Herein, we report the chemical design, synthesis, and pharmacological characterization of three different scaffolds (diarylsulfones, N,N-diarylamines, and arylsulfonamides) as highly potent and selective antagonists of EPAC2. Several selective EPAC2 antagonists have been identified including 20i (HJC0350), which has an apparent IC(50) of 0.3 μM for competing with 8-NBD-cAMP binding of EPAC2 and is about 133-fold more potent than cAMP. Compounds 1 (ESI-05), 14c (HJC0338), and 20i, selected from each series, have exhibited no inhibition of EPAC1-mediated Rap1-GDP exchange activity at 25 μM, indicating that they are EPAC2-specific antagonists. Moreover, live-cell imaging studies using EPAC1, EPAC2, or PKA FRET sensor also demonstrate that 20i functions as an EPAC2 specific antagonist.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Berthouze-Duquesnes M, Lucas A, Saulière A, Sin YY, Laurent AC, Galés C, Baillie G, Lezoualc'h F. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal 2012; 25:970-80. [PMID: 23266473 DOI: 10.1016/j.cellsig.2012.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
β1 and β2 adrenergic receptors (βARs) are highly homologous but fulfill distinct physiological and pathophysiological roles. Here we show that both βAR subtypes activate the cAMP-binding protein Epac1, but they differentially affect its signaling. The distinct effects of βARs on Epac1 downstream effectors, the small G proteins Rap1 and H-Ras, involve different modes of interaction of Epac1 with the scaffolding protein β-arrestin2 and the cAMP-specific phosphodiesterase (PDE) variant PDE4D5. We found that β-arrestin2 acts as a scaffold for Epac1 and is necessary for Epac1 coupling to H-Ras. Accordingly, knockdown of β-arrestin2 prevented Epac1-induced histone deacetylase 4 (HDAC4) nuclear export and cardiac myocyte hypertrophy upon β1AR activation. Moreover, Epac1 competed with PDE4D5 for interaction with β-arrestin2 following β2AR activation. Dissociation of the PDE4D5-β-arrestin2 complex allowed the recruitment of Epac1 to β2AR and induced a switch from β2AR non-hypertrophic signaling to a β1AR-like pro-hypertrophic signaling cascade. These findings have implications for understanding the molecular basis of cardiac myocyte remodeling and other cellular processes in which βAR subtypes exert opposing effects.
Collapse
MESH Headings
- Animals
- Arrestins/antagonists & inhibitors
- Arrestins/genetics
- Arrestins/metabolism
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Fluorescence Resonance Energy Transfer
- Guanine Nucleotide Exchange Factors/metabolism
- HEK293 Cells
- Humans
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Protein Interaction Maps
- Proto-Oncogene Proteins p21(ras)/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Magali Berthouze-Duquesnes
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 31432 Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, Llach A, Lezoualc'h F, Benitah JP, Gomez AM. Epac in cardiac calcium signaling. J Mol Cell Cardiol 2012; 58:162-71. [PMID: 23220153 DOI: 10.1016/j.yjmcc.2012.11.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022]
Abstract
Epac, exchange protein directly activated by cAMP, is emerging as a new regulator of cardiac physiopathology. Although its effects are much less known than the classical cAMP effector, PKA, several studies have investigated the cardiac role of Epac, providing evidences that Epac modulates intracellular Ca(2+). In one of the first analyses, it was shown that Epac can increase the frequency of spontaneous Ca(2+) oscillations in cultured rat cardiomyocytes. Later on, in adult cardiomyocytes, it was shown that Epac can induce sarcoplasmic reticulum (SR) Ca(2+) release in a PKA independent manner. The pathway identified involved phospholipase C (PLC) and Ca(2+)/calmodulin kinase II (CaMKII). The latter phosphorylates the ryanodine receptor (RyR), increasing the Ca(2+) spark probability. The RyR, Ca(2+) release channel located in the SR membrane, is a key element in the excitation-contraction coupling. Thus Epac participates in the excitation-contraction coupling. Moreover, by inducing RyR phosphorylation, Epac is arrhythmogenic. A detailed analysis of Ca(2+) mobilization in different microdomains showed that Epac preferently elevated Ca(2+) in the nucleoplasm ([Ca(2+)]n). This effect, besides PLC and CaMKII, required inositol 1,4,5 trisphosphate receptor (IP3R) activation. IP3R is other Ca(2+) release channel located mainly in the perinuclear area in the adult ventricular myocytes, where it has been shown to participate in the excitation-transcription coupling (the process by which Ca(2+) activates transcription). If Epac activation is maintained for some time, the histone deacetylase (HDAC) is translocated out of the nucleus de-repressing the transcription factor myocyte enhancer factor (MEF2). These evidences also pointed to Epac role in activating the excitation-transcription coupling. In fact, it has been shown that Epac induces cardiomyocyte hypertrophy. Epac activation for several hours, even before the cell hypertrophies, induces a profound modulation of the excitation-contraction coupling: increasing the [Ca(2+)]i transient amplitude and cellular contraction. Thus Epac actions are rapid but time and microdomain dependent in the cardiac myocyte. Taken together the results collected indicate that Epac may have an important role in the cardiac response to stress.
Collapse
Affiliation(s)
- Gema Ruiz-Hurtado
- Inserm, U769, Univ. Paris-Sud 11, IFR141, Labex Lermit, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
120
|
Domínguez-Rodríguez A, Ruiz-Hurtado G, Benitah JP, Gómez AM. The other side of cardiac Ca(2+) signaling: transcriptional control. Front Physiol 2012; 3:452. [PMID: 23226134 PMCID: PMC3508405 DOI: 10.3389/fphys.2012.00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling), but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling). ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII) and phosphatase calcineurin, both of which are activated by the complex Ca2+/Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n) or cytoplasmic ([Ca2+]c), and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs) in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs) in [Ca2+]c, needed to activate calcineurin (Cn).
Collapse
|
121
|
Courilleau D, Bisserier M, Jullian JC, Lucas A, Bouyssou P, Fischmeister R, Blondeau JP, Lezoualc'h F. Identification of a tetrahydroquinoline analog as a pharmacological inhibitor of the cAMP-binding protein Epac. J Biol Chem 2012; 287:44192-202. [PMID: 23139415 DOI: 10.1074/jbc.m112.422956] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cAMP-binding protein Epac is a therapeutic target for the treatment of various diseases such as cardiac hypertrophy and tumor invasion. This points out the importance to develop Epac inhibitors to better understand the involvement of these cAMP sensors in physiology and pathophysiology. Here, we have developed a functional fluorescence-based high-throughput assay with a Z' value around 0.7 for screening Epac-specific antagonists. We identified an Epac1 inhibitor compound named CE3F4 that blocked Epac1 guanine nucleotide exchange activity toward its effector Rap1 both in cell-free systems and in intact cells. CE3F4 is a tetrahydroquinoline analog that fails to influence protein kinase A holoenzyme activity. CE3F4 inhibited neither the interaction of Rap1 with Epac1 nor directly the GDP exchange on Rap1. The kinetics of inhibition by CE3F4 indicated that this compound did not compete for binding of agonists to Epac1 and suggested an uncompetitive inhibition mechanism with respect to Epac1 agonists. A structure-activity study showed that the formyl group on position 1 and the bromine atom on position 5 of the tetrahydroquinoline skeleton were important for CE3F4 to exert its inhibitory activity. Finally, CE3F4 inhibited Rap1 activation in living cultured cells, following Epac activation by either 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, an Epac-selective agonist, or isoprenaline, a non-selective β-adrenergic receptor agonist. Our study shows that CE3F4 and related compounds may serve as a basis for the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Delphine Courilleau
- Université Paris-Sud, CIBLOT-IFR 141, Faculté de Pharmacie, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci U S A 2012; 109:18613-8. [PMID: 23091014 DOI: 10.1073/pnas.1210209109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The major physiological effects of cAMP in mammalian cells are transduced by two ubiquitously expressed intracellular cAMP receptors, protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC), as well as cyclic nucleotide-gated ion channels in certain tissues. Although a large number of PKA inhibitors are available, there are no reported EPAC-specific antagonists, despite extensive research efforts. Here we report the identification and characterization of noncyclic nucleotide EPAC antagonists that are exclusively specific for the EPAC2 isoform. These EAPC2-specific antagonists, designated as ESI-05 and ESI-07, inhibit Rap1 activation mediated by EAPC2, but not EPAC1, with high potency in vitro. Moreover, ESI-05 and ESI-07 are capable of suppressing the cAMP-mediated activation of EPAC2, but not EPAC1 and PKA, as monitored in living cells through the use of EPAC- and PKA-based FRET reporters, or by the use of Rap1-GTP pull-down assays. Deuterium exchange mass spectroscopy analysis further reveals that EPAC2-specific inhibitors exert their isoform selectivity through a unique mechanism by binding to a previously undescribed allosteric site: the interface of the two cAMP binding domains, which is not present in the EPAC1 isoform. Isoform-specific EPAC pharmacological probes are highly desired and will be valuable tools for dissecting the biological functions of EPAC proteins and their roles in various disease states.
Collapse
|
123
|
Chen C, Du J, Feng W, Song Y, Lu Z, Xu M, Li Z, Zhang Y. β-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCδ/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br J Pharmacol 2012; 166:676-88. [PMID: 22103274 DOI: 10.1111/j.1476-5381.2011.01785.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-6 plays crucial roles in cardiac hypertrophy, cardiac fibrosis and heart failure. Activation of β-adrenoceptors induced IL-6 production in neonatal mouse cardiac fibroblasts (NMCFs) through a G(s) /adenylate cyclase/cAMP/p38 MAPK pathway but independent of PKA. However, how cAMP activates p38 MAPK is still not defined. In this study, we have assessed the role of the exchange protein directly activated by cAMP (Epac) and PKCδ in p38 MAPK activation and IL-6 production by stimulated by the β-adrenoceptor agonist isoprenaline in NMCFs. EXPERIMENTAL APPROACH The IL-6 concentration in cell culture supernatants was measured by ELISA. The levels of phosphorylated and total p38 MAPK and PKCδ were determined by Western blot analysis. The translocation of PKCδ was determined by immunoblotting the soluble and particulate fractions. Expression of Epac1 or PKCδ was knocked down by the corresponding, adenovirus-mediated, small hairpin RNA (shRNA). RESULTS In NMCFs, activation of β-adrenoceptors enhanced PKCδ phosphorylation and translocation. Furthermore, knock-down of the PKCδ isoform using an adenovirus-mediated shRNA markedly down-regulated IL-6 induction by NMCFs stimulated with isoprenaline. Moreover, knock-down of Epac1 confirmed that Epac1 was upstream of PKCδ in IL-6 production. Additionally, both Epac1 and PKCδ mediated the p38 MAPK activation induced by isoprenaline. CONCLUSIONS AND IMPLICATIONS β-Adrenoceptor agonists activate a cAMP/Epac/PKCδ/p38 MAPK pathway to produce IL-6 in NMCFs. This study identifies Epac as the link between cAMP and p38 MAPK signalling pathways and demonstrates that PKCδ can function as a novel downstream effector of this β-adrenoceptor/cAMP/Epac pathway.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Sala V, Gallo S, Leo C, Gatti S, Gelb BD, Crepaldi T. Signaling to cardiac hypertrophy: insights from human and mouse RASopathies. Mol Med 2012; 18:938-47. [PMID: 22576369 DOI: 10.2119/molmed.2011.00512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/04/2012] [Indexed: 12/19/2022] Open
Abstract
Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli, some of which might finally lead up to a maladaptive state. An integral part of the pathogenesis of the hypertrophic cardiomyopathy disease (HCM) is the activation of the rat sarcoma (RAS)/RAF/MEK (mitogen-activated protein kinase kinase)/MAPK (mitogen-activated protein kinase) cascade. Therefore, the molecular signaling involving RAS has been the subject of intense research efforts, particularly after the identification of the RASopathies. These constitute a class of developmental disorders caused by germline mutations affecting proteins contributing to the RAS pathway. Among other phenotypic features, a subset of these syndromes is characterized by HCM, prompting researchers and clinicians to delve into the chief signaling constituents of cardiac hypertrophy. In this review, we summarize current advances in the knowledge of the molecular signaling events involved in the pathogenesis of cardiac hypertrophy through work completed on patients and on genetically manipulated animals with HCM and RASopathies. Important insights are drawn from the recognition of parallels between cardiac hypertrophy and cancer. Future research promises to further elucidate the complex molecular interactions responsible for cardiac hypertrophy, possibly pointing the way for the identification of new specific targets for the treatment of HCM.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
125
|
Ruiz-Hurtado G, Domínguez-Rodríguez A, Pereira L, Fernández-Velasco M, Cassan C, Lezoualc'h F, Benitah JP, Gómez AM. Sustained Epac activation induces calmodulin dependent positive inotropic effect in adult cardiomyocytes. J Mol Cell Cardiol 2012; 53:617-25. [PMID: 22910094 DOI: 10.1016/j.yjmcc.2012.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/15/2012] [Accepted: 08/07/2012] [Indexed: 01/30/2023]
Abstract
Cardiac actions of Epac (exchange protein directly activated by cAMP) are not completely elucidated. Epac induces cardiomyocytes hypertrophy, Ca(2+)/calmodulin protein kinase II (CaMKII) and excitation-transcription coupling in rat cardiac myocytes. Here we aimed to elucidate the pathway cascade involved in Epac sustained actions, as during the initiation of hypertrophy development, where β-adrenergic signaling is chronically stimulated. Rats were treated with the Epac selective activator 8-pCPT during 4 weeks and Ca(2+) signaling was analyzed in isolated cardiac myocytes by confocal microscopy. We observed a positive inotropic effect manifested by increased [Ca(2+)](i) transient amplitudes. In order to further analyze these actions, we incubated adult cardiomyocytes in the presence of 8-pCPT. The effects were similar to those obtained in-vivo and are blunted by Epac1 knock down. Interestingly, the increase in [Ca(2+)] transients was abolished by protein synthesis blockade or when the downstream effectors of calmodulin (CaMKII or calcineurin) were inhibited, pointing to calmodulin (CaM) as an important downstream protein in Epac sustained actions. In fact, CaM expression was enhanced by 8-pCPT treatment in isolated cells, as found by Western blots. Moreover, the 8-pCPT-induced, PKA-independent, positive inotropic effect was favored by enhanced extracellular Ca(2+) influx via L-type Ca(2+) channels. However, 8-pCPT also induced aberrant Ca(2+) release as Ca(2+) waves and extra [Ca(2+)](i) transients, suggesting proarrhythmic effect. These results provide new insights regarding Epac cardiac actions, suggesting an important role in the initial compensation of the heart to pathological stimuli during the initiation of cardiac hypertrophy, favoring contraction but also arrhythmia risk.
Collapse
Affiliation(s)
- Gema Ruiz-Hurtado
- Inserm, U769, Univ. Paris Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Vidal M, Wieland T, Lohse MJ, Lorenz K. β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway. Cardiovasc Res 2012; 96:255-64. [PMID: 22843704 DOI: 10.1093/cvr/cvs249] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Activation of the β(1)-adrenergic receptor and its G protein, G(s), induces cardiac hypertrophy. However, activation of classic Gα(s) effectors, adenylyl cyclases (AC) and protein kinase A, is not sufficient for induction of hypertrophy, which suggests the involvement of additional pathway(s) activated by G(s). Recently, we discovered that βγ subunits of G(q) induce phosphorylation of the extracellular regulated kinases 1 and 2 (Erk1/2) at threonine188 and thereby induce hypertrophy. Here we investigated whether β-adrenergic receptors might also induce cardiac hypertrophy via Erk(Thr188) phosphorylation. METHODS AND RESULTS β-Adrenergic receptor activation induced Erk(Thr188) phosphorylation in mouse hearts and in neonatal cardiomyocytes. Inhibition of Erk1/2 or overexpression of Erk(Thr188) phosphorylation-deficient mutants (Erk2(T188A) and Erk2(T188S)) significantly attenuated β-adrenergic cardiomyocyte hypertrophy in vitro. Erk activity was stimulated by both isoproterenol and the direct AC activator forskolin, but only isoproterenol induced Erk(Thr188) phosphorylation. Erk(Thr188) phosphorylation required Gβγ released from G(s) and was prevented by Gβγ inhibition. Similarly, isoproterenol, but not forskolin, induced nuclear accumulation of Erk and cardiomyocyte hypertrophy. Long-term application of isoproterenol in mice caused left ventricular hypertrophy and cardiac remodelling, and this was reduced in Erk2(T188S) transgenic mice, supporting the physiological relevance of Erk(Thr188) phosphorylation. CONCLUSIONS Activation of G(s) by β-adrenergic receptors leads to (i) canonical Erk1/2 activation via AC, and (ii) release of Gβγ, which then associates with activated Erk1/2 and induces Erk(Thr188) phosphorylation, causing nuclear accumulation of Erk and ultimately cardiomyocyte hypertrophy. These findings reveal a new pathway critically involved in β-adrenergically mediated cardiac hypertrophy and may yield new therapeutic strategies against hypertrophic remodelling.
Collapse
Affiliation(s)
- Marie Vidal
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
127
|
Mebazaa A, Vanpoucke G, Thomas G, Verleysen K, Cohen-Solal A, Vanderheyden M, Bartunek J, Mueller C, Launay JM, Van Landuyt N, D'Hondt F, Verschuere E, Vanhaute C, Tuytten R, Vanneste L, De Cremer K, Wuyts J, Davies H, Moerman P, Logeart D, Collet C, Lortat-Jacob B, Tavares M, Laroy W, Januzzi JL, Samuel JL, Kas K. Unbiased plasma proteomics for novel diagnostic biomarkers in cardiovascular disease: identification of quiescin Q6 as a candidate biomarker of acutely decompensated heart failure. Eur Heart J 2012; 33:2317-24. [PMID: 22733835 DOI: 10.1093/eurheartj/ehs162] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Biochemical marker testing has improved the evaluation and management of patients with cardiovascular diseases over the past decade. Natriuretic peptides (NPs), used in clinical practice to assess cardiac dysfunction, exhibit many limitations, however. We used an unbiased proteomics approach for the discovery of novel diagnostic plasma biomarkers of heart failure (HF). METHODS AND RESULTS A proteomics pipeline adapted for very low-abundant plasma proteins was applied to clinical samples from patients admitted with acute decompensated HF (ADHF). Quiescin Q6 (QSOX1), a protein involved in the formation of disulfide bridges, emerged as the best performing marker for ADHF (with an area under the receiver operator characteristic curve of 0.86, 95% confidence interval: 0.79-0.92), and novel isoforms of NPs were also identified. Diagnostic performance of QSOX1 for ADHF was confirmed in 267 prospectively collected subjects of whom 76 had ADHF. Combining QSOX1 to B-type NP (BNP) significantly improved diagnostic accuracy for ADHF by particularly improving specificity. Using thoracic aortic constriction in rats, QSOX1 was specifically induced within both left atria and ventricles at the time of HF onset. CONCLUSION The novel biomarker QSOX1 accurately identifies ADHF, particularly when combined with BNP. Through both clinical and experimental studies we provide lines of evidence for a link between ADHF and cardiovascular production of QSOX1.
Collapse
Affiliation(s)
- Alexandre Mebazaa
- Department of Anesthesia and Intensive Care, U942 Inserm, Paris Diderot University, Lariboisière Hospital, 2 rue Ambroise Paré, 75010 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Epacs (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors for the Ras-like small GTPases Rap1 and Rap2. Epacs were discovered in 1998 as new sensors for the second messenger cAMP acting in parallel to PKA (protein kinase A). As cAMP regulates many important physiological functions in brain and heart, the existence of Epacs raises many questions regarding their role in these tissues. The present review focuses on the biological roles and signalling pathways of Epacs in neurons and cardiac myocytes. We discuss the potential involvement of Epacs in the manifestation of cardiac and central diseases such as cardiac hypertrophy and memory disorders.
Collapse
|
129
|
Chen H, Tsalkova T, Mei FC, Hu Y, Cheng X, Zhou J. 5-Cyano-6-oxo-1,6-dihydro-pyrimidines as potent antagonists targeting exchange proteins directly activated by cAMP. Bioorg Med Chem Lett 2012; 22:4038-43. [PMID: 22607683 DOI: 10.1016/j.bmcl.2012.04.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022]
Abstract
Exchange proteins directly activated by cAMP (Epac) are a family of guanine nucleotide exchange factors that regulate a wide variety of intracellular processes in response to second messenger cAMP. To explore the structural determinants for Epac antagonist properties of high throughput screening (HTS) hit ESI-08, pyrimidine 1, a series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine analogues have been synthesized and evaluated for their activities for Epac inhibition. Structure-activity relationship (SAR) analysis led to the identification of three more potent Epac antagonists (6b, 6g, and 6h). These inhibitors may serve as valuable pharmacological probes for further elucidation of the physiological functions and mechanisms of Epac regulation. Our SAR results and molecular docking studies have also revealed that further optimization of the moieties at the C-6 position of pyrimidine scaffold may allow us to discover more potent Epac-specific antagonists.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
130
|
Mika D, Leroy J, Vandecasteele G, Fischmeister R. [Role of cyclic nucleotide phosphodiesterases in the cAMP compartmentation in cardiac cells]. Biol Aujourdhui 2012; 206:11-24. [PMID: 22463992 DOI: 10.1051/jbio/2012003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 11/15/2022]
Abstract
In the light of the knowledge accumulated over the years, it becomes clear that intracellular cAMP is not uniformly distributed within cardiomyocytes and that cAMP compartmentation is required for adequate processing and targeting of the information generated at the membrane. Localized cAMP signals may be generated by interplay between discrete production sites and restricted diffusion within the cytoplasm. In addition to specialized membrane structures that may limit cAMP spreading, degradation of the second messenger by cyclic nucleotide phosphodiesterases (PDEs) appears critical for the formation of dynamic microdomains that confer specificity of the response to various hormones. This review summarizes the main findings that support the cAMP compartmentation hypothesis in cardiac cells, with a special emphasis on PDEs. The respective roles of the four main cardiac cAMP-PDE families (PDE1 to PDE4) in the organization of cAMP microdomains and hormonal specificity in cardiac cells are reviewed. The evidence that these PDEs are modified in heart failure is summarized, and the implication for the progression of the disease is discussed. Finally, the potential benefits that could be awaited from the manipulation of specific PDE subtypes in heart failure are presented.
Collapse
Affiliation(s)
- Delphine Mika
- Inserm UMR-S 769- LabEx LERMIT, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
131
|
Bányász T, Szentandrássy N, Tóth A, Nánási PP, Magyar J, Chen-Izu Y. Cardiac calmodulin kinase: a potential target for drug design. Curr Med Chem 2011; 18:3707-13. [PMID: 21774758 DOI: 10.2174/092986711796642409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023]
Abstract
Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and reduce arrhythmogenic activity. In this review, we will discuss the structural and functional properties of CaMKII, the modes of its activation and the functional consequences of CaMKII activity on ion channels.
Collapse
Affiliation(s)
- T Bányász
- Department of Physiology, University of Debrecen, Nagyerdei krt. 98. H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) mediates the biological effects of various hormones and neurotransmitters. Stimulation of cardiac β-adrenergic receptors (β-AR) via catecholamines leads to activation of adenylyl cyclases and increases cAMP production to enhance myocardial function. Because many other receptors signaling through cAMP generation exist in cardiac myocytes, a central question is how different hormones induce distinct cellular responses through the same second messenger. A large body of evidence suggests that the localization and compartmentalization of β-AR/cAMP signaling affects the net outcome of biological functions. Spatiotemporal dynamics of cAMP action is achieved by various proteins, including protein kinase A (PKA), phosphodiesterases, and scaffolding proteins such as A-kinase-anchoring proteins. In addition, the discovery of the cAMP target Epac (exchange proteins directly activated by cAMP), which functions in a PKA-independent manner, represents a novel mechanism for governing cAMP-signaling specificity. Aberrant cAMP signaling through dysregulation of β-AR/cAMP compartmentalization may contribute to cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Magali Berthouze
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès, BP 84225, 31342, Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
133
|
Sassi Y, Abi-Gerges A, Fauconnier J, Mougenot N, Reiken S, Haghighi K, Kranias EG, Marks AR, Lacampagne A, Engelhardt S, Hatem SN, Lompre AM, Hulot JS. Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB J 2011; 26:1009-17. [PMID: 22090316 DOI: 10.1096/fj.11-194027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that members of the multidrug-resistance protein (MRP) family belonging to ATP binding cassette type C (ABCC) membrane proteins extrude cyclic nucleotides from various cell types. This study aimed to determine whether MRP proteins regulate cardiac cAMP homeostasis. Here, we demonstrate that MRP4 is the predominant isoform present at the plasma membrane of cardiacmyocytes and that it mediates the efflux of cAMP in these cells. MRP4-deficient mice displayed enhanced cardiac myocyte cAMP formation, contractility, and cardiac hypertrophy at 9 mo of age, an effect that was compensated transiently by increased phosphodiesterase expression at young age. These findings suggest that cAMP extrusion via MRP4 acts together with phosphodiesterases to control cAMP levels in cardiac myocytes.
Collapse
Affiliation(s)
- Yassine Sassi
- Institut National de la Sante et de la Recherche Medicale (INSERM)/Universite Pierre et Marie Curie, Unite Mixte de Recherche en Sante (UMRS) 956, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Pereira L, Ruiz-Hurtado G, Morel E, Laurent AC, Métrich M, Domínguez-Rodríguez A, Lauton-Santos S, Lucas A, Benitah JP, Bers DM, Lezoualc'h F, Gómez AM. Epac enhances excitation-transcription coupling in cardiac myocytes. J Mol Cell Cardiol 2011; 52:283-91. [PMID: 22056318 DOI: 10.1016/j.yjmcc.2011.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/19/2011] [Indexed: 12/28/2022]
Abstract
Epac is a guanine nucleotide exchange protein that is directly activated by cAMP, but whose cardiac cellular functions remain unclear. It is important to understand cardiac Epac signaling, because it is activated in parallel to classical cAMP-dependent signaling via protein kinase A. In addition to activating contraction, Ca(2+) is a key cardiac transcription regulator (excitation-transcription coupling). It is unknown how myocyte Ca(2+) signals are decoded in cardiac myocytes to control nuclear transcription. We examine Epac actions on cytosolic ([Ca(2+)](i)) and intranuclear ([Ca(2+)](n)) Ca(2+) homeostasis, focusing on whether Epac alters [Ca(2+)](n) and activates a prohypertrophic program in cardiomyocytes. Adult rat cardiomyocytes, loaded with fluo-3 were viewed by confocal microscopy during electrical field stimulation at 1Hz. Acute Epac activation by 8-pCPT increased Ca(2+) sparks and diastolic [Ca(2+)](i), but decreased systolic [Ca(2+)](i). The effects on diastolic [Ca(2+)](i) and Ca(2+) spark frequency were dependent on phospholipase C (PLC), inositol 1,4,5 triphosphate receptor (IP(3)R) and CaMKII activation. Interestingly, Epac preferentially increased [Ca(2+)](n) during both diastole and systole, correlating with the perinuclear expression pattern of Epac. Moreover, Epac activation induced histone deacetylase 5 (HDAC5) nuclear export, with consequent activation of the prohypertrophic transcription factor MEF2. These data provide the first evidence that the cAMP-binding protein Epac modulates cardiac nuclear Ca(2+) signaling by increasing [Ca(2+)](n) through PLC, IP(3)R and CaMKII activation, and initiates a prohypertrophic program via HDAC5 nuclear export and subsequent activation of the transcription factor MEF2.
Collapse
Affiliation(s)
- Laetitia Pereira
- Inserm, U637, Université de Montpellier 1, Université de Montpellier 2, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Stangherlin A, Zaccolo M. Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system. Am J Physiol Heart Circ Physiol 2011; 302:H379-90. [PMID: 22037184 DOI: 10.1152/ajpheart.00766.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphodiesterases are key enzymes in the cAMP signaling cascade. They convert cAMP in its inactive form 5'-AMP and critically regulate the intensity and the duration of cAMP-mediated signals. Multiple isoforms exist that possess different intracellular distributions, different affinities for cAMP, and different catalytic and regulatory properties. This complex repertoire of enzymes provides a multiplicity of ways to modulate cAMP levels, to integrate more signaling pathways, and to respond to the specific needs of the cell within distinct subcellular domains. In this review we summarize key findings on phosphodiesterase compartmentalization in the cardiovascular system.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
136
|
Tilley DG. G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res 2011; 109:217-30. [PMID: 21737817 DOI: 10.1161/circresaha.110.231225] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors signal through a variety of mechanisms that impact cardiac function, including contractility and hypertrophy. G protein-dependent and G protein-independent pathways each have the capacity to initiate numerous intracellular signaling cascades to mediate these effects. G protein-dependent signaling has been studied for decades and great strides continue to be made in defining the intricate pathways and effectors regulated by G proteins and their impact on cardiac function. G protein-independent signaling is a relatively newer concept that is being explored more frequently in the cardiovascular system. Recent studies have begun to reveal how cardiac function may be regulated via G protein-independent signaling, especially with respect to the ever-expanding cohort of β-arrestin-mediated processes. This review primarily focuses on the impact of both G protein-dependent and β-arrestin-dependent signaling pathways on cardiac function, highlighting the most recent data that illustrate the comprehensive nature of these mechanisms of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, and Center for Translational Medicine, Thomas Jefferson University, 1025 Walnut Street, 402 College Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
137
|
Gloerich M, Vliem MJ, Prummel E, Meijer LAT, Rensen MGA, Rehmann H, Bos JL. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. ACTA ACUST UNITED AC 2011; 193:1009-20. [PMID: 21670213 PMCID: PMC3115801 DOI: 10.1083/jcb.201011126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Direct interaction between the catalytic domain of Epac1 and the nuclear pore component RanBP2 blocks Epac1 catalytic activity and downstream cAMP signaling. Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
138
|
PDEs create local domains of cAMP signaling. J Mol Cell Cardiol 2011; 52:323-9. [PMID: 21888909 DOI: 10.1016/j.yjmcc.2011.08.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/12/2011] [Accepted: 08/17/2011] [Indexed: 01/11/2023]
Abstract
In the light of the knowledge accumulated over the years, it becomes clear that intracellular cAMP is not uniformly distributed within cardiomyocytes and that cAMP compartmentation is required for adequate processing and targeting of the information generated at the membrane. Localized cAMP signals may be generated by interplay between discrete production sites and restricted diffusion within the cytoplasm. In addition to specialized membrane structures that may limit cAMP spreading, degradation of the second messenger by cyclic nucleotide phosphodiesterases (PDEs) appears critical for the formation of dynamic microdomains that confer specificity of the response to various hormones. This review will cover the role of the different cAMP-PDE isoforms in this process. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
|
139
|
Sun L, Kondeti VK, Xie P, Raparia K, Kanwar YS. Epac1-mediated, high glucose-induced renal proximal tubular cells hypertrophy via the Akt/p21 pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1706-18. [PMID: 21854750 DOI: 10.1016/j.ajpath.2011.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 11/17/2022]
Abstract
The mechanisms involved in tubular hypertrophy in diabetic nephropathy are unclear. We investigated the role of exchange protein activated by cAMP 1(Epac1), which activates Rap-family G proteins in cellular hypertrophy. Epac1 is expressed in heart, renal tubules, and in the HK-2 cell line. In diabetic mice, increased Epac1 expression was observed, and under high glucose ambience (HGA), HK-2 cells also exhibited increased Epac1 expression. We isolated a 1614-bp DNA fragment upstream of the initiation codon of Epac1 gene, inclusive of glucose response elements (GREs). HK-2 or COS7 cells transfected with the Epac1 promoter revealed a dose-dependent increase in its activity under HGA. Mutations in GRE motifs resulted in decreased promoter activity. HK-2 cells exhibited a hypertrophic response and increased protein synthesis under HGA, which was reduced by Epac1-siRNA or -mutants, whereas the use of a protein kinase A inhibitor had minimal effect. Epac1 transfection led to cellular hypertrophy and increased protein synthesis, which was accentuated by HGA. HGA increased the proportion of cells in the G0/G1 cell-cycle phase, and the expression of pAkt and the cyclin-dependent kinase inhibitors p21 and p27 was increased while the activity of cyclin-dependent kinase 4 decreased. These effects were reversed following transfection of cells with Epac1-siRNA or -mutants. These data suggest that HGA increases GRE-dependent Epac1 transcription, leading to cell cycle arrest and instigation of cellular hypertrophy.
Collapse
Affiliation(s)
- Lin Sun
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
140
|
Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011; 23:1257-66. [DOI: 10.1016/j.cellsig.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/14/2022]
|
141
|
Ostroveanu A, van der Zee EA, Eisel ULM, Schmidt M, Nijholt IM. Exchange protein activated by cyclic AMP 2 (Epac2) plays a specific and time-limited role in memory retrieval. Hippocampus 2011; 20:1018-26. [PMID: 19739231 DOI: 10.1002/hipo.20700] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge on the molecular mechanisms involved in memory retrieval is limited due to the lack of tools to study this stage of the memory process. Here we report that exchange proteins activated by cAMP (Epac) play a surprisingly specific role in memory retrieval. Intrahippocampal injection of the Epac activator 8-pCPT-2'O-Me-cAMP was shown to improve fear memory retrieval in contextual fear conditioning whereas acquisition and consolidation were not affected. The retrieval enhancing effect of the Epac activator was even more prominent in the passive avoidance paradigm. Down-regulation of Epac2 expression in the hippocampal CA1 area impaired fear memory retrieval when the memory test was performed 72 h after training, but not when tested after 17 days. Our data thus identify an important time-limited role for hippocampal Epac2 signaling in cognition and opens new avenues to investigate the molecular mechanisms underlying memory retrieval.
Collapse
Affiliation(s)
- Anghelus Ostroveanu
- Department of Molecular Neurobiology, Graduate School of Behavioral and Cognitive Neurosciences, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
142
|
Adderley SP, Sridharan M, Bowles EA, Stephenson AH, Sprague RS, Ellsworth ML. Inhibition of ATP release from erythrocytes: a role for EPACs and PKC. Microcirculation 2011; 18:128-35. [PMID: 21166931 DOI: 10.1111/j.1549-8719.2010.00073.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Here we demonstrate that, in human erythrocytes, increases in cAMP that are not localized to a specific receptor-mediated signaling pathway for ATP release can activate effector proteins resulting in inhibition of ATP release. Specifically we sought to establish that exchange proteins activated by cAMP (EPACs) inhibit ATP release via activation of protein kinase C (PKC). METHODS ATP release stimulated by iloprost (ILO), or isoproterenol (ISO), was determined in the absence and presence of selective phosphodiesterase inhibitors and/or the EPAC activator, 8CPT2OMecAMP (8CPT). To determine whether EPACs inhibit ATP release via activation of PKC, erythrocytes were incubated with phorbol 12-myristate 13-acetate (PMA) prior to either forskolin or ILO in the absence and presence of a PKC inhibitor, calphostin C (CALC). RESULTS Selective inhibition of PDEs in one pathway inhibited ATP release in response to activation of the other cAMP-dependent pathway. 8CPT and PMA inhibited both ILO- and ISO-induced ATP release. Inhibition of ATP release with 8CPT was rescued by CALC. CONCLUSION These results support the hypothesis that cAMP not localized to a specific signaling pathway can activate EPACs which inhibit ATP release via activation of PKC and suggest a novel role for EPACs in erythrocytes.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|
143
|
Dzhura I, Chepurny OG, Kelley GG, Leech CA, Roe MW, Dzhura E, Afshari P, Malik S, Rindler MJ, Xu X, Lu Y, Smrcka AV, Holz GG. Epac2-dependent mobilization of intracellular Ca²+ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C-ε knockout mice. J Physiol 2010; 588:4871-89. [PMID: 21041529 DOI: 10.1113/jphysiol.2010.198424] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calcium can be mobilized in pancreatic β-cells via a mechanism of Ca(2+)-induced Ca(2+) release (CICR), and cAMP-elevating agents such as exendin-4 facilitate CICR in β-cells by activating both protein kinase A and Epac2. Here we provide the first report that a novel phosphoinositide-specific phospholipase C- (PLC-) is expressed in the islets of Langerhans, and that the knockout (KO) of PLC- gene expression in mice disrupts the action of exendin-4 to facilitate CICR in the β-cells of these mice. Thus, in the present study, in which wild-type (WT) C57BL/6 mouse β-cells were loaded with the photolabile Ca(2+) chelator NP-EGTA, the UV flash photolysis-catalysed uncaging of Ca(2+) generated CICR in only 9% of the β-cells tested, whereas CICR was generated in 82% of the β-cells pretreated with exendin-4. This action of exendin-4 to facilitate CICR was reproduced by cAMP analogues that activate protein kinase A (6-Bnz-cAMP-AM) or Epac2 (8-pCPT-2'-O-Me-cAMP-AM) selectively. However, in β-cells of PLC- KO mice, and also Epac2 KO mice, these test substances exhibited differential efficacies in the CICR assay such that exendin-4 was partly effective, 6-Bnz-cAMP-AM was fully effective, and 8-pCPT-2'-O-Me-cAMP-AM was without significant effect. Importantly, transduction of PLC- KO β-cells with recombinant PLC- rescued the action of 8-pCPT-2'-O-Me-cAMP-AM to facilitate CICR, whereas a K2150E PLC- with a mutated Ras association (RA) domain, or a H1640L PLC- that is catalytically dead, were both ineffective. Since 8-pCPT-2'-O-Me-cAMP-AM failed to facilitate CICR in WT β-cells transduced with a GTPase activating protein (RapGAP) that downregulates Rap activity, the available evidence indicates that a signal transduction 'module' comprised of Epac2, Rap and PLC- exists in β-cells, and that the activities of Epac2 and PLC- are key determinants of CICR in this cell type.
Collapse
Affiliation(s)
- Igor Dzhura
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Métrich M, Laurent AC, Breckler M, Duquesnes N, Hmitou I, Courillau D, Blondeau JP, Crozatier B, Lezoualc'h F, Morel E. Epac activation induces histone deacetylase nuclear export via a Ras-dependent signalling pathway. Cell Signal 2010; 22:1459-68. [DOI: 10.1016/j.cellsig.2010.05.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/23/2010] [Indexed: 01/23/2023]
|
145
|
Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol 2010; 49:931-40. [PMID: 20728450 DOI: 10.1016/j.yjmcc.2010.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 12/20/2022]
Abstract
Patients with diabetes mellitus can develop cardiac dysfunction in the absence of underlying coronary artery disease or hypertension; a condition defined as diabetic cardiomyopathy. Mice lacking the intracellular protein kinase Akt2 develop a syndrome that is similar to diabetes mellitus type 2. Expression profiling of akt2(-/-) myocardium revealed that Rab4a, a GTPase involved in glucose transporter 4 translocation and β-adrenergic receptor (βAR) recycling to the plasma membrane, was significantly induced. We therefore hypothesized that Akt2 deficiency increases myocardial β-adrenergic sensitivity. Confirmatory analysis revealed up-regulation of Rab4a mRNA and protein in akt2(-/-) myocardium. In cultured cardiomyocyte experiments, Rab4a was induced by pharmacological inhibition of Akt as well as by specific knockdown of Akt2 with siRNA. Isolated akt2(-/-) hearts were hypersensitive to isoproterenol (ISO) but exhibited normal sensitivity to forskolin. Prolonged ISO treatment led to increased cardiac hypertrophy in akt2(-/-) mice compared to wild type mice. In addition, spontaneous hypertrophy was noted in aged akt2(-/-) hearts that was inhibited by treatment with the βAR blocker propranolol. In agreement with previous results demonstrating increased fatty acid oxidation rates in akt2(-/-) myocardium, we found increased peroxisome proliferator-activated receptor α (PPARα) activity in the hearts of these animals. Interestingly, increased myocardial Rab4a expression was present in mice with cardiac-specific overexpression of PPARα and was also observed upon stimulation of PPARα activity in cultured cardiomyocytes. Accordingly, propranolol attenuated the development of cardiac hypertrophy in the PPARα transgenic mice as well. Our results indicate that reduced Akt2 leads to up-regulation of Rab4a expression in cardiomyocytes in a cell-autonomous fashion that may involve activation of PPARα. This maladaptive response is associated with hypersensitivity of akt2(-/-) myocardium to β-adrenergic stimulation.
Collapse
|
146
|
Stuenaes JT, Bolling A, Ingvaldsen A, Rommundstad C, Sudar E, Lin FC, Lai YC, Jensen J. Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. Br J Pharmacol 2010; 160:116-29. [PMID: 20412069 DOI: 10.1111/j.1476-5381.2010.00677.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Genetic approaches have documented protein kinase B (PKB) as a pivotal regulator of heart function. Insulin strongly activates PKB, whereas adrenaline is not considered a major physiological regulator of PKB in heart. In skeletal muscles, however, adrenaline potentiates insulin-stimulated PKB activation without having effect in the absence of insulin. The purpose of the present study was to investigate the interaction between insulin and beta-adrenergic stimulation in regulation of PKB phosphorylation. EXPERIMENTAL APPROACH Cardiomyocytes were isolated from adult rats by collagenase, and incubated with insulin, isoprenaline, and other compounds. Protein phosphorylation was evaluated by Western blot and phospho-specific antibodies. KEY RESULTS Isoprenaline increased insulin-stimulated PKB Ser(473) and Thr(308) phosphorylation more than threefold in cardiomyocytes. Isoprenaline alone did not increase PKB phosphorylation. Isoprenaline also increased insulin-stimulated GSK-3beta Ser(9) phosphorylation approximately twofold, supporting that PKB phosphorylation increased kinase activity. Dobutamine (beta(1)-agonist) increased insulin-stimulated PKB phosphorylation as effectively as isoprenaline (more than threefold), whereas salbutamol (beta(2)-agonist) only potentiated insulin-stimulated PKB phosphorylation by approximately 80%. Dobutamine, but not salbutamol, increased phospholamban Ser(16) phosphorylation and glycogen phosphorylase activation (PKA-mediated effects). Furthermore, the cAMP analogue that activates PKA (dibutyryl-cAMP and N(6)-benzoyl-cAMP) increased insulin-stimulated PKB phosphorylation by more than threefold without effect alone. The Epac-specific activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (007) increased insulin-stimulated PKB phosphorylation by approximately 50%. Db-cAMP and N(6)-benzoyl-cAMP, but not 007, increased phospholamban Ser(16) phosphorylation. CONCLUSIONS AND IMPLICATIONS beta-adrenoceptors are strong regulators of PKB phosphorylation via cAMP and PKA when insulin is present. We hypothesize that PKB mediates important signalling in the heart during beta-adrenergic receptors stimulation.
Collapse
Affiliation(s)
- Jorid T Stuenaes
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Duquesnes N, Derangeon M, Métrich M, Lucas A, Mateo P, Li L, Morel E, Lezoualc'h F, Crozatier B. Epac stimulation induces rapid increases in connexin43 phosphorylation and function without preconditioning effect. Pflugers Arch 2010; 460:731-41. [PMID: 20585956 DOI: 10.1007/s00424-010-0854-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/17/2010] [Accepted: 06/08/2010] [Indexed: 11/30/2022]
Abstract
It has been recently shown that beta-adrenergic receptors are able to activate phospholipase C via the cyclic adenosine monophosphate-binding protein Epac. This new interconnection may participate in isoproterenol (Iso)-induced preconditioning. We evaluated here whether Epac could induce PKCepsilon activation and could play a role in ischemic preconditioning through the phosphorylation of connexin43 (Cx43) and changes in gap junctional intercellular communication (GJIC). In cultured rat neonatal cardiomyocytes, we showed that in response to Iso and 8-CPT, a specific Epac activator, PKCepsilon content was increased in particulate fractions of cell lysates independently of protein kinase A (PKA). This was associated with an increased Cx43 phosphorylation. Both Iso and 8-CPT induced an increase in GJIC that was blocked by the PKC inhibitor bisindolylmaleimide. Interestingly, inhibition of PKA partly suppressed both Iso-induced increases in Cx43 phosphorylation and in GJIC. The same PKCepsilon-dependent Cx43 phosphorylation by beta-adrenergic stimulation via Epac was found in adult rat hearts. However, in contrast with Iso that induced a preconditioning effect, perfusion of isolated hearts with 8-CPT prior to ischemia failed to improve the post-ischemia functional recovery. In conclusion, Epac stimulation induces PKCepsilon activation and Cx43 phosphorylation with an increase in GJIC, but Epac activation does not induce preconditioning to ischemia in contrast with beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Nicolas Duquesnes
- Signalisation et Physiopathologie Cardiaque, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Mangmool S, Shukla AK, Rockman HA. beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. ACTA ACUST UNITED AC 2010; 189:573-87. [PMID: 20421423 PMCID: PMC2867304 DOI: 10.1083/jcb.200911047] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-Arrestin functions as a scaffold for CaMKII and the Rap guanine nucleotide exchange factor Epac to regulate signaling from β1-ARs. Ca2+/calmodulin kinase II (CaMKII) plays an important role in cardiac contractility and the development of heart failure. Although stimulation of β1–adrenergic receptors (ARs) leads to an increase in CaMKII activity, the molecular mechanism by which β1-ARs activate CaMKII is not completely understood. In this study, we show the requirement for the β1-AR regulatory protein β-arrestin as a scaffold for both CaMKII and Epac (exchange protein directly activated by cAMP). Stimulation of β1-ARs induces the formation of a β-arrestin–CaMKII–Epac1 complex, allowing its recruitment to the plasma membrane, whereby interaction with cAMP leads to CaMKII activation. β-Arrestin binding to the carboxyl-terminal tail of β1-ARs promotes a conformational change within β-arrestin that allows CaMKII and Epac to remain in a stable complex with the receptor. The essential role for β-arrestin and identification of the molecular mechanism by which only β1-ARs and not β2-ARs activate CaMKII significantly advances our understanding of this important cellular pathway.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
149
|
RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Cell Signal 2010; 22:1231-9. [PMID: 20362664 DOI: 10.1016/j.cellsig.2010.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/26/2010] [Accepted: 03/25/2010] [Indexed: 11/21/2022]
Abstract
The chronic stimulation of certain G protein-coupled receptors promotes cardiomyocyte hypertrophy and thus plays a pivotal role in the development of human heart failure. The beta-adrenergic receptors (beta-AR) are unique among these in that they signal via Gs, whereas others, such as the alpha1-adrenergic (alpha1-AR) and endothelin-1 (ET-1) receptors, predominantly act through Gq. In this study, we investigated the potential role of regulator of G protein signalling 2 (RGS2) in modulating the hypertrophic effects of the beta-AR agonist isoproterenol (ISO) in rat neonatal ventricular cardiomyocytes. We found that ISO-induced hypertrophy in rat neonatal ventricular myocytes was accompanied by the selective upregulation of RGS2 mRNA, with little or no change in RGS1, RGS3, RGS4 or RGS5. The adenylyl cyclase activator forskolin had a similar effect suggesting that it was mediated through cAMP production. To study the role of RGS2 upregulation in beta-AR-dependent hypertrophy, cardiomyocytes were infected with adenovirus encoding RGS2 and assayed for cell growth, markers of hypertrophy, and beta-AR signalling. ISO-induced increases in cell surface area were virtually eliminated by the overexpression of RGS2, as were increases in alpha-skeletal actin and atrial natriuretic peptide. RGS2 overexpression also significantly attenuated ISO-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt activation, which may account for, or contribute to, its observed antihypertrophic effects. In contrast, RGS2 overexpression significantly activated JNK MAP kinase, while decreasing the potency but not the maximal effect of ISO on cAMP accumulation. In conclusion, the present results suggest that RGS2 negatively regulates hypertrophy induced by beta-AR activation and thus may play a protective role in cardiac hypertrophy.
Collapse
|
150
|
Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F. Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci U S A 2010; 107:5646-51. [PMID: 20212138 PMCID: PMC2851748 DOI: 10.1073/pnas.1001360107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that cGMP kinase I (cGKI) dampens cardiac hypertrophy. We have compared the effect of isoproterenol (ISO) and transverse aortic constriction (TAC) on hypertrophy in WT [control (CTR)] mice, total cGKI-KO mice, and cGKIbeta rescue mice (betaRM) lacking cGKI specifically in cardiomyocytes (CMs). Infusion of ISO did not change the expression of cGKI in the hearts of CTR mice or betaRM but raised the heart weight by approximately 20% in both. An identical hypertrophic growth response was measured in CMs from CTR mice and betaRM and in isolated adult CMs cultured with or without 1 muM ISO. In both genotypes, ISO infusion induced similar changes in the expression of hypertrophy-associated cardiac genes and significant elevation of serum atrial natriuretic peptide and total cardiac cGMP. No differences in cardiac hypertrophy were obtained by 7-day ISO infusion in 4- to 6-week-old conventional cGKI-KO and CTR mice. Furthermore, TAC-induced hypertrophy of CTR mice and betaRM was not different and did not result in changes of the cGMP-hydrolyzing phosphodiesterase activities in hypertropic hearts or CMs. These results strongly suggest that cardiac myocyte cGKI does not affect the development of heart hypertrophy induced by pressure overload or chronic ISO infusion.
Collapse
Affiliation(s)
- Robert Lukowski
- Forschergruppe 923 and
- Institut für Pharmakologie und Toxikologie, Technische Universität München, D-80802 Munich, Germany
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, D-72076 Tuebingen, Germany; and
| | - Sergei D. Rybalkin
- Forschergruppe 923 and
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Florian Loga
- Forschergruppe 923 and
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Veronika Leiss
- Forschergruppe 923 and
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Joseph A. Beavo
- Forschergruppe 923 and
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280
| | - Franz Hofmann
- Forschergruppe 923 and
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| |
Collapse
|